
UMASS/HUGHES: DESCRIPTION OF THE CIRCUS SYSTEM USED
FOR TIPSTER TEXT

W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie, J. Peterson, F. Feng
University of Massachusetts

DeparUnent of Computer Science
Box 34610

Amherst, MA 01003-4610
lehnen@cs.umass.edu

C. Dolan, S. Goldman
Hughes Research Laboratories

3011 Malibu Canyon Road M/S RL96
Malibu, CA 90265

cpd@aic.hrl.hac.com

INTRODUCTION

The primary goal of our effort is the development of
robust and portable language processing capabilities
for information extraction appfications. The system
under evaluation here is based on language processing
components that have demonstrated strong
performance capabilities in previous evaluations
[Lehnert et al. 1992a]. Having demonstrated the
general viability of these techniques, we are now
concentrating on the practicality of our technology by
creating trainable system components to replace hand-
coded d~t~ and manually-engineered software.

Our general strategy is to automate the construction
of domain-specific dictionaries and other language-
related resources so that information extraction can be
customized for specific application s with a minimal
amount of human assistance. We employ a hybrid
system architecture that combines selective concept
extraction [Lehnert 1991] technologies developed at
UMass with trainable classifier technologies
developed at Hughes [Dolan et al. 1991]. Our Tipster
system incorporates seven trainable language
components to handle (1) lexical recognition and part-
of-speech tagging, (2) knowledge of
semantic/syntactic interactions, (3) semantic feature
tagging, (4) noun phrase analysis, (5) limited
coreference resolution, (6) domain object recognition,
and (7) relational link recognition. Our trainable
components have been developed so domain experts
who have no background in natural language or
machine learning can train individual system
components in the space of a few hours.

Many critical aspects of a complete information
extraction are not appropriate for customization or
trainable knowledge acquisition. For example, our
system uses low-level text specialists designed to
recognize dates, locations, revenue objects, and other

common constructions that involve knowledge of
conventional language. Resources of this type are
portable across domains (although not all domains
require all specialists) and should be developed as
sharable language resources. The UMass/I-Iughes
focus has been on other aspects of information
extraction that can benefit from corpus-based
knowledge acquisition. For example, in any given
information extraction application, some sentences
are more important than others, and within a single
sentence some phrases are more important than
others. When a dictionary is customized for a specific
application, vocabulary coverage can be sensitive to
the fact that a lot of words contribute little or no
information to the final extraction task: full
dictionary coverage is not needed for information
extraction applications.

In this paper we will overview our hybrid architecture
and trainable system components. We will look at
examples taken from our official test runs, discuss the
test results obtained in our official and optional test
runs, and identify promising opportunities for
~cldjtional research.

TRAINABLE LANGUAGE PROCESSING

Our Tipster system relies on two major tools that
support automated dictionary construction: (1) OTB, a
trainable part-of-speech tagger, and (2) AutoSlog, a
dictionary construction tool that operates in
conjunction with the CIRCUS sentence analyzer. We
trained OTB for EJV on a subset of EJV texts and
then again for EME using only EME texts. OTB is
notable for the high hit rates it obtains on the basis
of relatively little training. We found that OTB
attained overall hit rates of 97% after training on only
1009 sentences for EJV. OTB crossed the 97%
threshold in EME after only 621 training sentences.

241

Incremental OTB training requires human interaction
with a point-and-click interface. Our EJV training was
completed after 16 hours with the interface; our EME
training required 10 hours.

AutoSlog is a dictionary construction tool that
analyzes source texts in conjunction with associated
key templates (or text annotations) in order to
propose concept node (CN) definitions for CIRCUS
[Riloff & Lehnert 1993; Riloff 1993]. A special
interface is then used for a manual review of the
AutoSlog definitions in order to separate the good
ones from the bad ones. Of 3167 AutoSlog CN
definitions proposed in response to 1100 EJV key
templates, 944 (30%) were retained after manual
inspection. For EME, AutoSlog proposed 2952 CN
definitions in response to 1000 key templates and
2275 (77%) of these were retained after manual
inspection. After generalizing the original definitions

w i t h active/passive transformations, verb tense
generalizations, and singular/plural generalizations,
our final EJV dictionary contained 3017 CN
definitions and our final EME dictionary contained
4220 CN definitions. It took 20 hours to manually
inspect and filter the full EJV dictionary; the full
EME dictionary was completed in 17 hours. The
CIRCUS dictionary used in our official run was based
exclusively on AutoSlog CN definitions. No hand-
coded or manually altered definitions were added to the
CN dictionary.

When CIRCUS processes a sentence it can invoke a
semantic feature tagger (MayTag) that dynamically
assigns features to nouns and noun modifiers.
MayTag uses a feature taxonomy based on the
semantics of our target templates, and it dynamically
assigns context-sensitive tags using a corpus-driven
case-based reasoning algorithm [Cardie 93]. MayTag
operates as an optional enhancement to CIRCUS
sentence analysis. We ran CIRCUS with MayTag for
EJV, but did not use it for EME (we'll return to a
discussion of this and other domain differences later).
MayTag was trained on 174 EJV sentences containing
5591 words (3060 open class words and 2531 closed
class words). Our tests indicate that MayTag achieves
a 74% hit rate on general semantic features (covering
14 possible tags) and a 75% hit rate on specific
semantic features (covenng 42 additional tags).
Interactive training for MayTag took 14 hours using a
text editor.

An important aspect of the Tipster task concerns
information extraction at the level of noun phrases.
Important set fill information is often found in
modifiers, such as adjectives and prepositional
phrases. Part-of-speech tags help us identify basic

L

noun phrase components, but higher-level processes
are needed to determine if a prepositional phrase
should be attached, how a conjunction should be
scoped, or ff a comma should be crossed. Noun phrase
recognition is a non-trivial problem at this higher
level. To address the more complicated aspects of
noun phrase recognition, we use a trainable classifier
that attempts to find the best termination point for a
relevant noun phrase. This component was trained
exclusively on the EJV corpus and then used without
alteration for both EJV and EME. Experiments
indicate that the noun phrase classifier terminates EJV
noun phrases perfectly 87% of the time. 7% of its
noun phrases pick up spurious text (they are extended
too far), and 6% are truncated (they are not extended or
extended far enough). Similar hit rates are found with
EME test data: 86% for exact NP recognition, with
6% picking up spurious text and 8% being truncated.
The noun phrase classifier was trained on 1350 EJV
noun phrases examined in context. It took 14 hours
to manually mark these 1350 instances using a text
editor.

Before we can go from CIRCUS output to template
instantiations, we create intermediate structures called
memory tokens. Memory tokens incorporate
coreference decisions and structure relevant
information to facilitate template generation. Memory
tokens record source strings from the original input
text, OTB tags, MayTag features, and pointers to
concept nodes that exa'acted individual noun phrases.

Discourse analysis contributes to critical decisions
associated with memory tokens. Here we find the
greatest challenges to trainable language systems.
Thus far, we have implemented one trainable
component that contributes to coreference resolution
in limited contexts. We isolate compound noun
phrases that are syntactically consistent with
appositive constructions and pass these NP pairs on
to a coreference classifier. Since adjacent NPs may be
separated by a comma if they occur in a list or at a
clause boundary, it is easy to confuse legitimate
appositives with pairings of unrelated (but adjacent)
NPs. Appositive recognition is therefore treated as a
binary classification problem that can be handled with
corpus-driven training. For our official Tipster runs
we trained a classifier to handle appositive recognition
using EJV development texts and then used the
resulting classifier for both EJV and EME. Our best
test results with this classifier showed an 87% hit rate
on EJV appositives. It took 10 hours to manually
classify 2276 training instances for the appositive
classifier using a training interface.

242

I,

text file

PREPROCESSOR

!

SPECIALISTS

I

TRAINABLE P-O-S
TAGGER

preprocessed text file

CIRCUS
SENTENCE
ANALYZr~R

I

IRAINABLE APPOSITIVE
RECOGNITION

I

AUTOMATED CN
DICTIONARY

!

TRAINABLE SEMANTIC
TAGGER

!

TRAINABLE NP
ANALY~R

vl,

'~....... ~d key temp~_~.....~,J

memory tokens

4,

LEXICAL
COREFERENCE

I

I I TRAINABLE TEMPLATE
GENERATOR

l

4,
final template instanfiation

~ v e l o p m e n t t e x ~ ~ I~--- ,,...._ ~o, tom~,__.j'

Figure 1: System Architecture

243

Our final tool, "ITG, is responsible for the creation of
template generators that map CIRCUS output into
final template instantiations. TTG template
generators are responsible for the recognition and
creation of domain objects as well as the insertion of
relational links between domain objects. 'VFG is
corpus-driven and requires no human intervention
during training. Application-specific access methods
(pathing functions) must be hand-coded for a new
domain but these can be added to TTG in a few days
by a knowledgeable technician working with adequate
domain documentation. Once these adjustments are in
place, TTG uses memory tokens and key templates to
train classifiers for template generation. No further
human intervention is required to create the template
generators, although additional testing, tuning and
adjustments are needed for optimal performance.

Our hybrid architecture demonstrates how machine
learning capabilities can be utilized to acquire many
different kinds of knowledge from a corpus. These
same acquisition techniques also make it easy to
exploit the resulting knowledge without additional
knowledge engineering or sophisticated reasoning.
The knowledge we can readily acquire from a corpus
of representative texts is limited with respect to
reusability, but nevertheless cost-effective in a system
development scenario predicated on customized
software. The trainable components used for both
EJV and EME were completed after 101 hours of
interactive work by a human-in-the-loop. Moreover,
most of our training interfaces can be effectively
operated by domain experts: programming knowledge
or familiarity with computational linguistics is
generally not required. (Although one technical
background is needed to train OTB.). Near the end of
this paper will report the results of a system
development experiment that supports this claim.

There will always be a need for some amount of
manual programming during the system development
cycle for a new information extraction application.
Even so, significant amounts of system development
that used to rely on experienced programmers have
been shifted over to trainable language components.
The ability to automate knowledge acquisition on the
basis of key templates represents a significant
redistribution of labor away from skilled knowledge
engineers, who need access to domain knowledge,
directly to the domain experts themselves. By putting
domain experts into the role of the human-in-the-loop
we can reduce dependence on software technicians.
When significant amounts of system development
work is being handled by automated knowledge
acquisition and expert-assisted knowledge acquisition,
it will become increasingly cost-effective to
customize and maintain a variety of information
extraction applications. We have only just begun to

explore the range of possibilities associated with
trainable language processing systems.

The hybrid architecture underlying our official Tipster
systems was less than six months old at the time of
the evaluation, and most of the trainable language
components that we utilized were less than a year old.
Less than 24 person/months were expended for both
of the EJV and EME systems, although this estimate
is confounded by the fact that trainable components
and their associated interfaces were being designed,
implemented, and tested by the same people
responsible for our Tipster system development. The
creation of a trainable system component represents a
one-time system development investment that can be
applied to subsequent systems at much less overhead.

Figure 1 outlines the basic flow-of-control through
the major components of the UMass/Hughes Tipster
system. Note that most of the trainable components
depend only on the texts from the development
corpus. The concept node dictionary and the trainable
template generator also rely on answer keys during
training. In the case of the concept node dictionary,
we have been able to drive our dictionary construction
process on the basis of annotated texts created by
using a point-and-click text marking interface. So the
substantial overhead associated with creating a large
collection of key templates is not needed to support
automated dictionary construction. However, we do
not see how to support trainable template generation
without a set of key templates, so this one trainable
component requires a significant investment with
respect to labor.

SYSTEM E V O L U T I O N AND P R O J E C T
G O A L S

Our preparation for Tipster was somewhat limited
relative to other Tipster extraction sites. We began
our effort one year later than other sites and we were
not funded to work with Japanese. Our funding (and
system development) began October 1, 1992 and the
24-month evaluation took place in July 1993. During
that period we redesigned the overall system
architecture initially described in our proposal, and
designed a number of wainable system components
from scratch. OTB, AutoSlog, and MayTag were
already available, but needed to be trained and applied
to the new domains. Two project personnel attended
the 12-month Tipster meeting in September 1992,
and that was our first introduction to the domain
guidelines for EJV and EME.

Our initial system design was based on a simplistic
model of how the UMass and Hughes technologies
demonstrated at MUC-3 and MUC4 might be brought

244

together into a hybrid information extraction system.
The original idea was to pass CIRCUS output to
"ITTG (the Hughes Trainable Template Generator)
without further alteration to either CIRCUS or 'FIG.
This approach was put into place for the 18-month
Tipster evaluation in February 1993 and found to be
inadequate for a number of reasons. First, the output
of CIRCUS was highly fragmented and completed
unstructured at the discourse level. CIRCUS was
extracting but not organizing related information even
when that information all came from the same
sentence. So TFG was being asked to consolidate
information that required reorganization at many
levels. This problem was aggravated by the fact that
CIRCUS tended to create a lot of output for a given
text. Some of this output was irrelevant or off-target,
and some of it was legitimate but redundant. TTG
was expected to sort out the good from the bad and
not get tangled up in the redundancies. In fact, TFG
was designed to handle noise in the ~aining data, but
the amount of data being generated by CIRCUS
created massive training runs for "FIG. TTG had never
been pushed this hard before, so we found ourselves
contending with memory limitation problems and
long runtimes. Since TFG is not just one decision
tree but a collection of about 30 decision trees, these
additional complications produced significant
stumbling blocks.

We barely had a working system in place for the 18-
month evaluation in February and there was no
opportunity to adjust this initial implementation
before the evaluation. As painful as it was to subject
a first-pass system to a formal evaluation, the
exercise left no doubt about the problems inherent in
our system design. The hand-coded consolidation
heuristics developed at UMass for MUC-3 and MUC-
4 could not be functionally duplicated by TFG alone.
Additional processing needed to be inserted between
CIRCUS and TTG. We were also losing a lot of
information that should have been recognized during
preprocessing by low-level specialists designed to
pick up dates and locations. These specialists were
not particularly challenging, but they did requite a lot
of programming time and we had not made an
adequate investment in our preprocessing specialists.

At the same time, we were pleased with the trainable
components that allowed us to customize CIRCUS
for two new domains. The OTB part-of-speech tagger
needed some adjustments but seemed quite promising.
The AutoSlog dictionary construction tool had
worked very well for EJV and reasonably well for
EME. We came to understand that EME was heavily
dependent on keyword recognition for its technical
vocabulary. AutoSlog had not been designed to
collect or organize extensive synonym lists, but this
was not an inherently difficult task.

Six months prior to the final Tipster evaluation, we
had to make some major decisions. One of our
options was to hand-code new consofidation heuristics
for FEIV and EME. We knew how to do this based on
similar efforts for MUC-3 and MUC-4, and we
probably would have been able to improve the
performance of our system dramatically in the six
months remaining to us by following this route. But
we had made a research commitment to investigate
trainable technologies for information extraction
system development: we were interested in finding
alternatives to hand-coded heuristics. So we began to
look at the gap between CIRCUS and 'FIG with an
eye for the problems that might be managed by
trainable decision trees.

We identified three phenomena that seemed to be
causing significant difficulties for us at the 18-month
evaluation: (1) noun phrase termination, (2)
appositive recognition, and (3) coreference resolution.
Noun phrase termination refers to the problem of
knowing when an NP can be extended across potential
boundary markers like commas, conjunctions and
prepositional phrases. Appositive recognition is a
subset of the general coreference resolution problem,
but we found it useful to separate out appositives
because appositive candidates can be reliably
recognized on the basis of a syntactic pattern, which
makes appositives somewhat easier to tackle than the
general coreference problem.

We worked for a few weeks on the design of feature
vectors for the appositive problem and the noun
phrase termination problem. Training instances were
then collected and our first decision trees for these
problems were running in March. Baseline
comparisons with hand-coded heuristics for noun
phrase termination showed that a hand-coded
component was able to make noun phrase termination
decisions correctly about 65% of the time. ID3
decision trees were showing us hit rates in the 80-
85% range. We found a similar level of success for
our ID3 appositive d-trees. These trees were generally
able to categorize potential appositive candidates
correctly about 85% of the time. Subsequent
experimentation with these modules during March and
April failed to improve our initial performance levels.

During this same period we were also first coming to
appreciate the difficulties inherent in a system based
on many trainable components. With changes still
occurring to critical upstream components like the
processing specialists and OTB, we knew that older
training data for AutoSlog and our ID3-based
components was slowly falling out of sync with the
rest of the system. It wasn't a good idea to wain a tree
on one set of data and then test the tree on a

245

sul)stantially different data set. If a training set
incorporated a certain amount of noise (e.g. false hits
with respect to locations), and the test data contained
no noise or a much reduced noise level, an appositive
tree or noun phrase termination tree might not operate
as effectively as it would if the noise levels were
consistent across both data sets. But it wasn't
practical for us to continually update the training sets
in order to keep everything in phase. So we were
constantly waking with components that were either
outdated or out of phase, and it was difficult to know
how significant that complication would prove to be.
We were also dealing with a lot of software
engineering complexity in trying to manage all the
data sets, decision trees, and various configurations of
the system under inspection. Our Tipster system
development effort was proving to be much more
complicated than our MUC-3 and MUC-4 efforts had
been.

In all system development efforts, downstream
development depends on upstream stability, and this
is especially true when a number of trainable
components are involved. The introduction of major
new components six months before the final Tipster
evaluation was far from ideal. In particular, we were
up against the fact that we could not retrain TFG
until the new components were producing output. We
knew that TTG would benefit from a lot of
experimentation, but we couldn't do anything about
that until we had new capabilities in place to handle
noun phrases, appositives, and coreference. Noun
phrase termination was very important for AutoSlog,
so we held off on our final dictionary construction
until May in order to benefit from our progress on
noun phrase termination.

In retrospect, we can also see that we were too slow
to get started on the coreference module. We knew
that coreference would benefit from noun phrase
termination and appositives, so it made sense to delay
the coreference work until we had made at least some
progress on these other components. But we did not
appreciate how much more complicated data
collection for coreference would prove to be, and we
did not allow enough time to design feature vectors
for coreference. Coreferenee data collection was not
tackled before May, and progress on coreference went
much more slowly than expected. We did eventually
train some decision trees for general coreference
resolution, but our preliminary test results were not
strong, so we were forced to abandon trainable
coreference in the eleventh hour. Manually-coded
heuristics were then created in an effort to manage at
least some coreference decisions prior to template
generation.

The difficulties associated with coreference and the
last minute drive to pull together manual coreference
heuristics prevented us from experimenting with "FIG
as much as we would have liked. Some
improvements were made to make TI'G more efficient
and less memory intensive, but nothing could be done
that depended on memory token input. In the end, we
were not able to begin TTG training and
experimentation until July, at which time we were
struggling to produce a working system in time for
the final evaluation.

The lack of complete system throughput until July
meant that we couldn't run the scoring program in
order to obtain internal benchmarks during the six
months prior to the 24-month evaluation. We ran the
scoring program on EME output for the first time on
July 21, and on F.JV output for the first time on July
25. The official test runs were executed on July 31.

Our previous experience with MUC-3 and MUC-4
taught us that significant improvements to score
reports can be made by studying high-frequency slots
and looking for simple adjustments that improve
performance for these slots. There was no time to
experiment with any such adjustments in EJV
although some effort was made to optimize the EME
system in response to some internal testing based on
the 18-month test set. Unfortunately, these EME
adjustments may have backfired for reasons that we
will describe in the next section.

Despite our abbreviated development schedule and
difficulties establishing upstream system stability, we
learned a lot about the integration of machine learning
techniques into natural language processing systems.
Although Tipster was originally conceived to obtain a
comparative evaluation of mature text processing
technologies, we always viewed our Tipster effort as
being somewhat more exploratory in nature. No one
had previously attempted to integrate NLP techniques
with machine learning techniques at any of the
previous MUC conferences. The UMass/Hughes
system represented an ambitious undertaking that
would have benefited greatly from another year of
collaboration.

T H E O F F I C I A L T E S T R U N S

Our official test runs were conducted on three
DECstations running Allegro Common Lisp. The
runs went smoothly in EME but we encountered one
fatal error in one of the EJV test sets. Portions of our
official EJV and EME score reports are shown in
figures 2 and 3.

246

AO = all objects
MO = matched objects
TF = text filtering
FM = F-measures

FM I 48 I 17

F-measures

• JI~IB BI~IBB~E
z t i i rm i i r r l n i
, l i i ~ l i ilrlrti mE

P&R 2P&R P&2R

Figure 2: Official EJV Score Report Summaries

~ I I il~l~i BEgin i l t ' tn nix

P&R 2P&R P&2R

iF-measures [3 4 . 8 4 [3 7 . 4 2 i 32 .591

Figure 3: Official EME Score Report Summaries

~ i l k l l l ~ l E E I E E . ~ ! E ~1
~ E L l i l l i ~ l l f t l E ~ J

[F-measurq

P&R 2P&R P&2R

OVG

37

Figure 4: Unofficial Tips2 EME Score Reports

Based on the minimal amount of internal testing
conducted prior to the official test runs, we were
surprised to see that our EME scores were about the
same as our EJV scores. We had expected to do much
better on the EME test set. In the week prior to the
final evaluation, we made adjustments to the EME
system based on internal testing with the Tips2 test
set from the 18-month evaluation. Subsequent testing
on Tips2 suggested that we should have done much
better on the official test runs.

We had restricted our feedback loop to this one test
set because we knew that answer keys compiled for
official test sets tend to be more reliable than answer
keys in the general development corpus. We also
expected the test sets from the 18-month evaluation
to be predictive of the test sets used for the 24-month
evaluation. Unfortunately, this turned out not to be
the case with the Tips2 EME test set. After the final
evaluation, we discovered that Tips2 contained a
disproportionate number of short texts (97% of the
Tips2 texts were less than 2200 bytes long). We had
inadvertently tuned our EME system for short texts
without realizing it. The EME test set used for the
24-month evaluation contained a large number of
texts that were significantly longer than 2200 bytes.

Tips3/ l
Tips3/2
Tips3/3
Tips2

the complete test set

E]g:'lrl IIF Ii
791271391321
7713313713sl
7S13S1401381
6 7 1 4 4 1 5 2 1 4 7 1

the short texts only
IE IR IP IF

I J m l l ~ l E l E
E I m E g i E i l m E E I n

E = Error rate R = Recall P = Precision F = P&R F-score
(all objects scores only)

Figure 5: EME Tuning Effects for Short Texts

We can see the effects of this disparity between
training materials and test materials ff we compare the
overall EME score reports with score reports based on
only a subset of the shorter EME test texts. Figure 5
shows how our system would have performed if the
EME test set had been restricted to shorter texts that
were consistent with the Tips2 test set. When we test
the system on only the shorter texts from the Tips3
test set, we see significantly higher test scores. The
Tips3 subset scores are a tittle weaker than the Tips2
scores, but that difference is probably due to the fact
that we were tuning the system in response to Tips2
and we would therefore expect to see our strongest
possible performance on those same texts.

247

THE OPTIONAL TEST RUNS

We ran optional tests to see what sort of
recall/precision trade-offs were available from the
system. Since the template generator is a set of
classifiers, and each classifier outputs a certainty
associated with a hypothesized template fragment, we
have many parameters that can be manipulated.
Raising the threshold on the certainty for a
hypothesis will, in most cases, increase precision and
reduce recall. In the experiments reported here, we
have varied the parameters over broad classes of
discrimination trees. There are three important
classes of decision tree: (1) trees that filter the
creation of objects based on string fills, (2) trees that

falter the Creation of objects based on set fills, and (3)
trees that hypothesize relations among objects. An
example of the first class is the tree that filters the
CIRCUS output for entity names in the FJV domain.
An example of the second class is the tree that filters
possible lithography objects based on evidence of the
type of lithography process. The trees that
hypothesize TIE_UP_RELATIONSHIP's and
MI~CAPABILITY's are examples of the third class.

For these experiments we have varied the certainty
thresholds for all trees of a given class. Figure 6
shows the trade-off achieved for EME.

c:
a

==
¢),.

80

70

60
50

40

30

20

10
0

0

I1•

=1

I I ! I

30 40 10 20

R e c a l l

Figure 6: Trade-off curve for EME

C
_o
W

80

70

60
50

40

30

20
10

0

• •11

I I I

10 20

R e c a l l

30

I

40

Figure 7: Trade-off curve for EJV

248

This trade-off curve was achieved by varying, in
concert the thresholds on all three classes of
discrimination tree from 0.0 to 0.9. Figure 7 shows
the trade-off curve achieved in EJV. The difference
between the two curves highlights difference between
the two domains and between the system
configurations used for the two domains. The EME
curve shows a much more dramatic trade-off. The
EJV curve shows that only modest varying of recall
and precision is achievable. Part of this is a
reflection of the two domains. In EJV, most
relationships were found via two noun phrases that
shared a common CN trigger. This method proved to
be effective at detecting relationships. Therefore the
only real difference in the trade-off comes from
varying the thresholds for the string-fall and set-fill
trees, which generate the objects that are then
composed into relationships. In EME, there not
nearly as many shared triggers and so the template
generator must attempt intelligent guesses for
relations. The probabilistic guesses made in EME are
much more amenable to threshold manipulation than
the more structured information used in EJV. Also,
in EJV the system ran with a slot masseur that
embodied some domain knowledge. In EJV, TFG
was configured to only hypothesize objects ff the slot
masseur had found a reasonable slot-fill or set-fill.

This use of domain knowledge further limited the
efficacy of changing certainty thresholds.

T R A I N A B L E I N F O R M A T I O N
E X T R A C T I O N IN A C T I O N

Before CIRCUS can tackle an input sentence, we
have to pass the source text through a preprocessor
that locates sentence boundaries and reworks the
source text into a list structure. The preprocessor
replaces punctuation marks with special symbols and
appfies text processing specialists to pick up dates,
locations, and other objects of interest to the target
domain. We use the same preprocessing specialists
for both EJV and EME: many specialists will apply
to multiple domains. A subset of the Gazetteer was
used to support the location specialist, but no other
MRDs are used by the preprocessing specialists. We
do not have a specialist that attempts to recognize
company names. Figure 8 shows sample output
from the preprocessor along with subsequent
processing.

Note that the date specialist had to consult the
dateline of the source text in ~der to determine that

S o u r c e T e x t :

BRIDGESTONE SPORTS CO. SAID FRIDAY IT HAS SET UP A JOINT VENTURE IN TAIWAN WITH A LOCAL
CONCERN AND A JAPANESE TRADING HOUSE TO PRODUCE GOLF CLUBS TO BE SHIPPED TO JAPAN.

Preprooessed T e x t :

(*START* SRIDGESTONE SPORTS CO= SAID **ON 241189 W HAS SET UP A JOINT VENTURE IN @@ Taiwan WITI~I.A LOCAL
CONCERN AND A JAPANESE TRADING HOUSE T(.)PRODUCE GOLF CLUBS TO BE SHIPPED TO ~-_Japan *END)

OTB Tags:

(*START* BRIDGESTONE SPORTS CO= SAID **ON_241189 1T HAS SET UP A JOINT
strt nm nm noun verb $date$ noun aug pasp ptcl art nm

VENTURE IN @@_Taiwan WITH A LOCAL CONCERN AND A JAPANESE TRADING
noun prep $1ocation$ prep art nm noun conJ art nm nm

HOUSE TO PRODUCE GOLF CLUBS TO BE SHIPPED 1D @@japan *END*)
noun inf verb nm noun inf aux pasp prep $1ocation$ stop

exwacted NPs rejected CN features: accepted CN features:

BRIDGESTONE SPORTS CO= iv-person
IT iv-person
A JOINT VENTURE
GOLF CLUBS

jv-enlib,, jv-p~'ent, jv

jr-entity, company
jv-procLserv, produclion

Figure 8: Preprocessing and CIRCUS analysis

2 4 9

"Friday" must refer to November 24, 1989. Once the
preprocessor has completed its analysis, the OTB
part-of-speech tagger identifies parts of speech: OTB
tagged 97.1% of the words in EJV 0592 correctly.
One error associated with "... A COMPANY ACTIVE IN
TRADING WITH TAIWAN ..." led to a truncated noun
phrase when "active" was tagged as a head noun
instead of a nominative predicate.

With part-of-speech tags in place, CIRCUS can begin
selective concept extraction. On this first sentence
from FjV 0592, CIRCUS triggers 18 CN definitions
triggered by the words "said" (3 CNs), "set" (3 CNs),
"venture" (9 CNs), "produce" (1 CN), and "shipped"
(2 CNs). These CNs extract a number of key noun
phrases, and assign semantic features to these noun
phrases based on soft constraints in the CN
definition. Some of these features were recognized to
be inconsistent with the slot fill and others were
deemed acceptable. For example, in Figure 8 we see
that different CNs picked up "8RIDGESTONE SPORTS
CO." with incompatible semantic features (it was
associated with both a joint venture and a jo in t
venture parent feature).

As we can see from this sentence, CN feature types
are not always reliable, and CIRCUS does not always
recognize the violation of a soft feature constraint. An
independent set of semantic features are obtained from
MayTag. In the first sentence of EJV 0592, MayTag

only missed marking "golf clubs" as a product/
service. An independent set of semantic features are
obtained from MayTag as shown in Figure 9.

In addition to extracting some noun phrases and
assigning semantic features to those noun phrases, we
also call the noun phrase classifier to see if any of the
simple NPs picked up by .the CN definitions should
be extended to longer NPs. For this sentence, the
noun phrase classifier extended only one NP: it
decided that "A JOINT VENTURE" should be extended to
pick up "A JOINT VENTURE IN TAIWAN WITH A LOCAL
CONCERN AND A JAPANESE TRADING HOUSE'. The
second prepositional phrase should not have been
included - this is an NP expansion that was
overextended.

Each noun phrase extracted by a CIRCUS concept
node will eventually be preserved in a memory token
that records the CN features, MayTag features, any
NP extensions, and other information associated with
CN definitions. But before we look at the memory
tokens, let's briefly review the other NPs that are
extracted from the remainder of the text. For each
preprocessed sentence produced in response to EJV
0592, we will put the noun phrases extracted by
CIRCUS into boldface and use underlines to indicate
how the noun phrase classifier extends some of these
NPs.

words

START
BRIDGESTONE
SPORTS
CO=
SAID
IT
HAS
SET
UP
A
JOINT
VENTURE
IN
JV-LOCATION
WITH
A
LOCAL
CONCERN
AND
A
JAPANESE
TRADING
HOUSE
TO
PRODUCE
GOLF
CLUBS
TO
BE
SHIPPED
TO
JV-LOCATION

MavTa~semanficfeamres

((WS-JV-ENTITY) (WS-COMPANY-NAME))
((WS-JV-ENTITY) (WS-COMPANY-NAME))
((WS-JV-ENTITY) (WS-GENERIC-COMPANY))

((WS-ENTITY) NIL)

((WS-JV-ENTITY) NIL)
((WS-JV-ENTITY) NIL)

((WS-LOCATION) NIL)

((WS-ENTITY) NIL)
((WS-JV-ENTITY) NIL)

((WS-NATIONALITY) NIL)
((WS-PRODUCT-SERVICE)
((WS-JV-ENTITY) NIL)

((WS-ENTITY) NIL)
((WS-ENTITY) NIL)

(WS-SALES))

((WS-LOCATION) NIL)

hits & misses

; correct
; correct
; correct

; correct

; correct
; correct

; correct

; correct
; correct

; correct
; correct
; correct

; incorrect
; incorrect

; correct

Figure 9: MayTag semantic feature tags

250

*START. ~IDGESTONE SPORTS CO=- SAID **0N_241189 ~ HAS SET UP A doiNT VENTURE IN ~ Talwan WITH A LEX~AL

QONCERN ,a.ND A JAPANESE TRADING HOUSE TO PRODUCE .~.QJ,,E.bd=.U.~.a TO BE SHIPPED TO @@_Japan *END*) (*START"

THE JOINT VENTURE $COMMA$ BRIDGESTONE SPORTS TAIWAN CO= $COMMA$ CAPITAUZED AT

$COMMA$ WILL START PRODUCTION **DURING 0190 WITH PRODUCTION OF &&20000 IRON AND METAL WOOD CLUBS A

MONTH *END*) (*START" THE MONTHLY OUTPUT WILL BE LATER RAISED TO &&50000 UNITS $COMMA$

SAID *END*) (*START" THE NEW COMPANY $COMMA$ BASED IN KAOHSIUNG $COMMAS SOUTHERN

TAIWAN $COMMA$ IS OWNED %%75 BY BRIDGESTONE SPORTS $COMMA$ %%15 BY UNION PRECISION CASTING CO=. OF

(~b Taiwall AND THE REMAINDER BY TAGA CO= SCOMMA$ A COMPANY ACTIVE IN TRADING WITH TAIWAN $COMMA$

THE OFFICIALS SAID *END*) (*START* BRIDGESTONE SPORTS HAS S(~FAR BEEN ENTRUSTING PRODUCTION OF

CLUB PARTS WITH UNION PRECISION CASTING AND OTHER TAIWAN COMPANIES *END*) (*START* WITH THE

ESTABLISHMENT OF THE TAIWAN UNIT $COMMA$ THE JAPANESE SPORTS G(X)DS MAKER PLANS TO INCREASE

PRODUCTION OF LUXURY CLUBS IN ~ Jaoan *END*)

Figure 10: Noun phrase analysis

As far as our CN dictionary coverage is concerned, we
were able to identify all of the relevant noun phrases
needed with the exception of'A LOCAL CONCERN AND
A JAPANESE TRADING HOUSE" which should have been
picked up by a JV parent CN. In fact, our AutoSlog
dictionary had two such definitions in place for
exactly this type of construction, but neither
definition was able to complete its instantiation
because of a previously unknown problem with time
stamps inside CIRCUS. This was a processing
failure--not a dictionary failure.

Trainable noun phrase analysis processes 13 of the 17
NP instances shown in Figure 10 correctly. Three of
the NPs were expanded too fur, and one was expanded
but not quite far enough due to a tagging error by
OTB ("a company active ..."). An inspection of the
13 correct instances reveals that 7 of these would have
been correctly terminated by simple heuristics based
on part-of-speech tags. It is important to note that the
trainable NP analyzer had to deduce these more
"obvious" heuristics in the same way that it deduces
decisions for more complicated decisions. It is
encouraging to see that straightforwurd heuristics can
be acquired automatically by trainable classifiers.
When our analyzer makes a mistake, it generally
happens with the more complicated noun phrases
(which is where hand-coded heuristics tend to break
down as well).

After the noun phrase classifier has attempted to find
the best termination points for the relevant NPs, we
then call the coreference classifier to consider pairs of
adjacent NPs separated by a comma. In this text we
find three such appositive candidates (the second of

which contains an extended NP that was not properly
terminated):

THE JOINT VENTURE, BRIDGESTONE SPORTS TAIWAN CO.
TAGA CO., A COMPANY ACTIVE
THE NEW COMPANY, BASED IN KAOHSlUNG, SOUTHERN TAIWAN

In the third case, the location specialist failed to
recognize either Kaohsiung or Southern Taiwan as
names of locations. On the other hand, the fragment
"based in Kaohsiung" was recognized as a location
description and therefore reformatted it as "THE NEW
COMPANY (%BASED-IN% KAOHSIUNG), SOUTHERN
TAIWAN" which set up the entire construct as an
appositive candidate. The coreference classifier then
went on to accept each of these three instances as
val id appositive constructions. This was the right
decision in the first two cases, but wrong in the third.
I f fu l l location recognition had been working, this
last instance would have never been handed to the
coreference classifier in the first place.

The coreference classifier tells us when adjacent noun
phrases should be merged into a single memory
token. We also invoke some hand-coded heuristics for
coreference decisions that can be handled on the basis
of lexical features alone. These heuristics determine
that Bridgestone Sports Co. is coreferent with
Bridgestone Sports, and that "THE JOINT VENTURE,,
BRIDGESTONE SPORTS TAIWAN CO." is coreferent with
"A JOINT VENTURE IN TAIWAN ..." Our lex ica l
coreference heuristics are nevertheless very
conservative, so they fail to merge our four product
service instances in spite of the fact that "clubs"
appears in three of these string falls. In effect, we pass
the following memory token output to TTG:

251

5 recognized companies (#4 and #5 should have been merged):

I 1) "TAGA CO=" aka "A COMPANY ACTIVE"
2) "UNION PRECISION CASTING CO= OF @@_TAIWAN

(3) "BRIDGESTONE SPORTS CO=" aka "BRIDGESTONE SPORTS"
(4) "THE NEW COMPANY ~%BASED-IN% KAOHSIUNG)" aka "SOUTHERN TAIWAN
(5) "THE JOINT VENTURE aka "BRIDGESTONE SPORTS TAIWAN CO=" aka

"A JOINT VENTURE IN @@_TAIWAN WITH A LEX~AL CONCERN AND A JAPANESE TRADING HOUSE"

4 product service strings (all of these should have been merged):

! "GOLF CLU BS"
"&&20000 IRON AND METAL WCOD CLUBS"
"GOLF CLUB PARTS WITH UNION PRECISION CASTING AND OTHER TAIWAN COMPANIES"
"LUXURY CLUBS IN @@_JAPAN"

1 ownership and 2 percent objects :

(10) ~ X) 0 0 0 0 ~ r W D "
(11) "%%15"
(12) "%%75"

We failed to extract "the remainder by ..." for the third ownership object
because out percentage specialist was not watching for non-numeric referents
in a perceaatage context - this could be fixed with an adjustment to the
specialist.

Figure 11: Extracted Text Strings

When TTG receives memory tokens as input, the
object existence classifiers try to filter out spurious
information picked up by overzealous CN definitions.
Unfortunately, in the case of 0592, TTG filtered out
two good memory tokens: (#1 describing the parent
Tago Co.), and (#5 describing the joint venture). It
was particularly damaging to throw away #5 because
that memory token contained the correct company
name (Bndgestone Sports Taiwan Co.). Of the 3
remaining memory tokens describing companies,
TTG correctly identified the two parent companies on
the basis of semantic features, but then it was forced
to pick up #4 as the child company. Our pathing
function was smart enough to know that -THE NEW
COMPANY" was probably not a good company name,
but that left us with "SOUTHERN TAIWAN" for the
company name. So a failure that started with location
recognition led to a mistake in trainable appositive
recognition, which then combined with a failure in
lexical coreference recognition and a filtering error by
TTG in order to give us a joint venture named
"SOUTHERN TAIWAN" instead of "BRIDGESTONE
SPORTS TAIWAN." Overly aggressive Efltering by TTG
resulted in the loss of our 4 product service memory
tokens.

Our CN instantiations do not explicitly represent
relational information, but CNs that share a common
trigger word can be counted on to link two CN
instantiations in some kind of a relationship. Trigger
families can reliably tell us when two entities are

• related, but they can't tell us what that relationship is.
We relied on TTG to deduce specific relationships on
the basis of its training. In cases like "75% BY
BRIDGESTONE SPORTS', TTG had no trouble linking

extracted percentage objects with companies. But our
trainable link recognition ran into more difficulties
when trigger families contained multiple companies
Among the features that TTG had available for
discrimination where closed class features, such as
memory token types, semantic features, and CN
patterns, and open class features (i.e. trigger words).
However, although there exist heuristics for
discriminating relationships based on particular
words, the combination of the algorithms used (ID3)
and the amount of data (600 stories) failed to induce
these heuristics. There may be other algorithms,
however, that can use the same or less data and
external knowledge to derive such heuristics from the
training data.

The processing for EME proceeds very similarly to
EJV, with the exception that MayTag is not used in
our EME configuration, and in the EME system we
used our standard CN mechanism and an additional
keyword CN mechanism (KCN). The KCN
mechanism was used to recognize specific types of
processing, equipment, and devices that have one or
only a few possible manifestations. In Figure 12 we
see the OTB tags for the first sentence, all of which
are correct. In fact, for EME text 2789568, OTB had
100% hit rate.

The memory token structure in Figure 12 illustrates
the processing of the text prior to TTG. Two NPs
are identified as the same entity, "Nikon" and "Nikon
Corp." The two NPs are merged into one memory
token based on name merging heuristics. The second
NP demonstrates how mult iple recogni t ion
mechanisms can add robustness to the processing.

252

start **DURING2Q91 $COMMA$ Nikon Corp= $LPAREN$ &&7731
strt Sdate$ punc nm noun punc noun
$RPAREN$ plans to market the NSR-1755EX8A $COMMA$ a new stepper
punc verb inf verb art noun punt art run noun
intended for use in the production of &&64- Mbit DRAMs *end*
pasp prep noun prep art noun prep nm nm noun stop

(TOKEN
(TYPE (ME-ENTITY))
(SUBTYPE NIL)
(RELATION NIL)
(SLOT-FILLS

(TYPE COMPANY)
(NAME (: SYM-LIST NIKON CORP=)))

(NPS
(NP 2 1 (NIKON)

(CNS %ME-ENTITY-NAME-SUBJECT-VERB-AND-DO-STEPPER%))
(NP 0 3 (NIKON CORP =)

(CNS %ME-ENT I TY-NAME- SUBJECT-VERB-AND-INFINI T IVE-P LANS-TO-MARKET %)
(KCNS % KEYWORD-ME-ENTI TY-CORP=%

%LEAD-NP%))))

Figure 12: EME processing

FEATURE RELATION CERTAINTY AFTER FEATURE
0.36
0.23 The process is not X-RAY

The entity is not tri~ered off "developed"
The process is not CVD
The process is not LITHOGRAPHY of UKN type
The process is not ETCHING
The entity is not triggered off "from"

0.14
0.03
0.04
0.06
0.12

Figure 13: ME-CAPABILITY developer features

FEATURE RELATION CERTAINTY AFTER FEATURE
0.38
0.47 The process is not packaging

The entity is not in a PP
A CN marked the entity as an entity
The process is not layering type s0uttering

0.58
0.55
0.40

Figure 14: ME-CAPABILITY distributor features

"Nikon Corp." is picked up by both a CN triggered
off of "plans to market" and by two KCNs, one that
looks for "Corp." and another that looks for the lead
NP in the story.

Unfortunately, our system did not get any lithography
objects for this story. On our list of things to get to
if time permitted was creating a lithography object for

an otherwise orphaned stepper. We would have only
gotten one lithography object since we merged all
mentions of "stepper" into one memory token.

We created a synthetic version of the system that
inserted a lithography memory token corresponding to
each stepper. One was discard by 'rrG and another
was created because there were two different

253

equipment objects attached to the remaining
lithography object. The features that 'FIG used to
hypothesize a new ME_CAPABILITY are illustrative
of one of the weaknesses of this particular method.
TTG used the features in Figure 13 to decide not to
generate an MI~_CAPABILITY developer.

All of the features are negative, and the absence of
each feature reduces the certainty that the relation
holds, because each feature's presence, broadly
speaking, is positive evidence of a relation.
Therefore, the node of the decision tree that is found
is a grouping of cases that have no particular positive
evidence to support the relation, but also no negative
evidence. With the relation threshold set at 0.3, this
yields a negative identification of a relation.
However, there are strong indications of a relation
here. For example, the trigger "plans to market" is
good evidence of a relation, however, the nature
decision tree algorithms (recursively splitting the
training data) causes us to lose that feature (in favor
of other, better features). Figure 14 shows what
features "I'FG used to generate an MIX_CAPABILITY
distributor.

Again, we do not see here the features that we would
expect, given the text. A human generating rules
would say that "plans to market" is a good indication
of a MECAPABILITY distributor.

W H A T W O R K S AND W H A T NEEDS
WORK

When we look at individual texts and work up a walk
through analysis of what is and is not working, we
find that many of our trainable language components
are working very well. The dictionary coverage
provided by AutoSlog appears to be quite adequate.
OTB is operating reliably enough for subsequent
sentence analysis. When we run into difficulties with
our trainable components, we often fred that many of
these difficulties stem from a mismatch of training
data with test data. For example, when we trained the
coreference interface for appositive recognition, we
eliminated from the training data all candidate pairs
involving locations because the location specialist
should be identifying locations for us. If the
coreference classifier were operating in an ideal
environment, it would never encounter unrecognized
locations. Unfortunately, as we saw with EJV 0592,
the location specialist does not trap all the locations,
and this led to a bad coreference decision. In an earlier
version of the coreference classifier we had trained it
on imperfect data containing unrecognized locations,
but as the location specialist improved, we felt that
the training for the coreference classifier was falling
increasingly out of sync with the rest of the system

so we updated it by eliminating all the location
instances. Then when the coreference classifier was
confronted with an unrecognized location, it failed to
classify it correctly. When upstream system
components are continually evolving (as they were
during our TIPSTER development cycle), it is
difficult to synchronize downstream dependencies in
training data. A better system development cycle
would stabilize upstream components before training
downstream components in order to maintain the best
possible synchronization across trainable
components.

The importance of reliable representative training
materials was demonstrated to us with even more
impact after the final 24-month EME evaluation
when we discovered that the EME test materials used
for the 18-month evaluation were not representative
of the test materials used for the 24-month
evaluation. As explained earlier, our EME system
was tuned for shorter texts than we encountered in the
official test sets. With a trainable system, it is crucial
to use representative texts for all parameter tuning.
TTG was easy to tune by straightforward
experimentation with different parameter settings, but
we failed to demonstrate its full utility in EME
because of the differences between Tips2 and Tips3.

'VFG nevertheless enhanced the output of CIRCUS
and other discourse processing modules. In module-
specific testing TTG typically added 6-12% of
accuracy in identifying domain objects and
relationships. That added value is measured against
picking that most likely class (yes or no) for a
particular domain object (e.g. JV-ENTITY or ME-
LITHOGRAPHY) or relationship (e.g. JV-TIE-UP or
ME-MICROELECTRONICS -CAPABILITY). How-
ever, TTG fell far below our expectations for correctly
filtering and connecting the parser's output. We find
two reasons for this short fall. First, some amount
of the deficit can be attributed to the system
development cycle since TFG sits at the end of the
cycle of training and testing various modules.

The second, and by far the dominant effect comes
from the combination of the training algorithm (ID3)
and the amount of data. As mentioned previously,
there are two types of features used by TI'G: (1)
closed class (e.g. token type, semantic features, and
CN patterns) and (2) open class features (i.e. CN
trigger words). Using open class features can be
difficult, because most algorithms cannot detect
reliable discriminating features if there are too many
features---reliable features cannot be separated from
noise. Using trigger words in conjunction relations
between memory token results in 3,000-5,000 binary
features. With no noise suppression added to the
algorithm and given a large number of features, ID3

254

will create very deep decision trees that classify
stories in the training set based on noise.

We ran two sets of decision trees in deciding how to
configure our system for the final test run. MIN-
TREES using only dosed class features and no noise
suppression and MAX-TREE using dosed class and
open class features and a noise suppression rule. The
noise suppression was a termination condition on the
recursion of the ID3 algorithm. Recursion was
terminated when all features resulted in creating a
node that classified examples from few than 10
different source texts. Using closed class features
rarely resulted in a terminal node that classified
examples from fewer than 10 stories. In all tests the
MAX-trees performed better. However, as a result of
the noise suppression, no decision tree contained very
many discriminations on a trigger. The performance
of the MAX-trees indicated that individual words are
good discriminators, however their scarcity in the
decision trees indicates that we are not using the
appropriate algorithm. We believe that data-lean
algorithms (such as explanation-based learning) in
concert with shared knowledge bases might be
effective.

In attributing performance to various components, we
measured 25 random texts in EME. At the memory
token stage we found that CIRCUS had extracted
string-fills and set-fills with a recall/precision of
68/54. However our score output for those slots was
32/45 (measured only on the slots we attempted).
Even when the thresholds for TrG were lowered to
0.0, so that all output came through, the recall was
not anywhere near 68. Therefore it would appear that
the difficult part of the template task is not finding
good things to put in the template, but figuring how
to split and merge objects. We do not (yet) have a
trainable component that handles splitting and
merging decisions in general.

The EJV and EME systems that we tested in our
official evaluation were in many ways incomplete
systems. Although our upstream components were
operating reasonably well, additional feedback cycles
were badly needed for other components operating
downstream. In particular, trainable coreference and
trainable template generation did not received the lime
and attention they deserve. We are generally
encouraged by the success of our trainable
components for part-of-speech tagging, dictionary
generation, noun phrase analysis, semantic feature
tagging, and coreference based on appositive
recognition. But we encountered substantial
difficulties with general coreference prior to template
generation. This appears to be the greatest challenge
remaining for trainable components supporting
information extraction. We know from our earlier

work in the domain of terrorism that coreference
resolution can be reasonably well-managed on the
basis of hand-coded heuristics [Lehnert et al. 1992b].
But this type of solution does not port across
domains and therefore represents a significant system
development bottleneck. True portability will only be
achieved with trainable coxeference capabilities.

We believe that trainable discourse analysis was the
major stumbling block standing between our Tipster
system and the performance levels attained by
systems incorporating hand-coded discourse analysis.
We remain optimistic that state-of-the-art performance
will be obtained by corpus-driven machine learning
techniques but it is clear that more research is needed
to meet this very important challenge. To facilitate
research in this area by other sites, UMass will make
concept extraction training d~!~ (CIRCUS output) for
the full EJV and EME corpora available to research
laboratories with internet access. When paired with
Tipster key templates available from the Linguistic
Data Consortium, this data will allow a wide range of
researchers who may not be experts in natural
language to tackle the challenge of trainable
coreference and template generation as problems in
machine learning. We believe it is important for the
NLP community to encourage and support the
involvement of a wider research community in our
quest for practical information extraction
technologies.

SYSTEM REQUIREMENTS

The final 24-month evaluation was conducted on one
DECstation 5000/240 and two DECstation
5000/133s. Each machine was configured with 64MB
RAM and a 300 MB internal disk. Two of these
machines also had 1.35 GB external disks. The
5000/240 was running at 40 MHz and the 5000/133s
ran at 33 MHz. All of our code was written in
Allegro Common Lisp 4.1 and ran under the Ultrix
4.2 operating system.

Our source code occupies about 3.6 MB of disk space.
The data used in the evaluation (including response
templates and trace files for both EJV and E/vIE) takes
up 26.9 MB. It took 27 hours of run time (distributed
across the three machines) to complete the EJV test
sets. It took 12 hours to complete the EME test sets.
The difference in these run times is due to the fact
that we used the MayTag semantic feature tagger on
the EJV texts but not the E/VIE texts. No attempt was
made to optimize runtimes in either system.

Additional system development was also conducted on
a number of Mac IIs configured with Macintosh
Common Lisp 2.0. Both of our Tipster systems can

255

be run on a Mac (a minimum of 8 MB RAM is
recommended). The AutoSlog training interface, OTB
training interface, and appositive training interface
were all implemented and run on MACs using the
Macintosh Common Lisp Interface Toolkit, as was
the system demo presented at the 24-month meeting.

A C K N O W L E D G M E N T

This work was supported by the Department of
Defense under Contract No. MDA904-92-C-2390.
The views expressed in this paper are those of the
authors and should not be interpreted to represent
opinions or policies of the United States
Government.

BIBLIOGRAPHY

Cardie, C. (1993). A Case-Based Approach to
Knowledge Acquisition for Domain-Specific Sentence
Analysis. Eleventh National Conference on Artificial
Intelligence (AAAI-93). Washington, D.C. pp. 798-
803.

Dolan, C. P., Goldman, S. R., Cuda, T. V., &
Nakamura, A. M. (1991). Hughes Trainable Text
Skimmer: Description of the 'ITS System as Used for
MUC-3. In B. Sundheim (Ed.), Third Message
Understanding Conference (MUC-3). Naval Ocean
Systems Center, San Diego California: Morgan
Kaufmann. pp. 155-162.

Lehnert, W. (1991). Symbolic/Subsymbolic Sentence
Analysis: Exploiting the Best of Two Worlds.
Advances in Connectionist and Neural Computation

Theory. Vol. L (ed: J. Pollack and J. Barnden) Ablex
Publishing, Norwoed, New Jersey. pp. 135-164.

Lehnert, W., Cardie, C., Fisher, D., McCarthy, J.,
Riloff, E., Soderland, S. (1992a). University of
Massachusetts: MUC-4 Text Results and Analysis
Proceedings of the Fourth Message Understanding
Conference (MUC-4). Morgan Kaufmann. San
Mateo, CA. pp. 151-158.

Lehnert, W., Cardie, C., Fisher, D., McCarthy, J.,
Riloff, E., Sederland, S. (1992b). Description of the
CIRCUS system as Used for MUC-4. Proceedings of
the Fourth Message Understanding Conference
(MUC-4). Morgan Kaufmann. San Marco, CA. pp.
282-288.

Quinlan, J. R. (1983). Learning Efficient
Classification Procedures and Their Appfication to
Chess End Games. In R. S. Michalski, J. G.
Carbonell, & T. M. Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach.
Morgan Kaufmann. pp. 463-482.

Riloff, E. (1993). Automatically Constructing a
Dictionary for Information Extraction Tasks.
Eleventh National Conference on Artificial
Intelligence (AAAI-93). Washington, D.C. pp. 811-
816.

Riloff E., and Lehnert, W. (1993). Automated
Dictionary Construction for Information Extraction
from Text. Proceedings of the Ninth IEEE Conference
on Artificial Intelligence for Applications. IEEE
Computer S~iety Press. pp. 93-99.

256

