
Generation in the LOLITA system" An engineering approach.

Mark H. Smith, Roberto Garigliano, Richard G. Morgan
Laboratory for Natural Language Engineering,

University of Durham
E-marl: m.h.smith@durham.ac.uk

1 I n t r o d u c t i o n

This short paper Will outline NLG work in the LOLITA
(Large-scale Object-based Linguistic Interactor Transla-
tor and Analyser) system. Section 2 will provide back-
ground into the natural language engineering principles
employed in the development of the system together with
a brief overview of LOLITA itself. Section 3 will then
provide an overview of the generation process and outline
two specific stages in this process: abstract transforma-
tions and realisation.

2 B a c k g r o u n d

2.1 Natural Language Engineering

NL research at Durham University is concerned with nat-
ural language engineering (NLE) rather than the more
traditional computational linguistics (CL). A lot of CL
orientated NLP (including NLG) has concentrated on ei-
ther trying to formulate universal theories that cover all
aspects of languagh or developing very restricted theories
which model smal! areas. The utilisation or expansion of
these ideas to realistic systems which are not highly re-
stricted by their t ~ k or domain has proved a great prob-
lem. Problems associated with other engineering disci-
plines which have to be considered in NL are:
Scale: The size of systems (e.g., grammar coverage, vo-
cabulary size, word senses) must be sufficient for realistic
large-scale applications.
In tegra t ion: Components of a system must not make
unreasonable assumptions about other parts. This is of-
ten the case when specific NLP problems are tackled in
isolation. Components should be designed and imple-
mented so that they assist other components.
Flexibil i ty: The ability to modify systems for different
tasks in different domains.
Feasibility: For example, hardware requirements must
aot be too great and execldtion speeds must be accept-
able. This process I incorporates making the system and
its components efficient.
Maintainabi l i ty : : How useful the system is over a long
period of time. The maintenance of a large system has
proved to be an important aspect of the software life-

cycle [6].
Usabil i ty: The system must be able to support the ap-
plications end users want and be user-friendly.
Robustness : This is a critical aspect of large-scale sys-
tems. To quote [1] "while it [robustness] may not be a
serious problem for any individual application, it has to
be faced up to in general". This aspect concerns not only
the linguistic scope of the system but how it deals with
input which falls outside of this scope.

The fact that there are a large number of systems and
projects with very restrictive aims and few that can claim
to successfully address these issues suggest that they have
associated int r ins ic research problems of the i r own.

The NLE method has foundations in the belief that
it is not necessary to wait for complete linguistic theo-
ries covering all the problems associated with NL (which
do not exist at present) before large, realistic and use-
ful NL systems can be built. Instead a full array of AI
techniques is employed ranging from using well-developed
linguistic and logic global theories (where they exist) to
more localised theories, corpora, knowledge based heuris-
tics, adaptive techniques and at the lowest level ad-hoc
rules. Incorporating this wide range of methods means
that the development of the system does not get stuck
due to the difficulty in following a particular logical or lin-
guistic theory while the benefits of such well established
theories can still be enjoyed. The result is a practical,
working solution.

2.2 The LOLITA system

The LOLITA system has been developed over the last
eight years at Durham University. It belongs to only a
small group of systems which can claim to have addressed
most of the properties required of large engineered sys-
tems as described above. The rarity of systems such
as LOLITA is exemplified by the fact that NL system
terminology defined in [1] has to be extended to define
LOLITA's status; it is more than a generic system as it
is not restricted to a single task type, but it is not, as
it stands, a general purpose machine which can be used
for any task in any domain. We extend the terminology
by defining LOLITA as a general purpose base. Although
demonstration prototypes have been built using LOLITA

241

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

for various tasks and domains (e.g., template building,
dialogue analysis and generation, interactive query, ma-
chine translation, chinese tutoring [2]), no polished final
application has yet been developed. This is because our
research resources have been concentrated on the 'base'
of the system and thus the task-dependent development
has not resulted in such systems.

LOLITA is built around an original kind of conceptual
graph (a logically precise form of semantic network, see
for example [12]) which is accessed, modified and manip-
ulated by the other system components (including the
generator). This representation, which holds world infor-
mation and data as well as some of its linguistic data, cur-
rently comprises over 30,000 nodes (capable of more than
100,000 inflected word forms). It is presently being inte-
grated with Princeton's WordNet [11] which will increase
its size to more than 70,000 nodes. LOLITA can parse
text, semantically and pragmatically analyse its meaning
and add relevant information to the semantic network. It
has been built to cope with full and serious text [1] (e.g.
newspaper articles), as well as text containing errors.

LOLITA is implemented in the functional language
Haskell. It comprises a total of approximately 32000 lines
of Haskell code (corresponding to about 300,000 lines of,
e.g., 'C').

3 G e n e r a t i o n

A lot of work in the area of NLG has suffered from the
problem of poor integration. Some generators have been
built for specific tasks in specific domains and cannot eas-
ily be transported to others (that is they have poor flexi-
bility). Other generators have been used as an interface to
a variety of applications (e.g, Penman [3] [8], Spokesman
[10]) but have been designed and built in isolation as sep-
arate components. This approach has led to researchers
making some unlikely assumptions as to the input to their
generators. For example, some generators assume the ex-
istence of a set of clause-size predicates from which the
generator must choose, organise and realise [3].

The LOLITA generator has been developed as a part
of a complete NL system. It has been built in tandem
with the semantic network representation from which it
generates and each component has influenced the devel-
opment of the other (e.g. the recent improvement in the
semantic representation of time and location was imple-
mented with the requirements of the generator module
in mind). This highly integrated approach prevents the
problem of lack of expressibility found in other systems
[10]. Workers have found that the input representation
they use or assume is not isomorphic with the linguistic
realisation resources they employ. This 'generation gap'
problem does not arise in LOLITA as the semantic net-

work representation is always expressible in surface NL.

Although pieces of semantic network are always di-
rectly realisable, the generation allows flexibility and high
usability by performing transformations on the represen-
tation to allow generation to be tailored for different
tasks. Parameters dependent on the particular applica-
tion, the context, the required style and analysis of the
dialogue situation [5] are used to guide the control and ef-
fect of these transformations on the final text. Of course,
control of variation is a difficult problem and research into
this area is still very much on-going.

The transformations can be roughly categorised into
the common planning and realisation divisions but again,
the high integration of the generator and semantic rep-
resentation avoids some problems encountered by oth-
ers. For example, the organisation of clauses according
to some discourse structure relations [7] (particularly the
ideational relations) is already explicit in the semantic
representation and does not have to be achieved by the
generator. Of course, the problem of how and when to
make these relations explicit in the final text is a genera-
tion task.

The generator is largely description directed (or pro-
cedural) [9]: the content of the semantic network to be
expressed plays a large part in the control of the genera-
tor. This method is usually more efficient than grammar
directed control (e.g., functioned unification is inherently
non-deterministic). Thefeasibilityofthe generator is very
acceptable: it does not require extensive memory and op-
erates in real time.

Because the semantic network is large and contains a
vast amount of linguistic knowledge (e.g. after the in-
corporation of WordNet) the generator is very large scale
with respect to lexical information. The grammatical cov-
erage of the generator, however, is not particularly good.
This problem is closely linked with that of maintainabil-
ity. While so far the coverage of grammar has been in-
creased relatively easily, it is expected that because of the
lack of a separate grammar, this may be a future prob-
lem. This lack of coverage caused by poor maintainability
is not as paramount to a similar problem in, for example,
parsing: a portion of semantic network can always be re-
alised and so robustness is not affected. The separation of
the grammar is to be investigated in the near future and
it is believed that this will improve the maintainability
and grammatical coverage of the generator.

A full description of the LOLITA generator cannot be
presented here but, by way of example, two transforma-
tions which operate on the semantic network during the
generation process are now outlined.

242

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

KEY: ~ : ~ o:Ot~a:t ~Acliol * D im~ • J ~ l ~

Figure 1: Example of a verb/instrument specialisation
transform

3 .1 A b s t r a c t T r a n s f o r m a t i o n s

I
I ~ ~ " n / ~ ~ I (-===~

Figure 2: Simplified portion of semantic network for the
realisation example

Abstract transformations are low-level transformations
which act on the :semantic network immediately before
realisation. Associated with each abstract transformation
are theoretical issUes on why particular normal forms are
chosen, rules which allow us to move away from these
normal forms and' effects the transform has on the final
utterance (apart from the obvious one that variations are
more natural).

Abstract transformations can act on and produce varia-
tions for events with, for example, antonym verbs, copula
verbs, complemented verbs, verbs which have de-lexical
structures, verbs which can be either specialised or gen-
eralised and events with multiple subjects. In each case
the procedure is tO disconnect arcs from particular nodes
and reconnect them to different ones (which might al-
ready exist or have to be constructed in the network).
Figure 1 is an example network portion showing how a
verb specialisation: transform can be applied. The verb
in the original sentence 'Jack wounded Jill with a gun'
may be specialised: into 'shot' because firearms (of which
guns are specialisa~ions) usually wound by shooting. Fur-
thermore as 'guns' are considered to be the most c o m m o n
special isat ion of firearms, the instrument clause can (as-
suming no special Context or high precision flag is set) be
dropped leaving 'Jack shot Jill'. This abstract transfor-
mation relies on a certain amount of plausible inference:
if a high precision flag has been set (according to the re-
quired style of output) then the output may be modified,
e.g., 'It is likely that Jack shot Jill'.

As in the LOLITA system, Jacob's KING generator
[4] uses a knowledge intensive semantic network to move
from normal forms of representation to alternative forms.
However Jacob's method requires special entries in the
semantic network (e.g., a special entry representing 'hug
giving' is required to produce the delexical structure 'to
give a hug').

3 . 2 R e a l i s a t i o n

Realisation is the final step in the generation hierarchy
and involves the traversal of the semantic network to pro-
duce sentences. Higher levels in the generation module
(planning and dialogue analysis) pass down instructions
which indicate which events and relations should be in-
cluded in the utterance (i.e the content). The textual
organisation of the utterance has to be decided by .the re-
alisation module using the constraints passed down fi'om
above. The general operation of the realiser module is to
follow the arcs starting from the input node to find fur-
ther nodes and their associated information. According
to the type of these nodes (e.g., if this node is itself an
event node with many links) this process may be contin-
ued recursively.

The realiser combines both the deep and surface re-
alisation of the network. Choices between, for example,
passive and active, or dative and non-dative, sentences
are passed to the realiser as parameters. In a sense the

243

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

grammar of the output is hardwired into the code, but
variation and flexibilty is allowed through the use of these
parameters. This setup has proved sufficient for all the
applications for which prototypes have been built.

Figure 2 shows a (much simplified) portion of the se-
mantic network containing an example event El. The
realiser operates by following arcs (e.g., subject, action,
object etc) from this event to other nodes in the network
and recursively generating expressions for these nodes. If
the default parameters are being used the events will be
generated in the active voice and the default rhythm is
to allow one relative clause for each object. The output
produced in this example is "If Roberto knew that the
woman whom he loves owned the big fast motorbike that
I gave him then he would like it." An umsimplified por-
tion of the semantic network will of course be more richly
populated. There may, for example, be many more arcs
from the node representing Roberto which link to more
information about him. If planning instructions indicate
that this information should be expressed it is likely that
the realiser will have to split the utterance into separate
sentences. Events which are encountered by the realiser
which cannot be immediately expressed (because the re-
sulting sentence will be too long) are placed on a stack so
that they cg.n be expressed as separate sentences. Heuris-
tics are used to order this stack of events so that coher-
ent focus and decipherable anaphoric references are main-
tained (the development of these heuristics is ongoing).

Stylistic variations can be produced by altering
the realiser parameter settings and passing different
nodes to the realiser so the text is realised from
a different ang le . Example parameter switches are
Passive/Active, Dative/Non-Dative, Colour, Rhythm,
Length, De-lexical transformations, Copula transforma-
tions, Complement transformations, Synonyms transfor-
mations, Verb Antonym transformations, Verb Speciali-
sation, Verb Generalisation.

4 C o n c l u s i o n

This paper has given a brief outline of the LOLITA sys-
tem and some aspects of its generation component. Be-
cause of the commercial value of the LOLITA project,
the system is not publicly available. However, we are ex-
tremely keen to give demonstrations of the system: for
any information on the LOLITA project, please contact
the authors.

R e f e r e n c e s

port 291, Computer Laboratory, University of Cam-
bridge, 1993.

[2] R. Garigliano, R. Morgan, et al. The LOLITA
Project: The First Seven Years. Under negotiation
with Afterhurst Ltd., forthcoming, 1994.

[3] E. ItI. Hovy. Unresolved issues in paragraph planning.
In R. Dale, C. Mellish, and M. Zock, editors, Current
Research in Natural Language Generation, pages 17-
45. Academic Press, New York, 1990.

[4] P. S. Jacobs. Knowledge-intensive natural language
generation. Artificial Intelligence, 33(3):325-378,
November 1987.

[5] C. Jones and R. Garigliano. Dialogue analysis and
generation: A theory for modelling natural english
dialogue. In EUROSPEECH '93 volume 2, pages
951-954, September 1993.

[6] B. Lientz and E. Swanson. Software Maintenance
Management. Addison-Wesley, 1980.

[7] E. Mater and E. H. Hovy. Organising discourse
structure relations using metafunctions. In H. Ho-
racek and M. Zock, editors, New concepts in Natu-
ral Language Generation: Planning, Realization, and
Systems, pages 69-86. Pinter Publishers, New York,
1993.

[8] W. C. Mann. An overview of the Penman text gen-
eration system. In Proceedings of the Third Na-
tional Conference on Artificial Intelligence (AAAI-
83), pages 261-265, Washington, DC, August 22-26,
1983.

[9] D. D. McDonald, M. M. Meteer, and J. D. Puste-
jovsky. Factors contributing to efficiency in natural
language generation. In G. Kempen, editor, Natu-
ral Language Generation: New Results in Artificial
bztelligence, Psychology and Linguistics, NATO ASI
Series - 135, pages 159-182. Martinus Nijhoff Pub-
lishers, Boston, Dordrecht, 1987.

[10] M. Meteer. Expressibility and the Problem of Effi-
cient Text Planning. Francis Pinter Publishers, Lon-
don, 1993.

[11] G. Miller. Wordnet: An on-line lexical database.
btternational Journal of Lexicography, 3(4), 1990.

[12] J. Sowa. Conceptual Structures (Information Pro-
cessing in Mind aT~d Machine). Addison-Wesley,
1984.

[1] J. Galliers and K. Sparck-Jones. Evaluating nat-
ural langauge processing systems. Technical Re-

244

