
E F L U F - a n I m p l e m e n t a t i o n o f
a F L e x i b l e U n i f i c a t i o n F o r m a l i s m

Lena StrSmb~ick
Department of Computer and Information Science

LinkSping University
S-58185 LinkSping, Sweden

lestr~ida, liu. se

Abstract

In this paper we describe EFLUF - an im-
plementat ion of FLUF. The idea with this
environment is to achieve a base for ex-
perimenting with unification grammars . In
this environment we want to allow the user
to affect as many features as possible of
the formalism, thus being able to test and
compare various constructions proposed for
unification-based formalisms.
The paper exemplifies the main features of
EFLUF and shows how these can be used
for defining a g rammar . The most inter-
esting features of EFLUF are the various
possibilities to affect the behavior of the
system. The user can define new construc-
tions and how they unify, define new syn-
tax for his constructions and use external
unification modules.
The paper also gives a discussion on how
a system like EFLUF would work for a
larger application and suggests some addi-
tional features and restrictions that would
be needed for this.

1 Background

During the last decade there has been a lot of
work invested in creating unification-based for-
malisms and environments suitable for representing
the knowledge needed in a natural language appli-
cation. During the first years the work was concen-
trated on getting more expressive :formalisms. This
resulted in formalisms as, for example, (Johnson and
Rosner, 1989), (Emele and Zajac, 1990), (DSrre and
Dorna, 1993) and (Carpenter, 1992). Lately there
has also been work concentrating on providing envi-
ronments for large scale g r am m ar development, such
as (Alshawi et al., 1991) and (Krieger and Sch~ifer,
1994).

Even more recent is the work on GATE (Cunning-
ham et al., 1996) which allows the user to combine
different modules in a simple way. GATE differs

from the systems mentioned above since it is an en-
vironment that enables to combine various kinds of
modules into a system. This means that a particu-
lar submodule in a system built with GATE can be
unification-based or of any other kind but GATE in
itself does not make any prerequisites on the type of
the module.

In this paper we will describe FLUF (FLex-
ible Unification Formalism) (StrSmb~ick, 1994),
(StrSmb~ick, 1996) and its implementat ion EFLUF.
FLUF differs from other unification-based for-
malisms in that its a im is to provide a general en-
vironment for experimenting with unification-based
formalisms. This means that the basic FLUF for-
malism does only cover very basic concepts used for
unification, such as terms, inheritance and a pos-
sibility to define new constructions. The user can
then tailor FLUF to his current needs by making
definitions or import ing external modules.

The work on FLUF covers both a theoretical de-
scription and an implementat ion, see (StrSmbgck,
1996) for a thorough description on the theory of
FLUF. The implementat ion started out as a test-
bench for experimenting with the theoretical ideas.
Later on the implementat ion was extended with fea-
tures necessary for handling larger examples. These
extensions basicly covers the possibility of import-
ing external procedures and a powerful way of defin-
ing syntax macros. However, also with these ad-
ditional features EFLUF is a unification-based for-
malism and there has been no work on how to use
it together with other types of frameworks.

The main part of this paper will describe the fea-
tures of EFLUF by discussing a small example gram-
mar. At the same t ime we will try to relate the var-
ious features of EFLUF to similar features in other
unification-based formalisms. After that we will give
some discussion on the experience from working with
EFLUF which gives some directions for how a future
system could be built.

70

2 E F L U F - a n o v e r v i e w

In this section we will give a short description
of how EFLUF works by giving an example that
demonstrates how the different features of EFLUF
can be used. For this example we have chosen
to use a g rammar similar to an extended DCG.
In (StrSmb~ck, 1996) there are examples of how
EFLUF also can be used for defining other gram-
mars.

C l a s s e s a n d I n h e r i t a n c e An EFLUF
g rammar is similar to an object-oriented program-
ming language where the user can define classes
for the various objects he wants to handle. Each
class contains a set of objects which are defined by
c o n s t r u c t o r declarations. A class inherits its ob-
jects from the ancestors in the hierarchy. Multiple
inheritance is allowed in a slightly restricted form.

To make it easier for the user to organize his defi-
nitions EFLUF code can be separated into different
modules that can be combined in various ways. To
use DCG grammars we use a basic module contain-
ing the four classes word,constraint, category and
rules that represents the various DCG-ohjects we
need.

#include "dcg.macro"
#unifierfile "dcgparse.pl"

class o b j e c t .

class word;
isa object;
constructor instances.

class constraint;
isa object.

class lexconst;
isa constraint;
constructor lex:word.

class category;
isa object;

class list;
isa object;
constructor
constructor

nil;
add_elem:object,list.

class rules;
isa list;
constructor c:category;
constructor w:eord;
unifier parse indef.

The class word is used for representing the word
string. The definition constructor instances sim-

ply states that the class will contain the set of ob-
jects defined as words in the grammar .

The classes category and constraint represent
grammatical categories and general constraints. In
our DCG-module there is one subclass lexconst
used to represent lexical constraints. This class con-
tains objects consisting of terms with the functor
lex and one argument.

The last class rules is used for representing gram-
matical and lexical rules. To build these rules there
is a need for the constructors w(_) to mark a word
and c(_) to mark a category. We also need lists
to represent the right hand side of a grammar rule.
Lists are here built from the two constructors nil
and add_elem(_,_) and are defined from a separate
class from which r u l e s inherit.

S y n t a x m a c r o s In basic EFLUF syntax the
given definition allows defining g rammar rules and
lexical entries in a rather complicated syntax.

c o n s t r a i n t c (s (. . .)) =
a d d _ e l e m (n p (. . .) ,

a d d _ e l e m (v p (. . .) , n i l)) ;
constraint w(john)=c(n(...));

To provide a more convenient syntax the user is
allowed to define syntax macros. Syntax macros are
defined in Emacs Lisp and are used as a preprocessor
of EFLUF files. In the DCG-example above they are
defined in a separate file and loaded by the include
s ta tement in the beginning of the example. The syn-
tax macros allows the two example rules above to be
written with the simplified syntax below.

granurule s (. . .) -> r i p (. . .) v p (. . .) ;
l e x r u l e john n (. . .) ;

In the examples syntax macros are also going to
be used to allow a more convienient way for defining
word strings. With syntax macros the user is allowed
to write such definitions as:

defword john

This is a shorthand for defining a EFLUF ob-
ject. The full EFLUF definition without using syn-
tax macros would be:

o b j e c t john;
i s word.

In the examples used in this articles we are also
going to use syntax macros to allow for a more con-
vienient syntax for lists and feature structures.

E x t e r n a l p r o c e s s e s One last thing to note
about the class rules defined above is the unifier-
statement. This allows the user to specify an exter-
nal process and in this case loads the Prolog chart-
parser from (Gazdar and Mellish, 1989). The decla-
ration i n d e f at the end of this file means that the

71

parser can give more than one answer for a query.
The actual code for the parser to be loaded by this
definition is specified by the s ta tement u n i f i e r f i l e
at the top of the example.

[n the current implementat ion an external pro-
cess could be any Prolog program that takes two
EFLUF objects as input and produces a new object
as output. There are several ways in which external
processes can be used. The parser above uses the
g r ammar rules defined within EFLUF for parsing.
Parsing could also have been done with the general
unification operation provided by EFLUF but the
chart parser provides more efficient parsing.

Another common use for external processes is as
an alternative for writing unification rules within
EFLUF. For some objects EFLUF's unification rules
provides very inefficient unification or unification
that seldom will terminate. In this case it is bet-
ter to use an external process that provides more
efficient unification for these kinds of objects. An
example of this will be given when we introduce fea-
ture structures into our example later in this paper.

I n h e r i t a n c e v e r s u s S u b s u m p t i o n We
also want to add some linguistic knowledge into
the example. To demonstrate generality we show
two different representations of number and person
agreement in english. In the first representation the
inheritance hierarchy is used. With this representa-
tion agreement information can be correctly unified
by using inheritance between classes.

#include "dcg.fluf"

class agreement;
isa constraint.

class sg;
isa agreement.

class pl;
isa agreement.

class sgthird;
isa sg.

class sgnonthird;
isa sg.

A second way for the user to represent this infor-
mat ion in EFLUF is to define a subsumption order
of objects. The example shows the same relations as
the inheritance hierarchy but now represented as a
subsumption order of atomic objects.

#include "dcg.fluf"

class agreement;
isa constraint;

c o n s t r u c t o r sg;
constructor p l ;
constructor s g t h i r d ;
c o n s t r u c t o r s g n o n t h i r d ;
constraint sg > sgthird;
constraint sg > sgnonthird;

This way of defining a subsumption order by in-
equalities is in EFLUF called defining constraint
relations. The defined constraint relations can be
used with the EFLUF unifier, which uses a modifi-
cation of lazy narrowing by inductive simplification,
(Hanus, 1992), to unify the corresponding expres-
sions according to the derived subsumption order.

C o n s t r a i n t r e l a t i o n s Constraint relations
can in EFLUF be used also together with expres-
sions containing variables. This gives the possibility
to define more general relations, and in particular
functions can be defined in a way similar to, for ex-
ample, (Johnson and Rosner, 1989) and (Emele and
Zajac, 1990). Below we give an example of how ap-
pending of lists can be defined. Note that in this
example we use = instead of >. This means that
EFLUF will interpret the function call and its result
as identical in the subsumption order.

#include "dcg.fluf"

function append;
result list;
arguments list,list;
constraint append(nil,L)=L;
constraint append({EIL1},L2)=

{Elappend(LI,L2)}.

When computing the unifications the unifier uses
a mixture between lazy narrowing and inductive sim-
plification. This means that the unifier uses the
given constraint relations to simplify an expression
as far as it can without binding any variables. When
this is not possible anymore it tries to bind variables
but only if necessary for finding a solution. When
doing this it must keep track of alternative bindings.
The user can affect this behavior by specifying for
each constraint relation that it should be used only
for narrowing or simplification. In the first case we
obtain a more efficient behavior but all alternatives
are not considered and the function cannot be run
backwards. We might also sometimes lose alterna-
tive answers to a query. In the second case simplifi-
cation is not used and we get a lazy behavior of the
algorithm that always investigates alternative solu-
tions.

To concretize this discussion we will give two ex-
ample queries. To s tar t with, the query

append ((a, b}, ~c, d}) =It

gives the expected answer R={a,b , c , d} using lazy
narrowing combined with simplification. The same

72

answer would in this case be received by using only
simplification since it can be found without binding
any variables within the arguments of append. Using
only lazy narrowing would however produce the an-
swer {al append({b} , {c ,d}) } since this is the most
lazy answer to this query.

If we instead consider the query

append (X, Y) ={a, b, c, d}

both lazy narrowing and lazy narrowing together
with inductive simplification will produce the ex-
pected five bindings of X and Y as results. Using
simplification alone would however not find any an-
swers since this is not possible without binding any
of the variables X or Y.

A d d i n g l i n g u i s t i c k n o w l e d g e We will
now continue by exemplifying how rules for nouns
and nounphrases can be entered into the grammar .
Doing this there is a need to both specify the actual
words, the categories and constraints to be used and
also the particular g rammar rules and lexical entries.

#include "agreement.fluf"

defword john
defword apples
defword horses

class nhead;
isa constraint;
constructor nhead:lexconst,agreement.

class npcategories;
isa category;
constructor np:constraint;
constructor n:constraint.

class nprules;
isa rules;
gramrule np(HEAD) -> n(HEAD);
lexrule john

n(nhead(lex(john),sgthird));
lexrule apples

n(nhead(lex(apples),pl));
lexrule horses

n(nhead(lex(horses),pl));

Here it can be noted that we make use of the ba-
sic classes for DCG when adding linguistic knowl-
edge. To make it easier to separate the g rammar into
smaller modules we define the knowledge needed for
nounphrases in new subclasses to the original classes
defined for DCG.

Disjunctive information Next step is to
extend this small g r ammar with information on
phrases and verbs, Doing this we would like to add

verbs that are either pl or nonsgthird in our spec-
ification of agreement. To avoid duplicate entries
there is a need for disjunction. One way to define
this in EFLUF is by defining disjunction as a func-
tion with constraint relation.

function or;
result constraint;
arguments constraint constraint;
constraint or(X,Y)>X;
constraint or(X,Y)>Y.

An alternative more specialized way to represent
this would be to add one more constructor together
with constraint relations into the given definition of
agreement.

constructor plornonthird;
constraint plornonthird > pl;
constraint plornonthird > sgnonthird.

C o m b i n i n g d i f f e r e n t d a t a t y p e s To
demonstrate that it is possible to mix different struc-
tures in EFLUF we are going to use feature struc-
tures for representing the arguments of a verb. To
do this we add a module containing the definitions
needed for representing feature structures. Note
that we use an external procedure to obtain efficient
unification of feature structures. We also need some
syntax macros to obtain a suitable syntax for writing
feature structures.

#include "fs.macro"

class attribute;
isa object;
constructor instances.

class fs;
isa constraint;
unifier fsunify d e f ;
constructor empty;
constructor add_pair:

attribute,constraint,fs.

I n h e r i t a n c e o f l i n g u i s t i c k n o w l e d g e
With the given definitions verbs and phrases can
be defined. As mentioned above feature structures
and terms are mixed for representing the constraints
needed for phrases. Another thing that can be noted
is that we now make use of the inheritance hier-
archy for structuring linguistic knowledge. This is
done when defining various types of verbs. For the
class v e r b there is a so called dimension declara-
tion. This declaration is used to specify whether
classes are considered to be mutual disjunctive or
not. This is very similar to multidimensional inher-
itance as used in (Erbach, 1994).

73

#include "nounphrases.fluf"
#include "fs.fluf"

d e f a t t r i b u t e s ag r , sub j , obj.

defword eat
defword runs

class phead;
isa constraint;
constructor phead:lexconst,:~s.

class verb;
isa fs;
dimensions sgthrdverb nonsgthrdverb /

intransitive transitive.

class s g t h r d v e r b ;
isa verb ;
requires [agr: sgthird].

class nonsgthrdverb;
isa verb;
requires [agr: plornonthird].

class intransitive;
isa verb;
requires [subj: _:nhead].

class transitive;
isa verb ;
requires [subj: _:nhead, obj:

c l a s s p h r a s e c a t e g o r i e s ;
i s a c a t e g o r y ;
constructor s:constraint;
constructor vp:constraint;
constructor v:constraint.

_ : nhead] .

class phraserules;
isa rules;
gramrule

s(phead(LEX,V=[subj: SUBJ, agr: AGR])
-> np(SUBJ=nhead(NLEX,AGR))

vp(phead(LEX,V));
g ramrule

v p (p h e a d (L E X , V : i n t r a n s i t i v e))
-> v(phead(LEX,V)) ;

g ramru le
vp(phead(LEX,

V=[obj: O B J] : t r a n s i t i v e))
-> v(phead(LEX,V)) np(OBJ);

lexrule runs
v(phead(lex(runs),

_:intransitive:sgthrdverb));
lexrule eat

v(phead(lex(eat),
_:transitive:nonsgthrdverb)).

Requirements on what information an object of
a class must contain can be added by specifying a
requirement definition. Requirement definitions are
inherited from the parent classes in the hierarchy. In
this way the user can create an inheritance hierarchy
which is similar but not identical to how inheritance
is used in other formalisms such as TFS (Emele and
Zajac, 1990) or ALE (Carpenter, 1992). In general
it can be said that the typing provided by require-
ments in EFLUF is a bit weaker than the typing pro-
vided in the two other formalisms. For the moment
nonmonotonic inheritance is not allowed in EFLUF.
There are however theoretical results on how to in-
clude this (StrSmbiick, 1995).

Weighted unification Finally we want to
exemplify one more possibility for the user to affect
the behavior of the unification procedure. Suppose
we want to use sets in our grammar, but we know
that set unification will be very inefficient. Then
we might want the unifier to postpone unification
involving sets as far as possible. This can be done
by specifying a high weight for sets which causes
the unifier to postpone unifications involving sets if
possible.

class set;
isa constraint;
weight 20;
° , . .

3 Sample parses

To complete the sample grammar given in the previ-
ous section we will give some examples of the results
given when parsing some sentences with the given
definitions. These examples also show how parsing
queries are made to the EFLUF unifier.

] ? - u f ({ j o l m , r u n s } : r u l e s , c (_) , R) .

R = c (s (p h e a d (l e x (r u n s) ,
[s u b j : n h e a d (l e x (j o h n) ,

s g t h i r d) ,
a g r : s g t h i r d]))) ?;

n o

[?- uf({horses,eat,apples}:rules,
c(_),R).

R = c (s (p h e a d (l e x (e a t) ,
[s u b j : n h e a d (l e x (h o r s e s) , p l) ,
a g r : p l ,
o b j : n h e a d (l e x (a p p l e s) , p l)]))) ? ;

n o

[?- u f ({ j o h n , e a t , a p p l e s } : r u l e s , c (_) , R) .
n o

[]

m

m

m

mm

m

mm

m

m

m

m

mm

[]

Immm

m

m

[]

m

m

n

m

74

As can be seen by these examples a unification
query to EFLUF is made by calling the Prolog pro-
cedure uf . This procedure takes three arguments;
the first two are the expressions to be unified while
the third is the result of the unification. To parse
a sentence the procedure is called with a sentence
as first argument. To force the system to parse this
as a sentence instead of unifying it as a list the sen-
tence is typed as belonging to the class rule. The
second argument is used to say that we want some-
thing that matches c(_) as result. The reason for
this is to prevent the unifier from being too lazy and
just return the given sentence as result.

As can be seen by the given examples the first two
sentences give the expected structures as result of
the parsing while the third does not give any result
due to the difference in agreement within john and
e a t .

4 Experience from E F L U F

The current implementat ion of EFLUF has only
been used for toy examples. Even so, working with
this system gives ideas on how a better environment
should be built and we will conclude this paper by
discussing some of these ideas. First we will discuss
some general problems and give suggestions for how
these can be solved. We will then look more speci-
ficly into the problems of modularization and effi-
ciency. In particular we will suggest how this kind
of system can be used as a help when building a new
application.

EFLUF has been designed to be flexible in the
sense that the user should be able to decide as
much as possible of the formalism. This also means
that the basic constructions provided by EFLUF are
rather simple and that it is the definitions made by
the user that actually set out the constructions pro-
vided in a particular application. This has been
a main goal when designing EFLUF but there is
at least two major drawbacks with this idea when
thinking about building an environment for larger
applications. The first drawback is that a general
formalism often becomes computat ionally less effi-
cient than a more specialized one and the second
is that it requires more knowledge of the user than
using a more specialized one.

We believe that it is possible to avoid this by
designing a future version of EFLUF as a large li-
brary of various standard definitions. Here we could
achieve better efficiency by providing efficient exter-
nal unifiers and other processes for the modules of
this library. Since the user could start with these
predefined modules the system would also be much
more easy to use. This idea of providing a library of
external procedures has previously been investigated
in (Erbach et al., 1993).

This kind of library of definitions could be built
using the possibility to structure definitions into sep-

arate files. However, the only thing in the EFLUF
formalism that actually supports this division into
modules is the inheritance hierarchy.

Even if EFLUF definitions are structured into
a library there is still need to support the user
in managing this hierarchy. One interesting point
here is how the typing works. In EFLUF we have
adopted an idea similar to (Carpenter, 1992) which
in EFLUF means that the system should be able to
judge the type of an expression by only knowing its
functor and number of arguments. When consider-
ing building large applications it might be better to
use the type hierarchy for distinguishing various def-
initions. This means that it should be possible to use
the same name for different constructors in different
modules and that the system uses the typing as a
help to distinguish which of these the user means,
similar to module constructions used in many pro-
gramming languages.

As said above one major drawback with a general
formalism is that it gets less efficient. In EFLUF we
have tried to improve this by providing ways for the
user to affect the behavior of the unification algo-
rithm. This can be done in three ways. First the
user can specify if equations should be used only for
induction or for narrowing. Secondly he can get the
unifier to avoid some classes by specifying weights.
At last he can also provide his own more special-
ized and efficient algorithms. Other formalisms al-
low similar ways of affecting the unification algo-
rithms, for instance R G R (Erbach et al., 1993) and
TDL (Krieger and Sch~fer, 1994).

An interesting use of a system like EFLUF is as
a tool for supporting the development of a linguis-
tic application with both g r ammar and specialized
unification algorithms. This can be done in the fol-
lowing way. First, the EFLUF system can be used to
compare how well different constructions are suited
to describe some subparts of the linguistic input.
When the user has decided that some construction
is relevant to his application, the performance of the
EFLUF system can be improved by defining special-
ized unifiers and syntax macros for this construc-
tion if they were not already provided by EFLUF.
The EFLUF system can then be used for defining
and testing g rammars and lexicons. Further syntax
macros can then be defined to provide a syntax that
is the same as the syntax required for the final gram-
mar. In parallel with the development of g rammar
and lexicon the work on developing a more efficient
implementat ion can be started. While developing
an implementat ion much of the code for the syntax
macros and specialized unifiers can be reused.

5 Comparison with other systems

Finally we want to pinpoint the most important fea-
tures within EFLUF and give some comments on
how these relates to other formalisms.

75

The major idea when defining EFLUF was to let
the user himself define all the constructions he needs.
The work on EFLUF shows that it is possible to pro-
vide a formalism where the user is allowed to define
almost everything. This is a difference to most other
unification-based formalisms which sees the possibil-
ity to define the constructions as an extension to the
formalism and not as a basic concept.

The design of EFLUF can be seen as having the
possibility of defining own constructions as a kernel
and then the typing system is built on top of these.
This is also the case for CUF and TFS while, for
instance ALE, is designed with typing as the most
basic concept and the possibility to define construc-
tions as an add-on. It seems that formalisms de-
signed with the possibility to define own construc-
tions as a basic concept instead of as an add-on
achieve a higher level of flexibility since the new
datatypes defined are better integrated into the for-
malism.

As for the typing system in EFLUF, variants
of typing have been investigated and employed.
EFLUF can handle both open- and closed-world rea-
soning, maximal and nonmaximal typing and pro-
vides two different kinds of typing through construc-
tor and requirement definitions. Most other systems
do not provide this rich variety of typing strategies.

One important way of achieving a better overall
performance of EFLUF is to allow the user to af-
fect the behaviour of the unification algorithm. In
EFLUF only two such possibilities have been im-
plemented. Other formalisms, especially CUF and
TDL, offer other possibilities that can be incorpo-
rated in future versions of EFLUF.

The idea of allowing a general constraint solver
to call more efficient specialized unifiers is the most
promising way of achieving high efficiency within
a general constraint solver. Other formalisms also
have this feature, for instance, being able to use ex-
ternal constraint solvers in ALEP. However, EFLUF
combine the external constraint solver with a general
possibility for the user to define new datastructures
within the system.

An interesting question is how EFLUF relates to
the GATE system. In GATE it is possible to com-
bine modules working on a text into a system by
defining in which order they should process the text.
EFLUF is orthogonal to this since it provides a way
for putting together submodules into a larger mod-
ule defining for instance the behaviour of a parser.
An interesting line for future work would be to in-
vestigate if this could be done in a similar and as
simple way as it is done in GATE and if it would be
possible to integrate the two systems.

6 C o n c l u s i o n

This paper exemplifies how EFLUF can be used for
defining a small grammar. This formalism contains

constructions for allowing the user to decide what
constructions are needed for his application. The
implementation also allows the possibility to import
external procedures, to divide the definitions into
modules and to define a suitable syntax for his con-
structions.

Experience from working with this system shows
that it would be possible to use these ideas as a ba-
sis for a system for developing various grammars. In
this case we would need to build a library of defini-
tions as a base for the user to start working with.
This kind of system would be an interesting tool for
experimenting with unification grammars.

The experience also shows that even though
EFLUF provides basic constructions for modular-
izations there is a need for better support for the
user. This would, for instance, be to supply support
for avoiding name clashes.

7 A c k n o w l e d g e m e n t s

This work has been founded by the Swedish Re-
search Council for Engineering Sciences. I would
also like to thank Lars Ahrenberg and GSran
Forslunds for helpful suggestions on this paper.

References

H. Alshawi, D. J. Arnold, R. Backofen, D. M. Carter,
J. Lindop, K. Netter, S. G. Pulman, J. Tsulii,
and H. Uzskoreit. 1991. Rule formalism and vir-
tual machine design study. Eurotra ET6.1. Fi-
nal report, SRI International, Cambridge Com-
puter Science Research Centre, 23 Mille's Yard,
Mill Lane, Cambridge CB2 1RQ.

Bob Carpenter. 1992. The Logic of Typed Feature
Structures with Applications to Unification Gram-
mars, Logic Programs, and Constraint Resolution.
Number 32 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Hamish Cunningham, Yorick Wilks, and Robert J.
Gaizauskas. 1996. G A T E - a general architec-
ture for text engineering. In Proceedings of the
16th International Conference on Computational
Linguistics, volume 2, pages 1057-1060, August.
Copenhagen, Denmark.

Jochen DSrre and Michael Dorna. 1993. CUF - a
formalism for linguistic knowledge representation.
In Jochen DSrre, editor, Computational Aspects
of Constraint-Based Linguistic Description L Au-
gust. Deliverable R3.1b.

Martin C. Emele and R~mi Zajac. 1990. Typed uni-
fication grammars. In Proceedings of 13th Inter-
national Conference on Computational Linguis-
tics, volume 3, pages 293-298. Helsinki, Finland.

Gregor Erbach, Mark van der Kraan, Suresh Man-
andhar, M. Andrew Moshier, Herbert Ruessink,

76

Craig Thiersh, and Henry Thompson. 1993. The
reusability of grammatical resources. Deliverable
D.A.: Selection of Datatypes LRE-061-61.

Gregor Erbach. 1994. Multi-dimensional in-
heritance. CLAUS-Report 40, Universit~it des
Saarlandes, FR 8.7 Computerlinguistik, D-66041
Saarbriicken, Germany.

Gerald Gazdar and Chris Mellish. 1989. Natural
Language Processing in Prolog. Adisson Wesley
Publishing Company.

Michael Hanus. 1992. Lazy unification with induc-
tive simplification. Technical report, Max-Planck-
Institut fur Informatik, Saarbiicken.

Rod Johnson and Michael Rosner. 1989. A rich
environment for experimentation with unification
grammars. In Proceedings of ~th Conference of the
European Chapter of the Association for Compu-
tational Linguistics, pages 182-189. Manchester,
England.

Hans-Ulrich Krieger and Ulrich Sch~ifer. 1994. TDL
- a type description language for HPSG. Part 2:
User guide. Technical report, DFKI Saarbriicken.

Lena Str6mb~ick. 1994. Achieving flexibility in uni-
fication formalisms. In Proceedings of 15th Int.
Conf. on Computational Linguistics (Coling'94),
volume II, pages 842-846, August. Kyoto, Japan.

Lena StrSmb~ick. 1995. User-defined nonmonotonic-
ity in unification-based formalisms. In Proceed-
ings of the 1995 Conference of the Association
for Computational Linguistics, June. Cambridge,
Massachusetts.

Lena StrSmb~ick. 1996. User-Defined Constructions
in Unification-Based Formalisms. Ph.D. thesis,
LinkSping University, Department of Computer
and Information Science, LinkSping University, S-
581 83 LinkSping, Sweden.

77

