
The #-TBL System:
Logic Programming Tools for

Transformation-Based Learning
TorbjSrn Lager

Department of Linguistics
Uppsala University

Torbj orn. Lager~ling. uu. se

Abstract
The #u-TBL system represents an attempt to use the
search and database capabilities of the Prolog pro-
gramming language to implement a generalized form
of transformation-based learning. In the true spirit
of logic-programming, the implementation is 'derived'
from a declarative, logical interpretation of transforma-
tion rules. The #-TBL system recognizes four kinds
of rules, that can be used to implement various kinds
of disambiguators, including Constraint Grammar dis-
ambiguators as well as more traditional 'Brill-taggers'.
Results from a number of experiments and benchmarks
are presented which show that the system is both flex-

" ible and efficient.

Introduction
Since Eric Brill first introduced the method of Trans-
formation-Based Learning (TBL) it has been used
to learn rules for many natural language processing
tasks, such as part-of-speech tagging [Brill, 1995], PP-
attachment disambiguation [Brill and Resnik, 1994],
text chunking [Ramshaw and Marcus, 1995], spell-
ing correction [Mangu and Brill, 1997], dialogue act
tagging [Samuel et al., 1998] and ellipsis resolution
[Hardt, 1998]. Thus, TBL has proved very useful, in
many different ways, and is likely to continue to do so
in the future.

Moreover, since Brill generously made his own TBL
implementation publicly available, l many researchers in
need of all off-the-shelf retrainable part-of-speech tag-
ger have found what they were looking for. However,
although very useful, Brill's original implementation
is somewhat opaque, templates are not compositional,

IThroughout this paper, when referring to Brill's TBL
implementation, it is always his contextual-rule-learner -
implemented in C - that I have in mind. "It is available from
http://www, cs. jhu. edu/~br i l l / , along with ~veral other
learners and utility programs.

and they are hard-wired into the program. Therefore,
the program is difficult to modify and extend. What is
more, it is fairly slow.

This paper is dedicated to the design and implemen-
tation of an alternative transformation-based learner
system, called "the #-TBL system" (pronounced "mu-
table"). The p-TBL system is designed to be the-
oretically transparent, flexible and efficient. Trans-
parency is achieved by performing a 'logical reconstruc-
tion' of TBL, and by deriving the system from there.
Flexibility is achieved through the use of a composi-
tional rule and template formalism, and 'pluggable' "al-
gorithms. As for the implementation, it turns out that
transformation-based learning can be implemented very
straightforwardly in a logic programming language such
as Prolog. Efficient indexing of data, unification and
backtracking search, as well as established Prolog pro-
gramming techniques for building rule compilers and
meta-interpreters, contribute to the making of a logi-
cally transparent, easily extendible, and fairly efficient
system. 2

The content of the paper is presented in a bottom-up
fashion, starting from the semantics of transformation
rules. First, I show that, contrary to what is often as-
sumed, transformation rules can be given a declarative,
logical interpretation. I then introduce the IL-TBL sys-
tem, which in a manner of speaking is derived from this
interpretation of rules. The template compiler, a part
of the system which translates templates into efficient
Prolog programs, is described, and by w~" of examples
it is shown how a particular combination of training
data and templates may be 'queried' from the Prolog
prompt. Next, a number of variants of all-solutions
predicates are specified, that deal with notions such as
scores, rankings and thresholds. Since they appear to
be independently useful - even useful outside TBL -

"The ~-TBL system is available from
http:/ /~w, ling. gu. se/-~lager/mutbl, html.

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

they belong in a separate library. By combining pred-
icates from these code libraries, a number of TBL-like
algorithms are assembled, and benchmarks are run that
show the/~-TBL system to be quite efficient. Finally, a
small experiment using transformation-based learning
to induce Constraint Grammars from corpora is per-
formed.

T h e Semant ics of Trans fo rma t ion Rules

The object of TBL is to learn an ordered sequence of
transformation rules. The p-TBL system supports four
kinds of transformation rules.

R e p l a c e m e n t r u l e s dictate when - based on the
context - one feature value for a word should be re-
placed with another feature value. An example would
be "replace tag vb with nn if the Word immediately
to the left has a tag d t " . Here is how this rule
is represented in the # -TBL system's compositional
rule / template formalism:

tag:vb>nn <- tag:dr@[-1].

This is of course the exact counterpart of the transfor-
mation rule in Brill's original framework.

A d d i t i o n ru l e s specify when a feature value should
be added to a word. An example would be "add tag nn
to a word if the word immediately to the left has a tag
ti t":

tag:0>nn <- tag:dr@[-1].

Note that a feature value is actually added to a word
only if it not already there.

D e l e t i o n ru l e s dictate when a feature value should
be removed from a word. An example would be "remove
tag vb from a word if the word immediately to the left
has a tag d t " :

tag:vb>0 <- tag:dt@[-1].

R e d u c t i o n ru l e s reduce the set of feature values
for a word with a certain value. An example would
be "reduce a word's tag values with tag vb if the word
immediately to the left has a tag dr":

tag:vb>l <- tag:dr@I-I] .

An important difference between deletion rules and re-
duction rules is that the latter will only remove a feature
value from a word if it is not the last value for that fea-
ture. If vb is the last value the above rule is not applica-
ble and the reduction will not take place. This should
remind us of the kind of constraints that are central
to the so called reductionistic approach to disambigua-
tion. as represented by for example Constraint Gram-

34

mar [Karlsson et al., 1995]). Constraint grammars may
indeed be possible to learn in the IL-TBL system, as I
will show towards the end of this paper.

In the p -TBL system's rule formalism, conditions
may refer to different symbol features, and complex
conditions may be composed from simpler ones. For
example, here is a rule saying "replace the tag for ad-
verb with the tag for adjective, if the current word is
"only", and if the previous tag, or the tag before that,
is a determiner tag.":

tag:ab>jj <- wd:only@[O] k tag:dt@[-1 , -2] .

Ill this paper, I will break with the tradition to think
about transformation rules in exclusively procedural
terms, and instead try to think about them in declara-
tive and logical terms. Transformation rules (partially)
describe an ordered sequence of pairs of symbols, which
I will refer to as a relation. Such a relation form training
data for a TBL system. Here is a simple (and unrealis-
tically small) example:

dt vb nn dt vb kn dt vb ab dt vb
dt nn vb dt nn kn dt jj kn dt nn

The sequence formed by the upper elements of the pairs
will be referred to as Sl, and the sequence formed by the
lower elements as Sn. Such sequences can be. modelled
by means of two sets of clauses, which relate positions
in the sequences to symbol feature values:

$1 (1, dr) Sl (2, vb) $1 (3, nn) . . . S1 (11, vb)
S. (I, dr) S~ (2, nn) S.(3, vb) . . . S. (11, nn)

A central point in this paper is the suggestion that
the declarative semantics of transformation rules can
be captured by rule formulas in the form of univer-
sally quantified implications, and that , for example, the
meanings of the four very simple rules shown previously
are captured by the following formulas:
Replacement

Vpo,p, [S, (po,vb) A (Pl = 1)o - 1) A St (p, .dr) --r S , (po,nn)]

Addit ion

Vpo,p, [-,St (po,nn) A (p, = Po - 1) A St (p, ,at) ---r S , (po ,nn)]

Dele t ion

Vpo.p, [St (po,vb) A (p, = po - 1) A St (p, ,dr) --~ -~S. (po,vb)]

Reduct ion

Vpo,p, [Sl (po,vb) A Bxo[S, (po,xo) A (x0 # vb)]A
(P, = P0 -- 1) A S,(pl ,dt) --~ -.S.(po,vb)]

Rule formulas as such will not be put to any direct
computational use, but the notion of a rule formula
provides a starting point, from which computational
tools can be derived.

A rule instance is a rule formula in which every vari-
able has been replaced with a constant. Now, we may
define the notions of positive and negative instances
of rule formulas (and thus indirectly of transforma-
tion rules). A positive rule instance is a rule instance
where the mltecedent and the consequent are both true.
Thus, the following formula is a positive instance of the
formula corresponding to the simple replacement rule
above:

Sl(2, vb) A (1 = 2 - 1) A S,(I,dt) --+ S,(2, nn)

A negative instance of a rule is a rule instance where the
antecedent is true but where the consequent is false, for
example:

Sl(8,vb) A (7 = 8 - 1) A S~(7,dt) -~ S,,(8, nn)

Note that Brilrs notion of a neutral instance of a rule,
i.e. an instance of a rule that replaces an incorrect tag
with another incorrect tag, is a negative instance in my
terminology. (In practice, this does not seem to mat ter
much, as I will show later.)

We now define two important rule evaluation mea-
sures. The score of a rule is the number of its positive
instances minus the number of its negative instances:

sco~e(R) =1 pos(R) 1 - I neg(R) I
The accuracy of a rule is its number of positive instances
divided by the total number of instances of the rule:

accuracy(R) = I pos(R) I
I P°S(R) I + I neg(R) I

The notion of rule accuracy is well-known in rule in-
duction and inductive logic programming, and towards
the end of this paper we will see that it may have a role
to play in the context of transformation-based learning
too.

A n O v e r v i e w o f t h e # - T B L S y s t e m
Through the use of unification and a particular search
strategy (backtracking), a logic programming environ-
ment such as Prolog implements a constructive kind
of inference which allows us to define predicates that
are able to recognize, generate and search for positive
and negative instances of transformation rules. Fur-
thermore, a layer of recta-logical predicates provides
a way to collect and count such instances, and thus
a way to calculate the score and accuracy for any
rule. Therefore, in a logic programming framework,
transformation-based learning can be implemented in a
very clear and simple way.

However, for such an implementation to become use-
ful. we have to think about efficiency. Among other
things, we need to think about how we index our train-
ing data. Assuming the part-of-speech tagging task.
corpus data can be represented by" means of three "kinds
of clauses:

35

wd (P,N) is true iff the word W is a t position P in the
corpus

t ag (P ,A) is true iff the word at position P in the cor-
pus is tagged A

t ag (A ,B ,P) is true iff the word at, P is tagged A and
the correct tag for the word at P is B

Although this representation may seem a bit redundant,
it provides exactly the kind of indexing into the data
that is needed. 3 A decent Prolog system can deal with
millions of such clauses.

Rules that can be learned in T B L are instances of
templates, such as "replace tag A with B if tho symbol
(e.g. the word) immediately to the left has tag C, where
A, B and C are variables. Here is how we write this
template in the p -TBL system:

t3(A,B,C) # tag:A>B <- tag:C@[-l].

The term to the left of # is a unique identifier for the
template. A template instance is a template in which
every variable in the identifier has been replaced by a
constant. If we strip the identifier we end up with a
transformation rule again. The instant iated identifier
uniquely identifies that rule.

Positive instances of rules tha t are instancbs of the
above template can be efficiently recognized, generated
and searched for, by means of the following clause:

positive (t3(A,B,C)) :-
tag(A,B,PO), Pl is PO-I, tag(Pl,C).

Negative instances are handled as follows:

negative (t3 (A,B, C)) :-
tag(A,X,PO), dif(X,B), P1 is PO-I,taE(PI,C).

It should be clear how these clauses use the representa-
tion described above, and that they respect the seman-
tics exemplified in the previous section. Clauses cor-
responding to other templates and other types of rules
can be defined accordingly.

Tied to each template is also an update proce.dure that
will apply rules tha t are instances of this template, and
thus update sequences, by replacing feature values with
other feature values, adding to the feature values, or
removing from them. For example:

apply(t3 (A,B,C)) :-
(tag(A,X,P), P1 is P-l, tag(PI,C),
re t rac t (tag(A,X,P)) , r e t r a c t (t a g (P , l)) ,
assert(tag(B,X,P)), asser~(tag(P,B)),
fail ; true).

3Assuming a Prolog with first argument indexing.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

To write clauses such as these by hand for large sets
of templates would be tedious and prone to errors and
omissions. Fortunately, since the formalism is composi-
tional, it is easy to write a template compiler that gener-
ates them automatically. The #u-TBL system uses well-
known Prolog compiler writing techniques to expand
templates written in the compositional high-level nota-
tion into clauses that can be run as programs. Thus, the
convenience and flexibility of a high-level notation for
templates and rules does not compromise performance.
A template grammar defines the exact relation between
a template and a set of clauses. As an illustration, the
following grammar rules are used to expand a template
into a Prolog clause defining p o s i t i v e / l , nega t ive /1
and app ly / l , for that template:

term_expansion((ID # A<-Cs),
[(p o s i t i v e (I D) : - G1),
(negative(ID) :- G2),
(apply(ID) :-(G3.fail;true))]) :-

pos ((A<-Cs) ,LI, []), list2goal(L1 .G1),
ne E ((A<-Cs) ,L2, []). list2goal (Li, G2),
app((A<-Cs) ,L3, []), list2goal(L3,G3).

pos((F:A>B<-Cs)) -->
{G =.. [F,A,B,P]},[G], cond(Cs,P).

neg((F:A>B<-Cs)) -->
{G =.. [F,A,X,P]}, [dif(X,B),G], cond(Cs,P).

app((F:A>B<-Cs)) -->
{GI =.. [F,A,X,P], G2 =.. [F,P,A],
G3 =.. [F,B,X,P], G4 =.. [F.P,B]},
[GI], cond(Cs,P), [retract(Gl),
retract(G2), assert(G3), assert(G4)].

cond((C&Cs),P) --> cond(C,P), cond(Cs,P).
cond(FA@Pos,PO) --> pos(Pos,PO,P), feat(FA,P).

pos(Pos,PO,P) -->
[member(Offset,Pos), P is PO+Offset].

feat(F:A,P)--> {G =.. [F,P,A]}, [G].

A modern Prolog system will compile the resulting
clauses all the way down to machine code. Thus. a
TBL-system implemented in Prolog can be quite effi-
cient.

T h e p - T B L T e m p l a t e C o m p i l e r

When a file containing transformation rules is consulted
or compiled, each transformation rule is expanded into
several Prolog clauses) As a result of this, a large
number of predicates becomes available, some of which
are documented in Figure 1.

Using the predicates generated by the template com-
piler, the training data in combination with the tem-

4Also. if the user does not provide them, template idea-
tlfiers m'e constructed automatically.

pair(?a,?B)
pair(?h,?B,?P)

A ~ aligned with B at a position P in the current data.

positive (?RuleID)
positive (?RuleID, ?a, ?B)
positive (?RuleID, ?A, ?B, ?P)

RuleID names a rule which has a positive instance in
the current data at a position P, whero A is aligned
with B. The rule is an instance of a template, which
is identified by the functor of RuleID. A call to this
predicate usually has many solutions, az~,l tile order in
which solutions are returned on backtracking is deter-
mined by the order in which templates are presented
to the system, and the order of symbols in the training
data.

sample(?RuleID)
sample(?RuleID,?A,?B)
sample(?RuleID,?A,?B,?P)

As positive/{l,2,3}, except that rules are randomly
sampled.

sample_R(+R,?A,?B,-Rules)
Binds Rules to a l i s t with R rmldomly samplcd rules.

negative(?RuleID)
negative(?RuleID,?h,?B)
negative(?RuleID.?A,?B,?P)

RuleID names a rule which hasa negative instance m
the data a t a position P, where h is aligned with B.

apply (+RuleID)

The rule RuleID is applied to the current data.

Figure 1: Extract fi'om the manual

plates may be queried. By backtracking through the
solutions to a call to p o s i t i v e / 1 we may for example
verify that there are ten ways to instantiate our exam-
ple template in our example data (for space reasons, I
show only the first three solutions):

[7- positive(RuleID), RuleID # Rule•
Rule = tag:vb>nn <- tag:dt@[-l] 7 ;
Rule = tag:nn>vb <- tag:vb@[-1] ? ;
Rule = tag:dr>dr <- tag:nn@[-l] ? ;
• . .

Alternatively, we might be interested only in instances
where the aligned feature values (h and B) are different,
and there are six of those: a

Sdif /2 is a built-in predicate in SICStus Prolog. A call
to d i f (X,Y) constrains X and Y to represent different terms.
Calls to d i f / 2 either succeed~ fail. or are blocked depending
oil whether X and Y are sufficiently instantiated.

36

l 7- dif(A,B), positive(ID,A,B), ID # Rule.

Or, we might be interested only in template instances
where the aligned symbols have feature values nn and
vb, respectively. There is only one such rule:

i ?- positive(RulelD,nn,vb), RuleID # Rule.
Rule = tag:nn>vb <- tag:vb@[-l] ? ;

Sometimes, a random sample of a positive rule might
be more useful:

7 - s a m p l e (R u l e I D , n n , v b) , RuleID # R u l e .
Ru le = t a g : n n > v b <- t a g : v b @ [- 1]

As for negative instances, we may want to know if the
rule t a g : v b > n n < - t a g : d r @ [- 1] has any negative in-
stances in the training data, and indeed there is one at
position 8, where vb is aligned with j j ra ther than nn:

?- RuleID # (tag:vb>nn <- tag:dt0[-l]),
negative(RuleID,A,B,P).
h = vb, B = j j , P = 8 ?

L i b r a r y ranking
Library ranking is a package for scoring and ranking
rules. I t was written for the specific purpose of scoring
t ransformat ion rules in the context of TBL, but is likely
to be more generally useful, hence deserving its s ta tus
as a libra~'y. The basic notions are defined as follows:

A score is an integer > 0

A ranking entry is a pair S-R such tha t S is a score
and R is a rule

A ranking is an ordered sequence of ranking entries
where each rule occurs only once.

The score of a rule is determined by counting the so-
lutions returned by goals containing the rule (or ra ther
its ID). Thus. many predicates in library ranking are
meta-predicates that work much the same way as the
so called all-solutions predicates tha t are built into Pro-
log. Figure 2 lists some of the predicates available in
l ibrary ranking.

The l ibrary encapsulates some of Brill's own w~ ' s of
optimizing t ransformation-based learning - optimiza-
tions which are possible to perform for the ranking of
rules in general.

The predicates in l ibrary ranking interact in a
straightforward way with the predicates generated by
the templa te compiler, as the following examples will
show. Here. for instance, is how we compute (and print)
a ranking on the basis of the goal invoh'ing a call to
positive/3:

37

count (?R, +Goal , -N)

Binds N to the number of solutions for Goal. un]ess it
fails for lack of solutions. If there are uninsta~itiated
variables in Goal, then a call to countl3 may back-
track, generating alternative values for N corresponding
to different instantiations of the free variables of Goal.
Defined as:

count(R,Goal,N) :-
bagof(R,Goal,Solutions),
length(Solutions,N).

rank (?R, +Goal, +ST, -Ranking)

Computes the score for each instance of R and ranks
the instances. However, instances with scores less than
the score threshold (ST) are not ranked. Defined as:

rank (R, Goal, ST, Rnkng) :-
setof (N-R, (count (., Goal, N), N>ST), Rnkng0),
r e v e r s e (RnkngO, Rnkng).

penal ize (?R, +Goal, +Rnkng, +ST, +AT, -NewRnkng)
Re-ranks the rules ill Rnkng by subtracting from their
scores, giving a new ranking NewRnkng. However. any
rule with a score < ST or all accuracy < AT Is just
dropped.

at_position (+N, +Rnkng, -Rule, -Score)

Retrieves the Nth rule in the ranking, and its score.

highscore (?R, +PGoal, +NGoal, +ST, +AT, ?WR, ?WRS)

Among the different instances of R, NR is the rule with
the highest score (i.e. the 'winning rule'), and NRS is
its score, defined as the number of solutions to the
goal PGoal minus the number of solutions to NGoal.
However. if NRS < ST, or if no rule clears the accuracy
threshold (AT), highscore/7 fails. Works a~ if defined
by:

highscore (R,PGoal,NGoal, ST, AT, WR, ~IRS) --
rank (R, PGoal, ST, Rnkng),
penalize (R, NGoal, Rnkng, ST, AT, NewRnkng),
at _pos it ion (1, NewRnkng, WR, WRS).

Ill fact, highscore/7 is implemented in a more efficient
way. It keeps track of a leading rule and its score, and
thus only has to generate and count solutions to NGoal
for rules for which the number of positive instances Is
greater than the score for the leading lule. Moreover,
the score threshold (ST) for the counting of solutions of
NGoal can be set to the nmnber of solutions to PGoal
minus the score for the leading rule.

Figure 2: Ext rac t fl'om the manual

?- r ank(R,A-B ' (d i f (A ,B) ,pos i t ive (R ,A,B)) , l ,L) ,
print_ranking(L).

3 tag:vb>nn <- tag:dt@[-1]
1 tag:vb>jj <- tag:dtO[-l]

I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I

And here is how we find the highest scoring rule:

I 7- highscore(R,A'B'(dif(A,B),positive(R,A,B)),
negat i r e (R), 1, WR, WRS).

WR = tag:vb>nn <- tag:tit@[-1], WRS = 3 ? ;

This concludes the demonstration of how the template
compiler and the ranking library allows a particular
combination of templates and training data to be in-
teractively explored from the Prolog prompt.

S i m p l e T B L

Full transformation-based learning is just a small snip-
pet of code away. Given corpus data, templates and val-
ues for the thresholds (ST and AT), the predicate t b l / 3
implements learning of a sequence of rules:

P r o g r a m 1

t b l (ST,AT,WRs) : -
(highscore (Rule,

A'B" (dif (A,B) ,posi t ive (Rule,A, B)),
negative (Rule),
ST,
AT,
WR,
WRS)

-> apply(~),
tb l (ST,AT,WRsl),
was = [~n~lWas13

; WRs = []
).

This predicate, defined entirely in terms of predicates
generated by the template compiler and predicates from
library ranking, combines all the important principles of
TBL into a complete learning program, that repeatedly
instantiates rule templates in training data, scores rules
on the basis of counts of positive and negative instances
of them, selects the highest scoring rule on the basis of
this ranking, and applies it to the training data.

Consider our small example once again. Here are the
three rules learned (with the score threshold set to 1)

tag:vb>nn <- t ag :d t~ [-1] .
tag:ab>kn <- tag:nn@[-1].
tag:nn>vb <- tag:nn@[-l].

and here are the transformations that the upper se-
quence of the training data goes through, when the rules
are applied in the given order:

dt vb nn dt vb kn dt vb ab dt vb
dt nn nn dt nn kn dt nn ab dt nn
dt nn nn dt nn kn dt nn kn dt nn
d~ nn vb dt nn kn dt nn kn dt nn

It is interesting to regard what is happening hei-e as a
decomposition of a relation S1-S, , into a number of re-

38

lations SI-S.>_ o . . . o S , - I - S , , corresponding to a number
of rules R1 o . . . o R , _ , .

In general, for such a decomposition S , -S , = Si-
S,+l o S,+I-Sn, it holds that if a rule R, has P pos-
itive and N negative instances in S , -S , , then (i) R,
will have P + N positive and no negative instances in
Ss-Si+l, and (ii) Ri will have no positive nor negative
instances in S,+I-S , . Clearly, (i) follows from the fact
that the update procedure associated with R, changed
the negative instances of Ri in S , -S , into positive ones,
and (ii) from the fact that the antecedent of R, must
be false in S,+l'Sn. As a corollary to (ii) it follows that
Ri will not be selected next.

For each step, as long as P > S T + N, then S, will
become more similar to Sn. Note. in our example, that
there is one rule, t a g : n n > j j <- t a g : d r @ [- 1] , that
would remove the only remaining difference between
$4 and S, . However, this rule also has three nega-
tive instances, and thus the rule gets a score below tim
threshold.

S c a l i n g Up
Program 1 is indeed small, simple and transparent. But
what about efficiency? How well does it scale up to han-
dle real world tasks, such as part-of-speech tagging? In
one small test the learner was operating on annotated
Swedish corpora 6 of three different sizes, with 23 dif-
ferent tags, and the 26 templates that BriU uses in his
distribution:

tag:A>B <- tag:C@[-l].
tag:A>B <- tag:C¢[l].
tag:A>B <- tag:C¢[-2].
tag:A>B <- tag:C@[2].
tag:A>B <- tag:C@[-l,-2].
tag:A>B <- tag:C@[l,2].
tag:A>B <- tag:C@[-l,-2,-3].
tag:A>B <- tag:C@[l,2,3].
tag:A>B <- tag:C@[-1] & tag:D@[1].
tag:A>B <- tag:C@[-l] ~ tag:D~[-2].
tag:A>B <- tag:C@[1] & tag:D@[2].
tag:A>B <- ,d:C@[O] ~ tag:D@[-2].
tag:A>B <- wd:C@[O] & wd:D@[-2].
tag:A>B <- wd:C@[-1].
tag:A>B <- wd:C@[l].
tag:A>B <- wd:C@[-2].
tag:A>B <- wd:C@[2].
tag:A>B <- wd:C@[-l,-2].
tag:A>B <- ,d:C@[1,2].
tag:A>B <- wd:C@[O] & ,d:D@[-1].

6I have used selected parts of the Stockholm-Umea Cor-
pus (SUC). Here is a key to the part-of-speech tags appear-
ing in the present paper: ma = noun, vb = verb, pp = prepo-
sition, pra = proper name. d t = determiner, pn = pronoun,
ie = infinitive marker, sn = subjunction, j j = adjective,
ab = adverb, hp = relative pronoun, kn ---- conjunction. See
[Ejerhed et al.~ 1992] for further details of this corpus.

tag:h>B <- wd:C@[O] & wd:D@[l].
tag:A>B <- wd:C@[0] & tag : D@ [-l] .
tag:h>B <- wd:C@[O] & tag:D@[1].
tag:A> B <- wd:C@[O].
tag:A>B <- wd:C@[O] & tag:D@[2].
tag:A>B <- wd:C@[O] & wd:D@[2].

Below, I show the first thirteen rules, as they are re-
ported by the p -TBL system (during training on the
30kw corpus). Each rule is preceded by its score (first
column), and by its accuracy (second column).

130 1.00 t a g : d t > p n <- t a g : v b ~ [1] .
114 0.82 t a g : i e > s n <- tag:vb@[2] .
58 0.85 tag:pn>dt <- vd:det@[O] & tag:jj%[l].
37 1.00 tag:ie>sn <- tag:dt@[l].
37 0.97 tag:ie>sn <- tag:nn@[1].
34 0.95 tag:dt>pn <- tag:pp@[l].
29 1.00 tag:ie>sn <- tag:pn@[1].
21 1.00 tag:ie>sn <- tag:pro@Ill.
19 1.00 tag:jj>pn <- wd:bland@[-1].
18 1.00 tag:dt>pn <- tag:hp@[l].
17 0.84 tag:pp>sn <- ,d:om@[O] & tag:pn@[l].
15 0.94 tag:sn>ie <- tag:vb@[1].
14 0.63 tag:hp>kn <- wd:som@[O] & tag:nn@[1].

Note that the actual accuracy of a learned rule can
sometimes be well below 1.00. (The accuracy thresh-
old was set to 0.5 in this experiment.) The sequence
of rules works well anyway, since the damage done by
an incorrect rule can be repaired by rules later in the
sequence. (In fact, a small experiment confirmed that
the setting of the accuracy threshold to 1.00 generates
a tagger which performs less well.)

For each corpus, the accuracy of the learned sequence
of rules was measured on a test corpus consisting of
40,000 words, with an initial-state accuracy of 93.3%.
The system was running on a Sun Ultra Enterprise 3000
with a 250Mhz processor. Table 1 summarizes the re-
sults of the tests:

Size ST
30k 2
60k 4

120k 6

Runtime Mem.req.
15 min 23M
24 rain 38M
54 rain 71M

#(Its) Acc.

99 95.5%
81 95.7%
88 95.8%

Table 1: # -TBL performance - the simple algorithm

The performance of the p-TBL system was compared
with Brill's learner running on the same machine, with
the same templates, score thresholds and training data.
Table 2 gives the figures.

These tests verify tha t the program works as ex-
pected, and also that it is quite efficient, despite its
small size and simple design. In fact. the tests show
that p -TBL learner is an order of magnitude faster than
Brill's original learner for this particular task.

39

Size ST
30k 2
60k 4

120k 6

Runtime Mem.req.
90 min 24M

185 min 43M
560 min 82M

#(Rs)
104
89
98

ACC.

95.5%
95.7%
95.8%

Table 2: Performance of Brill's learner

T B L h la E r i c B r i l l

This algorithm is perhaps tile one that resembles Brill's"
own algorithm the most. It differs fi'om the siml)le algo-
rithm in that to learn one rule, it ranks the error types
that occur in the trairting data (using r a n k / 4 from li-
brary ranking to do so), and then it searches top-to-
bot tom in this ranking, entry by entry, for a rule which
fixes the type of error recorded by the entry, always
keeping track of a leading rule and its score. When the
score for a ranking entry drops below the leading rule's
score, the search is abandoned, and the leader is de-
clared winner. This effectively prunes the search space
without losing completeness, and it also saves a lot of
memory, since only rules for one kind of error at a time
have to be held in memory.

Program 2

tbl (ST, AT, WRs) :-
(rank((h,B), (dif CA,B) ,pair(A,B)), ST,Rnkng),

le arn_one (Rnkng, dummy, O, AT, I/R, NRS),
NRS >= ST

-> apply (WR),
t b l (ST,AT,NRsl),
NRs = [WRtWRsl]
WRs = []

).

learn_one (RnkngO,LR,LRS, AT,NR, NRS) :-
(RnkngO -- [N-CA,B) lEnkng],

N > LRS
-> (highscore (R,

positive (R,A,B),
negative (R, A, A),
LRS,
AT,
LR1,
LRSI)

-> learn_one(Rnkng,LR1,LRS1 ,AT,NR,NRS)
; learn_one (Rnkng,LR, LRS, AT,NR, WRS)
)

; NR = LR, NRS = LI~
).

The benchmark results, using the same setup as with
the simple algorithm, are shown in Table 3.

As can be seen from Table 3, the optimized algo-
rithm is significantly faster than the simple one, and
it uses less memory. However, as pointed out in
[Ramshaw and Marcus, 1995], the effect of this partic-
ular optimization method depends on the size of the

!

Size ST
30k 2
60k 4

120k I. 6

Runtime Mem.req.
10 min 17M
20 min 22M
50 min 39M

#(Rs) Acc.
99 95.5%
85 95.7%
92 95.8%

Table 3: I~-TBL performance - the optimized algorithm

tag set. The larger the tag set, the more benefit we
can expect. Thus, we can expect to see even greater
improvements for many learning tasks.

Note also that in contrast with the simple algorithm,
this algorithm uses Brill's notion of negative rule in-
stance. The call negative (g, A, A) ensures that neutral
instances are not counted as negative. However, it ap-
pears that the way negative instances are counted does
not matter much, at least not for this application. The
rules look pretty much the same as the rules generated
by Brill's learner, and in fact, the first ten rules are

identical.

M o n t e C a r l o T B L

The original TBL algorithm suffers from the fact that
the number of candidate rules to consider grows very
fast with the number of rule templates, and in prac-
tice only a small number of templates can be handled.
[Samuel et al., 1998] presents a novel twist to the al-
gorithm, in order to solve this problem. The idea is
to randomly sample from the space of possible rules,
rather than generating them all. The better the rule is,
the greater the chance that it is included in the sample.
Thus, the system is likely to find the best rules first. An
implementation of this algorithm can be assembled by
replacing the definition of learn_one/6 in Program 2
with the following definition:

Program 3

learn_one(Rnkng0,LR,LRS,AT,NR,NRS) :-
(Rnkng0 = [N-(A,B) IRnkng],

N > LRS
-> samp1e_R(16,A,B,Rs),

(highscore(R,
(member(R,Rs),positive(R,A,B)),
negative(R,A,A),
LRS,
AT,
LRI,
LRS1)

learn_one(Rnlmg,LRI,LRSl,AT,NR,NRS)
Iearn_one(Rnkng,LR,LRS,AT,NR,NRS)

->

)

).
NR = LR, NRS = LRS

40

That is, h ighsco re /7 picks tile rules that it evalu-
ates from the (here) 16 rules that are sampled. The
amount of work that h ighsco re /7 has to perform, and
the memory requirements, no longer depends on how
many templates there are.

To test the algorithm, the system was run with 260
templates with the 60,000 word corpus, and a compar-
ison was made with the optimized algorithm. The out-
come of this experiment is reported in Table 4.

Algorithm Runtime Mem.req. #(Rs) Acc.
Lazy 48 min 21M 202 95.7%
Brill 427 min 84M 126 95.7%

Table 4: #-TBL performance - the lazy algorithm vs.
the '~ la Brill algorithm.

As can be seen from the table, although the other al-
gorithm did not perform too bad with 260 templates,
the 'lazy' algorithm was an order of magllitude faster.
Accuracy was not compromised, although the number
of rules grew.

As a sidenote, let me describe a convenient /L-TBL
system feature which makes it possible to train with
very many templates without actually writing them 'all
down. Instead of loading a set of templates into the
system, the user may load a couple of template decla-
rations, which, in terms of 'window' sizes and ranges of
relative positions over which windows 'slide', constrain
the relation between templates and clauses, defined by
the template grammar. Constrained in this way, the
grammar Call be used to generate templates. Without
going into any further details, let me just show the dec-
larations which causes the system to generate the 260
templates used above:

• - head(tag:A>B).
:- window_size(tag,3).
"- window_size(wd,2).
:- range(tag,[-3,-2,-l,l,2,3]).
:- range(wd,[-2,-1,1,2]).
"- anchors([-t ,O,1]).

L e a r n i n g C o n s t r a i n t G r a m m a r s

In another experiment, the #-TBL system was run with
a number of templates for reduction rules, in order to see
if something resembling a Constraint Grammar could
be induced from training data. Each word token in a
training corpus of 30,000 words was assigned the set
of part-of-speech tags that it can have according to a
lexicon. The training data also indicated which member
of this set was the correct one.

The system was run with the following four tem-
plates:

tag:A>l <- unique(tag:C@[-l]).
tag:A>l <- unique (tag : C@ [l]) .
tag:A>l <- wd:C@[O] & unique(tag:D@[-l]).
tag:h>l <- wd:C@[O] k unique(tag:DO[l]).

The use of the u n i q u e / 1 wrapper in the conditions of
the rules has the effect that a rule will trigger only if the
assignments of tags to words in the relevant surround-
ings ar e non-mnbiguous. (As Karlsson et al. (1995) put
it, the rules are run in "careful application mode".)

As mentioned earlier, replacement rules do not have
to be very accurate: if a rule early in a sequence of re-
placement rules makes some errors, the errors can often
be 'fixed' by rules later in the sequence. By contrast,
in a sequence of reduction rules there are no rules that
can add tags once they have been removed. There-
fore, in order to maximize the accuracy of the whole
sequence of rules, it must be induced under a valida-
tion bias which sees to it that each rule is as accurate
as possible. In the # -TBL system, this is taken care of
by" setting the accuracy threshold to a very high value.
However, a sequence of rules induced in this way will
typically leave many words with more than one tag. If
we want instead to minimize the tags per words ratio,
the accuracy threshold can be set to a lower value, but
then a lower tagging accuracy will naturally result. In
the experiment, the accuracy threshold was set to 0.99
(which still allows for a bit of noise in the data) and to
0.85. Program 2 was used.

Below, I show the first ten rules that were learned by
the system (with the accuracy threshold set to 0.99):

451 1.00 tag:rg>l <-
451 1.00 tag:pl>l <-
274 1.00 tag:pn>l <-
274 0.99 tag:ab>l <-
230 1.00 tag:pl>l <-
222 1.00 tag:ab>l <-
221 1.00 t a g : r g > l <-
219 1.00 tag:p1>1 <-
200 1.00 tag:p1>1 <-
166 0.99 tag: rg>l <-

wd:i@[O] ~ unique(nn@[l]).
wd:i@[O] & unique(nn@[1]).
wd: en@ [0] & unique (nn@ [i]).
wd: en@ [0] & unique (nn@ [i]).
unique(dl@ [-I]).
wd:av~[O] & unique(nn@[-l]).
wd:£@[O] & unique(nn@[-l]).
.d:i@[O] & unique(nn@[-1]).
wd:p@[O] k unique(nn@[-t]).
wd:en@[O] & unique(jj@[l]).

The induced sequences of rules were tested on a cor-
pus of 11,000 words. Both the accuracy and the tags
per word ratio in the test corpus were measured7 The
initial tags per word ratio in the test corpus was 1.35.
The results of the tests are given in Table 5.

Size ST AT #(Rs) Runtime Acc. T / W
30k 6 0.99 410 75 min. 99.6% 1.17
30k 6 0.85 215 20 min. 98.1% 1.04

Table 5: Result of Constraint Grammar induction

TA word is deemed to be accurately tagged if the correct
tag is an element in the set of tags that the word has been
assigned.

These results are promising. But before it would be
fair to compare with other methods for inducing Con-
straint Grammars from annotated corpora, e.g. the
methods described ill [Samuelsson et al., 1996] or in
[Lindberg and Eineborg, 1998], it remains to determine
the optimal set of templates and the optimal settings
of the accuracy threshold. Very likely, the learning pro-
cess (applied to the learning of reduction rules) can also
be optimized for speed. In short, a lot more has to be
done, but at least this section has shown how easily an
experiment like this can be set up in the # -TBL envi-
ronment.

Summary and Conclusions
The #-TBL system is not just a re-implementation
of original TBL in another programming language.
Rather it should be seen as all a t t empt to use tile rea-
soning and database capabilities of Prolog to do TBL
ill a more high-level way. The # -TBL system is:

Genera l - The system supports four types of rules by
means of which not only traditional 'Brill-taggers',
but also Constraint Grammar disambiguators, are
possible to train.

Eas i ly e x t e n d i b l e - Through its support of a compo-
sitional rule/ template formalism and 'pluggable' al-
gorithms, the system can easily be tailored to differ-
ent learning tasks.

T r a n s p a r e n t - Rules have a declarative, logical se-
mantics which, among other things, has proved to be
of great value during the implementation work.

Ef f ic ien t - A number of benchmarks have been run
which show that the system is fairly efficient - an
order of magnitude faster than Brill's contextual-rule
learner.

I n t e r a c t i v e - Prolog is all interactive language and
this is something that the # -TBL system inherits.

Sma l l - Thanks to the choice of implementation lan-
guage, the system's code base can be kept quite small.
Indeed, a 'light' version of the # -TBL system., con-
sisting of just one page of Prolog code, has been im-
plemented [Lager, 1999].

In short, the #-TBL system is a powerful environ-
ment in which to experiment with transformation-based
learning.

Acknowledgements
Thanks to Lars Borin, Mats DahllSf and Natalia Zi-
novjeva at Uppsala University for comments and sug-
gestions. Joakim Nivre in GSteborg "also provided me
with valuable insights and advice.

41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

References
[Brill and Resnik, 1994] Brill, E. and Resnik, P., 1994.

A transformation-based approach to prepositional
phrase attachment disambiguation. In Proceedings
of COLING'94, Kyoto, Japan.

[Brill, 1995] Brill, E., 1995, Transformation-Based
Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part of Speech Tagging.
Computational Linguistics, December 1995.

[Ejerhed et al., 1992] Ejerhed, E., K~illgren, G..
\Vennstedt, O. and .£.str5m, M., 1992, The Lin-
guistic Annotation System of the Stockhohn-Umea
Project. Department of Linguistics, University bf
U m e .

[Hardt, 1998] Hardt, D. 1998, Improving Ellipsis Res-
olution w'ith Transformation-Based Learning. To
appear, AAAI Fall Symposium.

[Karlsson et al., 1995] Karlsson, F., Voutilainen, A.,
Heikkil~i, J., Anttila, A. (eds.). 1995, Constraint
Grammar. A Language-Independent System for
Parsing Unrestricted Text. Mouton de Gruyter.

[Lager, 1999] Lager, T. 1999, /~-TBL Lite: A Small,
Extendible Transformation-Based Learner, In Pro-
ceedings of the Ninth Conference o] the European
Chapter of the Association for Computational Lin-
guistics (EACL'99), Bergen, June 8 - 12, 1999.

[Lindberg and Eineborg, 1998] Lindberg, N. and
Eineborg M., Learning Constraint Grammar-style
disambiguation rules using Inductive Logic Pro-
gramming. In Proceedings of COLING/ACL "98.

[Mangu and Brill, 1997] Mangu, L. and Brill, E., 1997,
Automatic Rule Acquisition for Spelling Correc-
tion, In Proceedings of The Fourteenth Interna-
tional Conference on Machine Learning, ICML 97,
.'Morgan Kaufmann.

[Ramshaw mad Marcus, 1995] Ramshaw, L. A. and
Marcus, M., P., 1995, Text Chunking using
Transformation-Based Learning, In Proceedings of
the A CL Third Workshop on Very Large Corpora,
June 1995, pp. 82-94.

[Samuel et al., 1998] Samuel, K., Carberry, S. and
Vij~'-Shanker, K., 1998. Dialogue Act Tagging
with Transformation-Based Learning. In Proceed-
ings of COLING/ACL'98, pp. 1150-1156.

[Samuelsson et al., 1996] Samuelsson, C., Tapanainen.
P. and Voutilainen. A., 1996, Inducing Constraint
Grammars. In: Laurent. M. and de la Higuera. C.

42

(eds.) Grammatical bfference: Learning Syntax
: fi'om Sentences, Springer Verlag.

Appendix: The #-TBL User Interface
Although it certainly helps to be familiar with the Pro-
log programming language, the p-TBL system is actu-
ally designed to be usable also by those who lack Prolog
experience.

The system has a simple command line interface, de-
picted in Figure 3, from which commands ('an be given
and queries be made. Furthermore. there are several
flags which control the way in which the system carries
out its tasks.

The NUTBL System, v e r s i o n 0 . 7

(c) Torbjoern Lager, 1999
Dept. of L i n g u i s t i c s , Uppsala U n i v e r s i t y , Sweden

The MUTBL System comes v i t h a b s o l u t e l y no warranty.

FLAGS:

training_data='data/testcorpus'

test_data='data/10kw_test'

algoritbm='algorithms/brill'

templates=~templates/brill_dist_templates '.
score_threshold=3

accuracy_threshold=0.5

verbosity=2

COMMANDS:

load

train

test

set F=V
help

flags

commands

- l o a d s d a t a , c o m p i l e s . t e m p l a t e s , e t c .
- s t a r t s t r a i n i n g process
- tests result of training

- sets flag F to the value V

- shows this menu

- sho.s settings of flags
- lists available commands

predicates - lists available predicates

I ?-

Figure 3: The #-TBL User Interface

