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1. I N T R O D U C T I O N  

As part of our TIPSTER III research program, 
we have enhanced the NLToolset 's ~ capability to 
extract temporal expressions from free text and 
convert them into canonical form for accurate 
comparison, sorting, and retrieval within a database 
management system. 

The date or time that an event occurs is often a 
critical piece of information. Unfortunately, natural 
language expressions that contain this information are 
so numerous and varied that the interpretation of 
temporal expressions within free text becomes a 
challenging task for automatic text processing 
systems. 

This paper will look at the nature of the 
problem, the extraction and computation tasks, the 
use of a learning program, and the normalization 
strategy. The concluding section will discuss possible 
future endeavors related to time extraction. 

The NLToolset 

The NLToolset is a framework of tools, 
techniques, and resources designed for building text 
processing applications. It is a pattern based system 
which uses world knowledge resident in a lexicon, a 
location gazetteer, and lists of universal terms, such 
as first names and the Fortune 500 companies. This 
knowledge base is extensible with generic, as well as 
domain-specific, information. It applies lexico- 
semantic pattern matching in the form of basic 
structural patterns (possible-title firstname middle- 

J The NLToolset is a proprietary text processing 
product, owned by Lockheed Martin Corporation. 

initial lastname), as well as contextual knowledge 
(possible-name, who is X years old). The NLToolset 
has been applied to routing, indexing, name spotting, 
information extraction, and document management. 
It is an object-oriented system, implemented in C++ 
and ODBC to make it portable to both Unix and NT 
platforms, as well as multiple databases. 

2. PROBLEM DESCRIPTION 

The task of automatically extracting temporal 
information can be divided into four parts: 

1) Recognize the temporal expression. 

The event happened Saturday. 

2) Extract its features. 

Saturday is a day name and a relative 
expression. 

3) Compute its interval representation. 

Based on the reference date of the 
document and the features of the 
expression, determine which 
calendar day is meant. Represent 
this as an interval: 2 08291998 - 
08291998. 

4) Normalize the interval for database 
use. 

Store each part of the interval 
expression, i.e., day, month, year 
for start and end points, into an 

2 For the purpose of this paper, the interval will not 
address smaller units of time than days, i.e. hours, 
minutes, and seconds. An interval for a day will have 
identical endpoints. 
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NLToolset structure. Final 
output format varies according 
to application requirements. 

Feature Complexity 

The greatest difficulty in building an automatic 
system for interpreting time expressions is the 
seemingly infinite variety of ways in which human 
beings express time. 

The term "feature" in this context refers to a 
category of information that can be used to interpret 
the expression. For example, the feature "unit of 
time" refers to the terms month, day, year, century; 
"interval endpoint" refers to an explicit reference to at 
least one end of a time interval, such as before the end 
of or from June to September. 

Each of the following numbered examples 
represents a different kind of time expression, based 
on the features available for its interpretation. 

1. before the end of the year 

2. next April 

3. March 1, 1992 

4. from June to September 

5. in the 90's 

6. in two weeks 

7. the f irstyear 

8. beginning July 1 

9. last Summer 

10. next month 

11. in the first quarter of fiscal 1992 

12. the turn of the century 

13. Saturday 

14. yesterday 

15. the previous April 

Table 1 illustrates the relationship between a set 
of features and the temporal expressions in which 
they appear. This is often a many-to-many 
relationship, which makes the manual construction of 
a decision tree a formidable task. 

Feature Available Example Nmuber 

unit of time 1, 6, 7, 10 

interval endpoint 1, 4, 5, 7, 8 

relative to dateline 1, 2, 4, 6, 8, 9, 10, 13, 14 

month name 2, 3, 4, 8, 15 

relative direction 2, 9, 10, 15 

day number 3, 8 

year 3 

decade number 5 

ordinal 7 

relative to event date 7 

season name 9 

fiscal year 11 

fiscal year unit 11 

idiom 12 

relative to context 5, 12 

day name 13 

relative day term 4 

Table 1: Feature/Expression Relationships 

Each expression will require a unique 
computation function, based on the features present 
and their interaction. For example, the second 
expression, next April, is different from April of next 
year only if the reference date is within the interval 
between January 1 and March 31. 

There are many possible combinations of 
features. Additionally, there are many idiomatic 
temporal expressions, such as the turn of the century. 
These possibilities must be captured within the 
NLToolset's rule packages so that the expression can 
be recognized. 

Relative Expressions 

Some time expressions are specific, e.g. March 
1, 1992; others are relative expressions, either of a 
contiguous or non-contiguous nature. For example, 
expressions like yesterday or next month are non- 
contiguous because they are relative to the dateline of 
the message. But, expressions like the previous April 
or the following day usually refer to the immediately 
preceding time expression, and thus are thought of as 
contiguous. 

The CEO announced his retirement on March 5. The followinq 
d ~ ,  the company's stock price rose. 
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In this example, on March 5 is a non-contiguous 
expression and is calculated from the document 
reference date, while the following day is contiguous 
and is calculated using the previous temporal 
expression, March 5, as the reference date. 

Also to be factored in as a consideration in 
relative expressions is the tense of the verb. 

The ship sailed on Saturdav. 

The ship will sail on Saturdav. 

Computation of the correct interval depends on 
whether the date is meant to indicate past or future. 

Ambiguity 
Some expressions are simply meant to be 

ambiguous, indicating a general vicinity of time, but 
not meant to be exact. When the expression, next 
week, is used, does that mean the seven days 
beginning on Sunday, or does it mean the five days of 
the business week? There definitely is information 
contained within the expression, but the problem is 
capturing the information without overstating the 
accuracy of its representation. The following 
example further illustrates this point. 

Basebafl season begins next week. 

In this case, what is meant is that the season will 
begin at some point during the interval that is next 
week; however, the exact time is ambiguous. 

The NLToolset 's current implementation will 
arbitrarily decide what the interval of next week is. It 
will make no attempt to resolve the ambiguity, nor to 
note that such ambiguity exists. This is an area for 
future research. 

Specialized Calendars 

Information extraction systems are often 
developed for specialized domains. The following 
examples illustrate the problem of specialized 
calendars. The first example is from a business 
domain from which the system must extract 
information about joint ventures. 

Profits durino the first year reached $5 million. 

In this example, the reference point is the date 
that the joint venture began operations. This is used 
to calculate the interval represented by thefirst year. 

The second example is from the automotive 
domain. 

Since the 1990 model year began on October 1, Buick sales 
have plunged. 

Introduction of world knowledge to the system 
would be necessary to have it understand that the start 
of the model year was in 1989. 

The third example might appear in an 
agricultural domain. 

During the current crop year, Brazil will produce 7 million tons of 
sugar. 

This time period would depend on the crop 
grown and the growing location. 

3. E X T R A C T I O N  A N D  C O M P U T A T I O N  

The NLToolset has a rule package that can 
recognize common temporal expressions, both 
absolute and relative; its accuracy has been measured 
at above 90%. An important feature of the NLToolset 
is the ability it affords the developer to add variables 
to the rule patterns. In the case of temporal 
expressions, the pattern variables capture the features, 
such as month, day, or year, that make up the 
expressions. These values are used in the 
computation of the interval representation. 

Computing the Interval 

The computation stage involves determining the 
reference point and using it, plus the feature 
information and the information from the expression's 
context to compute the interval. For example, if the 
expression is next year, the system would find the 
reference year and then add one; the interval would 
extend from January 1 until December 31 of that year. 

If  the expression is Saturday, the system must 
decide whether it refers to next Saturday or last 
Saturday, based on the sentence tense. It must then 
ascertain the weekday name of the reference date and 
add or subtract the appropriate number of days to 
reach the proper calendar date. 

Arithmetic of calendar days across months can 
be problematic. To avoid this problem, the 
NLToolset converts each calendar day into a Julian 
day number form. 3 This number is the count of days, 

3 The Julian day number was introduced in 1581 by 
the French scholar Joseph Justus Scaliger to define a 
number from which all time could be reckoned. As a 
starting point, Scaliger chose the last year that the 
following cycles began simultaneously: the 28 year- 
long Sun cycle in which the calendar dates repeat on 
the same weekdays, the 19 year-long Metonic cycle in 
which the phases of the Moon repeat on almost the 
same calendar dates, and the 15 year-long cycle for 
tax collection and census that was used in the Roman 

53  



starting with the day 0 on the 1st of January, 4713 
BC. After the calculation is completed, the 
NLToolset converts the Julian day back to its original 
time scale. 

For the majority of cases, it is a simple matter to 
write a computation for a specific pattern that takes 
into consideration all of the relevant features and then 
determines the interval; however, the many-to-many 
relationship between features and expressions, 
coupled with a context dependency, complicates the 
overall process. 

Algorithm Complexity 

The simplest approach would be to write a 
package of rules, each of whose left hand side 
matches a certain time expression and whose right 
hand side is the relevant computation function. This 
method, while simple to implement, would bog down 
our pattern matcher by giving it too many possible 
paths to check. The following example illustrates this 
point. 

Straightforward mapping of  patterns to functions 

< monthname > >> Function-1 

< monthname day > >> Function-2 

< monthname day year  > >> Function -3 

< monthname year  > >> Function-4 

In this example, if the pattern matcher finds a 
monthname, it must check each of these patterns to 
see which one is applicable. If, instead, we construct 
one non-deterministic pattern, we can eliminate this 
problem. The curly brackets indicate optional 
elements. 

Col lapse of four pat tems into one 

< monthname { day } { year  } > >> Call-correct-function 

In this case, the complexity migrates to the right 
side of the rule. The Call-correct-function function 
now must compute the interval based on the features 
that have matched. The difficult part, with a variety 
of candidate features, is constructing a decision tree 
that is efficient, and then, when new cases are added, 
reconstructing the decision tree, while maintaining its 
efficiency. 

Identifying the Interval Type 

Because the NLToolset represents dates as 
intervals, the NLToolset must decide how to fill the 
start and end points of each interval. A starting or 

empire. This starting year for the Julian day was 
4713 BC. 

ending point could be unknown, a part of the date that 
is being interpreted, or the dateline (or other reference 
date). The decision as to what will fill each point of 
the interval is based partly on the prepositions and 
context, and partly on the date being interpreted. For 
instance, next week will have a start date at the 
beginning of the week following the dateline, and an 
end date at the end of that week. However, by next 
week will use the dateline as the start date. 

There are, by our reckoning, twelve ways to fill 
in the Start and end dates. By examining the context 
in which the date appears, we can select one of these 
ways rather than trying to work with the contextual 
information directly as we fill in the interval. Table 2 
enumerates the possibilities. 

START END EXAMPLE 

beg before last week 

unk end through last week 

unk dl until today 

beg unk as of this week 

beg end (during) next week 

beg dl beginning last week 

end unk after next week 

end dl since last week 

dl unk after today 

dl beg until next week 

dl end through next week 

dl dl today 

KEY: 

unk = unknown 

beg = beginning of the interpreted date 

end = end of the interpreted date 

dl = dateline ( or other reference date ) 

Table 2: Interval Type Algorithm 

4. L E A R N I N G  T H E  D E C I S I O N  T R E E  

We decided to try using machine learning to 
help generate the Call-correct-function code. We 
chose Quinlan's C4.5 software because it has been 
successfully applied to many problems requiring 
decision trees. C4.5 uses training examples to build a 
classification system, which, in this case, will 
comprise a decision tree which lays outs a feature- 
based path to each correct computation. As new cases 
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are added to the rule package, the tree can be quickly 
regenerated by adding more training examples. 

Using C4.5 

We will describe our experiment with C4.5. For 
a complete description of C4.5, see Quinlan's own 
publication. 4 

To use C4.5, the developer specifies: 1) the 
classes of interest; these will become the leaves of the 
decision tree and 2) the features and their possible 
values; these are the nodes of the tree. A set of 
training examples is provided and, when the tree has 
been generated, each path can be considered a rule. 

The C4.5 specification builds a description space 
whose dimensions correspond to the number of 
features describing the problem. Each training 
example is a point within the space. The decision tree 
is a classifier that divides the description space into 
regions, each one labelled with classification type. 
C4.5 decides which feature is the best one to use as a 
first discriminator, and then starts to divide the region 
based on that feature. This is a key element of C4.5. 
It provides the most efficient tree that it can discover. 
It also includes heuristics for simplifying the tree. In 
general, C4.5 generates a decision tree by ordering 
the testing of features according to how much 
information each feature will provide. Each decision 
splits the region into smaller pieces, until finally the 
classification is reached. 

According to Quinlan's guidelines, the best 
classifier will have few classes, few regions per class, 
many training cases relative to the volume of the 
regions, and no misclassification of the training cases. 

Failed Attempt 

Our first attempt at describing the problem in 
C4.5 syntax resulted in something like the following 
model. 

Classes: one class for each 
computation function 

Features and Values: 

Month ( Jan, Feb, Mar, Apr, May, 
Jun, Jul, Aug, Sep, Oct, Nov, 
Dec ) 

Day ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 ,  
12, 13, 14, 15, 16, 17, 18, 19, 20, 

4 Quinlan, J. Ross. C4.5: Programs for Machine 
Learning, Morgan Kaufmann Publishers, 1993. 

21, 22, 23, 24, 25, 26, 27, 28, 29, 
30,31 ) 

Year ( continuous values ) 

This approach failed because it does not abide 
by Quinlan's guidelines. We are trying to classify 
into many categories, one for each computation 
function. Our preliminary working set consists of 
fifteen classes. We also have many features with 
many possible values, and not all of the features are 
relevant in every case. In fact, in all cases, only a 
subset of the features is relevant. As a result, C4.5 has 
difficulty in generating a good decision tree, even 
with several hundred training examples. 

Different Approach 

To remedy this situation, we transformed the 
description space by converting the feature values to 
boolean -- Y or N -- because the value of the feature 
does not matter as much to the decision as whether 
the feature is present. 

Classes: one class for each 
computation function 

Features and Values: 

Month ( Y, N ) 

Day ( Y , N )  

Year ( Y , N )  

This change, although it maintains the large 
number of classes, allows us to reduce the volume of 
the regions and avoid the fragmentation of the 
previous model. Additionally, this model produces a 
binary tree, which is a simple if-then-else algorithm to 
implement. In fact, we can automatically convert the 
generated decision tree to C++ code, using a Perl 
script. 

This is an unusual use of C4.5 in that it does not 
follow Quinlan's guidelines for developing a good 
classifier; however, it does work for our purposes. It 
has alleviated the tedious and time-consuming 
problem of generating and re-generating an efficient 
decision tree in C++ code. 

5. N O R M A L I Z A T I O N  

The NLToolset gives a temporal expression an 
interval representation. The temporal interval 
currently abides by the time standard of the original 
temporal expression; however, in future, the temporal 
interval will be normalized into Coordinated 
Universal Time (UTC), which is considered the 
modern implementation of Greenwich Mean Time. 
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This time standard is used worldwide and will allow 
for greater interactivity between databases and within 
visualization tools. 

The interval representation is stored within an 
NLToolset structure in its component parts; that is, 
the year, month, day, hour, minute, and second for the 
beginning and endpoint of each interval are stored 
separately. The original values of the text are also 
stored. This affords flexibility as the NLToolset is 
applied to various domains. The application 
requirements can dictate which parts of the time 
representation will be stored and displayed. 

6. C O N C L U S I O N S  A N D  F U T U R E  

W O R K  

This paper has examined the task of extracting 
and normalizing temporal expressions, and h a s  
described the NLToolset 's approach to accomplishing 
this task. It has also described the use of  a learning 
program to deal with the complexity of developing 
such a system, as well as the methodology for 
normalizing temporal information for database use. 

As the time extraction process is exercised 
across applications, it will be expanded to cover more 
and more cases. 

Future research work may address the issue of 
ambiguous temporal expressions. Statistical means 
may be appropriate for representing the uncertainty of 
an interval representation. Comparisons across 
languages may also prove enlightening. In the near 
future, an existing prototype application will be 
translated into the Spanish language. 
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