
Probabilistic Parsing of Unrestricted English Text,
With a Highly-Detailed Grammar

Ezra Black,
S t e p h e n Eubank,
Hidek i Kashioka

A T R I n t e r p r e t i n g
T e l e c o m m u n i c a t i o n s

Labora to r i e s
2-2 Hikar idai

Seilm-cho, So raku-gun
Kyoto, Japan 619-02
black@air, i~l. co. jp

kashioka@a~r, itl. co. jp
eub~-~@atr, itl. c o . jp

David M a g e r m a n
Renaissance Technologies Corp .
25 East Loop Road, Suite 211
Stony Brook , IVY 11776 U S A

magermau~rencec, corn

19 June 1997

S u m m a r y

A grammar-based probabilistic parser is described, and experimental results are pre-
sented for the parser as trained and tested on a 676,000-word, highly varied treebank
of unrestricted English text. Probabilistic decision trees are utilized as a means of
prediction, and a grammar with about 3000 semantic-and-syntactic tags, and 1100
non-terminal node labels suppl/es detailed lingzdstic information. Further such data is
supplied for prediction purposes by thousands of questions about "raw" words, expres~
sions, and the sentence as a whole. The rich/n.formation base used for parse prediction
allows the system to parse in a domain-general, totally--open-vocabulary setting, and
to output highly-detailed semantic as well as syntactic information for sentences pro-
ccessed. Finally, a statistical procedure is described for converting less-detailed into
more--detailed treebank, for use in increasing parser accuracy via much larger training
treeb~.nlc~.

Sub jec t Areas : statistical parsing; automatic treebank conversion; semantic and
syntactic analysis of text

1. I N T R O D U C T I O N

This article describes a grammar-based probabilistic parser, and presents experimental results
for the parser as trained and tested on a large, highly varied treebank of unrestricted English
text. Probabilistic decision trees are utilized as a mea.ns of prediction, roughly as in (Jelinek et
al., 1994; Magermau, 1995), and as in these references, training is supervised, and in particular is
treebank-based. In all other respects, our work departs from previous research on broad--coverage

16

I
t
I
I
I
I
I
i
!
I
i
I
I
I
I
I
I
I
I

I
I
I
i

I
1,
I

.

I
I
I
I
i
I
1

I
I
I
I

probabilistic parsing, which either attempts to learn to predict gr~rarn~tical structure of test data
directly from a training treebank (Brill, 1993; Collins, 1996; Eisner, 1996; Jelinek et al., 1994;
Magerman, 1995; S~kine and Orishman, 1995; Sharman et al., 1990), or employs a grammar and
sometimes a dictionary to capture linguistic expertise directly (Black et al., 1993a; GrinBerg et al.,
1995; Schabes; 1992), but arguably at a less detailed and informative level than in the research
reported here.

In what follows, Section 2 explains the contribution to the prediction process of the grammar
and of the lexical generalizations created by our grammarian. Section 3 shows; from a formal
standpoint, how prediction is carried out, and more generally how the parser operates. Section 4
presents experimental results. Finally, Section 5 details our efforts to radically expand the size of
our training corpus by employing techniques of treebank conversion.

2. H O W T H E GB.AiVIMAB. A N D L E X I C A L G E N E R A L I Z A T I O N S H E L P

2.1. H o w t h e G r a m m a r H e l p s

Figure 1 shows a sampling of parsed sentences from the one-million-word ATR/Lancaster
'IYeebauk of General English (Black et al., 1996), which we employ for training; smoothing and
testing our parser. The Treebank consists of a correct parse for each sentence it contains; with
respect to the ATR English Grammar. 1 Every non-terminal node is labelled with the n~rae of the
ATR English Grammar rule 2 that generates the node; and each word is labelled with one of the
2843 tags in the Gramm,r's tagset. 3 Together, the bracket locations, rule names, and lexical tags of
a Treebank parse specify a unique parse within the Gr~rnra~r. In the Grammar parse, rule names
and lexical tags are replaced by bundles of feature/value pairs. Each node contains values for 66
features, and there are 12 values per feature, on average.

Prediction in our parser is conditioned partially on questions about feature values of words and
non-terminal nodes. For instance, when we predict whether a constituent has ended, we ask how
many words until the next finite verb; the next comma; the next noun; etc. In tagging, we ask if
the same word has already occurred in the sentence; and ff so, what its value is for various features.

By labelling Treeb~n~ nodes with Gr~ramar rule names, and not with phrasal and clausal
n~raes, as in other (non-gr~rarnar-based) treebanks' (Eyes and Leech, 1993; Garside and McEnery,
1993; Marcus et al., 1993), we gain access to all information provided by the Grammar regarding
each ~reebank node.

It would be difficult to attempt to induce this information from the Treebank alone. The parent
of a rule in the Grammar often contains feature values that are not derived from any of its children.
Further~ the parent inherits some feature values from one child, and some from another. Each rule
in the Grammar is associated with a primary and secondary head, and head information is passed
up the parse tree. Finally, extensive Boolean conditions are imposed on the application of each
individual rule. These conditions are intended to permit only useful applications of a given rule,
and reflect experience gained by parsing millions of words with the Grammar, and crucially, by
generalizing this experience in ways believed appropriate.

Since the ATR English Grammar was created specifically for use in machine parsing; some
of its features are designed expressly to facilitate parse prediction. For example, the feature

1 On the ATR English Grammar, see below; for a detailed description of a precursor to the Gr-r~raar, see (Black
et al., 1993a).

2There are 1155 rules in the Grammar.
SSee (Black et al., 1996).

17

a~

[start [sprpdl [sprime4 [sdl [nbar6 It_PPHI nbar6]
[vbar2 [08 has_VHZ 08] Iv2 mean%_VVNMEAN [nbarl2 [j I great_J/DEGREE j I]
[nla sav£ngs_NN2MONEY nla] nbar12] v2] vbar2] sdl]
[iebar2 ,_, [ile [prl [rmodl [r2 both_RRCONCESSIVE r2] rmodl]
[pl in_IIIN [coordl [nbarl [nla time_NNITIME nla] nbarl]
[coord3 [cc3 [ccl &_CCAMP ccl] cc3]
[nbarl [nla gas_NNiSUBSTANCE nla] nbarl] coord3] coordl] pl] prl] ile]
iebar2] sprime4] [rand3 !_! "_"R rand3] sprpdl] start]

[start [quo (_([sprpd23 [sprime2 [ibbar2 Jr2 Please_RRCONCESSIVE r2] ibbar2]
[sc3 Iv4 Mention_VVIVERBAL-ACT [nbar4 [dl ~his_DD1 dl]
[nla coupon_NNIDOCUMENT nla] nbar4] [fal vhen_CSWHEN
.[vl ordering_WGINTER-ACT vl] fall v4] sc3] sprime2] sprpd23])_) quo] start]

[s'l;alrt [sprpd22 [coord3 [cc3 [ccl OR_CCOR ccl] ccS]
[nbarlS [d3 ONE_MClWflRD d3] [j i FREE_JJSTATUS j l] In4 [nla FANTAIL_NNIANIMAL nla]
[n la SHRIMPS_NNIF00D n la] n4] nbar13] coord3] sprpd22] s t a re]

Figure 1: Three ATR/Lancaster English Treebank Sentences: One from Credit Union Brochure,
and Two (Non-Sequential) from Chinese Take-Out Food Flier

"np_modification" helps to predict attachment events by carrying up to the top node of each
noun phrase, data as to how much more modification the noun phrase can probably take. At one
extreme, a noun phrase may not have been modified at all so far, and so, other things being equal,
it is a prime target for post-modification. At the other extreme, it may already have been modified
in a way that tends not to permit further modification, such as a noun phrase followed immediately
by a postmodffying comparative phrase ("Such as can understand the topic (may attend)"; "More
reasons than you can imagine (were adduced)").

Another feature of this type is "det_pos', which reveals, concerning a noun phrase, whether it
includes a determiner phrase, and if so, what type. Determinerless noun phrases tend to have differ-
ent chances of occurring in certain gT~rnrnatical constructions than noun phrases with determiners,
and this feature makes it possible for our models to take account of this tendency. Note that it
is far from trivial to capture and then percolate this information up a treebank parse without a
grammar: demarcation of the determl-er phrase in each case is involved, along with identification
of the type of determiner phrase, and other steps.

The ATR English Grammar is particularly detailed and comprehensive, and this both helps
in parse prediction and enhances the value of output that is correctly parsed by our system. For
instance, complete syntactic and semantic analysis is performed on all nominal compounds, e.g.
~he Third Annual Long Branch, New Jersey Rod and Gun Club Picnic and Turkey Shoot", or "high
fidelity equipment". Further, the full range of attachment sites is available within the Gr~mm~r for
sentential and phrasal modffers, so that differences in meaning can be accurately reflected in parses.
For instance, in "She didn't attend because she was tired, and didn't call for the same reason," the
phrases "because she was t i ed" and "for the same reason" should probably postmodify their entire
respective verb phrases, "didn't attend" and "didn't call", for maximum clarity. A full range of

I
I
I
I
I
I
i
i
I
I
i
i
I
I
I
I
I
I

18 1

I
I
I
I
!

i

attachment sites are available in the Grsmm~r, are used precisely in the ~Preeba~k, and are required
to be handled correctly by our parser for its output to be considered correct.

2.2. How Lexical Generalizations Help

Prediction in our parser is conditioned not only on questions about feature values of words and
non-terminal nodes, but also on questions about "raw" words, wordstrings, and whole sentences.

One category of contextual question asks about characteristics of a sentence as a whole. For
instance, very short "sentences" in our trsJulng data tend to be free-standing noun phrases or
other non-sententiai units. Many of these are titles, speaker-turn indicators, etc. So we ask about
the length of the overall "sentence" in all models. In tagging, for instance, there tend not to be
any finite verbs in these contexts, and this fact helps with the task of differentiating, say, preterit
forms from past participles functioning adjectivally, e.g. "Said plaintiff and plaintiff's counsel:".
Similarly, the first and last words of a sentence can be powerful predictors. If the first word of a
sentence is a typical beginning for sentential premodifying phrases (e.g. "Since"), and if there is
just one comma in the sentence, and that comma occurs in the fn'st quadrant, then there is a good
chance that the overall structure of the sentence is: premodlfying phrase, then main clause.

Effective questions about words and expressions, for the purpose of predicting the semantic
portion of the lexical tags, are essential to the success of our models. One strategy we utilize is
to identify contexts strongly associated with a given semantic event. For instance, the context:
FirstName ~X" LastName (e.g. Edward "Stubby" Smith) is one of many that are associated with
the semantic category NickName.

2.3. Formulating Grsmmar and Lexical Questions For Prediction

We have developed a flexible language for formulating grammar-based and lexically-based
questions about Treeb~n~ text. The ~nswers to these questions are made available to the models
in our parser.

The language provides facilities for navigating a parse tree, determining feature values of a given
node, and m~Hng simple boolean or arithmetic computations. In addition, it allows us to translate
answers returned by the question into a more natural format for input to the decision-tree models.

The language provides easy access to word and tag nodes at any offset from the begln~ng
or end of the sentence. It also provides a reference position--the "cu~ent" node, i.e. the node
about which a prediction is being made. It is easy to navigate from any node to previous nodes,
parent/child nodes, and word/tag nodes relative to the node's constituent boundaries. The navi-
gational commands are recursive, so that, for example, one can arrive at a grandchild of a node by
asking about a child's child.

There is nothing in the language itself which restricts the context which can be used in models.
For example, changing a bigram tagger into a trigram tagger requires only adding questions about
the additional nodes. More generally, the ability to ask questions about the entire sentence (and,
in the future, document), means that the '~context" is of variable length.

Every question b~-s access to the current parse state, which cont~i~ everything known or pre-
dicted about the parse tree up to the time the question is asked. Any of this information is available
for a selected node. For word nodes, this includes membership on vocabulary lists, whether the
word contains various pref~.xes, s~mxes, substrings, etc. In addition, for tag and nontermi~l nodes,
the name of the label and the values of all the Gr~mmar's features (including those based on infor-
mation propagated up the parse tree from lower down) at that node are also available. Finally, for
nonterm~nal nodes, general information about the number of children, span, constituent boundaries,
etc. is available.

19

. t

Answers to the questions are of various types: Boolean, categorical, integer, sets of integers.
But we transform all these types of answers into binary strings. Some transformations are obvious.
Boolean values, for example, are mapped to a single bit. Other transformations are based on
clustering, either expert or automatic. For example, the sets of tags and rule labels have been
clustered by our team gr~:mm~trian, while a vocabulary of about 60,000 words has been clustered
by machine (Brown et al., 1992; Ushioda~ 1996a; Ushioda, 1996b).

3. H O W P R E D I C T I O N IS C A R R I E D O U T

3.1 . S y s t e m D e s i g n

The ATR parser is a probabilistic parser which uses decision-tree models. A parse is built
up from a succession of parse states, each of which represents a partial parse tree. Transition
between states is accomplished by one of the following steps: (1) assigning syntax to a word; (2)
assigning semantics to a word; (3) deciding whether the current parse tree node is the last node of
a constituent; (4) assigning a (rule) label to an internal node of the parse tree. Note that the first
two steps together determine the tag for a word, and the third determines the topology of the tree.
Working from the bottom up, left to right, constrains the parser to produce a unique derivation for
each parse state. Alternatively; we can tag the entire sentence first, then work from tags up, left
to right, which also yields a unique derivation for each parse state.

Statistical models corresponding to each type of step provide estimates of the probability of each
step's outcome. 4 Each model uses as input the answers to a set of questions about context designed
specifically for that model by our team grammarian, using the language described in Section 2.3.
Thus the probability of each decision depends on features extracted from the context, including
information about any word(s) in the sentence and any tags and parse structure already predicted.
The estimated probability of any parse state is the product of the probabilities of each step taken
to reach that state. Strictly speaking, we estimate relative likelihoods rather than probabilities,
since we make no attempt to normMize over all possible parses for a given sentence.

Given a set of models for estimating the probabilities of parse steps, the problem of predicting
a parse reduces to searching the space of possible parses for the most likely one. We use a chart
parser (Ka~mi~ 1965) to build a compact representation of all legal parses for the sentence, which
in turn constrains the search to consider only those parse steps guaranteed to lead to a complete
(legal) parse. Even so, because the Grs.mm~r generates a large number of parses for each sentence, s
it is not feasible to rau~ the parses exhaustively. Fortunately, incomplete parse states are assigned
probabilities, which can be used to guide a search by r, ling out unlikely parses without constructing
the complete parse. We have found that a greedy search, which chooses the most likely outcome
for each parsing step, usually finds a good candidate parse. Occasionally, though, choosing a less
likely step at one point leads to a parse with higher overall likelihood. To allow for this possibility,
we use the greedy candidate parse to "seed" the stack-based decoder described in (Jelinek, 1969).

There is some freedom in the order in which the parsing steps are taken. The context in which
a model makes its prediction includes any parts of the parse tree which have already been built.
Hence, the order chosen determines what information is available to each model. We choose to tag
the entire sentence first, producing an N-best list of tag sequences. Specifically, starting from a
sequence of words, we first tag the sentence as follows:

• estimate the probability for each part-of-speech of the first word;

4For efficiency we break down the semantic model further into a set of models, one for each syntactic category.
Slrs Parse Base (Black et al., 1993a) is 1.76.

20 I

• choose one or more most likely parts-of-speech;

• estimate the probability for each tag for the first word, given the part-of-speech decision(s)
made above;

• choose one (or several) likely tag(s);

• repeat the steps above for each word in the sentence.

Next, starting from the tag of the first word, which is the left-most leaf node of the parse tree, we
take the following steps:

• estimate the probability that the current node of the parse tree is the last child of its parent
(e.g. the probability that a constituent ends at this node);

• if a constituent is deemed to end at this node, estimate the probability of possible rule labels
for that consitutent, i.e. of only those rules which are known to lead to legal parses; make
that node the current node; and return to the first step;

• otherwise, make the top of the next subtree to the right the current node and return to the
first step.

This approach decouples the search over tag sequences from the search over parse trees.

3 .2 . D e c i s i o n - T r e e M o d e l s

The parser requires models which estimate the probability of membership in a class given an
input vector. We use class probability trees, a slight modification of classification trees, as described
in (Brehnan et al., 1984; Quinlan, 1986; Bahi et al., 1983), with a few enhancements. We can choose
among several di~erent standard splitting criteria for the trees. The trees are pruned using the
minimal cost-complexity algorithm (Breiman et al., 1984). In addition, estimates for probability
distributions are smoothed using the Forward-Backward algorithm (Baum, 1972).

The models are trained using bitstring answers to questions about each state encountered while
parsing each sentence in the training set. We build binary trees, in which each node can split the
data based on the value of any bit in the bitstring. There are situations in which an entire question
does not applymfor example, a question about the previous word when the first word of a sentence
is under consideration. These situations are flagged so that the decision tree will split out this data
before it asks about ~ny of the bits in the answer to this question.

4. E X P E R I M E N T A L R E S U L T S

4.1 . E v a l u a t i o n M e t h o d o l o g y

In our view, any effective evv~luation methodology for automatic grammatical analysis must
confront head-on the problem of multiple correct ~n~wers in tagging and parsing. That is, it is
often the case that there is more than one "correct tag" for a word in context, where that word could
be considered to be functioning as: a proper or a common noun; ~n adjective or a noun; a participle
or an adjective; a gerundial noun or a noun; e an adverbial particle or a locative adverb; and even
an adjective or an adverb. This is true even where there are highly detailed and well-understood

eterminology of (Long, 1961): for e.g. a sleeping pill vs. to make a good lim,~

21

guidelines for the application of each tag to text. And obviously the existence of multiple correct
taggings for a word is to be expected a fortiori where a highly ramified system of semantic categories
is involved. It fonows that multiple correct parses exist for many sentences, since by det~nition any
change in tag means a change in parse. But other sources of multiple correct parses exist as well,
and range from, say, several equally good attachment sites within a parse for a given modifier, even
given full document context, to cases where the grammar itself provides several equally good parses
for a sentence, through the presence of normally independent rules whose function nonetheless
overlaps to some degree.

Barring the recording of the set of correct tags for each word~ and of the set of correct parses
for each sentence, in a treebank, the next-best solution to the problem of multiple correct ~n~wers
is to at least provide such a recording in one's test set, i.e. to provide a "gold standard" test set
with all correct tags and parses for each word in context. This is the solution that was adopted in
creating the ATR/Lancaster English Treebank.

The way we evaluate our tagger is to compare its performance to the set of correct tags for
each word of each sentence of our "gold standard" test data. Thus, in all cases we are able to take
into account the full set of "correct" answers. ~ Since 32% of running words in our test data have 2
or more correct tags, potential differences in performance evaluation are large vis-a-vis traditional
metrics, s

Similarly, in the case of the parser, we evaluate performance against a special "gold standard"
test set which lists every correct parse with respect to the Grammar for each test sentence. We
utilize two measures. First is exact match with any correct parse listed for the sentence. Second is
"exact syntactic match ' : exact match with the bracket locations and rule names only. Notice that
in a parse considered correct by our second metric, the syntax 9 of all tags must be correct.

The average number of different correct "exact syntactic matches ''1° per sentence in our test
da ta is 3. Among test-data sentences, 72% have more than one correct exact syntactic matches, and
32% have 5.11 For critiques of other approaches to broad--coverage parser and tagger evaluation,
see (Black, 1994).

It is worth inquiring how well expert humans do at the parsing task that we are attempting
here by macblne. Accordingly, we present statistics below on the consistency and accuracy of
expert h, l m ~ at parsing using the ATR English Grammar. The ATR/Lancaster treeb~nk~ng
effort features a grammarian, who originated the Grammar, and a treebanking team, who apply
the Grammar to treebank text. We can therefore distinguish two different types of evaluation as to
how well expert humans do at parsing using the Grammar: consistency and accuracy. Consistency
is the degree to which all team members posit the identical parse for the identical sentence in the
identical document of test data. Accuracy is the expected rate of agreemnt between a treeb~-lcer
and the grammarian on parsing a given sentence in a given document of test data.

In a first experiment to determine consistency, we asked each of the three te~.m members to
declare either correct or incorrect a particular parse for a sentence of test data. The parses had

7We limit the set of co~ect tags to ave tags; however, for only 2% o£ running words of test data were as many as
5 tags provided by our human experts; so in general, we are accounting for ~all correct tags ~ for the given word in
context.

SActually, so far, we have found about a 10% improvement both in tagging and parsing results when we test
against the full set of correct answers, as opposed to testing a g ~ the single answer in the original treebank parse
of a sentence.

9aud often some of the s~nantics
1°i.e. parses with a unique set of bracket locations and brar~et labels (Grammar rule ~mes)
11Five is the maximum number of correct exact syntactic matches that we ask our treebankers to supply per

sentence, for test data.

22 !

I
I
I
I
I
I
I
I
I
I
I

length # sentences top top 20 cross const i ts /sent
1-10 1044 81.8% 95.0% 89.1% 7.6
11-i5 248 30.2% 72.6% 43.1% 23.9

16-23 201 17.4%[48=3% 28.4% 34.2

Table 1: Pars ing from text which s tar t s out correct ly tagged: percentage of parses which exact ly
ma tch one of the human-produced parses. "Cross" indicates percentage of t e s t - d a t a sentences
whose top-r~nlced parse contains 0 instances of "crossing brackets" with respect to the most prob-
able t reebank parse of the sentence.

been genera ted with respect to our Gramrn~r, by t ra ined tmrn~.n.¢, bu t whose skills a t parsing with
the G r a m m a r were not as good as those of our three team members. 384 sentences of test da ta
were utilized. The result was a 6.?% expected rate of disagreement among the team members on
this task. 12 In a second consistency exper iment , we located all sentences occurring twice or more
in the Treeb~nk; if there were more t h an two duplicates, we selected jus t two at random. We then
de termined the number of dupl icate-sentence pairs tha t were exact matches in t e rms of the way
they were parsed and tagged. ?6% of these 248 sentence pairs were such exact matches, is

Finally, in an experiment to determine accuracy of our team members ' parsing using the Gram-
mar, the ATR grammarian scored for pars ing and tagging accuracy some 308 sentences of Tr-eebank
d a t a f rom randomly-selected Treebank documents . 14 Th e result of this scoring was a 8.4% expected
pars ing error rate. 15

4 . 2 . E x p e r i m e n t a l R e s u l t s

As discussed in 3.1, our first step in parsing is to tag each sentence. Th e tagger current ly
produces an exact match 74% of the t ime for the 47,800-word test set, comparing against a single
tag sequence for each sentence, le We present parsing results b o th for text which s tar ts out correct ly
tagged (Table 1) 17 and for raw text (Table 2). R.esults for parsing from raw text are given for bo th
the exac t -ma tch and exac t - syn tac t i c -match criteria described in 4.1.

T h e performance of the parser on short sentences of correct ly tagged da ta is ex t rememly good.
We feel this indicates tha t the models are performing well in scoring the parses.

T h e results deteriorate rapidly for longer sentences, bu t we believe the problem lies in the
search procedure ra ther than the models. A measure of the performance of a search is whether it

~2In a parallel experiment to determine consistency on tagging, we asked each of the three team members to choose
the first correct tag from a raaked list of tags for each word of each sentence of test data. These ranked lists were
hand-constructed, and an effort was made to make them as difficult as possible to choose from. About 4,800 words
(152 sentences) of test data were utilized. The result was a 3.1% expected rate of disagreement among the team
members on the exact choice of tag.

1sOl these 248 sentence pairs, 85~ were exact matches in terms of the way they were tagged.
14Actually, the documents were selected from our "main General-English Treebank" of 800,000 words.
l~i.e..the parse was wrong if even one tag was wrong; or, of couree, ira rule choice was wrong. For the tags assigned

r,o the roughly 5000 words in these 308 sentences, expected error rate was 2.9%. Essentially none of these tagging
e~rors had to do with the use of the syntactic portion of our tags; all of the errors were semantic; the same was true
in the two tagging consistency experiments related above.

leas noted in 4.1 fn. 8, our experience indicates that we can expect a roughly 10~o improvement in this score when
we compare performance against "golden--standard" test data in which all correct answers are indicated; this would
bring our tagging accuracy into the 80-percent area.

lrFor the definition of the term ~crossing brackets" used in Table 1: see (Harrison et al., 1991).

23

Table 2:

Length

1-10
11-15

Parsing from raw text:

exact match syntactic exact match i
top I top 10 top top 10 i

34.5%:40.1% 50.4% 62.3'~o I
1.2% ~ 3.6% 11.3% 25.6% I

percentage of parses which exactly match one of the human-
produced parses ("exact match") or which match bracket locations, role names, and syntactic
part-of--speech tags only ("syntactic exact match").

Feature IBM Manuals Treebank ATR/Lancaster Treebank
Vocabulary Type
.Vocabulary Size (Tr~Jniug Corpus)
Domain
Tagset Size
Nonterminal Labels
Test-Data Source
Training Set Size (in words)
Test Set Size (in words)
Average Sentence Length (TraJ-i~g Corpus)
Average Sentence Length (Test Corpus)
Number of Constits in 20-Word Sentence

Restricted
3,000
IBM Computer Manuals
193
17
?

about 438,000
about 25,000
about 15
16.9
about 11

Open
35,952
Unrestricted English
2,843 (44o Syntax-Only)
1,155
Entire Doc-ments
676,401
47,800
15.8
13.1
about 34

Table 3: Comparison of IBM Manu~!s and ATR/Lancaster General-English Treebanks

suggests any candidates which are as likely as the correct un~wer. If not, the parser has erred by
"omrn~sion" rather than by "commission': it has ommitted the correct parse from consideration,
but not because it seemed ,mJ~lrely. It is entirely possible that the correct parse is in fact among
the highest-scoring parses. These types of search error are non--existent for exhaustive search, but
become important for sentences between 11 and 15 words in length, and dominate the results for
longer sentences.

The results in Table 2 reflect tagging accuracy as well as the pefformaace of the parser models
per se. Note that tagging accuracy is quoted on a per-word basis, as is customary. From previous
work, we estimate the accuracy of the tagger on the syntactic portion of tags to be about 94%.
Thus there is typically at least one error in semantic assignment in each sentence, and an error in
syntactic assignment in one of every two sentences. It is not surprising, .then, that the per-sentence
parsing acclzracy suffers when parses are predicted from raw text.

Clearly the present research task is quite considerably harder than the parsing and tagging tasks
undertaken in (Jelinek et al., 1994; Magerman, 1995; Black et al., 1993b), which would seem to
be the closest work to ours, and any comparison between this work and ours must be approached
with extreme caution. Table 3 shows the differences between the treebank~ utilized in (Jelinek et
al., 1994) on the one hand, and in the work reported here, on the other, is Table 4 shows relevant

lSFigures for Average Sentence Length ('l~raLuing Corpus) and Training Set Size, for the IBM ManuaLs Corpus, a r e

approximate, and cz~e fzom (Black et aL, 1993a).

24

Length
1-10

11-15
16-23

sentences l- t ° p l t ° p 2 0
447 55.9% 80.8%
436 i47.d% 6.6%
430 1_21.6% 48~8%

cross consti ts /sent
91.5% 4.6
8O.7°£ 8.2
56.5% 11.3

Table 4: Parsing results reported by Jelinek et. at. for IBM Manua!s task; see Table 3 above

I
i
I
I
I
I
I
i
I
I
I

parsing results by (Jelinek et al., 1994). Even starker contrasts obtain between the present results
and those of e.g. (Magerman, 1995; Black et at., 1993b), who do not employ an exact-match
evaluation criterion, further obscuring possible performance comparisons. Obviously, no direct
comparisons of the results of Tables 1-2 with previous parsing work is possible, as we are the first
to parse using the Treebank.

In our current research, we are emphasizing the creation of decision-tree questions for pre-
dicting semantic categories in tagging, as well as continuing to develop questions for syntactic tag
prediction, and for our nile-name-prediction model.

5. TOWAI~DS R A D I C A L L Y E X P A N D I N G T R A I N I N G - S E T SIZE V I A
T I : t E E B A N K C O N V E R S I O N

5.1. I n t r o d u c t i o n

As an additioaal means of improving the accuracy of our parser, we have been working towards
effecting a dramatic increase in the size of our trai~ing treebank, via treebank conversion techniques.
We employ a statistical method for converting treebank from a less-detailed formatwand we have
chosen the IBM/Lancaster Treebank (Eyes and Leech, 1993; Garside and McEnery, 1993) as a first
representative of such treeba~k~--to a more-detailed format, that of the ATR/Lancaster Treebank.

There has been very little previous work on treebanl¢ conversion. (Hughes et al., 1995) describe
an effort to b~n_d-annotate text using the tagging schemes employed in various different treebanks,
as a prelirnln~ry to attempting to learn, in a way to be determined, how to convert a corpus
automatically from one style of tagging markup to another. (Wang et at., 1994) take on the problem
of converting treeb~n~ conforming to their English grammar into a format conforming to a later
version of the same grammar, and report a conversion accuracy of some 96% on a 141,000-word
test set. They employ a heuristic which scores source-treebank/target-treebank parse pairs based
essentially on the percentage of identically-placed brackets in the two parses. However, their target
grammar 19 generates only 17 parses on average per sentence of test data. Although they exhibit
no parses with respect to their grammars, it can be assumed that they feature only rudimentary
tag and non-terminal vocabularies.

The problem we face in learning to convert IBM/Lancaster Treebank parses into ATl~/Lancaster
Treebank parses is rather more difficult than this. For instance, as noted in 3.1, the Parse Base of the
ATR English Grammar, which generates the parses of the ATl~/Lancaster Treebank, is 1.76, which
means that on average, the Grammar generates about 200 parses for 10-word sentence; 2000 parses
for a IS-word sentence, and 70,000 parses for a 20-word sentence. Further, far from featuring a
rudimentary set of lexicat tags and non-termlnal node labels, the ATl~/Lancaster Treebauk utilizes

~gaud presumably their source grammar as well

25

However_RR ,_, [N GM_RNJ N] [V has_VHZ e~-ounced_VVN [N plans_NN2
[Ti to_TO cut_WO back_R/° on_II IN frames_NN2 N] [P in_II
IN efforts_NN2 [Ti to_TO IV [Vk conserve_VVO IN space_NNl N] Vk]
and_CC [V+ reduce_WO [N weight_NNl N]
[P in_II IN new_JJ cars_NN2 N] P] V+] V] Ti] N] P] Ti] N] V] ... V

[s~art [sprpdl [sprime2 [ibbarl [ilg Jr2 However_RRCONCESSIVE r2] ±1~
,_, ibbarl] [sdl [nbarl [nla GM_NPIFBRNM nla] nbarl] [vbar2 [08
has_VHZ 08] Iv4 ~nounced_VVNVERB~L-ACT [nbarq4 [nbarl [nla
plans_NN2PROGRAM nla] nbarlJ [ilb [I;1 [vibarl to_TO [v36 cut_WIALTER
It2 back_RP r2] [pl on_IION [nbarl [nla frames_NN2DEVICE-PT nla]
nbarl] pl] v36] vibarl] tl] ilb] nbarq4] [pl iu_IIIN [nbarq4 [nbarl
[nla efforts_NN2INTER-ACT nla] nbarl] [ilb [I;1 [vibarl to_TO Iv2 [v41
Iv40 conserve_VVIB~.T.~ [nbarl [nla space_NNIMEASURE nla] nbarlJ v40]
and_CCAND Iv40 reduce_WIALTER [nbarl [nla weight_NNIMEASURE nla]
nbarl] v40] v41] [pl in_IIIN [nbar12 [jl new_JJTIME jl] [nla
cars_NN2DEVICE nla] nbar12] pl] v2] vibarl] tl] ilb] nbarq4] pl] v4]
vbar2] sdl] sprime2] ._. sprpdl] start]

Figure 2: IBM/Lancaster Treebank and ATl~/Lancaster Parses For Same Sentence

rougbJy 3,000 lexica] tags and about 1,100 d~erent non-terminal node labels, s° as mentioned in
2.1. F ~ r e 2 shows a parse for a sample sentence, first from the IBM/Lancaster Treeb~-k, and
next from the ATR/Lancaster Treebank. An impression of the di~cnlty of the treeb~nk conversion
task undertaken here can be gained by closely contrasting the two parses of this Figure.

143,837 words included in the IBM/Lancaster Treeb~n~--35,575 words of Associated Press
newswire and 108,262 words of Canadian Hansard le~slative proceedh~s--were treebanked with
respect to the ATR English Grammar, in the exact same manner as the data in the ATl%/Lancaster
Treeb~nk. We will refer to the IBM/Lancaster Treeb~-k version of this data as the parallel corpus.
As a preliminary step to t reeb~k conversion, we aligned the parallel and ATI% corpora. 87.3% of
the parallel data--125,530 words--aligned essentially perfectly, and for the work reported here, we
decided to operate only on this satisfactorily-aligned dat&

5.2. T h e T r e e b a n k C o n v e r s i o n P r o b l e m

Ideally, our treebank-conversion models should take full advantage of data in the full target
treebank (i.e. the full ATR/Lancaster Treeb~,~k) as well as the parallel corpus. A direct model of
the conditional probability of the ATI% parse given the source-treebank parse, p(AIF), uses only
data in the parallel corpus. A more e~cient use of data would be to build two models: one to
estimate the likelihood of an ATR parse, p(A), given raw text; the other to estimate p(FIA). Then,

2°actrua/ly, rules names with respect to the ATR EngKsh Grammar; d. 2.1

v

26

i

I
I
I
i

I
!

i I

I
I
i
I
i
I
I
I
I
I
|

using Bayes' rule, one would write p(AIF) as:

p(A[F) ~ p(F[A)p(A) (i)

The model for p(FIA) uses only the parallel corpus, but the model for p(A) makes full use of the
data in the ATR treebank.

In our software environment, this approach would require constructing a feature-based grammar
for the source treebanlc. A simpler, but probably adequate approach would combine the two models
p(A) and p(AIF) heuristically, using p(AIF) to rescore the N best parses found by the model p(A).
The t o p - r ~ e d candidate from the rescored parses is selected as the ATR parse. This way takes
advantage of both data sets, though not as etBciently as the Bayesian approach. We have chosen
to explore the problem using an even simpler approach: ignoring the ATR treebank and working
only within the model for p(AIF). This yields lower bounds on potential accuracy at low cost.

We also considered filtering the parses considered by the ATR parser to ensure they satisfied
certain constraints implied by the source-treeb~n~ parse. This proved to be impractical because
the constr~;nts were not "hard", i.e. the exact circ~,mstances in which they should be applied were
d i$cul t to determine. Instead, we relied on the models to learn the constraints and the conditions
for their application directly from the data. However, the issue of applying such constraints is
specific to the two treeb~nkR being used; there may well be cases in which such constr~iuts are not
hard to develop.

The source-treebank-to--ATR conversion model was built using the same system described in
Sections 2 and 3, the sole difference being that the question l~nguage was extended to allow for
questions about the source treebank. Since the topology of the parallel tree may be very different
from that of the ATR parse tree, it is not obvious what the analog of a node in the ATR tree is. We
chose to use the "least enclosing" node: that is, the lowest (non-pretermiual) node in the parallel
tree which spans (at least) the set of words spanned by the node in the ATR parse.

5.3. Decision-Tree Questions Asked

We ask all decision-tree questions in our treeb~n~-conversion models that we do normally in
parsing with the ATR English Grammar. 21 We then add further questions which ask about the
source--treebank parse for the sentence being processed.

We use an extremely basic set of question-language functions in querying the structure of
the source-treebank parse. These permit us to ask about the least-enclosing node, and about
children and parents of this source-treebank-parse node, or of its children or parents, to any level
of structure. What we can ask about a node in the source-treeb~-b parse is either what its non-
terminal label is, or how many children it has. In addition, we are able to ask whether there is a
constituent in the source--treebank parse with the identical span as a given node of an ATR parse;
and if so, what its non-terminal label is, or how many children it has. Similarly, we can ask about
constituents that "cross" a given node of an ATR parse. Finally. we can ask about the tag of any
word in the source-treebank parse.

There is much farther that we can go in exploiting the information in the source-treebank parse
to aid in predicting the ATR parse. For instance, we can define and query grammatical relations
such as clausal subject and main verb. We can even define and query notions like "headword" with
respect to the source--treebank parse, although this would involve appreciable work. Furthermore,
carrying over to the source--treebank environ_ment question types that seem helpful when asked
about ATR parses will not be di$cult.

2zCf Section 2

27

Length treeb~n~ conversion
top I top i0

1-10 61.5 96.2
11-15 46.7 66.7

parser

top top I0
63.0 92.6
33.3 73.3

Table 5: Parsing from text which starts out correctly tagged: percentage of parses which ex-
actly match the single parse in the treeb~ulc, for a 6,556-word test set. "Treeb~ulc-conversion"
models are trained on 1].8,489 ~mning words of ATR/Lancaster Treeb~uk, together with aligned
IBM/Lancaster Treeb~. "Parser" models are trained on 676,401 r-nn;ngwords of ATR/Lancaster
Treebank alone.

5.4. Exper;mental Results

Evaluation Methodology We evaluate trsebank conversion to ATR-Treebank format in the
same way as we evaluate the parser when it is trained in the normal ma-ner (cf. 4.1), except that
test data consists of ATR-Treebank-format documents of which we also possess aligned source
treebank (in this case: IBM/Lancaster-Treebank) versions. In the performance results cited below,
however, we show exact match only with the single correct parse of the test treebank, rather than
with any one of the correct parses indicated in the "golden standard" version of the test set.

Experimental Results Table 5 displays exact-match parsing results for a normal 6,556--word
test set 22. Crucially, the amount of tr~.~n;ng data here, 118,489 words, is only 17.5% as large as
for the models of Tables 1-2. Considering the simplicity of the approach, we think these results
constitute a proof of principle for the idea of treebank conversion. They indicate that we can
build treebank conversion models of accuracy comparable to the current parser using much less
data. Of course, the results here do not include models used in tagging. The treebank conversion
models tag with an accuracy of 62.8%. A detailed examination of those models shows that the
syntactic models are better than the parser's, while the semi-tic models are worse. This is to be
expected, because the IBM/Lancaster ~I~eeb~k cont~in.q a great deal of relevant information about
the syntax: but not so much about the semantics of the sentences they cont~i~ One idea, therefore,
is to utilize large-scale treeb~uk conversion in the tagging domain to overcome the problem noted
in 4.2, that even with 94% accuracy at strictly syntactic tagging (i.e. effectively, on tagging with
our 440-tag syntax-only tag subset), approximately one word is syntactically mistagged every two
sentences, leading to an increased error rate at exact-syntactic-match parsing. A second direction
which suggests itself is to pursue our scaled-down approach to treebank conversion, but with more
tr~;u;ng data than we have used so far. Third, we may decide to implement the more laborious
two-model approach desribed in 5.2. 23 Overall, we expect that conversion models which take full
advantage of the existing database as well as of the parallel corpus as outlined above should produce
data of high enough quality to use as training data for our parser.

2~i.e. not for a "golden staudard" test set as des~ibed in 4.1, in which all parses are indicated for each test sentence
23It seems worth mentioning that future large-scale treebank-creation efforts would probably benefit from con-

stmcting parallel data with respect to other large ~eeb~k% right from the start.

28

6. A C K N O W L E D G E M E N T S

We wish to thank Joshua Goodman and John Lafferty for their contributions to the treebank
conversion work reported here; Akira Ushioda for his implementation of the Brown word-clustering
algorithm; and Craig MacDonald and Toyomi Saiga for their contributions to our work overall.

R E F E R E N C E S

L. Bahl, P. Brown, P. deSouza, and R. Mercer. 1989. A tree-based statistical language model
for natural language speech recognition. IEEE Transactions on Acoustics, Speech, and ,~ignal
Processing, 36.7:1001-1008.

L. Baum. 1972. An inequ~llty and associated maximization ter]~ulque in statistical estimation of
probabilistic functions of markov processes. Inequalities: 3:1-8.

E. Black, S. Eubank, H. Kashioka, R. Garside, G. Leech, and D. Magerman. 1996. Beyond skeleton
parsing: producing a comprehensive large--scale general-English treebank with full grammatical
analysis. In Proceedings of the 16th Annual Conference on Computational Lan#uistics, pages
107-112, Copenhagen.

E. Black. 1994. A new approach to evaluating broad-coverage parser/grammars of English. In Pro-
ceedings of the International Conference on New Methods in Language Processing. Manchester,
UK. September, 1994.

E. Black, R. Garside, and G. Leech, Editors. 1993. Statistically-Driven Computer Grammars Of
gnglish: The IBM/Lancaster Approach. Rodopi Editions. Amsterdam.

E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, S. Roukos. 1993. Towards History-Based
Grammars: Using Richer Models For Probabilistic Parsing. In Proceedings of the 31st Annual
Meeting of the Association for Computational Linguistics. Columbus, Ohio. Also in Proceedings
of the DARPA Speech and Natural Language Workshop, 1992.

E. Brill. 1993. Automatic grammar induction and parsing free text: a transformation-based ap-
proach. In Proceedings of the 81st Annual Meeting of the Association .for Computational Lan-
gu/st/es, pages 259--265, Columbus, Ohio.

L. Breimau, J. Friedman, R. Olshen, and C. Stone. 1984. 6~assification and Regression Trees.
Wadsworth & Brooks/Cole, Monterey, CA.

P. Brown, V. Della Pietra,. P. de 8ouza, J. Lai, R. Mercer. 1992. Class-based n-gram models of
natural language. Computational Linguistics, 18.4:467--479.

M. Collins. 1996. A new statistical parser based on bigram lexieal dependencies. In Proceedings of
the 34th Annual Meetin 9 of the Association .for Computational Languistics, Santa Cruz.

J. Eisner. 1996. Three new probabilistic models for dependency parsing: an exploration. In Proceed-
ings of the 16th Annual Conference on Computational Languistics, pages 340--345, Copenhagen.

E. Eyes and G. Leech. 1993. Syntactic Annotation: Linguistic Aspects of Grammatical Tagging
and Skeleton Parsing. Chapter 3 of Black et. al. 1993.

tL Garside, G. Leech, G. Sampson, Editors. 1987. The Computational Analysis of English. London,
Longman.

29

I~ Garside and A. McEnery. 1993. Treeba~kingz. The Compilation of a Corpus of Skeleton-Parsed
Sentences. Chapter 2 of Black et. al. 1993.

D. Grinberg, J. Lafferty, and D. Sleator. 1995. A robust parsing algorithm for link gr'Amm~rs. In
Proceedings of the .Wourth International Workshop on Parsing Technologies, Prague.

P. Harrison, S. Abney, E. Black, D. Flickenger, C. Gdaniee, R. Grishman, D. Hindle, R. In-
gria, M. Marcus, B. Santorini, T. Strzalkowski. 1991. Evaluating Syntax Performance Of
Parser/Grammars Of English. In Proceedings of the Workshop On Evaluating Natural Lan-
guage Processing Systems, Association For Computational Linguistics.

J. Hughes, C. Souter, and E. AtwelL 1995. Automatic extraction of tagset mappings from parallel-
annotated corpora. In Proceedings of SIGDAT Workshop, Dublin.

F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. l~tnaparldai, S. Roukos. 1994. Decision tree
parsing using a hidden derivation model In Proceedings of the ARPA Workshop on Human
Language Technology, pages 260-265, Plainsboro, New Jersey. Advanced Research Projects
Agsney.

F. Jelinek. 1969. A fast sequential decoding algorithm using a stack. IBM Journal of Research and
Development, 13:675-685.

T. Kasami. 1965. An ettleient recognition and syntax algorithm for context-free languages. Scien-
tific Report AFCRL~5--758. Air Force Cambridge Laboratory. Bedford, Massachusetts.

1~ Long. 1961. The Sentence and Its Parts. University of Chicago Press. Chicago.

D. Magerman. 1995. Statistical decision-tree models for parsing. In 33rd Annual Meeting of the
Association .for Computational Linguistics, pages 276--283, Cambridge, Massachusetts. Associ-
ation for Computational Linguistics.

M. P. Marcus, B. Santorini, and M. A. Mareinkiewiez. 1993. Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, 19.2:313-330.

J. R. Quinlan. 1986. Induction of decision trees. Machine Learning, 1:80-106.

Y. Sehabes. 1992. Stochastic lexiealized tree-adjoining gr~trnmaxS. In Proceedings of the 15th
International Conference on Computational Linguistics, Nantes.

S. Seklne and R. Grishrnan. 1995. A corpus-based probabilistie grammar with only two non-
terminals. In Proceedings, International Workshop on Parsing Technologies, 1995.

R. A. Sharman, F. Jelinek, and tL Mercer. 1990. Generating a grammar for statistical training. In
Proceedings, DARPA Speech and Natural Language Workshop, Hidden Valley, Pe~n~lvania.

A. Ushioda. 1996. I-I.ierarehieal clustering of words. In Proceedings of the 16th Annual Conference
on Computational Languistics, pages 1159-1162, Copenhagen.

A. Ushioda. 1996. Hieraxehieal clustering of words and application to NLP tasks. In Proceedings
of the Fourth Workshop on Very Large Corpora, pages 28--41, Copenlmgen.

J. Wang, J. Chang, and K. Su. 1994. An a~xtomatie treebank conversion algortihm for corpus
sharing. In Proceedings of the 3~nd Annual Meeting of the Association for Computational Lin-
guistics, pages 248--254, Las Cruces, New Mexico.

30

