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Abstract

This paper proposes to disambiguate word senses by corpus-based ontology learning. Our
approach is a hybrid method. First, we apply the previously-secured dictionary information to
select the correct senses of some ambiguous words with high precision, and then use the ontology
to disambiguate the remaining ambiguous words. The mutual information between concepts in
the ontology was calculated before using the ontology as knowledge for disambiguating word
senses. If mutual information is regarded as a weight between ontology concepts, the ontology
can be treated as a graph with weighted edges, and then we locate the least weighted path from
one concept to the other concept. In our practical machine translation system, our word sense
disambiguation method achieved a 9% improvement over methods which do not use ontology for
Korean translation.

1. Introduction

An ontology is a knowledge base with information about concepts existing in the world, their properties,
and how they relate to each other. An ontology is different from a thesaurus in that it contains only
language independent information and many other semantic relations, as well as taxonomic relations. In
this paper, we propose to use the ontology to disambiguate word senses.

All approaches to word sense disambiguation (WSD) make use of words in a sentence to mutually
disambiguate each other. The distinctions between various approaches lie in the source and type of
knowledge made by the lexical units in a sentence. Thus, all these approaches can be classified into
Al-based, knowledge-based, or corpus-based approaches, according to their sources and types of
knowledge (Ide, 1998). AI-based WSD methods (Dahlgren, 1988) use a semantic network, or frames
containing information about word functions and the relation to other words in individual sentences; or
preference semantics, which specifies selectional restrictions for combinations of lexical items in a
sentence. The difficulty with handcrafting the knowledge sources is the major disadvantage of AI-based
systems. Knowledge-based methods (Resnik, 1995a; Yarowsky, 1992) have utilized machine-readable
dictionaries (MRD), thesauri, and computational lexicons, such as WordNet. Since most MRDs and
thesauri were created for human use and display inconsistencies, these methods have clear limitations.
Corpus-based methods (Dagan, 1994; Gale, 1992) extract statistical information from corpora which is
monolingual or bilingual, and raw or sense-tagged. The problem of data sparseness commonly occurs in
the corpus-based approach, and is especially severe when processing in WSD. A smoothing and
concept-based method is used to address this problem.

Our WSD approach is a hybrid method, which combines the advantages of corpus-based and
knowledge-based methods. We use our semi-automatically constructed ontology as an external
knowledge source and secured dictionary information as context information. First, we apply the
previously-secured dictionary information to select the correct senses of some ambiguous words with
high precision, and then use the ontology to disambiguate the remaining ambiguous words.

The remainder of this paper is organized as follows. In the next section, we describe the
semi-automatic ontology construction methodology briefly. The ontology learning is explained in
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Fig. 1 Concept hierarchy of the Kadokawa thesaurus

Section 3. An ontology-based word sense disambiguation algorithm is given in Section 4. Experimental

results are presented and analyzed in Section 5. Finally, we conclude and indicate the direction of our

future work in Section 6.

2. Ontology Construction

To construct a practical ontology for WSD, we developed two strategies. First, we introduced the same

number and grain size of concepts of the Kadokawa thesaurus (Ohno & Hamanishi, 1981) and its

taxonomic hierarchy into the ontology. The thesaurus has 1,110 semantic categories and a 4-level

hierarchy as a taxonomic relation (Fig. 1). Semantic categories in level L I , L 10 , and L 100 are further

divided into 10 subclasses. The root node is merely a dummy node. Noun and verb categories coexist in

the same taxonomic hierarchy of the Kadokawa thesaurus. Verb categories mainly correspond to the

code 2xx, 3xx, and 4xx in level L 1000 . This approach is a moderate shortcut to construct a practical

ontology and easily enables us to utilize its results, since some resources are readily available, such as

bilingual dictionaries of COBALT-J/K (Collocation-Based Language Translator from Japanese to

Korean) (Park et al., 1997) and COBALT-IQJ (Collocation-Based Language Translator from Korean to

Japanese) (Moon & Lee, 2000), which are machine translation systems developed by POSTECH

(Pohang University of Science and Technology, Korea). In these bilingual dictionaries, nominal and

verbal words are already annotated with concept codes from the Kadokawa thesaurus. By using the

same sense inventories of these MT systems, we can easily apply and evaluate our ontology without

additional lexicographic works. In addition, the Kadokawa thesaurus proved to be useful for providing a

fundamental foundation to build lexical disambiguation knowledge in COBALT-J/K and COBALT-K/J

MT systems (Li et al., 2000).

The second strategy to construct a practical ontology is to extend the hierarchy of the Kadokawa

thesaurus by inserting additional semantic relations into its hierarchy. The additional semantic relations

can be classified as case relations and other semantic relations. Thus far, case relations have been

occasionally used to disambiguate lexical ambiguities in the form of valency information and case

frame, but other semantic relations have not, because of the problem of discriminating them from each

other, making them difficult to recognize. We define a total of 30 semantic relation types for WSD by

referring mainly to the SELK (Sejong Electronic Lexicon of Korean) (Hong & Pak, 2001) and the

Mikrokosmos ontology (Mahesh, 1996), as shown in Table 1.
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Table 1. Semantic relation types in the ontology

Types of Semantic Relation Relation Lists

Taxonomic relation is-a

Case relation
agent, theme, experiencer, accompanier,

instrument, location, source, destination, reason,

appraisee, criterion, degree, receipient

Other semantic relation

has-member, has-element, contains, material-of,

headed-by, operated-by, controls, owner-of,

represents, symbol-of, name-of, producer-of,

composer-of, inventor-of, make, measured-in

These semantic relation types cannot express all possible semantic relations existing among concepts,

but experimental results demonstrated their usefulness for WSD. Table 2 shows the number of semantic

relations semi-automatically inserted into the ontology from computational dictionaries and large
corpora.

Table 2. The number of ontological relation instances

Types Number
Taxonomic relations 1,100
Case relations 112,746
Other semantic relations 2,093

Total 115,939

3. Ontology Learning

To use the ontology in natural language processing (NLP) applications, a scoring mechanism was

required to determine whether the governor and dependent concepts satisfy their semantic constraints in

the ontology. Therefore, in order to measure concept association, we use an association ratio based on

the information theoretic concept of mutual information (MI), which is a natural measure of the

dependence between random variables (Church & Hanks, 1989). Resnik (1995b) suggested a measure

of semantic similarity in an IS-A taxonomy, based on the notion of information content. However, his

method differs from ours in that we consider all semantic relations in the ontology, not taxonomy

relations only. To implement this idea, source concepts (SC) and semantic relations (SR) are bound into

one entity, since SR is mainly influenced by SC, not the destination concepts (DC). Therefore, if two

entities, < SC, SR>, and DC have probabilities P(<SC, SR>) and P(DC), then their mutual information

I(<SC, SR>, DC) is defined as:

I(< SC, SR >, DC) = log,
P(< SC , SR >, DC) 

+ 1
P(< SC ,SR >)P(DC)

(1)

The MI between concepts in the ontology must be calculated before using the ontology as knowledge

for disambiguating word senses. Figure 2 shows the construction process for training data in the form of

<SC (governor), SR, DC (dependent), frequency> and the calculation of MI between the ontology

concepts. We performed a slight modification on COBALT-K/J and COBALT-J/K to enable them to

produce sense-tagged valency information instances with the specific concept codes of the Kadokawa

thesaurus. After producing the instances, we converted syntactic relations into semantic relations by

relying on the specific rules and human intuition (Fig. 3). As a result, we extracted sufficient training
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Fig. 2 Construction flow of ontology training data
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Fig. 3 Example of conversion from syntactic patterns to semantic patterns

data from the Korean raw corpus, which has 70 million words, and the Japanese raw corpus, which has
eight hundred and ten thousand sentences.
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4. Word Sense Disambiguation

The ontology is applicable to many fields. In this paper, we propose to use the ontology to
disambiguate word senses. All approaches to word sense disambiguation (WSD) make use of words in
a sentence to mutually disambiguate each other. The distinctions between various approaches lie in the
source and type of knowledge constructed by the lexical units in a sentence.

Our WSD approach is a hybrid method, which combines the advantages of corpus-based and
knowledge-based methods. We use the ontology as an external knowledge source and secured
dictionary information as context information.

For a given ambiguous word W, Figure 4 describes our overall WSD algorithm. First, the verb's
valency information is applied by using the formulas (2) and (3). Sal9 denotes a set of word senses of
the word W, SR(V) a selectional restriction of a verb V that takes the word W as its argument. Ci and P.;
are concept types. Csim(Ch Pi) in Eq. (2) is used to compute the concept similarity between Ci and Pi,
where MSCA(Ci, P„) is the most specific common ancestor of concept types Ci and Pi. If the matching
score of valency information (Eq. (3)) is greater than a threshold, then set the sense of the word W to
Ci and exit. Otherwise, LSPs and UCWs are used in order (Li et al., 2000).

2 * level(MSCA(Ci,Pd))
Csim(C , Pi ) = 	 *weight	 (2)

level(Ci )± level(Pf)

Vsim(S(W),SR(V))=max(Csim(Ci,Pi)), 	
(3)

j � m,CiES(W);PiESR(V)
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If lexical information such as valency information, LSPs and UCWs is unavailable, or fails to match
with other words, we use the ontology as a second knowledge base. The roles of the ontology in WSD
are as follows. First, if previously-secured information for a concept is not available in a dictionary,
the ontology provides extended semantic constraints for the concept. The extended semantic
constraints were made in the previous ontology-building phase by other semantic constraints,
including the same concept code. Second, if a direct semantic relation between concepts is not
available in the ontology, the ontology and its scoring mechanism provide a relaxation procedure,
which approximates their semantic association. The following are detailed descriptions of the
procedure for applying the ontology to WSD work.

If MI is regarded as a weight between ontology concepts, the ontology can be treated as a graph
with weighted edges. All edge weights are non-negative and weights are converted into penalties by
the formula below. c indicates a constant, such as a maximum MI value over all possible pairs.

Pe(< SC, SR >, DC) = c 1.(< SC, SR >, DC) (4)

We use the formulas below to locate the least weighted path from one concept to the other. The
score functions are defined as respectively:

1	 if C,=Ci,

mmkP e(< C Rp>,C1))

Score* (C,,Ci if C, # C fj and C„C j have direct relations RP , (5-1)

min (Score(C,,Ck )* Score(Ck l Cj ))

0	 if C,=Cf,

min(Pe(< Ci , Rp >,C j))

if C, # Cj and C,,C j have direct relations Rp, (5-2)

min	 (Score(C,,Ck)+ Score(Ck ,C j))
Cke{conceptsinCi-4C11}

if	 and Ck has direct relations with C1.

Score+ (C„C j ) =

Cke{conceptsinCi-+Cf}

if ci 	 and Ck has direct relations with C.

Here C and R indicate concepts and semantic relations, respectively. It was found from the result
that Score* and Score formulas are almost same performance in inferring with the ontology. By
applying these formulas, we can verify how well selectional constraints between concepts are satisfied.
In addition, if there is no direct semantic relation between concepts, these formulas provide a
relaxation procedure, which enables it to approximate their semantic relations. This characteristic
enables us to obtain hints toward resolving metaphor and metonymy expressions.

To locate the best path, the search mechanism of the ontology applies the following heuristics.
Firstly, a taxonomic relation must be treated as exceptional from other semantic relations, because
they inherently lack frequencies between parent and child concepts. So we experimentally assign a
fixed weight to those edges. Secondly, the weight given to an edge is sensitive to the context of prior
edges in the path. Therefore, our mechanism restricts the number of times that a particular relation can
be traversed in one path. Thirdly, this mechanism avoids an excessive change in the gradient.
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5. Experimental results

We performed an evaluation of the proposed WSD algorithm using the ontology. This section presents
the experimental results. Eight ambiguous nouns and four ambiguous verbs were selected, along with
a total of 604 test sentences in which one test noun or verb appears. The test sentences were randomly
selected from the raw Korean corpus. Out of several senses for each ambiguous word, we considered
only two or three senses that are most frequently used in the corpus.

We performed three experiments for MT system: The first experiment, BASE, is the case where the
most frequently used senses are always taken as the senses of test words. The purpose of this
experiment is to show a baseline in WSD work. The second, LEX, uses only secured dictionary
information, such as the selectional restriction of verbs, local syntactic patterns, and unordered co-
occurring word patterns in disambiguating word senses. This is a general method without an ontology.
The third, ONTO, shows the results of our WSD method using the ontology. The experimental results
are compared with each other in Table 3. In these experiments, the ONTO method achieved a 9%
improvement over the LEX method.

Table 3. Experimental results of word sense disambiguation in COBALT-KJJ (%)

POS Lexical word Sense BASE LEX ONTO

Noun

Pwuca father & child / rich man 65.3  69.2 86.0

Kancang liver I soy sauce 66.0 87.8 91.8

Kasa
housework / words of
song

48.0 88.5 96.1

Kwutwu  shoe / word of mouth 78.0 85.7 95.9

Nwun eye 1 snow 82.0 96.0 94.0

Yongki courage / container 62.0 74.0 82.0

Kyengpi expenses / defense 74.5 78.4 90.2

Kyeons-ki times / match 52.9 80.4 93.2

Verb

Nayli-ta get off / draw 42.0 72.0 88.0

Seywu-ta make (a plan) / build 54.0 88.0 95.4

Ssu-ta  use I write /put on (a hat) 46.0 86.0 96.0

Taywu-ta burn / give a ride
,
50.0 86.0 92.0

Average Precision
,

60.1 82.7 91.7

Table 4 shows the applicability and precision for each phase in the WSD algorithm. In ontology
phase, the ratio of applicability was 18.1% and precision was 86.4%.

Table 4. Applicability and precision for each phase in the WSD algorithm

Phase Applicability (%) Precision (%)
Verb's valency information 34.8 91.6

Local syntactic patterns (LSPs) 9.8 91.4
Unordered co-occurring word patterns (UCWs)  28.2 92.3

Infer with the ontology 18.1 86.4
Take the most frequently appearing sense  9.1 74.2

Sum / Average Precision according to Applicability 100  89.2

The main reason for these results is that, in the absence of secured dictionary information about an
ambiguous word, the ontology provides an extended case frame by the concept code of the word. In
addition, when there is no direct semantic constraint between concepts, our search mechanism



provides a relaxation procedure. Therefore, the quality and usefulness of the ontology were indirectly
proved by these results.

6. Conclusion

In this paper we have proposed a corpus-based ontology learning method and an ontology-based WSD
algorithm. The ontology, which includes extensive semantic relations between concepts, differs from
many resources in that it has no language-dependent knowledge, which is a network of concepts, not
words. The ontology can be applied to other languages, if the concept codes, which corresponding to
the senses of each headword, are merely inserted into their dictionaries.

In order to learn ontology for WSD, we automatically produced sense-tagged valency information
instances from large raw corpus. After producing the instances, we semi-automatically converted
syntactic relations into semantic relations, and then the mutual information between concepts in the
ontology was calculated. If mutual information is regarded as a weight between ontology concepts, the
ontology can be treated as a graph with weighted edges and weights are converted into penalties. By
locating the least weighted path from one concept to the other concept, we can verify how well
selectional constraints between concepts are satisfied.

The ontology is applied to disambiguate word senses in the form of an ontological graph search.
The search mechanism determines whpther selectional constraints between concepts are satisfied or
not, and includes a relaxation procedure, which enables concept pairs with no direct selectional
restriction to approximate their semantic association. This characteristic enables us to obtain hints
toward resolving metaphor and metonymy expressions.

The ontology calls for further specific concepts and semantic relations to improve the WSD
performance. A further direction of this study will be focused on how to combine the concept of the
semantic web (Berners-Lee et al., 2001) and the ontology in NLP applications.
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