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•.. Abstract 

This paper describes applications of stochastic 
and symbolic NLP methods to treebank anno- 
tation. In paxticular we focus on (1) the au- 
tomation of treebank annotation, (2) the com- 
parison of conflicting annotations for the same 
sentence and (3) the automatic detection of in- 
consistencies. These techniques are currently 
employed for building a German treebank. 

1 Introduction 

The emergence of new statistical NLP methods in- 
creases the demand for corpora annotated with syn- 
tactic structures. The construction of such a cor- 
pus (a treebank) is a time-consuming task that can 
hardly be carried out unless some annotation work is 
automated. Purely automatic annotation, however, 
is not reliable enough to be employed without some 
form of human supervision and hand-correction. 
This interactive annotation strategy requires tools 
for error detection and consistency checking. 

The present paper reviews our experience with the 
development of automatic annotation tools which 
are currently used for building a corpus of German 
newspaper text. 

The next section gives an overview of the annota- 
tion format. Section 3 describes three applications 
of statistical NLP methods to treebank annotation. 
Finally, section 4 discusses mechanisms for compar- 
ing structures assigned by different annotators. 

2 Annotating Argument Structure 

2.1 A n n o t a t i o n  Scheme 

Unlike most treebanks of English, our corpus is an- 
notated with predicate-argumenl s~ructures and not 
phrase-structure trees. The reason is the free word 
order in German, a feature seriously affecting the 
transparency of traditional phrase structures. Thus 
local and non-local dependencies are represented in 

Dar'uber 
PROAV 

rnu's nachgedacht werden 
VMFIN VVPP VAINF 

must thought-over be 

'it has to be thought over' 

about-it 

$. 

Figure h Sample structure from the Treebank 

the same way, at the cost of allowing crossing tree 
branches, as shown in figure 11 . 

Such a direct representation of the predicate- 
argument relation makes annotation easier than it 
would be if additional trace-filler co-references were 
used for encoding discontinuous constituents. Fur- 
thermore, our scheme facilitates automatic extrac- 
tion of valence frames and the construction of se- 
mantic representations. 

On the other hand, the predicate-argument struc- 
tures used for annotating our corpus can still be con- 
verted automatically into phrase-structure trees if 
necessary, cf. (Skut et al., 1997a). For more details 
on the annotation scheme v. (Skut et al., 1997b). 

2.2 The A n n o t a t i o n  Mode  

In order to make annotation more reliable, each sen- 
tence is annotated independently by two annotators. 
Afterwards, the results are compared, and both an- 
notators have to agree on a unique structure. In 

1 The nodes and edges are labeled with category and 
function symbols, respectively (see appendix A). 
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case of persistent disagreement or uncertainty, the 
grammarian supervising the annotation work is con- 
sulted. 

It has turned out that comparing annotations 
involves significantly more effort than annotation 
proper. As we do not want to abandon the annotate- 
and-compare strategy, additional effort has been put 
into the development of tools supporting the com- 
parison of annotated structures (see section 4). 

3 A u t o m a t i o n  

The efficiency of annotation can be significantly in- 
creased by using automatic annotation tools. Never- 
theless, some form of human supervision and hand- 
correction is necessary to ensure sufficient reliabil- 
ity. As pointed out by (Marcus, Santorini, and 
Marcinkiewicz, 1994), such a semi-automatic anno- 
tation strategy turns out to be superior to purely 
manual annotation in terms of accuracy and effi- 
ciency. Thus in most treebank projects, the task of 
the annotators consists in correcting the output of a 
parser, cf. (Marcus, Santorini, and Marcinkiewicz, 
1994), (Black et al., 1996). 

As for our project, the unavailability of 
broad-coverage argument-structure and dependency 
parsers made us adopt a bootstrapping strategy. 
Having started with completely manual annotation, 
we axe gradually increasing the degree of automa- 
tion. The corpus annotated so far serves as train- 
ing material for annotation tools based on statis- 
tical NLP methods, and the degree of automation 
increases with the amount of annotated sentences. 

Automatic processing and manual input are com- 
bined interactively: the annotator specifies some in- 
formation, another piece of information is added au- 
tomatically, the annotator adds new information or 
corrects parts of the structure, new parts are added 
automatically, and so on. The size and type of such 
annotation increments depends on the size of the 
training corpus. Currently, manual annotation con- 
sists in specifying the hierarchical structure, whereas 
category and function labels as well as simple sub- 
structures are assigned automatically. These au- 
tomation steps are described in the following sec- 
tions. 

3.1 Tagging Grammatical Functions 

Assigning grammatical functions to a given hierar- 
chical structure is based on a generalization of stan- 
dard paxt-of-speech tagging techniques. 

In contrast to a standard probabilistic POS tag- 
ger (e.g. (Cutting et al., 1992; Feldweg, 1995)), the 
tagger for grammatical functions works with lexical 

(1) 

Selbst besucht 

ADV VVPP 

himself visited 

hat Peter Sabine 

VAFIN NE NE 

has Peter Sabine 

'Peter never visited Sabine himself' 

l 
hie 

ADV 

never 

Figure 2: Example sentence 

and contextual probability measures PO.(') depend- 
ing on the category of a mother node (Q). This ad- 
ditional parameter is necessary since the sequence of 
grammatical functions depends heavily on the type 
of phrase in which it occurs. Thus each category (S, 
VP, NP, PP etc.) defines a separate Markov model. 

Under this perspective, categories of daughter 
nodes correspond to the outputs of a Markov model 
(i.e., like words in POS tagging). Grammatical func- 
tions can be viewed as states of the model, analo- 
gously to tags in a standard part-of-speech tagger. 

Given a sequence of word and phrase categories 
T = T1.. .Tk and a parent category Q, we cal- 
culate the sequence of grammatical functions G = 
G1 . . .  Gk that link T and Q as 

axgmax PQ( a[T) (1) 
G 

PQ(G). Po(TIG) 
= axgmax 

a PQ(T) 

= axgmaxPo(a ) • Pq(TIG) 
G 

Assuming the Markov property we have 

k 

PQ(TIG) = I"I PQ(T~IG,) (2) 
i----1 

and (using a trigram model) 

k 

po(G) : IX Po(V, IGi-2, G,-1) (a) 
i = 1  

The contexts are smoothed by linear interpolation 
of unigrams, bigrams, and trigrams. Their weights 
are calculated by deleted interpolation (Brown et al., 
1992). 
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The structure of a sample sentence is shown jn 
figure 2. Here, the probability of the S node having 
this particular sequence of children is calculated as 

Ps(G,T) = Ps(OCl$,$)-Ps(VPlOC) 

• Ps(HDI$, OC). Ps(VAFINIHD) 
• Ps(SBIOC, HD)-Ps(NEISB ) 
-Ps(NGIHD, SB)- Ps(ADVING ) 

($ indicates the start of the sequence). 
The predictions of the tagger are correct in ap- 

prox. 94% of all cases. During the annotation pro- 
cess this is further increased by exploiting a preci- 
sion/recall trade-off (cf. section 3.5). 

3.2 Tagging  P h r a s a l  Ca tegor ies  

The second level of automation is the recognition of 
phrasal categories, which frees the annotator from 
typing phrase labels. The task is performed by an 
extension of the grammatical function tagger pre- 
sented in the previous section. 

Recall that  each phrasal category defines a dif- 
ferent Markov model. Given the categories of the 
children nodes in a phrase, we can run these models 
in parallel. The model that assigns the most prob- 
able sequence of grammatical functions determines 
the category label to be assigned to the parent node. 

Formally, we calculate the phrase category Q (and 
at the same time the sequence of grammatical func- 
tions G = G1 . . .  Gk) on the basis of the sequence of 
daughters 7" = T1 . . .  Tk with 

argmax maxPQ(GIT). 
Q 6 

This procedure can also be performed using one 
large {combined) Markov model that enables a very 
efficient calculation of the maximum. 

The overall accuracy of this approach is 95%. 

3.3 Tagg ing  Hie ra rch ica l  Struc ture  

The next automation step is the recognition of syn- 
tactic structures. In general, this task is much more 
difficult than assigning category and function labels, 
and requires a significantly larger training corpus 
than the one currently available. What can be done 
at the present stage is the recognition of relatively 
simple structures such as NPs and PPs. 

(Church, 1988) used a simple mechanism to mark 
the boundaries of NPs. He used part-of-speech tag- 
ging and added two flags to the part-of-speech tags 
to mark the beginning and the end of an NP. 

Our goal is more ambitious in that we mark not 
only the phrase boundaries of NPs but also the com- 
plete structure of a wider class of phrases, starting 
with APs, NPs and PPs. 

em Dichter 
ART NN 

1 + 

a poet 

E~ 

in Tel Aviv lebender 

APPIq NE NE ADJA 
- - - -  - -  0 4--1. 

in Tel Aviv living 

'a poet living in Tel Aviv' 

Figure 3: Structural tags 

(Ratnaparkhi, 1997) uses an iterative procedure to 
assign two types of tags (start X and join X, where 
X denotes the type of the phrase) combined with a 
process to build trees. 

We go one step further and assign simple struc- 
tures in one pass. Furthermore, the nodes and 
branches of these tree chunks have to be assigned 
category and function labels. 

The basic idea is to encode structures of lim- 
ited depth using a finite number of tags. Given a 
sequence of words (w0, wl .... wn/, we consider the 
structural relation ri holding between wi and wi-1 
for 1 < i < n. For the recognition of NPs and PPs, 
it is sufficient to distinguish the following seven val- 
ues of rl which uniquely identify sub-structures of 
limited depth. 

ri -- 

0 if parent(wi) =parent(wi_l) 
+ if parent(wi) =parent2(wi_l) 

+ +  if parent(wi) = parentZ(wi_a) 
- if parent2(wi) =parent(wi_l) 

- -  if parentZ(wi) = parent(wi_l) 
= if parent2(wi) = parentg-(wi_l) 
1 else 

If more than one of the conditions above are met, 
the first of the corresponding tags in the list is as- 
signed. A structure tagged with these symbols is 
shown in figure 3. 

In addition, we encode the POS tag ti assigned to 
w~. On the basis of these two pieces of information 
we define structural tags as pairs Si = ( r i ,  ti). Such 
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tags constitute a finite alphabet of symbols describ- 
ing the structure and syntactic category of phrases 
of depth < 3. 

The task is to assign the most probable sequence 
of structural tags ((So, $1, ..., Sn)) to a sequence of 
part-of-speech tags (To, T1, ..., Tn). 

Given a sequence of part-of-speech tags T = 
T1 . . .  T~, we calculate the sequence of structural tags 
S = $1 . . .  Sk such that  

argmax P( S]T) (4) 
s 

P(S) - P(TIS) 
= argmax 

s P(T) 

= a r g m a x P ( S ) .  P(TIS) 
S 

The part-of-speech tags are encoded in the struc- 
tural tag (t), so S uniquely determines T. Therefore, 
we have P(T[S) = 1 ifTi = ii and 0 otherwise, which 
simplifies calculations: 

argmax P(S) .  P(T[S) (5) 
s 

= argmax H P(SiISi-2, Si-1)P(TdSO 
S i=1 

As in the previous models, the contexts are 
smoothed by linear interpolation of unigrams, bi- 
grams, and trigrams. Their weights are calculated 
by deleted interpolation. 

This chunk tagging technique can be applied to 
treebank annotation in two ways. Firstly, we could 
use it as a preprocessor; the annotator would then 
complete and correct the output of the chunk tagger. 

The second alternative is to combine this chunking 
with manual input in an interactive way. Then the 
annotator has to determine the boundaries of the 
sub-structure that is to be build by the program. 

Obviously, the second solution is favorable since 
the user supplies information about chunk bound- 
aries, while in the preprocessing mode the tagger has 
to find both the boundaries and the internal struc- 
ture of the chunks. 

The assignment of structural tags is correct in 
more than 94% of the cases. For detailed results 
see section 3.6.3. 

3.4 Interaction and Alternation 

To illustrate the interaction of manual input and the 
automatic annotation techniques described above, 
we show the way in which the structure in figure 

3 is constructed. The current version of the annota- 
tion tool supports automatic assignment of category 
and phrase labels, so the user has to specify the hi- 
erarchical structure step by step 2. 

The starting point is the plain string of words to- 
gether with their part-of-speech tags. The annota- 
tor first selects the words Tel Aviv and executes the 
command "group" (this is all done with the mouse). 
Then the program inserts the category label MPN 
(multi-lexeme proper noun) and assigns the gram- 
matical function PNC (proper noun component) to 
both words (cf. sections 3.2 and 3.1). 

Having completed the first sub-structure, the an- 
notator selects the newly created MPN and the 
preposition in, and creates a new phrase. The 
tool automatically inserts the phrase label PP and 
the grammatical functions AC (adpositional case 
marker) and NK (noun kernel component). The fol- 
lowing two steps are to determine the components 
of the AP and, finally, those of the NP. 

At any time, the annotator has the opportunity 
to change and correct entries made by the program. 

This interactive annotation mode is favorable 
from the point of view of consistency checking. The 
first reason is that the annotation increments are 
rather small, so the annotator corrects not an entire 
parse tree, but a fairly simple local structure. The 
automatic assignment of phrase and function labels 
is generally more reliable than manual input because 
it is free of typically human errors (see the precision 
results in (Brants, Skut, and Krenn, 1997)). Thus 
the annotator can concentrate on the more difficult 
task, i.e., building complex syntactic structures. 

The second reason is that errors corrected at 
lower levels in the structure facilitate the recogni- 
tion of structures at higher levels, thus many wrong 
readings are excluded by confirming or correcting a 
choice at a lower level. 

The partial automation of the annotation process 
(automatic regocnition of phrase labels and gram- 
matical functions) has reduced the average anno- 
tation time from about 10 to 1.5 - 2 minutes per 
sentence, i.e. 600 - 800 tokens per minute, which 
is comparable to the figures published by the cre- 
ators of the Penn Treebank in (Marcus, Santorini, 
and Marcinkiewicz, 1994). 

The test version of the annotation tool using the 
statistical chunking technique described in section 
3.3 permits even larger annotation increments and 
we expect a further increase in annotation speed. 
The user just has to select the words constituting an 

~The chunk tagger has not yet been fully integrated 
into the annotation tool. 
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NP or PP. The program assigns a sequence of struc- 
tural tags to them; these tags are then converted to 
a tree structure and all labels are inserted. 

3.5 t t e l iab i l i ty  

To make automatic annotation more reliable, the 
program assigning labels performs an additional re- 
liability check. We do not only calculate the best 
assignment, but also the second-best alternative and 
its probability. If the probability of the alternative 
comes very close to that of the best sequence of la- 
bels, we regard the choice as unreliable, and the an- 
notator is asked for confirmation. 

Currently, we employ three reliability levels, ex- 
pressed by quotients of probabilities Pbest/Psecond- 
If this quotient is close to one (i.e., smaller than 
some threshold 01), the decision counts as unreli- 
able, and annotation is left to the annotator. If the 
quotient is very large (i.e., greater than some thresh- 
old 02 > 91), the decision is regarded as reliable and 
the respective annotation is made by the program. 

If the quotient fails between 91 and 02, the decision 
is tagged as "almost reliable". The annotation is 
inserted by the program, but has to be confirmed by 
the annotator. 

This method enables the detection of a number of 
errors that are likely to be missed if the annotator 
is not asked for confirmation. 

The results of using these reliability levels are re- 
ported in the experiments section below. 

3.6 Experiments 

This section reports on the accuracy achieved by the 
methods described in the previous sections. 

At present, our corpus contains approx. 6300 sen- 
tences (115,000 tokens) of German newspaper text 
(Frankfurter Rundschan). Results of tagging gram- 
matical functions and phrase categories have im- 
proved slightly compared to those reported for a 
smaller corpus of approx. 1200 sentences (Brants, 
Skut, and Krenn, 1997). Accuracy figures for tag- 
ging the hierarchical structure are published for the 
first time. 

For each experiment, the corpus was divided into 
two disjoint parts: 90% training data and 10% test 
data. This procedure was repeated ten times, and 
the results were averaged. 

The thresholds 01 and 02 determining the reliabil- 
ity levels were set to 91 = 5 and 02 = 100. 

3.6.1 Grammatical Functions 

We employ the technique described in section 3.1 
to assign grammatical functions to a structure de- 
fined by an annotator. Grammatical functions are 

Table 1: Levels of reliability and the percentage of 
cases in which the tagger assigned a correct gram- 
matical function (or would have assigned ifa decision 
had been forced). 

grammatical 
function 

reliable 
marked 
unreliable 
overall 

cases correct 

88% 97.0% 
8% 85.0% 
4% 59.5% 

100% 94.6% 

Table 2: Levels of reliability and the percentage of 
cases in which the tagger assigned a correct phrase 
category (or would have assigned it if a decision had 
been forced). 

phrase 
category 

reliable 
marked 
unreliable 
overall 

cases correct 

76% 99.0% 
19% 91.5% 
5% 56.7% 

100% 95.4% 

represented by edge labels. Additionally, we exploit 
the recall/accuracy tradeoff as described in section 
3.5. The tagset of grammatical functions consists of 
45 tags. 

Tagging results are shown in table 1. Overall ac- 
curacy is 94.6%. 88% of all predictions are classified 
as reliable, which is the most important class for 
the actual annotation task. Accuracy in this class 
is 97.0%. It depends on the category of the phrase, 
e.g. accuracy for reliable cases reaches 99% for 51Ps 
and PPs. 

3.6.2 Phrasal Categories 

Now the task is to assign phrasal categories to a 
structure specified by the annotator, i.e., only the 
hierarchical structure is given. We employ the tech- 
nique of competing Markov models as described in 
section 3.2 to assign phrase categories to the struc- 
ture. Additionally, we compute alternatives to as- 
sign one of the three reliability levels to each decision 
as described in section 3.5. The tagset for phrasal 
categories consists of 25 tags. 

As can be seen from table 2, the results of assign- 
ing phrasal categories are even better than those of 
assigning grammatical functions. Overall accuracy 
is 95.4%. Tags that are regarded as reliable (76% of 
all cases) have an accuracy of 99.0%, which results 
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Table 3: Chunk tagger accuracy with respect to hi- 
erarchical structure. 

structural 
tags 

reliable 
marked 
unreliable 
overall 

cases correct 

86% 95.8% 
11% 93.2% 
3% 67.0% 

100% 94.4% 

in very reliable annotations. 

3.6.3 C h u n k  Tagge r  

The chunk tagger described in section 3.3 assigns 
tags encoding structural information to a sequence 
of words and tags. The accuracy figures presented 
here refer to the correct assignments of these tags 
(see table 3). 

The assignment of structural tags allows us to con- 
struct a tree; the labels are afterwards assigned in 
a bot tom-up fashion by the function/category label 
tagger described in earlier sections. 

Overall accuracy is 94.4% and reaches 95.8% in 
the reliable cases. 

A different measure of the chunker's correctness is 
the percentage of complete phrases recognized cor- 
rectly. In order to determine this percentage, we 
extracted all chunks of the maximal depth recogniz- 
able by the chunker. In a cross evaluation, 87.3% of 
these chunks were recognized correctly as far as the 
hierarchical structure is concerned. 

4 C o m p a r i n g  T r e e s  

Annotations produced by different annotators are 
compared automatically and differences are marked. 
The output of the comparison is given to the anno- 
tators. First, each of the annotators goes through 
the differences on his own and corrects obvious er- 
rors. Then remaining differences are resolved in a 
discussion of the annotators. 

Additionally, the program calculates the proba- 
bilities of the two different annotations. This is in- 
tended to be a first step towards resolving conflicting 
annotations automatically. Both parts, tree match- 
ing and the calculation of probabilities for complete 
trees are described in the following sections. 

4.1 Tree  M a t c h i n g  

The problem addressed here is the comparison of 
two syntactic structures that share identical termi- 
nal nodes (the words of the annotated sentence). 

proc  compare(A, B) 
for each non-terminal node X in A: 

search node Y in B 

such that yield(X) = yield(Y) 
i f  Y exists: 

emit different labels if any 
if Y does not exist: 

emit X and its yield 
end 

end 

Figure 4: Basic asymmetric algorithm to compare 
annotation A with annotation B of the same sen- 
tence 

(Calder, 1997) presents a method of comparing 
the structure of context free trees found in differ- 
ent annotations. This section presents an extension 
of this algorithm that compares predicate-argument 
structures possibly containing crossing branches (cf. 
figure 2). Node and edge labels, representing phrasal 
categories and grammatical functions, are also taken 
into account. 

Phrasal (non-terminal) nodes are compared on 
the basis of their yields: the yield of a nontermi- 
nal node X in an annotation A is the ordered set 
of terminals that are (directly or indirectly) dom- 
inated by X. The yield need not be contiguous 
since predicate-argument structures allow discontin- 
uous constituents. 

If  both annotations contain nonterminal nodes 
that cover the same terminal nodes, the labels of the 
nonterminal nodes and their edges are compared. 

This results in a combined measure of structural 
and labeling differences, which is very useful in 
cleaning the corpus and keeping track of the devel- 
opment of the treebank. 

We use the basic algorithm shown in figure 4 to 
determine the differences in two annotations A and 
B. The basic form is asymmetric. Therefore, a com- 
plete comparison consists of two runs, one for each 
direction, and the outputs of both runs are com- 
bined. 

Figures 5 and 6 show examples of the output of 
the algorithm. These outputs can be directly used 
to mark the corresponding nodes and edges. 

The yield is sufficient to uniquely determine cor- 
responding nodes since the annotations used here do 
not contain unary branching nodes. If unary branch- 
ing occurs, both the parent and the child have the 
same terminal yield and further mechanism to de- 
termine corresponding nodes are needed. (Calder, 
1997) points out possible solutions to this problem. 
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/2 t- t 
Selbst besucht hat Peter 

0 1 2 3 

ADV VVPP VAFIN NE 

himself visited has Peter Sabine 

'Peter never visited Sabine himself' 

++ 
Sabine nie 

4 5 

NE ADV 

never 

sentence I errors I 

(1) structure: 500 VP lOCI 0 1 4 
(Selbst besucht Sabine) 

(2) structure: 500 VP lOCI 0 I 4 S 

(Selbst besucht Sabine hie) 

Figure 5: Erroneous annotation (2) of the example 
sentence in figure 2 (hie should be attached to S 
instead of VP), together with the output of the tree 
comparison algorithm• All nodes are numbered to 
enable identification. Additionally, this output can 
be used to highlight the corresponding nodes and 
edges. 

(3) 

Selbst 
0 

ADV 

himself 

besucht hat Peter Sabine 
1 2 3 4 

VVPP VAFIN NE NE 

visited has Peter Sabine 

'Peter never visited Sabine himself' 

? 
nie 

5 

ADV 

never 

sentence 1 errors 1 
(1) edge: 5 (ADV) [NG] nie 
(3) edge: 5 (ADV) [MO] hie 

Figure 6: Erroneous annotation (3) of the example 
sentence in figure 2 (nie should have grammatical 
function NG instead of MO), together with the out- 
put of the tree comparison algorithm. 

4.2 P robab i l i t i e s  

The probabilities of each sub-structure of depth one 
are calculated separately according to the model de- 
scribed in sections 3.1 and 3.2. Subsequently, the 
product of these probabilities is used as a scoring 
function for the complete structure• This method is 
based on the assumption that productions at differ- 
ent levels in a structure are independent, which is 
inherent to context free rules. 

Using the formulas from sections 3.1 and 3.2, the 
probability P(A) of an annotation A is evaluated as 

P(A) = HP(Qi )  
i = l  

n n t  

= H PQ,(T,, G,) 
i--1 

rtnt ki 

= 1] 1] Poi(gi,ylg,,~-2, g/,~-l) 
i = l j = l  

• PQ(ti,y I gij) 

A annotation (structure) for a sentence 
nnt number of nonterminal nodes in A 
nt number of terminal nodes in A 
n number of nodes = nnt + nt 
Qi ith phrase in A 
T/ sequence of tags in Qi 
Gi sequence of gramm, func. in Qi 
ki number of elements in Qi 
tij tag of j th  child in Qi 
gl,i grammatical function of j th 

child in Qi 
Probabilities computed in this way cannot be used 

directly to compare two annotations since they favor 
annotations with fewer nodes. Each new nontermi- 
nal node introduces a new element in the product 
and makes it smaller. 

Therefore, we normalize the probabilities w.r.t. 
the number of nodes in the annotation, which yields 
the perplexity PP(A) of an annotation A: 

PP(A)=~ 'p~A)  (6) 

4.3 A p p l i c a t i o n  to  a Corpus  

The procedures of tree matching and probability cal- 
culation were applied to our corpus, which currently 
consists of approx. 6300 sentences (115,000 tokens) 
of German newspaper text, each sentence annotated 
at least twice. 

We measured the agreement of independent anno- 
tations after first annotation but before correction 
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Table 4: Comparison of independent semi-automatic 
annotations (1) after first, independent annotation 
and (2) after comparison but before the final discus- 
sion (current stage). 

word  level: 
(1) ident, parent node 
(2) ident, gram. func. 

n o d e  level: 
(3) identical nodes 
(4) identical nodes/labels 
(5) ident, node/gram, func. 

s e n t e n c e  level: 
(6) identical structure 
(7) identical annotation 

<1> (2> 

92.3% 98.7% 
93.8% 99.1% 

87.6% 98.1% 
84.2% 97.4% 
76.6% 96.3% 

48.6% 90.8% 
34.6% 87.9% 

(1), and after correction but before the final discus- 
sion (2), which is the current stage of the corpus. 
The results are shown in table 4. 

As for measuring differences, we can count them 
at word, node and sentence level. 

At the word level, we are interested in (1) the 
number of correctly assigned parent categories (does 
a word belong to a PP, NP, etc.?), and (2) the num- 
ber of correctly assigned grammatical functions (is 
a word a head, modifier, subject, etc.?). 

At the node level (non-terminals, phrases) we 
measure (3) the number of identical nodes, i.e., if 
there is a node in one annotation, we check whether 
it corresponds to a node in the other annotation hav- 
ing the same yield. Additionally, we count (4) the 
number of identical nodes having the same phrasal 
category, and (5) the number of identical nodes hav- 
ing the same phrasal category and the same gram- 
matical function within its parent phrase. 

At the sentence level, we measure (6) the number 
of annotated sentences having the same structure, 
and, which is the strictest measure, (7) the number 
of sentences having the same structure and the same 
labels (i.e., exactly the same annotation). 

At the node level, we find 87.6% agreement in in- 
dependent annotations. A large amount of the dif- 
ferences come from misinterpretation of the annota- 
tion guidelines by the annotators and are eliminated 
after comparison, which results in 98.1% agreement. 
This kind of comparison is the one most frequently 
used in the statistical parsing community for com- 
paring parser output. 

The sentence level is the strictest measure, and 
the agreement is low (34.6% identical annotations 
after first annotation, 87.9% after comparison). But 
at this level, one error (e.g. a wrong label) renders 

Table 5: Using model perplexities to compare dif- 
ferent annotations: Accuracy of using the hypothe- 
sis that a correct annotation has a lower perplexity 
than a wrong annotation. 

recall precision 
30% 95.3% 
45% 92.2% 
60% 88.6% 
85% 81.4% 

100% 65.8% 

the whole annotation to be wrong and the sentence 
counts as an error. 

If we make the assumption that a correct anno- 
tation always has a lower perplexity than a wrong 
annotation for the same sentence, the system would 
make a correct decision for 65.8% of the sentences 
(see table 5, last row). 

For approx. 70% of all sentences, at least one 
of the initial annotations was completely correct. 
This means that the two initial annotations and the 
automatic comparison yield a corpus with approx. 
65.8% × 70% = 46% completely correct annotations 
(complete structure and all tags). 

One can further increase precision at the cost of 
recall by requiring the difference in perplexity to ex- 
ceed some minimum distance. This precision/recall 
tradeoff is also shown in table 5. 

5 C o n c l u s i o n  

The techniques and automatic tools described in this 
paper are designed to support annotation proper, 
online/offline consistency checking and the compar- 
ison of independent annotations of the same sen- 
tences. Most of the techniques employ stochastic 
processing methods, which guarantee high accuracy 
and robustness. 

The bootstrapping approach adopted in our 
project makes the degree of automation a function of 
available training data. Easier processing tasks are 
automated first. Experience gained and data anno- 
tated at a lower level allow to increase the level of 
automation step by step. The current size of our 
corpus (approx. 6300 sentences) enables reliable au- 
tomatic assignment of category and function labels 
as well as simple structures. 

Future work will be concerned with developing 
automatic annotation methods handling complex 
structures, which should ultimately lead to the de- 
velopment of a parser for predicate-argument trees 
containing crossing branches. 
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Appendix A: Tagsets 

This section contains descriptions of tags used in this 
paper. These are not complete lists. 

A.1 Part-of-Speech Tags 

We use the Stuttgart-T/ibingen-Tagset. The com- 
plete set is described in (Thielen and Schiller, 1995). 

ADJA attributive adjective 
ADV adverb " 
APPR preposition 
ART article 
NE proper noun 
NN common noun 
PROAV pronominal adverb 
VAFIN finite auxiliary 
VAINF infinite auxiliary 
VMFIN finite modal verb 
VVPP past participle of main verb 

A.2 Phrasal Categories 

AP adjective phrase 
MPN multi-word proper noun 
NP noun phrase 
PP prepositional phrase 
S sentence 
VP verb phrase 

A.3 Grammatical  Functions 
AC adpositional case marker 
HD head 
MO modifier 
NG negation 
NK noun kernel 
OA accusative object 
OC dausal object 
PNC proper noun component 
SB subject 
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