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Abstract. This paper presents an unsupervised approach for dialogue act (DA) 
classification.  We used a latent variable model to compress the dimensions of the feature 
vector.  We introduced a paraphraser to reduce the variety of expressions and to solve the 
pragmatic problem for DA classification.  The paraphraser seemed to work well on some 
DA classifications in the unsupervised approach.  The results obtained by the unsupervised 
approach were compared with the manually annotated labels.  A preliminary experiment 
for semi-supervised tagging was also carried out, and we discuss these results. 
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1. Introduction 
Recognizing the intentions of a user in a dialogue system is very important.  So far, many 
methods have been developed to infer a user’s intention in a dialog situation.  To infer the 
user’s intention in an utterance, the utterance can be categorized into given classes. Therefore, 
many studies have designed the classes called dialogue act (DA) labels that approximate a 
speaker’s intention.  They annotated the labels on a corpus to analyze the phenomena for DA 
interaction or to develop a DA tagger in order to infer the DA label from a speech segment (e.g. 
some utterances, an utterance, or a part of an utterance).  Most studies on DA taggers were 
based on a supervised method (e.g., (Stolcke et al., 2000; Tanaka and Yokoo, 1999)).  The 
labels used in a DA tagger have to be predefined, and supervised methods require a corpus that 
is manually annotated by the labels. 
  On the other hand, it is difficult to design a tag set (labels) that can be used to annotate a 
corpus because the design of a tag set depends on the domain and the task.  Therefore, we have 
to redesign the tag set and construct a corpus annotated with a new tag set if we apply our 
system to different domains or tasks.  In addition, designing a tag set that can be used in any 
domain or task is very difficult. However, we have to annotate DA tags on a corpus, because 
many applications require predefined DA tags. 
  This paper discusses an unsupervised approach to infer the user’s intention in a situation by 
using a dialog system.  Unsupervised approach may not achieve highly accurate results when 
compared to the supervised approach.  However, in any domain or task, the unsupervised 
approach can yield human DA annotators with machine judgments of the DA classification that 
may be useful to keep the consistency of DA annotation results for a corpus.  
  In addition, annotating a corpus with given labels is very time-consuming.  An unsupervised 
method is independent of annotation and designing the tag set.   In order to achieve an 
unsupervised method, we need an unsupervised clustering method.  So far, many clustering 
methods have been proposed and discussed for applications in natural language processing 
(NLP),  such as works by Zhao and Karypis (Zhao and Karypis, 2005).  However, an utterance 
is very short against a document that is used in a common NLP application. In addition, the 
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feature space that is used to express any natural language expression is extremely large and an 
utterance is expressed by a very sparse vector in the feature space. Therefore, it is very 
important to handle a sparse feature vector of an utterance in the huge feature space. 
 

2. DA Annotation 
Here, we construct a dialogue system to make an itinerary of one-day sightseeing tour and also 
develop a dialog corpus for this system.  The corpus consists of 100 dialogues between a 
professional tour guide and a tourist.  Each dialog is almost 30-min long.  An annotated corpus 
with DA is needed to construct our dialogue system.  Therefore, we have started to design a DA 
tag set and annotate the DA tags on the corpus. 

However, there are several problems that make it difficult for us to maintain consistency in 
the annotation as follows: (a) segmentation, (b) pragmatics, and (c) multifunctionality. 
  Sometimes, utterances are fragmental, and it is difficult to recognize an appropriate boundary 
of an utterance for a DA tag.  Hinarejos et al. reported that the correct segmentation for DA is 
very important for obtaining an accurate result in DA tagging (Hinarejos et al., 2006). 
  There is a pragmatic problem in the annotation of DA tags.  For example, the utterance “Do 
you know what time it is?” can be recognized as a yes/no question from the surface information, 
but the speaker’s intention is a request such as “Please tell me the time.” 

In addition, utterances are generally multifunctional. This problem is closely related to the 
design of the DA tag set.  So far, many DA tag sets have been proposed and used to annotate 
corpora. Some of them have several layers (e.g., DAMSL (Allen and Core, 1997)) and 
dimensions. 
  In this paper, we focus on the pragmatic problem in the DA annotation.  We try to resolve the 
pragmatics problem by paraphrasing.  If a euphemism is paraphrased into a straightforward 
expression, the dialogue system can easily understand the expression. 
 

3. Unsupervised method for DA annotation 
In this section, we describe an unsupervised approach to classify an utterance. The overview of 
the unsupervised approach is as follows: 
1. Construct a feature vector from an utterance. 
2. Reduce the dimensions of the feature space using a latent variable model. 
3. Classify the vector whose dimension was reduced using an unsupervised classification 

method. 
After constructing the feature vector, we use a latent variable model to reduce the dimension of 

the feature space.  Then, we use an unsupervised classification method to classify the vector that 
produced by using a latent variable model.  Finally, we find the class to which the utterance 
belongs. 

We also introduce a rule-based paraphraser to reduce the variety of expressions because a 
different expression is treated to be completely different in a latent variable model. 

3.1.  Latent variable models 
Several unsupervised text modeling methods, such as PLSI (probabilistic latent semantic 
indexing (Hofmann, 1999)) and LDA (latent Dirichlet allocation (Blei et al., 2003)), are 
available to model a text based on the features of words and their frequencies.  In general, the 
latent variables indicate the topics of each segment (some sentences for text or some utterances 
for speech), and we can use the topic information indicated by the latent variables of the model 
as a compact surrogate expression for a given feature vector of an utterance.  In other words, we 
can use these models to reduce the dimension of the feature space.  Once the model parameters 
are learned from a corpus, we can infer the topic of a given utterance.  If we constructed a latent 
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variable model with k  latent variables, we get a k -dimensional vector.  This vector is called a 
topic vector. 
  We used PLSI—a latent variable model— for general co-occurrence data that associates an 
unobserved topic variable  with each observation, i.e. with each occurrence 
of word  in document
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  The probability of a topic under the document ( ) is approximated by the following 
formula: 
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where  indicates the frequency of word  in the document d .  The details about how 
to introduce Equation (1) have been previously shown (Ohtake, 2005).  In that paper, Ohtake 
used PLSI and LDA to evaluate whether a paraphrasing pair is contextually independent or not, 
as well as if there was not a big difference in the performances between them.  Therefore, we 
use PLSI because it is simpler and faster than LDA. 

w

3.2. Unsupervised clustering method 
There are several unsupervised clustering methods.  We used the K-means clustering algorithm 
(e.g., (Duda et al., 2000)) that is very simple because, at the moment, a highly sophisticated 
method in which analyzing the tendency of the results by an unsupervised approach and 
manually annotated labels is not necessary.  In addition, we have to investigate whether a topic 
vector reasonably expresses a DA before using a sophisticated clustering method. 

3.3. Paraphrasing to reduce variety of expressions 
The use of a wide variety of expressions that conveys the same information is natural.  However, 
a different expression is treated to be completely different in a feature space.  Therefore, 
paraphrasing techniques seem to be promising approaches to understand the variety of 
expressions.  In particular, in Japanese, the ending of a sentence or utterance has many 
expressions even though they convey the same meaning.  These expressions are related to the 
Japanese honorific system, and in most cases the difference in the expression does not affect the 
DA classification.  

We construct a rule-based paraphraser that is very similar to the paraphraser proposed by 
Ohtake and Yamamoto (Ohtake and Yamamoto, 2001), and most of the rules in the honorific 
system were derived from their paraphraser.  The paraphraser was carefully designed to be free 
from errors and developed to paraphrase a variety of expressions that convey the same meaning 
into a standard expression.  

The rules of the paraphraser are based on a morphological analysis.  We can use regular 
expressions for pattern matching in a rule and we can conjugate any morphemes that have 
conjugation to fit in its context.  Therefore, a small number of rules cover a large number of 
targets that need to be paraphrased. 
 

4. Experiments 
In this section, we describe our experiments and introduce the data set.  We also mention the 
features that were used in the construction of the PLSI models. 

4.1. Data set 
We used the ATR Dialogue Database (Morimoto et al., 1994).  This database consists of 1,983 
dialogues (83,052 utterances) in traveling situations.  We used manually transcribed Japanese 
texts in the database.  In the transcribed texts, fillers and disfluencies are tagged with a marker.  
In order to use precisely analyzed results, we eliminated the fillers and disfluencies in the 
transcribed texts by a morphological analyzer that was used to obtain morphemes as units like 
words. 
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  We annotated 13 dialogues (489 utterances) with DA tags used in the paper by Tanaka and 
Yokoo (Tanaka and Yokoo, 1999) to evaluate the unsupervised classification.  The remainder of 
the data, namely 1,970 dialogues (82,563 utterances), were used to estimate the parameters of 
the PLSI model. 
  The original DA tag set that consisted of 26 tags was designed to annotate the dialogue 
segments that were shorter than an utterance.  Therefore, there were multi-labeled utterances in 
our annotation results because in some cases, a person utters several things in a single utterance. 
For example, when a person is asked a YES or NO question (YN-QUESTION), the person who 
answers might say “Yes, I will…(YES, INFORM).”  In this case, we treated the last DA tag as 
the labeled tag of the utterance.  In the annotated dialogues, 16 tags were actually used. 

4.2. Features for PLSI 
We used uni-gram and bi-gram word frequencies.  In this paper, a word is considered as a 
morpheme1 in Japanese.  An element of the feature consists of a pair of morpheme’s basic form 
and POS (part of speech).  However, numbers and proper names are generalized by eliminating 
this basic form.  In other words, the features of the numbers and proper names are recognized by 
only by their POS. 
  In general, PLSI requires words and their frequencies in order to construct a model from a 
corpus. However, Serafin et al. showed that adding extra features works well with latent 
semantic analysis in the DA classification (Serafin et al., 2004).  The PLSI model can be 
regarded as a probabilistic version of a latent semantic analysis.  Therefore, we can expect the 
same effect on PLSI, and we introduced the uni-gram and bi-gram features. 
  The segment for a unit of a document consists of the utterance and its previous utterance. The 
dialogues in the database are conversations between two people such as a customer and a clerk. 

4.3. Number of variables and performance on differentiation 
  We constructed PLSI models2 on the number of latent variables, namely 10, 50, 100, 200, and 
300, in order to determine the number of latent variables. The parameter for tempered EM 
(TEM)—a technique used to ease the over-fitting problem—was set to 0.9 (we use this value in 
all of the experiments in this study) because this value exhibited the best performance in the 
preliminary experiments. 
  We formulated topic vectors from the evaluation dialogue set, and we prepared the average 
vectors for each DA label from these topic vectors.  Finally, we compared each average vector 
with the others according to their cosine values, and we averaged the cosine values.  Therefore, 
these numbers indicate the distinguishing ability of topic vectors, where a smaller number is 
better.  The average values for each number of latent variables (10, 50, 100, 200, and 300) with 
all the DA labels are as follows: 0.607, 0.334, 0.288, 0.290 and 0.275, respectively. 

4.4. Impact of paraphrasing 
We applied the rule-based paraphraser to the data set (83,052 utterances), and all of the 56,027 
utterances were paraphrased. 
  First, we show the result of an unsupervised clustering result with manually annotated labels 
using a non-paraphrased corpus.  We constructed the PLSI model with 100 latent variables from 
the learning corpus that was not paraphrased. The test set was fed to the PLSI model, yielding 
the topic vectors.  Then, we used the K-means clustering method with 16 clusters because the 
size of the tag set that was used to annotate the test set is 16.  The result is shown in the 
“without paraphraser” column of Table 1. 

Second, we show the result of an unsupervised clustering result with manually annotated 
labels using a paraphrased corpus.  The result is shown in the “with paraphraser” column of 

                                                           
1 We used a morphological analyzer available at http://mecab.sourceforge.net/ 
2 We used the package available at http://chasen.org/~taku/software/plsi/ 
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Table 1.  Note that the cluster IDs found in the columns, “with paraphraser” and “without 
paraphraser” are independent of each other. 

Table 1: Unsupervised clustering result with/without paraphrasing and manual labels 

without paraphraser with
manual labels (freq.)

 paraphraser
(cluster ID: its frequency) (cluster ID

ACK (68) B:7, G:24, H:2, I:1, M:3, N:7,
O:8, P:16 a:12, c:14, f:2, g

ACT-REQ (44) B:4, C:3, D:1, F:1, H:6, I:1, J:1,
K:1, M:11, N:10, O:5

b:1, c:1, d:1, f:2, g
l:1

ALERT (1) N:1 o:1
APOLOGY (2) H:1, N:1 n:1, o:1

CONF-Q(29) B:4, C:1, D:1, H:1, I:3, J:4, K:1,
L:1, M:3, N:8, O:2 c:2, d:1, e:6, f:1,

FAREWELL (16) K:8, M:3, N:5 g:1, i:2, k:2, 
G-WISHES (1) K:1 o:1
GREET (8) B:3, M:1, N:4 g:3, o:5

INFORM (198)
B:27, C:11, D:10, E:6, F:2, G:2,
H:35, I:7, J:12, K:7, L:14, M:26,
N:27, O:12

a:11, b:2, c:1, d:
h:13, i:10, j:3, k:
o:63, 

: its frequency)

:4, k:3, n:8, p:25

:2, i:7, j:25, k:4,

 g:2, i:2, n:5, o:10

n:1, o:10

4, e:6, f:16, g:28,
16, m:18, n:5,

p:2
PERM-REQ (1) E:1 g:1
SUGGEST (6) F:3, H:2, M:1 c:2, f:2, m:1, o:1
THANK (20) A:16, I:2, K:1, N:1 a:1, g:2, i:2, 
THANK-RES (2) K:2 o:2
WH-Q (40) C:1, D:2, F:16, H:4, I:2, K:7, L:2, a:1, c:19, f:6, g:
YES (18) B:6, G:2, H:1, I:5, O:4 a:6, g:9, o:1, p:2

YN-Q (35) B:2, C:4, F:4, H:6, I:1, M:8, N:7,
O:3

a:2, b:4, c:12, f:4, g
n:1, o:4

l:10, n:4, o:1

1, i:10, k:2, n:1

:2, h:1, i:4, j:1,

 
 

4.5. Semi-supervised approach—preliminary experiment 
We carried out a very small experiment for the semi-supervised approach.  The experiment is 
small because the amount of annotated data is very small.  We have only 13 annotated dialogues. 
We used 12 dialogues to construct the average vectors for each label, where a withheld dialogue 
(32 utterances) was used as the test data. 
  The method to classify an utterance is very simple.  From a learning set, we construct the 
average vectors for each label.  Then, an utterance is given to construct a topic vector using 
PLSI with 100 latent variables and the average vector closest to the topic vector is calculated.  
Finally, the label of the average vector is inferred from the utterance’s classification.  The 
accuracies of the results are 37.5% (12/32) without paraphrasing and 21.9% (7/32) with 
paraphrasing. 

 

5. Discussion 
When using the latent variable model, the number of latent variables is an issue. In our 
experiment, there was not a considerable difference between the result using 100 latent variables 
and the results using more than 100 latent variables; therefore, 100 latent variables seem 
sufficient for our experiment. 
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  We compared the unsupervised approach and manually annotated labels.  It is difficult to 
conclude whether the unsupervised approach works well or not.  There were some cases in 
which the label and cluster have a strong correlation.  For example, the label “THANK” and 
cluster ID A and the label “WH-Q” and ID F in the “without paraphraser” column of Table 1 
indicate very good cases.  On the other hand, the original label “INFORM” indicated a 
miscellaneous category, and there were so many utterances labeled “INFORM.” Thus, 
utterances labeled “INFORM” were classified into many clusters. 
  We paraphrased our data set to reduce the variety of expressions.  From Table 1, we find a 
very clear tendency in the result of the label “ACT-REQ (ACTION-REQUEST)” that was used 
to label utterances asking someone to perform a certain task.  In Japanese, there is a large 
variety of expressions to this end.  Without paraphrasing, these expressions are treated 
differently. On the contrary, we treated them as the same expression when they were 
paraphrased into a single expression. Therefore, paraphrasing works quite well on utterances 
labeled “ACT-REQ.” 
  We have to consider the number of variables in a latent variable model and the number of 
clusters in an unsupervised clustering method.  In our experiment, the number of cluster used 
was the same as the number of labels that were used in the learning corpus.  However, if we 
used more clusters, we might be able to classify a large cluster into proper sub-clusters. 

On the other hand, there were some clusters having many elements that correspond to many 
manually labeled tags.  For example, cluster ID N in the “without paraphraser” column of Table 
1 was related to many labels.  From the observation of the test set, the phrase “onegai shimasu 
(please)” seems to be strongly related to this cluster.  This phrase is frequently used in Japanese 
when requesting someone to perform a particular task.  Ten utterances labeled “ACT-REQ” 
were classified in this cluster.  However, this phrase is too common to use as a feature.  
Meanwhile, cluster ID o in the “with paraphraser” column of Table 1 was also related to many 
labels.  In these cases, the expressions of number seem to be related to this cluster.  We have to 
consider what feature is effective for DA classification. 

   We carried out a very small preliminary experiment using a semi-supervised approach.  The 
size of the learning data for the semi-supervised method was too small to evaluate the method.  
In addition, the accuracies were quite low—37.5% without paraphrasing and 21.9% with 
paraphrasing.  Contrary to our expectations, the result with paraphrasing was worse than that 
without paraphrasing.  The observation results suggested several points.  First, some labels did 
not match their utterances after paraphrasing.  The expressions used in the utterances were 
drastically changed by the paraphraser and the annotated labels had become inappropriate for 
the paraphrased utterances.  Thus, we should control such paraphrasing.  When we re-annotated 
the paraphrased test set, the accuracy increased from 21.9% to 31.3%.  Second, paraphrasing 
caused a side effect. Reducing the variety of expressions constricted the features used by the 
PLSI.  The paraphraser was not designed for DA classification.  Some phrases should not be 
paraphrased and we should retain the original expressions. 

 

6. Conclusion 
This paper discussed an unsupervised approach for DA classification using a rule-based 
paraphraser and a latent semantic model.  In the experiments, a PLSI model with 100 latent 
variables was found to be efficient with respect to its distinguishing ability.  At the moment, on 
the other hand, we are unsure whether the unsupervised approach is promising when comparing 
the results obtained by the unsupervised approach with the manually labeled results. 

The introduction of a paraphraser that reduces the variety of expressions showed good results. 
In particular, in Japanese, there are many euphemisms for asking someone to perform a 
particular task. The paraphraser paraphrased such expressions effectively. 
  Several points remain for our future work as follows: 
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 A further analysis of the classification results would be useful.  In particular, we have to 
investigate whether the compressed feature space produced by PLSI is really effective for 
DA classification or not.  

 Introducing other features would be effective.  We only used uni-gram and bi-gram 
morphemes.  Introducing tri-gram morphemes or other features such as dependency 
relationships may be effective. 

 Tuning the paraphraser is required. The paraphraser was not tuned for DA classification. 
The paraphraser was designed to be generic. 

In addition, we will apply this unsupervised method to the corpus that is now under 
development for DA annotation. 
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