
Pars ing Chinese w i t h an A l m o s t - C o n t e x t - F r e e G r a m m a r

Xuanyin Xia a n d D e k a i W u

HI(US T
D e p a r t m e n t of C o m p u t e r Sc i ence

U n i v e r s i t y of Sc i ence a n d T e c h n o l o g y

C lea r W a t e r Bay , H o n g K o n g

{ samxia, dekai}©cs, ust. hk

A b s t r a c t

We describe a novel parsing strategy we are
employing for Chinese. We believe progress in
Chinese parsing technology has been slowed
by the excessive ambiguity that typically
arises in pure context-free grammars. This
problem has inspired a modified formalism
that enhances our ability to write and main-
tain robust large grammars, by constraining
productions with left/right contexts and/or
nonterminal functions. Parsing is somewhat
more expensive than for pure context-free
parsing, but is still efficient by both theoret-
ical and empirical analyses. Encouraging ex-
perimental results with our current grammar
are described.

Introduction

Chinese NLP is still greatly impeded by the
relative scarcity of resources that have al-
ready become commonplace for English and
other European languages. A strategy we
are pursuing is the use of automatic meth-
ods to aid in the acquisition of such resources
(4, 5, 6). However, we are also selectively en-
gineering certain resources by hand, for both
comparison and applications purposes. One
such tool that we have been developing is
a general-purpose bracketer for unrestricted
Chinese text. In this paper we describe an
approach to parsing that has evolved as a re-
sult of the problems we have encountered in
making the transition from English to Chinese
processing.

We have found that the primary obstacle
has been the syntactic flexibility of Chinese,
coupled with an absence of explicit marking by
morphological inflections. In particular, com-
pounding is extremely flexible in Chinese, al-

lowing both verb and noun constituents to be
arbitrarily mixed. This creates extraordinary
difficulties for grammar writers, since robust
rules for such compound forms tend to also
accept many undesirable forms. This creates
too many possible parses per sentence. We
employ probabilistic grammars, so that it is
possible to choose the Viterbi (most probable)
parse, but probabilities alone do not compen-
sate sufficiently for the inadequacy of struc-
tural constraints.

There are two usual routes: either (1)
keep the context-free basis but introduce finer-
grained categories, or (2) move to context-
sensitive grammars. The former strategy in-
cludes feature-based grammars with weak uni-
fication. One disadvantage of this approach is
that some features can become obscure and
cumbersome. Moreover, the expressive power
remains restricted to that of a CFG, so certain
constraints simply cannot be expressed. Thus,
many systems opt for some variety of context-
sensitive grammar. However, it is easy for
parsing complexity in such systems to become
impractical.

We describe an approach that is not quite
context-free, but still admits acceptably fast
Earley-style parsing. A benefit of this ap-
proach is that the form of rules is natural and
simple to write. We have found this approach
to be very effective for constraining the types
of ambiguities that arise from the compound-
ing flexibility in Chinese.

In the remainder of this paper, we first de-
scribe our grammar framework in Sections 2-
4. The parsing strategy is then described in
Section 5, followed by current experimental re-
sults in Section 6.

13

T h e G r a m m a r F r a m e w o r k

We have made two extensions to the form of
standard context-free grammars:

1. Right-hand-side contexts

2. Nonterminal functions

We would like to note at the outset that
from the formal language standpoint, the com-
plications introduced by the form of our pro-
duction rules have so far hindered theoreti-
cal analyses of the formal expressiveness char-
acteristics of this grammar . Because of the
nature of the constraints, it is unclear how
the expressiveness relates to, for example,
the more powerful unification-based gram-
mars that are widespread for English.

At the same time, however, we will show
that the natural format of the rules has greatly
facilitated the writing of robust large gram-
mars. Also, an efficient Earley-style parser
can be constructed as discussed below for
g rammars of this form. For our applica-
tions, we therefore feel the effectiveness of the
g rammar form compensates for the theoretical
complications.

We now describe the extensions, but first de-
fine some notation used throughout the paper.
A traditional context-free grammar (CFG) is a
four-tuple G = (N, ~, P, S), where N is a finite
set of nonterminal symbols, ~ is a finite set of
terminal symbols such that N N ~ = O, p is a
finite set of productions and S E N is a spe-
cial designated start symbol. Productions in P
are denoted by symbol Pr, 1 < r < IPI, and
have the form Dr ~ Zr,I Z,. 2 " " " Zr,~r~ , ~'r ~ O,
w h e r e D r E N a n d Z r , j E N U ~ , l_~ j ~_~rr.

Right-hand-side c o n t e x t s

We introduce right-hand-side contexts to im-
prove rule applicability decisions for complex
compounding phenomena. The difficulty that
ordinary CFGs have with complex compound-
ing phenomena can be seen from the following
example g rammar fragment:

1. R e l P h ~ NP vn ~ (d e)

2. Nom ~ NP vn ~J(de)

3. NP ~ Nom

4. NP ~ RelPh NP

5. NP ~ NP NP

Here, RelPh is a relative phrase, Nom is a
nominalization (similar to a gerund), vn is lex-
ical verb category requiring an NP argument,
and ~J(de) is a genitive particle.

The sequence

(1) a. ~ ~L:~ ~J ~

b. j~ngwfichfi t~g6ng de dgdfi
c. police provide - - answer
d. the answer provided by police

can be parsed either by

[[[~] N p [~ ,] vn ~] RelPh [~] NP] NP

or by

[[[[~ - ~] N p [~ .] vn~J] Nom] NP[~] NP] NP

However the latter parse is not linguisti-
cally meaningful, and is rather an artifact of
the overly general noun compounding rule 5.
The problem is that it becomes quite cum-
bersome in a pure CFG to specify accurately
which types of noun phrases are permit ted to
compound, and this usually leads to excessive
proliferation of features and/or nonterminal
categories.

Instead, the approach described here aug-
ments the CFG rules with a restricted set of
contextual applicability conditions. A pro-
duction in our extended formalism may have
left and/or right context, and is denoted as
Pr = {L}Zr,lZr,2 "' 'Zr,Trr{R}, where L , R E
(N U E)* and the left context condition L and
the right context condition R are of a form
described below. These context conditions
help cut the parser 's search space by elimi-
nating many possible parse trees, increasing
both parsing speed and accuracy. Though
ambiguities remain, the smaller number of
parses per sentence makes it more likely that
most-probable parsing can pick out the cor-
rect parse.

N o n t e r m i n a l f u n c t i o n s

In addition, a second extension is the intro-
duction of a variety of nonterminal functions
that may be attached to any nonterminal or
terminal symbol3 These functions are de-

1The term nonterminal]unctions was chosen
for mnemonic purposes; it is actually a misnomer
since they can be apphed to terminal symbols as
well.

1 4

signed to facilitate natural expression of con-
ditions for reducing ambiguities. Some of the
functions are simply notational sugar for stan-
dard CFGs, while others are context-sensitive
extensions. These functions are list in the fol-
lowing sections. By convention, we will use a
and b for symbols that can be either terminals
or nonterminals, c for terminal symbols only,
d for the semantic domain of a terminal, and
i for an integer index.

T h e n o t f u n c t i o n

The not function is denoted as / ! b , which
means any constituent not labeled b. Note
that this feature must not be used with rules
that can cause circular derivations of the type
A =V* A, since this would lead to a logical
contradiction.

In the previous example, if we change rule
2 to

Nom ~ NP vn ~ { / !NP)

the new right c o n d i t i o n / ! N P prevents rule 2
from being used within cases such as rule 5,
where the immediately following constituent
is an NP. This causes the the correct parse to
be chosen:

[[[~] N p [~ ,] vn] RelPh [~] NP] NP
We have only found this function useful

for left and right contexts, rather than the
main body of production right-hand-sides.

T h e e x c l u d e d - c a t e g o r y f u n c t i o n

The excluded-category function is denoted as
a / ! b that means a constituent labeled a,
which moreover cannot be labeled as b. Again,
not to be used with rules that can cause cir-
cular derivations.

The main purpose of the excluded-
category function is to improve robustness
when the g rammar coverage inadequacies pre-
vent a full parse tree from being found. In
such cases, our parser will instead return a
partial parse tree, as discussed further in Sec-
tion 5. The excluded-category function can
help improve the chances of choosing the cor-
rect rules within the partial parse tree.

For example, consider its use with the
verb phrase construction

NP verb (Obj)

which is known as the ~t~(ba)-construction. If
the verb has part of speech vn, then it is mono-
transitive and only one object is needed to
form a VP, but if the verb is a ditransitive
vnn, then a second object is needed to form
the VP.

An example of the monotransit ive case is ~

(2) a . ~ ~ y

b. b~ f£u ch~ le

c. - - food eat - -

d. have eaten the food

while an example of the ditransitive case is

(3) a . ~ J ~ T

b. b~t f£u sbng rdn le

c. - - food give somebody - -

d. give food to somebody

The former phrase can be correctly parsed by
the monotransitive rule

VP ~ ~ NP vn

Suppose that the parser is unable to find any
full parse tree for some sentence that includes
the latter phrase. The above monotransit ive
rule would still be considered by the parser,
since it is performing partial parsing, and this
rule matches the subsequence ~[~ ~ ~ . In fact
this is not the correct rule for the ditransitive
phrase- - the VP is not ~ ~ ~ but rather
g~ ~ J~ ~ - - b u t we would not be able to dis-
tinguish the monotransitive and ditransitive
cases ~ ~.~ ~g and ~[~ ~ ~ , because both ~g
and ~ can have part of speech vn. Thus the
monotransitive subparse might incorrectly be
chosen for the partial parse output (whether
this happens depends rather arbitrarily on the
possible subparses found over the rest of the
sentence).

The key to eliminating the incorrect pos-
sibility altogether is that only ~ can also have
the part of speech vnn. We refine the rule with
our excluded-category function:

VP ~ ~ NP vn//vnn

2For this and all subsequent examples, (a) is
the Chinese written form, (b) is its pronuncia-
tion, (c) is its word gloss (' - - ' means there is no
directly corresponding word in Engfish), and (d)
is its approximate English translation.

15

The monotransitive phrase can still be parsed
by this new rule since ~ cannot have the part
of speech vnn: 3

[~[~[~] Np[~Y~] vn] Vp J'.

But because ~ can be labeled as either vn or
vnn, it does not match vn//vnn, and therefore
the rule cannot be applied to the ditransitive
phrase. This leaves the ditransitive produc-
tion

V P ~ ~ NP vnn NP

as the only possibility, forcing the correct sub-
parse to be chosen here. In a sense, this func-
tion allows a measure of redundancy in the
grammar specification and thereby improves
robustness.

T h e s u b s t r i n g - l i n k i n g func t ion

The substring-linking function is denoted a / i .
This is used to remember the string that was
matched to a constituent a, so that the string
can be compared to a subsequent appearance
of a/i in the same production. In general, we
may have several occurrences of the same non-
terminal, and it is occasionally useful to be
able to constrain those occurrences to match
exactly the same string.

One important use of substring-linking in
Chinese is for reduplicative patterns. Another
use can be seen in the following two sentences:

(4) a. ~ ~ ~ f~ ~ ~ g
b. t~ zub bfl zu6 zh& ji~n sh]
c. he do not do this - - thing

d. will he do this thing

(5) a. ~ ~ :~ ~iJ ~ ~ ;~
b. ta zub bh d£o zh~ ji£n sh~

c. he do not do this - - thing
d. he cannot do this thing

Let us consider two sequences {~ ~ {~ and {~
~I] in (4) and (5) respectively, where {5 and

ill can both be labeled as vn, but they have a
different role. The former indicates a question,
and the latter a negative declaration; clearly
the parses must differentiate these two cases.

If the only rule in the grammar to handle
these examples is

3The -~ character is an aspect particle.

question_verb ~ vn ~ vn

then the two sequences will be parsed iden-
tically. However, with the substring-linking
function we can refine the rule to

queslion_verb ~ vn/1 Yg vn/1

Now the first vn/1 is defined as (~ in both
cases when the first {~ is parsed. For the
first sequence, the second ~ matches the sec-
ond vn/1 when it is compared to the earlier-
defined value of vn/1. Because the substrings
match, the first sequence can be parsed by this
rule as

[[¢~] vn~[~] ~n] q=~io~_~rb

In contrast, for the second sequence, when ~sJ
is compared with the defined value of vn/1
- - f~ - - they are different, and therefore the
second sequence cannot be parsed by the rule.

In this example, the defined value of a
nonterminal is only one word. However, in
the general case it can be an arbitrarily long
string of words spanned by a nonterminal (vnl
in this example).

T h e s e m a n t i c - d o m a i n f u n c t i o n

The semantic-domain function is denoted by
c /$zd and designates a terminal c whose se-
mantic domain is restricted to d. This is an
ordinary feature, that we use in conjunction
with the BDC dictionary which defines seman-
tic domains.

Given two sentences,

(6) a. ~ ~ " ~ ~
b. zki gu~ngd6ngsh@ng de t6uz~

c. in Guangdong -- investment

d. the investment in Guangdong Province

(7) a. ~ 'J'~E ~
b. z~i xi~ozh~ng de ji~

c. in XiaoZhang - - house
d. in XiaoZhang's house

they have the same surface structure

NP ~J NP

but they are quite different. In (6), :~ ~
-~ is the modifier of ~ . In (7), tJx~ is a
modifier of 5 , and they together form a NP
as the object of ~ .

16

It is very hard to distinguish these two
cases in general. With traditional CFGs, this
is problematic because both ~ - ~ i " and , ' J ~
have the part of speech up, and both ~ . ~ and

have part of speech nc. We can do a some-
what better job by using the domain knowl-
edge supplied by a dictionary with semantic
classes.

The difference between the two phrases is
that although ~ - ~ " and ~ are both loca-
tion nouns, not all NPs following a ~ can be
formed into locative phrase--only if the head
noun of the NP is a location noun can it can
be parsed as a locative phrase. (6) is parsed
a s

[[[: ~ [~] NP] LocPh ~] ModPh [~] NP] NP

because :~£ ~ g ~ " is a locative phrase, where
LocPh stands for locative phrase, and ModPh
stands for modifier phrase. But in (7), the
entire phrase :i~ d x ~ ~J ~ forms a locative
phrase, and is parsed as

[:~ [[[' J ' ~ NP ~I'~] ModPh [~] NP] NP] LocPh

The key point here is how to define a lo-
cation noun. We have rules

and

localion_noun ---* np/gJGE

location_noun ---+ nc/g~GE

where GE is the abbreviation of geology. Be-
cause the domain of ~ " is GE, it is parsed
as a location_noun, and together with the
leader ~ is parsed as a locative phrase. But
~ J ~ cannot be parsed as a locative phrase
with the leader ~ since its domain is not
GE; instead it is parsed as the modifier of
, at which point the parser will further check
whether :i~ plus ~ J ~ ~ ~ can be parsed as a
locative phrase.

T h e h a s - s u b c o n s t i t u e n t f u n c t i o n

This function is denoted as a / @ b , which
means a constituent labeled a with any de-
scendant of category b, where a is a nontermi-
nal and b can be either a terminal or a nonter-
minal. In other words, this matches an inter-
nal node labeled a, which has a subtree with
root labeled b.

Consider the two sentences

(s) a. 4~-~ 7 ~ ~ ~

b. t~ xu~ le li-~ng g~ :~ngq{

c. he learn - - two - - week

d. he has learned it for two weeks

(9)

b. t~ xu~ le li~ng pi~n k~w~n

c. he learn - - two - - lesson

d. he has learned two lessons

In Sentence (8), ~ ~ ~ [~ is the comple-
ment of-~-, while in Sentence (9), ~ ~ -~

is the object of ~ . However, both NPs
~ ~ and ~ ~ ~ superficially have

the same structure, and the parser may assign
Sentence 8 the wrong parse tree

[[~] Np[[--~-] vn T [[~ ~] C l P h [~] NP] NP] VP] clause

instead of the correct one

[[~] Np[[-~] vn~ [[[[~ ~] CIPh[[~]time_particle
] NP] NP] TP] Comp] VP] clause

where ClPh stands for classifier phrase, TP
stands for t ime phrase, and Comp stands for
the complement of a verb.

The difference between them lies in that
~ is a t ime particle, and therefore is parsed
with its classifier ~ ~ as a t ime phrase,
whereas - ~ is a general noun, and is parsed
with its classifier ~ ~ as a general NP.

With the rule

time_phrase --~ NP/@time_particle

we can parse ~ ~ ~] as a t ime phrase, and
since it is a t ime phrase, it will be parsed as
the complement of ~a. But becase ~ ~ ~5~
is a just general NP, it can not be parsed with
this rule, and it will serve only as the object
of ~ .

E a r l e y P a r s i n g

We use a generalization of the Earley algo-
r i thm (3, 2) to parse g rammars of our form.
Although the time complexity rises compared
to the Earley algorithm, it remains polynomial
in the worst case.

17

Algorithm
The key to modifying the Earley algorithm to
handle the left and right context conditions is
that our rules can be rewritten into a full form
which includes all symbols including the con-
texts, plus indices indicating the left and/or
right context boundaries. For example, let
A ~ { L } B { R } a n d C ~ D E { R } b e t w o
production rules. They are rewritten respec-
tively as A ~ L B R, start = 2, len = 1
a n d C ~ D E R, start = 1, l e n = 2 . Once
this t ransformation has been made, the ma-
chinery from the Earley algorithm carries over
remarkably smoothly.

The main loop of the parsing algorithm
employs the following schema.

1. Pop the first entry from the agenda; call the
popped entry c.

2. If c is already in chart, go to 1.

3. Add c to chart.

4. For all rules whose left corner is b, call
match(b, c). If the return value is 1, add
an initial edge e for that rule to chart; for
all the chart entries (subtrees) d beginning
at end(e)÷ l , if g is the active symbol in the
RHS (right-hand-side) of e and match(g, c')
returns 1, then call extend(e, cl).

5. If the edge e is finished, add an entry to the
agenda.

6. For all edges d, if g is the active symbol in
the RHS of d and match(g, c) returns 1,
then call extend(d, c) and add the resulting
edge.

7. Go to 1.

extend(e, c): (extends an edge c with the chart
entry (subtree) c)

1. Create a new edge e'.

2. Set s tar t(e ') to start(e).

3. Set end(e') to end(e).

4. Set rule(e') to rule(e) w i th . moved beyond
C.

5. If the edge e / is finished (i.e., a subtree) then
add e I to the agenda, else for all chart sub-
trees c I beginning at end(el)+1, if g is the
active symbol in the RHS of e I and match(g,
c') returns 1, call extend(e I, c').

match(g,c): (checks whether a subtree c can
be matched by a symbol g)

1. If c's category does not equal to g's cate-
gory, return 0.

2. Check whether g's associated functions are
satisfied by c - -

(a) If g has the form a / ! b or / ! b , check all
the entries in the chart that span the
same range as c, returning 0 if any have
category b.

(b) If g has the form a / i , if a/i is not defined,
link it to c and return 1. Otherwise, com-
pare c with the defined value of aft; if not
the same, return 0.

(c) If g has the form c / & d , if the semantic
domain of c is not d, return 0.

(d) If g has the form a / @ b , check all the
nodes of the subtree c; if no node of cat-
egory b is found, return 0.

3. Return 1.

The difference from standard Earley pars-
ing (aside from the rule t ransformation men-
tioned above) lies is in match. To check
whether an entry matches the left corner of a
rule or whether an edge can be extended by an
entry, we need to check not only that the cat-
egory of the constituent is matched, but also
that the attached function if any is satisfied.

Recall that our application for the pars-
ing algorithm is as the first stage of a ro-
bust bracketer. We therefore use an extension
of this parsing approach that permits partial
parsing. In this version, if the sentence cannot
be parsed, a minimum-size subset of subtrees
that cover the entire sentence is produced.

In the following, we will use an example
sentence to demonstrate how the algorithm
works. The sentence and the g r ammar we use
here are oversimplified, but show how a right
context is handled.

The sentence to be parsed is

(10) a. ~ ~ fl,~ : ~
b. t~ m~i de y~ffi

c. he buy - clothes
d. the clothes bought by him

and the g rammar is

1. NP ~ pron

2. NP---~ nc

3. RelPh---~ NP vn ~l~ (NP}

4. NP--~ RelPh NP

18

5. pron ~ ~

6. nc ~ ~

7. vn---~

The first portion of the parsing for this ex-
ample is identical to standard Earley parsing.
We pop the first the entry from the agenda, ~
, and since it is not already there we add it to
the chart. The only initial edge to be added
is

pron ~ ~ -

Since this edge is finished, we add it to the
agenda.

Next we pop pron from agenda, create an
initial edge

N P ~ pron •

and find it is also finished, and so add the N P
to the agenda.

Again we pop N P from the agenda, and
create the initial edge

RelPh --~ N P vn ~ { NP}

We find this edge cannot be extended by any
entry and is not finished, so we go to step 1
and pop the next entry ~ from the agenda.

We continue this step until we pop : ~
from the agenda, and add nc and later N P to
the agenda. Up to this point, all we are doing
is s tandard Earley parsing.

Now we pop N P which spans :~n~ from
the agenda, and find that the edge

RelPh -+ N P vn t]'~ { NP}

can be extended by this entry. We find the
extended edge is finished, so we add the RelPh
to the agenda, then pop it, creating a new edge

N P ~ ReIPh N P

An entry (subtree) N P which spans ;iJ~]~
is already in the chart when the last edge is
created. Thus the last edge can be extended,
creating a finished edge, so we have created
an subtree N P that spans the whole sentence.
Since there is now a nonterminal that spans
the whole sentence, we can write down a parse
tree of the sentence in a subscripted bracket
form as

[[[[~]pr0 n] N p [~] vn ~J] RelPh [[: ~] n c] NP] N P

We do not yet have a tight upper-bound
for this parsing algorithm in the worst case.
Clearly the algorithm will be more time con-

suming than for CFGs because the match pro-
cedure will need to check not only the cate-
gories of the constituents, but also their asso-
ciated functions, and this check will not tak@
constant t ime as for CFGs.

But though the algorithm is clearly worse
than CFG in the worst case, in practice, the
complexity in practice will depend heavily on
particular sentences and the grammar . The
number and type of context conditions used
in the grammar , and the kind of nonterminal
functions, will greatly affect the efficiency of
parsing. Thus empirical performance is the
true judge, and our experience as described
next has been quite encouraging.

R e s u l t s

We are currently developing a robust gram-
mar of this form for the Chinese bracketing
application. Although the number of rules is
changing daily, the evaluation was performed
on a version of the g rammar containing 948
rules. The lexicon used was the BDC dictio-
nary containing approximately 100,000 entries
with 33 part of speech categories (1).

To evaluate our progress, we have evalu-
ated precision on a previously unseen sample
of 250 sentences drawn from our corpus, which
contains Hong Kong legislative proceedings.
The sentences were randomly selected in var-
ious length ranges of 4-10, 11-20, 21-30, 31-
40, and 41-50 words, such that each of the
five ranges contained 50 sentences . All those
sentences were segmented by hand, though we
will use an automatic segmenter in the future.
We evaluated three factors:

.

.

The percentage of labeled words. A word is
unlabeled if it can not form deeper structure
with at least one other word. Unlabeled
words often indicate inadequacies with lex-
icon coverage rather than the grammar .

Weighted consti tuent precision, i.e., the per-
centage of incorrectly identified syntactic
constituents. A constituent is judged to be
correct only if both its bracketing and its
syntactic label are correct.

Because we don' t give a single parse tree if
there is for a sentence at the current stage,
we uniformly weight the precision over all
the parse trees for the sentence. Therefore
this measure is a kind of weighted precision
(6).

19

O: (final (clause (clause (advph (sadv ~) ,) (clause (nounph (nounph (noun (pron ~J~)) (noun
(nc ~fi~)))) (verbph (zaiph ~ (nounph (modph (relph (nounph (noun (up ~))) (vppart (vn
(vadv ~) (vn ~))) fl-~)) (nounph (modph (aa (vil - ~))) (nounph (noun (nc ~:~)))))
(locat_part ~))))) (punc ,) (clause (verbph (vn (auxvb (aux ~)) (vn ~)) (nounph (assocph
(nounph (d ~.~) (nounph (noun (nc ~Ji~i)))) fl'~) (nounph (noun (nc ~P-4))))))) o)

O: (final (clause (clause (advph (sadv :~}~) ,) (clause (nounph (nounph (noun (pron ~J~)) (noun
(nc ~)))) (verbph (zaiph ~ (nounph (modph (relph (nounph (noun (up ~-~4~))) (vppart (vn
(vadv ~1~-~) (vn ~{~))) t~J)) (nounph (modph (aa (vil -~ -))) (nounph (noun (nc ~:~)))))
(locat_part ~))))) (punc,) (clause (verbph (vn (auxvb (aux ~)) (vn f ~)) (nounph (assocph
(nounph (d ~) (nounph (noun (nc 9 ~)))) ~) (nounph (noun (nc ~P-4))))))) o)

O: (final (clause (clause (advph (sadv ~i~) ,) (clause (nounph (d ~]) (nounph (noun (nc Jk))))
(cjs ~) (verbph (vn (vadv ~iE) (vn ~)) (nounph (noun (nc I ~)))))) (punc,) (clause (verbph
(verbph (vn (vadv ~,[1) (vn (auxvb (aux ~ A)) (vn ~))) (nounph (noun (nc ~)))) (verbph
(vn ~) (nounph (noun (nc ~))))))) o)

O: (final (clause (nounph (noun (nc iTi~)))
(clause (clause (nounph (clph (d ~) (cl
(auxvb (aux o/)) (vn ~)) (nounph (noun

(verbph (vs (vadv ~) (vs (vadv ~:~) (vs ~)))
)) (nounph (noun (nc ~j~)))) (verbph (verbph (vn
(up ~&/~j)))) (verbph (vil ~g~)))) ~))) ?)

(nounph (nounph (noun (nc ~)~)) (noun (nc ~)))) , (clause (nounph (pron ~J~)) (verbph (vil
(neg ~) (vil ~1]~)))) (verbph (covph (p ~) (nounph (pron ~J~))) (verbph (vn ~) (nounph
(clph (d ~) (cl ~)) (nounph (noun (nc I ~)))))) , (clause (verbph (vil (vadv ~:~) (vil (vadv

) (v i l ~ (vil ~)))))) o

(nounph (nounph (noun (nc ~1~)) (noun (nc ~J~)))) , (clause (advph (sadv ~)) (clause
(nounph (pron ~)) (verbph (vv ~) (verbph (covph (p ~,~) (nounph (modph (relph (nounph (d
) (nounph (noun (nc ~]~)))) (vppart (verbph (vn ~,-~]) (nounph (noun (up ~Jx~] t)) (noun (nc
~)))) (vn (vadv ~) (vn ~))) ~)) (nounph (modph (aa (a --t)J))) (nounph (noun (nc ~J3
))))) (punc,)) (verbph (vnv ~) (nounph (d ~) (nounph (nounph (noun (nc (~ff~)) (noun (nc -~-

))))) (verbph (vil (vadv ~) (vil ~)))))))) o

(nounph (assocph (nounph (q --~=~) (noun (nc ~l~))) (¢3) (nounph (noun (nc 1]~.~)))) , (advph
(sadv ffljPl:l)) (nounph (nounph (nounph (noun (nc ~)) (noun (nc ~)))) (cjw $~) (nounph
(nounph (noun (nc ~Jk)) (noun (nc ~))))) , (clause (verbph (vn (vadv ~) (vn (auxvb (aux :~
~)) (vn i~l]))) (nounph (assocph (nounph (nounph (nounph (noun (pron ~J~)) (noun (nc ,~'l~l
)))) (locat_part ~)) ~J) (nounph (noun (nc x_k~)))))) o

O: (final (clause (clause (clause (nounph (q - -~) (noun (nc ,~,~=~))) (verbph (vn ~) (nounph
(modph (relph (vppart (vn ~)) (nounph (noun (nc ~E])) (noun (nc .-~-~))) ~)) (nounph
(nounph (nounph (noun (nc ~ t)) (noun (nc ~))) (noun (nc ~))))))) (punc ,) (clause
(verbph (vs ~) (clause (nounph (pron ~J~)) (verbph (covph (p ~) (nounph (d ~_) (nounph
(noun (nc ~))))) (verbph (vn (vadv ~) (vn ~)) (nounph (noun (nc ~t~))))))))) (punc,)
(clause (verbph (vil (vadv ~:~) (vil (vadv ~) (vil ~:/~)))))) o)

(advph (sadv - - ~ - - ~) ,) (clause (nounph (noun (up ~))) (verbph (vi2 ~/))) (verbph (covph (p
) (nounph (modph (aa (a Zk))) (nounph (nounph (noun (nc ~)) (noun (nc ~)))))) (verbph

(vn ~t~/~) (nounph (modph (attrph (aa (vil ~:)k:)) ~)) (nounph (noun (nc ~1]~)))))) , ~
(nounph (d i_~) (nounph (noun (nc ~lJ~)))) $ (clause (nounph (noun (nc ~i~))) (verbph (covph
(p PA) (nounph (noun (nc ~)))) (verbph (vil ~ i l)))) o

Figure 1: Examples of parse output (see text).

20

(clause (nounph (nounph (noun (nc ~::~)) (noun (nc ~))) (noun (nc . ~))) (verbph (vi2 (neg
) (vi2 (auxvb (aux ~)) (vi2 ~))))) (nounph (assocph (nounph (nounph (noun (nc ~ : ~))

(noun (up :~:~¢d~))) (noun (nc),.))) ~) (nounph (noun (nc $lJ~)))), (clause (verbph (covph (p ~
) (nounph (modph (relph (vppart (vn ~fi~)) (nounph (modph (aa (vil . ~))) (nounph (noun (nc
~'~3~)))) f~9)) (nounph (noun (nc ~))))) (verbph (vv 5~) (verbph (vn ~l~t) (nounph (noun (nc
~))))))) ~,~ o

(clause (clause (clause (nounph (noun (up ~:~))) (verbph (is ~) (nounph (clph (q --) (cl ~I))
(nounph (modph (aa (vil ~))) (nounph (noun (nc ~*~))))))) (punc ,) (clause (verbph (vv ~1~
) (verbph (vn (vadv ~) (vn ~)) (nounph (modph (aa (vil ~jt~))) (nounph (noun (nc hJ~
)))))))) (punc ,) (clause (verbph (vi2 (vadv ~) (vi2 ~))))) (clause (nounph (nounph (noun (up
2R~))) (ejw ~) (nounph (noun (up li~/~P.~)))) (verbph (vn ~) (nounph (modph (relph (vppart
(vn ~j~)) ~t.~)) (nounph (nounph (noun (nc ~)) (noun (ne W~))))))), (clause (nounph (modph
(aa (a I ~ .))) (nounph (noun (nc A:[=)))) (verbph (verbph (vi2 (vadv ~¢~) (vi2 (vadv f ~) (vi2
g ~)))) (cjw ~) (verbph (vn (vadv ~t)J) (vn ~J~)) (nounph (assocph (nounph (noun (nc ~
)) (noun (nc 7 ~))) ~J) (nounph (noun (nc ~)~))))))) o

(clause (clause (clause (nounph (noun (up * A))) (verbph (vnv { ~) (nounph (noun (nc ~ a)))
(verbph (vv ~-~) (verbph (covph (p ~) (nounph (nounph (noun (nc ~ - - ~)) (noun (nc ~
))))) (verbph (vv 5~) (verbph (vn } ~) (nounph (noun (he ~))))))))) (punc,) (clause (verbph
(advph (sadv ~)) (verbph (vn {@~) (nounph (noun (nc ~tJ~y~))))))) (punc,)' (clause (verbph (vnv
{E) (nounph (noun (nc ~t~))) (verbph (eovph (p ~) (nounph (noun (nc ~-~)))) (verbph (vi2
~)))))) (nounph (noun (nc ~))), (clause (nounph (noun (nc Y/-))) (verbph (vn]J~) (nounph
(noun (nc ~))))) (nounph (modph (attrph (aa (a i ~)) ~)) (nounph (modph (aa (vil -~,.~
))) (nounph (noun (nc .~.~))))) , (clause (verbph (verbph (vn ~) (nounph (noun (nc]I.~))))
(verbph (vn ~]) (nounph (assocph (nounph (noun (nc ~lJ))) ~J) (nounph (noun (nc { ~))))))) o

(clause (cjs ~) (clause (nounph (noun (up ~))) (verbph (is (vadv ~) (is ~)) (nounph (modph
(aa (vil 3E~))) (nounph (nounph (noun (nc I ~)) (noun (nc ~,~lJ)))))))) ~AgJ" fl'.J (nounph (noun
(nc I~-Y~))) , (clause (nounph (modph (aa (vil (vadv I~l~) (vil ~)))) (nounph (noun (nc ~))))
(verbph (locph (locph (zaiph :~ (nounph (modph (relph (vppart (vn (neg ~) (vn ~))) (nounph
(d ~l~l~{t~) (nounph (modph (aa (vil ~E~))) (nounph (nounph (noun (nc 212~)) (noun (nc :I:~.~.
)))))) fl,~)) (nounph (noun (nc ~b~)))) (locat_part ~))) (punc ,)) (verbph (covph (p ~) (nounph
(d ~l~I~{t~) (nounph (noun (nc ~J j))))) (verbph (vn -~:~]~) (nounph (modph (attrph (aa (a ~9["))
~J)) (nounph (nounph (noun (nc AJ~)) (noun (nc ~ .))))))))) o

(clause (clause (clause (clause (cjs ~) (clause (nounph (noun (nc ' ~ j))) (verbph (vv ~)
(verbph (vn ~)~d~) (nounph (modph (aa (a ~1~))) (nounph (noun (nc ~J~)))))))) (punc,) (clause
(nounph (modph (aa (vil (neg ~6) (vii ~)))) (nounph (noun (up I ~)))) (verbph (verbph (vn
-~J~.~) (nounph (noun (he ~)))) (verbph (vi2 .~gJJ))))) (punc,) (clause (verbph (vn (vaav ~)
(vn (auxvb (aux ~,)) (vn ~5~))) (nounph (clph (q --) (el ~)) (nounph (modph (attrph (aa (vil
~ ,~)) ~J)) (nounph (noun (nc ~ , ~)))))))) (punc ,) (clause (verbph (eovph (p ~) (nounph
(nounph (noun (nc 2[sdt!!))) (cjw ~) (nounph (nounph (nounph (noun (nc ~jg[-)) (noun (up 2 E ~
))) (noun (nc),jJ=)))))) (verbph (vn ~IJ~i) (nounph (modph (attrph (aa (vii [~)) ~)) (nounph
(noun (nc ~.gS~)))))))) (nounph (noun (nc ~li~))) , (clause (verbph (covph (p ~) (nounph (noun
(up ~)))) (verbph (vv (auxvb (aux ~ A)) (vv ~-~)) (verbph (vi2 ~-~))))) (nounph (noun (nc
~)3))) o

Figure 2: Examples of parse output (cont'd).

21

length of sentence 4-10 11-20 21-30 31-40 ~ 41-50
% words labeled 83.10 99.61 95.67 94.82 95.45
% correct constituents 85.41 83.57 81.23 80.20 78.85
run time per sentence (secs.) 2.03 3.54 9.00 5.08 37.50

Table 1: Evaluation results.

In the future, we will give a single most
probable parse tree for a sentence if it can
be parsed. Note that the precision in this
case is likely to be lower bounded by the
weighted precision reported here, since we
currently assign equal weight to all parses,
even if they are improbable.

3. The average run time per sentence.

Results are shown in Table 1. We have
unfortunately found it impossible to perform
comparison evaluations against other systems,
due to the unavailability of Chinese parsers
in general. However, we believe these per-
formance levels to be quite competitive and
promising.

Meaningful baseline evaluations are cur-
rently difficult to design for Chinese parsing
because of the unavailability of comparison
standards. Examples of the Chinese output
still give by far the most important indica-
tion of parsing quality. Some representative
examples are shown in Figures 2 and 2. The
parser produces two kinds of outputs. If no
complete parse tree is found for the input sen-
tence, a partial parse is returned; such exam-
ples are shown without a number preceding
the parse. Otherwise, the first complete parse
tree is shown, preceded by the number 0 (in-
dicating that it was the first alternative pro-
duced).

C o n c l u s i o n

We have described an extension to context-
free grammars that admits a practical pars-
ing algorithm. We have found the notation
and the increased expressiveness to be well-
suited for writing large robust grammars for
Chinese, particularly for handling compound-
ing phenomena without incurring the level of
parsing ambiguity common to pure context-
free grammars. Experiments show promising
performance on Chinese sentences.

With regard to the theme of this confer-
ence, we are clearly emphasizing representa-

tion over algorithms. We have developed a
new representation that neatly captures the
domain characteristics, and in our experience,
greatly improves the coverage and accuracy
of our bracketer. Algorithms follow naturally
as a consequence of the representational fea-
tures. It will be interesting to explore the re-
lationships between our grammar and other
context-sensitive grammar formalisms, a topic
we are currently pursuing.

R e f e r e n c e s

[1] BDC. The BDC Chinese-English Elec-
tronic Dictionary (version 2.0). Behavior
Design Corporation, 1992.

[2] Eugene Charniak. Statistical Language
Learning. MIT Press, Cambridge, MA,
1993.

[3] Jay Earley. An efficient context-free
parsing algorithm. Communications of
the Association for Computing Machinery,
13(2):94-102, 1970.

[4] Dekai Wu. An algorithm for simultane-
ously bracketing parallel texts by aligning
words. In Proceedings of the 33rd Annual
Conference of the Association for Compu-
tational Linguistics, pages 244-251, Cam-
bridge, Massachusetts, June 1995.

[5] Dekai Wu. Trainable coarse bilingual
grammars for parallel text bracketing. In
Proceedings of the Third Annual Workshop
on Very Large Corpora, pages 69-81, Cam:
bridge, Massachusetts, June 1995.

[6] Dekai Wu and Xuanyin Xia. Large-
scale automatic extraction of an English-
Chinese lexicon. Machine Translation,
9(3-4):285-313, 1995.

2 2

