
R O B U S T T E X T P R O C E S S I N G IN A U T O M A T E D I N F O R M A T I O N R E T R I E V A L

T o m e k S t rza lkowski
Courant Insti tute o f Mathemat ical Sciences

N e w York Univers i ty
715 B r o a d w a y , rm. 704
N e w York, NY 10003

t o m e k @ c s . n y u . e d u

ABSTRACT

This paper outlines a prototype text retrieval system
which uses relatively advanced natural language pro-
cessing techniques in order to enhance the effective-
ness of statistical document retrieval. The backbone
of our system is a traditional retrieval engine which
builds inverted index files from pre-processed docu-
ments, and then searches and ranks the documents in
response to user queries. Natural language process-
ing is used to (1) preprocess the documents in order
to extract contents-carrying terms, (2) discover inter-
term dependencies and build a conceptual hierarchy
specific to the database domain, and (3) process
user's natural language requests into effective search
queries. The basic assumption of this design is that
term-based representation of contents is in principle
sufficient to build an effective if not optimal search
query out of any user's request. This has been
confirmed by an experiment that compared effective-
ness of expert-user prepared queries with those
derived automatically from an initial narrative infor-
mation request. In this paper we show that large-
scale natural language processing (hundreds of mil-
lions of words and more) is not only required for a
better retrieval, but it is also doable, given appropri-
ate resources. We report on selected preliminary
results of experiments with 500 MByte database of
Wall Street Journal articles, as well as some earlier
results with a smaller document collection.

INTRODUCTION

A typical information retrieval OR) task is to
select documents from a d~!ahase in response to a
user's query, and rank these documents according to
relevance. This has been usually accomplished using
statistical methods (often coupled with manual
encoding) that (a) select terms (words, phrases, and
other units) from documents that are deemed to best
represent their contents, and (b) create an inverted
index file (or files) that provide and easy access to
documents containing these terms. An important
issue here is that of finding an appropriate

combination of term weights which would reflect
each term's relative contribution to the information
contents of the document. Among many possible
weighting schemes the inverted document frequency
OdD has come to be recognized as universally appli-
cable across variety of different text collections.

Once the index is created, the search process
will attempt to match a preprocessed user query (or
queries) against representations of documents in each
case determining a degree of relevance between the
two which depends upon the number and types of
matching terms. Although many sophisticated search
and matching methods are available, the crucial prob-
lem remains to be that of an adequate representation
of contents for both the documents and the queries.

The simplest word-based representations of
contents are usually inadequate since single words
are rarely specific enough for accurate discrimina-
tion, and their grouping is often accidental. A better
method is to identify groups of words that create
meaningful phrases, especially if these phrases
denote important concepts in database domain. For
example, joint venture is an important term in Wall
Street Journal (WSJ henceforth) database, while nei-
ther joint nor venture are important by themselves. In
the retrieval experiments with the WSJ database, we
noticed that both joint and venture were dropped
from the list of terms by the system because their idf
weights were too low. In large databases, such as
TIPSTEK/TREC, the use of phrasal terms is not just
desirable, it becomes necessary.

The question thus becomes, how to identify the
correct phrases in the text? Both statistical and syn-
tactic methods were used before with only limited
success. Statistical methods based on word co-
occurrences and mutual information are prone to high
error rates, turning out many unwanted associations.
Syntactic methods suffered from low quality of gen-
erated parse structures that could be attributed to lim-
ited coverage grammars and the lack of adequate lex-
icons. In fact. the difficulties encountered in applying
computational linguistics technologies to text pro-
cessing have contributed to a wide-spread belief that

9

automated natural language processing may not be
suitable in IR. These difficulties included
inefficiency, lack of robustness, and prohibitive cost
of manual effort required to build lexicons and
knowledge bases for each new text domain. On the
other hand, while numerous experiments did not
establish the usefulness of linguistic methods in IR,
they cannot be considered conclusive because of their
limited scale.]

The rapid progress in Computational Linguis-
tics over the last few years has changed this equation
in various ways. First of all, large-scale resources
became available: on-line lexicons, including Oxford
Advanced Learner's Dictionary (OALD), Longman
Dictionary of Contemporary English (LDOCE),
Webster's Dictionary, Oxford English Dictionary,
Collins Dictionary, and others, as well as large text
corpora, many of which can now be obtained for
research purposes. Robust text-oriented software
tools have been built, including part of speech
taggers (stochastic and otherwise), and fast parsers
capable of processing text at speeds of 4200 words
per minute or more (e.g., T I P parser developed by
the author). While many of the fast parsers are not
very accurate (they are usually partial analyzers by
design), 2 some, like TIP , perform in fact no worse
than standard full-analysis parsers which are many
times slower and far less robust. 3

An accurate syntactic analysis is an essential
prerequisite for term selection, but it is by no means
sufficient. Syntactic parsing of the database contents
is usually attempted in order to extract linguistically
motivated phrases, which presumably are better indi-
cators of contents than "statistical phrases" where
words are grouped solely on the basis of physical
proximity (e.g., "college junior" is not the same as
"junior college'). However, creation of such com-
pound terms makes term matching process more
complex since in addition to the usual problems of
synonymy and subsumption, one must deal with their
structure (e.g., "college junior" is the same as "junior
in college"). In order to deal with structure, parser's

t Standard IR benchmark collectiot~s are statistically t o o
small and the experiments can easily produce cotm~rinmitive
results. For example, Cnmfield collection is only approx. 180,000
English words, while CACM-3204 collection is approx. 200.000
words.

2 Partial parsing is usually fast enough, but it also generates
n o i s y data: as n u m y as 50% of all generated phrases cotild be in-
correct (Lewis and Croft, 1990).

3 "I'rP has been shown to produce parse structures which sum
n o w o r s e m recall, precision and crossing rate than those generated
by flill-setle lmguisuc parsers when compared to hand-coded
Treebank parse tree,.

output needs to be "normalized" or "regularized" so
that complex terms with the same or closely related
meanings would indeed receive matching representa-
tions. This goal has been achieved to a certain extent
in the present work. As it will be discussed in more
detail below, indexing terms were selected from
among head-modifier pairs extracted from predicate-
argument representations of sentences.

The next important task is to achieve normali-
zation across diferent terms with close or related
meaning. This can be accomplished by discovering
various semantic relationships among words and
phrases, such as synonymy and subsumption. For
example, the term natural language can be con-
sidered, in certain domains at least2 to subsume any
term denoting a specific human language, such as
English. Therefore, a query containing the former
may be expected to retrieve documents containing
the latter. The system presented here computes term
associations from text on word and fixed phrase level
and then uses these associations in query expansion.
A fairly primitive filter is employed to separate
synonymy and subsumption relationships from others
including antonymy and complementation, some of
which are strongly domain-dependent. This process
has led to an increased retrieval precision in experi-
ments with smaller and more cohesive collections
(CACM-3204).

In the following sections we present an over-
view of our system, with the emphasis on its text-
processing components. We would like to point out
here that the system is completely automated, i.e., all
the processing steps, those performed by the statisti-
cal core. and these performed by the natural language
processing components, are done automatically, and
no human intervention or manual encoding is
required.

OVERALL DESIGN

Our information retrieval system consists of a
traditional statistical backbone (NIST's PRISE sys-
tem; Harman and Candela, 1989) augmented with
various natural language processing components that
assist the system in database processing (stemming,
indexing, word and phrase clustering, selectional res-
trictions), and translate a user's information request
into an effective query. This design is a careful
compromise between purely statistical non-linguistic
approaches and those requiring rather accomplished
(and expensive) semantic analysis of data~ often
referred to as 'conceptual retrieval'.

In our system the database text is first pro-
cessed with a fast syntactic parser. Subsequently cer-
tain types of phrases are extracted from the parse

3.0

trees and used as compound indexing terms in addi-
tion to single-word terms. The extracted phrases are
statistically analyzed as syntactic contexts in order to
discover a variety of similarity links between smaller
subphrases and words occurring in them. A further
filtering process maps these similarity links onto
semantic relations (generalization, specialization,
synonymy, etc.) after which they are used to
transform user's request into a search query.

The user's natural language request is also
parsed, and all indexing terms occurring in them are
identified. Certain highly ambiguous, usually single-
word terms may be dropped, provided that they also
occur as elements in some compound terms. At the
same time, other terms may be added, namely those
which are linked to some query term through admis-
sible similarity relations. For example, "unlawful
activity" is added to a query containing the com-
pound term "illegal activity" via a synonymy link
between "illegal" and "unlawful". After the final
query is constructed, the database search follows, and
a ranked list of documents is returned.

The purpose of this elaborate linguistic pro-
cessing is to create a better representation of docu-
ments and to generate best possible queries out of
user's initial requests. Despite limitations of term-
and-weight type representation (or boolean versions
thereof), very good queries can be produced by
human experts. In order to imitate an expert, the sys-
tem must be able to learn about its database, in par-
ticular about various correlations among index terms.

FAST PARSING WITH TTP PARSER

"I'I'P (Tagged Text Parser) is based on the
Linguistic String Grammar developed by Sager
(1981). The parser currently encompasses some 400
grammar productions, but it is by no means complete.
The parser's output is a regularized parse tree
representation of each sentence, that is, a representa-
tion that reflects the sentence's logical predicate-
argument structure. For example, logical subject and
logical object are identified in both passive and active
sentences, and noun phrases are organized around
their head elements. The significance of this
representation will be discussed below. The parser is
equipped with a powerful skip-and-fit recovery
mechanism that allows it to operate effectively in the
faze of ill-formed input or under a severe time pres-
sure. In the runs with approximately 83 million words
of TREC's Wall Street Journal texts~ the parser's

4 Approximately 0.5 GBytes of text. over 4 million sen-
teilc¢~.

speed averaged between 0.3 and 0.5 seconds per sen-
tence, or up to 4200 words per minute, on a Sun's
SparcStation-2.

'I'I'P is a full grammar parser, and initially, it
attempts to generate a complete analysis for each
sentence. However, unlike an ordinary parser, it has a
built-in timer which regulates the amount of time
allowed for parsing any one sentence. If a parse is not
returned before the allotted time elapses, the parser
enters the skip-and-fit mode in which it will try to
"fit" the parse. While in the skip-and-fit mode. the
parser will attempt to forcibly reduce incomplete
constituents, possibly skipping portions of input in
order to restart processing at a next unattempted con-
stituent. In other words, the parser will favor reduc-
tion to backtracking while in the skip-and-fit mode.
The result of this strategy is an approximate parse,
partially fitted using top-down predictions. The frag-
ments skipped in the first pass are not thrown out,
instead they are analyzed by a simple phrasal parser
that looks for noun phrases and relative clauses and
then attaches the recovered material to the main parse
structure. As an illustration, consider the following
sentence taken from the CACM-3204 corpus:

The method is illustrated by the automatic con-
struction of both reeursive and iterative pro-
grams operating on natural numbers, lists, and
trees, in order to construct a program satisfying
certain specifications a theorem induced by
those specifications is proved, and the destred
program is extracted from the proof.

The italicized fragment is likely to cause additional
complications in parsing this lengthy string, and the
parser may be better off ignoring this fragment alto-
gether. To do so successfully, the parser must close
the currently open constituent (i.e., reduce a program
satisfying certain specifications to NP), and possibly
a few of its parent constituents, removing
corresponding productions from further considera-
tion, until an appropriate production is reactivated.
In this case, T I P may force the following reductions:
SI -~ to V NP, SA --~ SI; S -.~ NP V NP SA, until the
production S ~ S and S is reached. Next, the parser
skips input to find and, and resumes normal process-
ing.

As may be expected, the skip-and-fit strategy
will only be effective if the input skipping can be per-
formed with a degree of determinism. This means
that most of the iexical level ambiguity must be
removed from the input text. prior to parsing. We
achieve this using a stochastic parts of speech tagger
to preprocess the text. Full details of the parser can
be found in (Strzalkowski, 1992).

1 1

PART OF SPEECH T A G G E R

One way of dealing with lexical ambiguity is to
use a tagger to preprocess the input marking each
word with a tag that indicates its syntactic categoriza-
tion: a part of speech with selected morphological
features such as number, tense, mode, case and
degree. The following are tagged sentences from the
CACM-32(M collection: 5

The/dt paper/nn presents/vbz aldt proposal/nn
for~in structured/vbn representat ion/nn of/in
muhiprogramming/vbg in~in a/dt high/jj level/nn
language/nn ./per

The/dt notation/nn used/vbn explicitly/rb
associates/vbz a/dt data/nns structure/nn
shared/vbn by~in concurrent/jj processes/nns
with~in operations/nns defined/vbn on~in it/pp
./per

The tags are understood as follows: dt - determiner,
nn - singular noun, nns - plural noun, in - preposition,
jj - adjective, vbz - verb in present tense third person
singular, to - particle "to", vbg - present participle,
vbn - past participle, vbd - past tense verb, vb -
infinitive verb, cc - coordinate conjunction.

Tagging of the input text substantially reduces
the search space of a top-down parser since it
resolves most of the lexical level ambiguities. In the
examples above, tagging of presents as "vbz" in the
first sentence cuts off a potentially long and costly
"garden path" with presents as a plural noun followed
by a headless relative clause starting with (that) a
proposal In the second sentence, tagging resolves
ambiguity of used (vbn vs. vbd), and associates (vbz
vs. nns). Perhaps more importantly, elimination of
word-level lexical ambiguity allows the parser to
make projection about the input which is yet to be
parsed, using a simple lookahead; in particular,
phrase boundaries can be determined with a degree
of confidence (Church, 1988). This latter property is
critical for implementing skip-and-fit recovery tech-
nique outlined in the previous section.

Tagging of input also helps to reduce the
number of parse structures that can be assigned to a
sentence, decreases the demand for consulting of the
dictionary, and simplifies dealing with unknown
words. Since every item in the sentence is assigned a
tag, so are the words for which we have no entry in
the lexicon. Many of these words will be tagged as
"rip" (proper noun), however, the surrounding tags
may force other selections. In the following exam-
ple, chinese, which does not appear in the dictionary,

s Tagged using the 35-tag Penn Treebank Tagset created at
the Univemty of Penn~Ivtnnt

is tagged as -jj,,:6

this~dr paper/nn dates/vbz back/rb the~dr
genesis/nn of~in binary/jj conception/nn circa~in
5000/cd years/nns ago/rb ,~corn as/rb
derived/vbn by~in the~dr chinese/jj ancients/nns
./per

WORD SUFFIX T R I M M E R

Word stemming has been an effective way of
improving document recall since it reduces words to
their common morphological root, thus allowing
more successful matches. On the other hand, stem-
ming tends to decrease retrieval precision, if care is
not taken to prevent situations where otherwise unre-
lated words are reduced to the same stem. In our sys-
tem we replaced a traditional morphological stemmer
with a conservative dictionary-assisted suffix trim-

mer. 7 The suffix trimmer performs essentially two
tasks: (1) it reduces inflected word forms to their root
forms as specified in the dictionary, and (2) it con-
verts nominalized verb forms (e.g., "implementa-
tion", "storage") to the root forms of corresponding
verbs (i.e., "implement", "store"). This is accom-
plished by removing a standard suffix, e.g..
"stor+age", replacing it with a standard root ending
C+e"), and checking the newly created word against
the dictionary, i.e., we check whether the new root
("store") is indeed a legal word, and whether the ori-
ginal root ("storage") is defined using the new root
("store") or one of its standard inflectional forms
(e.g., "storing"). For example, the following
definitions are excerpted from the Oxford Advanced
Learner's Dictionary (OALD):

storage n [13] (space used for, money paid for)
the storing of goods ...
diversion n [U] diverting ...
procession n I t] number of persons, vehicles,
etc moving forward and following each other in
an orderly way.

Therefore, we can reduce "diversion" to "divert" by
removing the suffix "+sion" and adding root form
suffix "+t". On the other hand, "process+ion" is not
reduced to "process".

Earlier experiments with CACM-3204 collec-
tion showed an improvement in retrieval precision by
6% to 8% over the base system equipped with a stan-
dard morphological stemmer (the SMART stemmer).

6 We use the machine ~_d_~ie version o f the Oxford Ad-
vanced Learner's Dictionary (OALD).

7 Dealing with prefixes is a more complicated matter, since
they may have quite strong effect upon the meaning of the result-
ing tenn. e.g., un- usually introduces explicit negation.

3.2

HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from T I P parse
trees are head-modifier pairs. The head in such a pair
is a central element of a phrase (main verb, main
noun, etc.), while the modifier is one of the adjunct
arguments of the head. In the TREC experiments
reported here we extracted head-modifier word and
fixed-phrase pairs only. While TREC WSJ database
is large enough to warrant generation of larger com-
pounds, we were in no position to verify their effec-
tiveness in indexing. This was largely because of the
tight schedule, but also because of rapidly escalating
complexity of the indexing process: even with 2-
word phrases, compound terms accounted for nearly
96% of all index entries, in other words, including 2-
word phrases has increased the index size 25 times!

Let us consider a specific example from WSJ
database:

The former Soviet president has been a local
hero ever since a Russian tank invaded Wiscon-
Silt.

The tagged sentence is given below, followed by the
regularized parse structure generated by 'FI'P, given
in Figure I.

The~dr former/j/' Soviet/jj president/nn has/vbz
been/vbn aldt local/jj hero/nn ever/rb since~in
eddt Russian/jj tanklnn invaded/vbd
Wisconsin/rip ./per

It should be noted that the parser's output is a
predicate-argument structure centered around main
elements of various phrases. In Figure 1, BE is the
main predicate (modified by HAVE) with 2 argu-
ments (subject, object) and 2 adjuncts (adv, sub_oral).
INVADE is the predicate in the subordinate clause
with 2 arguments (subject. object). The subject of
BE is a noun phrase with PRESIDENT as the head
element, two modifiers (FORMER, SOVIET) and a
determiner (THE). From this structure, we extract
head-modifier pairs that become candidates for com-
pound terms. The following types of pairs are con-
sidered: (1) a head noun and its left adjective or noun
adjunct, (2) a head noun and the head of its right
adjunct, (3) the main verb of a clause and the head of
its object phrase, and (4) the head of the subject
phrase and the main verb. These types of pairs
account for most of the syntactic variants for relating
two words (or simple phrases) into pairs carrying
compatible semantic content. For example, the pair
retrieve+information will be extracted from any of
the following fragments: information retrieval sys-
tem; retrieval of information from databases;, and
information that can be retrieved by a user-
controlled interactive search process. In the example
at hand, the following head-modifier pairs are
extracted (pairs containing low-contents elements,

]asserl
[[~ [HAVE]]

llverb [BE]]
[subject

[np
In PRESIDENT]
[tpos THE}
[adj [FORMER]]
ladj [SOVIET]Ill

[object
Inp
In HERO]
It .pos A]
ladj [LOCAL]Ill

lady EVER}
lsub_ord

[SINCE
Ilverb [INVADEII
[subject
[np
In TANK]
[t_pos A]
ladj [RUSSIANII]I

Iobjexl
]np

Iname [WISCONSIN]IIlIIIIII
Figure 1. Predicale-argum~at parse structure.

such as BE and FORMER, or names, such as
WISCONSIN, will be later discarded):

[PRESIDENT,BE]
[PRESIDENT,FORMER]
[PRESIDENT,SOVIET]
[BE,HEROI
[HERO,LOCAL]
[TANK.INVADE]
flANK.RUSSIAN]
[INVADE,WlSCONSlN]

We may note that the three-word phrase former
Soviet president has been broken into two pairs
former president and Soviet president, both of which
denote things that are potentially quite different from
what the original phrase refers to, and this fact may
have potentially negative effect on retrieval preci-
sion. This is one place where a longer phrase appears
more appropriate. The representation of this sentence
may therefore contain the following terms:

PRESIDENT. SOVIET, PRESIDENT+SOVIET.
PRESIDENT+FORMEIL HERO, HERO+LOCAL,
INVADE. TANK. TANK+INVADE. TANK+RUSSIAN.
RUSSIAN. INVADE+WISCONSIN. WISCONSIN.

The particular way of interpreting syntactic
contexts was dictated, to some degree at least, by sta-
tistical considerations. Our original experiments

1 3

were performed on a relatively small collection
(CACM-3204), and therefore we combined pairs
obtained from different syntactic relations (e.g.,
verb-object, subject-verb, noun-adjunct, etc.) in order
to increase frequencies of some associations. This
became largely unnecessary in a large collection such
as TIPSTER, but we had no means to test alternative
options, and thus decided to stay with the original. It
should not be difficult to see that this was a
compromise solution, since many important distinc-
tions were potentially lost, and strong associations
could be produced where there weren't any. A way to
improve things is to consider different syntactic rela-
tions independently, perhaps as independent sources
of evidence that could lend support (or not) to certain
term similarity predictions. We have already started
testing this option.

One difficulty in obtaining head-modifier pairs
of highest accuracy is the notorious ambiguity of
nominal compounds. For example, the phrase natural
language processing should generate
language+natural and processing+language, while
dynamic information processing is expected to yield
processing+dynamic and processing+information. A
still another case is executive vice president where
the association president+executive may be stretch-
ing things a bit too far. Since our parser has no
knowledge about the text domain, and uses no
semantic preferences, it does not attempt to guess any
internal associations within such phrases. Instead,
this task is passed to the pair extractor module which
processes ambiguous parse smactures in two phases.
In phase one, all and only unambiguous head-
modifier pairs are extracted, and the frequencies of
their occurrences are recorded. In phase two, fre-
quency information about pairs generated in the first
pass is used to form associations from ambiguous
structures. For example, if language+natural has
occurred unambiguously a number times in contexts
such as parser for natural language, while
processing+natural has occurred significantly fewer
times or perhaps none at all, then we will prefer the
former association as valid.

TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms
used in database indexing. They also serve as
occurrence contexts for smaller terms, including
single-word terms. If two terms tend to be modified
with a number of common modifiers and otherwise
appear in few distinct contexts, we assign them a
similarity coefficient, a real number between 0 and 1.
The similarity is determined by comparing distribu-
tion characteristics for both terms within the corpus:
how much information contents do they carry, do

their information contribution over contexts vat3'
greatly, are the common contexts in which these
terms occur specific enough? In general we will
credit high-contents terms appearing in identical con-
texts, especially if these contexts are not too com-
monplace, s The relative similarity between two
words xi and x2 can be obtained using the following
formula (ct is a large constant): 9

SIM (x l ,x2) = log (a ~ simy(x l ,x 2))
Y

where

simy(x l ,x2) = MIN (IC (x l ,[x l,y]),IC (x ~,[x 2, y]))
* MIN(IC(y, [xl .y]),lC(y, [x2,y]))

and IC is the Information Contribution measure indi-
cating the strength of word pairings, and defined as

IC (x, [x,y]) = - -

A,y
n~+d~-I

where f~,y is the absolute frequency of pair Ix,y] in
the corpus, nx is the frequency of term x at the head
position, and dx is a dispersion parameter understood
as the number of distinct syntactic contexts in which
term x is found. The similarity function is further
normalized with respect to SIM (x i ,x I). Example
similarities are listed in Table 1.

We also considered a term clustering option
which, unlike the shnilatity formula above, produces
clusters of related words and phrases, but will not
generate uniform term similarity ranking across clus-
ters. We used a variant of weighted Tanimoto's
measure described in (Grefenstette, 1992):

SIM (x I .x2) =

with

~j~4tN (W ([x,att]),W ([y,att])
all

~_~MAX (W ([x,att]). W (D',att])
an

W ([x, y]) = GW (x)* log (A.,)

GW (x) = 1 - n~

log (N)

s It would not be appropriate to predict similarity between
language mad logar/thm on the basis of their co--occur~nee wlth
natura l .

tTh/s was inspired by • formula used by Hind]e (1990).

1 4

Sample clusters obtained from approx. 100 MByte
(17 million words) sample of WSJ are given in Table
2.

In order to generate better similarities and clus-
ters, we require that words x] and x2 appear in at
least M distinct common contexts, where a common
context is a couple of pairs [x],y] and [x2,y], or
[y,x l] and [y,x 2] such that they each occurred at least
twice. Thus, banana and Baltic will not be con-
sidered for similarity relation on the basis of their
occurrences in the common context of republic, no
matter how frequent, unless there is another such
common context comparably frequent (there wasn't
any in TREC WSJ database). For smaller or narrow
domain databases M=2 is usually sufficient. For large
databases covering rather diverse subject matter, like
TIPSTER or even WSJ, we used M_>3) °

It may be worth pointing out that the similari-
ties are calculated using term co-occurrences in syn-
tactic rather than in document-size contexts, the latter
being the usual practice in non-linguistic clustering
(e.g., Sparck Jones and Barber, 1971; Crouch, 1988;
Lewis and Croft, 1990). Although the two methods of
term clustering may be considered mutually comple-
mentary in certain situations, we believe that more
and stronger associations can be obtained through
syntactic-context clustering, given sufficient amount

of data and a reasonably accurate syntactic parser) ~

QUERY EXPANSION
Similarity relations are used to expand user

queries with new terms, in an attempt to make the
final search query more comprehensive (adding
synonyms) and/or more pointed (adding specializa-
tions)) 2 It follows that not all similarity relations will
be equally useful in query expansion, for instance,
complementary and antonymous relations like the

1o For example banana and Dominican were found to have
two common contexts: republic and plant, although this second oc-

in appare, nfly different senses in Dominican plant and bana.
na p/ant.

" Nun-syntactic contexts cross sentence boundaries with no
fuss. which is helpful with short, succinct documents (such as
CACM absuacts), but less so with longer texts; see also (Gnsimaan
et al,, 1986).

:2 Query expansion (in the sense considered here, though not
quite in the same way) has been used in information retrieval
rescacch before (e.g., Sparc~ Jones and Tait. 1984; Hamum, 1988).
usually with nuxcd ~csults. An ahemanve is to use term clusters to
create new teans, "meta~nns". a n d u s e them to index the database
instead {e.g.. Crouch. 1988; lewis and Croft, 1990). We found that
the query expansion approach gives the system more flexibility, for
instance, by making room for hypenext-style topic exploration via
user feedback.

one between Australian and Canadian, or accept and
reject may actually harm system's performance,
since we may end up retrieving many irrelevant
documents. Similarly, the effectiveness of a query
containing vitamin is likely to diminish if we add a
similar but far more general term such as acid. On
the other hand, database search is likely to miss
relevant documents if we overlook the fact that for-
tran is a programming language, or that infant is a
baby and baby is a child. We noted that an average
set of similarities generated from a text corpus con-
tains about as many "good" relations (synonymy,
specialization) as "bad" relations (antonymy. comple-
mentation, generalization), as seen from the query
expansion viewpoint. Therefore any attempt to
separate these two classes and to increase the propor-
tion of "good" relations should result in improved
retrieval. This has indeed been confirmed in our
experiments where a relatively crude filter has visibly
increased retrieval precision.

In order to create an appropriate filter, we dev-
ised a global term specificity measure (GTS) which is
calculated for each term across all contexts in which
it occurs. The general philosophy here is that a more
specific word/phrase would have a more limited use,
i.e., a more specific term would appear in fewer dis-
tinct contexts. In this respect, GTS is similar to the
standard inverted document frequency (idjO measure
except that term frequency is measured over syntactic
units rather than document size units. 13 Terms with
higher GTS values are generally considered more
specific, but the specificity comparison is only mean-
ingful for terms which are already known to be simi-
lar. The new function is calculated according to the
following formula:

ICL(w) if both exist ICR(w)

GTS(w)=I~R(w) otherwiseif°nlylCR(w)exists

where (with nw, d~ > 0):

~w
ICt(w) = IC ([w,_]) = a~(nw+d~-l)

nw
tCR(w) = tc ([_,w]) =

d,,(nw+a~- I)
For any two terms w~ and w 2, and a constant ~ > I.
if GTS(w 2) > 8 * GTS(w]) then w 2 is considered
more specific than w]. In addition, if

" We believe that measuring term specificity over
document-size contexts (e.g.. Sparck Jones. 1972) may not be ap-
propnate in this case. In pameular, s3mtax-based contexts allow for
pr~:essmg texts without any internal docmnent structure.

2.5

SlM,,o,~(w i,w2) = o > O,

where 0 is an empirically established threshold, then
w2 can be added to the query containing term w 1
with weight o. 14 For example, the following were
obtained from TREC WSJ training database:

GTS (child) = 0.000001
GTS (baby) = 0.000013
GTS (infant) = 0.000055

with

SIM(child,infant) =0.131381
SIM (baby,child) = 0.183064
SIM (baby,infant) = 0.323121

Therefore both baby and infant can be used to spe-
cialize child. With this filter, the relationship between
baby and infant had to be discarded, as we are unable
to tell synonymous or near synonymous relationships
from those which are primarily complementary, e.g.,
man and woman.

SUMMARY OF RESULTS

We have processed the total of 500 MBytes of
articles from Wall Street Journal section of TREC
database. Retrieval experiments involved 50 user
information requests (topics) (TREC topics 51-100)
consisting of several fields that included both text and
user supplied keywords. A typical topic is shown
below:

<:top>

<head> Tipster Topic Description

<hum> Number:. 059

<dora> Domain: Environment

<title> Topic: Weather Related Fatalities

<desc> Description:

Document will report a type of weather event which has

directly caused at least one fatality in some location.

.~narr> Narrative:

A relevant document will include the number of people

killed and injured by the weather eveat, as well as

reporting the type of w e . ~ e r event and the location

of the event.

<con> Cmc~(s):

For CAC'M-3204 colle~ion the filter was most effective at
o = 0..5"7. For TREC-I we changed the similarity formula slightly
in order to obtain ~ nonnahza~vns m all cases. This however
lowered smailanty coefficients in general and a new threshold had
to be selected. We used o = 0.1 m TREC-I rims, although it tamed
om t o b c a p o o r choice. In all ¢au~Svar ied between 10and I00.

I. lightning, avalanche, tornado, typhoon, humcane.

heat. heat wave. flood, snow. rain. downpour.

blizzard, storm, freezing temperatures

2. dead. killed, fatal, death, fatality, victim

3. NOT man-made disasters, NOT war-induced famine

4. NOT earthquakes, NOT volcanic ernptions

</top>

Note that this topic actually consists of two different
statements of the same query: the natural language
specification consisting of <desc> and <nan-> fields.
and an expert-selected list of key terms which are
often far more informative than the narrative part.
Results obtained for queries using text fields only and
those involving both text and keyword fields are
reported separately. Further experiments have sug-
gested that natural language processing impact is
significant but may be severely limited by the expres-
siveness of the term-based representation. Since the
<con> field is considered the expert-user's rendering
of the 'optimal" search query, our system is able to
discover much of it from a less complete
specification in the text section of the request via
query expansion. In fact, we noted that the
recall/precision gap between automatically generated
queries and those supplied by the user was largely
closed when NLP was used. Moreover, even with the
keyword field included in the query along with other
fields, NLP's impact on the system's performance is
still noticeable.

Other results on the impact of different fields in
TREC topics on the final recall/precision results were
reported by Broglio and Croft (1993) at the ARPA
HLT workshop, although text-only runs were not
included. One of the most striking observations they
have made is that the narrative field is entirely
disposable, and moreover that its inclusion in the
query actually hurts the system's performance. It has
to be pointed out, however, that they do little
language processing. 15

Summary statistics for these runs are shown in
Table 4. These results are fairly tentative and should
be regarded with some caution. For one, the column
named txt reports performance of <dcsc> and <narr>
fields which have been processed with our suffix-
~rimmer. This means some NIP has been done
already (tagging + lexicon), and therefore what we
see there is not the performance of 'pure' statistical
system. The same applies to con column. (For

u Brace Cmfl (personal communication. 1992) has suggest-
ed that excluding Ill expert-made fields (i.e.. <ctm> and <:lac>)
would make the queries quite ineffective. Broglio (personal com-
mumeanvc, 1993) co.r ims Ibis showing thaz text-only retrieval
(i.e.. with <desc> and ~narr'>) shows an average prnc:sion at morn
than 30% below that of <con>-based retrieval.

1 6

word 1 word2 SIMnorm

abm
absence
accept
accord
acquire
speech
adjustable
maxsaver

affair
affordable
disease
medium+range
aircraft
aircraft
airline
alien
anniversary
anti+age
anti+clot
contra
candidate
contend
property
attempt
await
stealth
child
baggage
ban
bearish
bee
roller+coast
two+income
television
soldier
treasury
research
withdrawal

*anti+ballistic
*maternity
acquire
pact
purchase
address
one+year
*advance+purchase
scandal
low+income
*ailment
*air+to+air
*jetliner
plane
carrier
immigrate
*bicentennial
anti+wrinkle
cholesterol+lower
*anti + sandinista
*aspirant
*aspirant
asset
bid
pend
*b+l
*baby
luggage
restrict
bullish
*honeybee

*bumpy
two+earner
Iv
troop
*short+term
study
*pullout

0.534894
0.233082
0.179078
0.492332
0.449362
0.263789
0.824053
0.734008
0.684877
0.181795
0.247382
0.874508
0.166777
0.423831
0.345490
0.270412
0.588210
0.153918
0.856712
0.294677
0.116025
0.143459
0.285299
0.641592
0.572960
0.877582
0.183064
0.607333
0.321943
0.847103
0.461023
0.898278
0.293104
0.8O6O18
0.374410
0.661133
0.209257
0.622558

Table 1. Selecte filtered word similarities (* indicates
the more specific term).

word cluster

takeover merge, buy-out
acquisition, bid

stock share, issue, bond, price

staff personnel, employee, force

share stock, issue,fund

sensitive crucial, difficult, critical

rumor speculate

president director, executive
chairman, manage

outlook forecast, prospect
trend, picture

law rule, legislate
bill, regulate

earnings revenue, income

por(olio asset, invest, loan
property, hold

inflate growth, earnings, rise

industry business, company, market

help additional, support, involve

growth increase, rise, gain
decline, earnings, profit

firm bank, concern, group, unit

environ climate, condition
situation, trend

debt loan, secure, bond

custom(er) client, investor
buyer, consume(r)

counsel attorney

compute machine, software

competitor rival, partner, buyer

company business, firm, bank
market, industry, concern

big large, major, huge

base facile, source
reserve, support

asset property, loan,fund, invest
share, stock, money

Table 2. Selected clusters obtained from approx. 107
words of text with weighted Tanimoto formula.

17

comparison, see Table 3 where runs with CACM-
3204 collection included 'pure' statistics run (base),
and note the impact our suffix trimmer is having.)
Nonetheless, one may notice that automated NLP can
be very effective at discovering the right query from
an imprecise narrative specification: as much as 82%
of the effectiveness of the expert-generated query can
be attained.

CONCLUSIONS

We presented in some detail a natural language
information retrieval system consisting of an
advanced NLP module and a 'pure' statistical core
engine. While many problems remain to be resolved,
including the question of adequacy of term-based
representation of document contents, we attempted to
demonstrate that the architecture described here is
nonetheless viable. In particular, we demonstrated
that natural language processing can now be done on
a fairly large scale and that its speed and robustness
can match those of traditional statistical programs
such as key-word indexing or statistical phrase
extraction. We suggest, with some caution until more
experiments are run, that natural language processing
can be very effective in creating appropriate search
queries out of user's initial specifications which can
be frequently imprecise or vague.

On the other hand, we must be aware of the
limits of NLP technologies at our disposal. While
part-of-speech tagging, lexicon-based stemming, and
parsing can be done on large amounts of text (hun-
dreds of millions of words and more), other, more
advanced processing involving conceptual structur-
ing, logical forms, etc., is still beyond reach, compu-
rationally. It may be assumed that these super-
advanced techniques will prove even more effective,
since they address the problem of representation-
level limits, however the experimental evidence is
sparse and necessarily limited to rather small scale
tests (e.g., Mauldin, 1991).

ACKNOWLEDGEMENTS

We would like to thank Donna Harman of
NIST for making her PRISE system available to us.
We would also like to thank Ralph Weischedel and
Heidi Fox of BBN for providing and assisting in the
use of the part of speech tagger. Jose Perez Carballo
has contributed a number of valuable observations
during the course of this work, and his assistance in
processing the TREC data was critical. This paper is
based upon work supported by the Defense
Advanced Research Project Agency under Contract
N00014-90-J-1851 from the Office of Naval

Research. under Contract N00600-88-D-3717 from
PRC Inc., and the National Science Foundation under
Grant IRI-89-02304. We also acknowledge support
from Canadian Institute for Robotics and Intelligent
Systems (IRIS).

REFERENCES

Broglio, John and W. Bruce Croft. 1993. "'Query
Processing for Retrieval from Large Text Bases."
Proceedings of ARPA HLT Workshop. March
21-24, Plainsboro, NJ.

Church, Kenneth Ward and Hanks, Patrick. 1990.
"Word association norms, mutual information,
and lexicography.'" Computational Linguistics,
16(1), MIT Press. pp. 22-29.

Crouch, Carolyn J. 1988. "A cluster-based approach
to thesaurus construction." Proceedings of ACM
SIGIR-88, pp. 309-320.

Grefenstette, Gregory. 1992. "Use of Syntactic Con-
text To Produce Term Association Lists for Text
Retrieval." Proceedings of SIGIR-92.
Copenhagen, Denmark. pp. 89-97.

Grishman, Ralph. Lynette Hirschman, and Ngo T.
Nhan. 1986. "Discovery procedures for sub-
language selectional patterns: initial experi-
ments". Computational Linguistics. 12(3), pp.
205-215.

Grishman, Ralph and Tomek Strzalkowski. 1991.
"Information Retrieval and Natural Language
Processing." Position paper at the workshop on
Future Directions in Natural Language Processing
in Information Retrieval, Chicago.

Harman, Donna. 1988. "Towards interactive query
expansion." Proceedings of ACM SIGIR-88, pp.
321-331.

I-larman, Donna and Gerald Candela. 1989.
"'Retrieving Records from a Gigabyte of text on a
Minicomputer Using Statistical Ranldng.'" Jour-
nal of the American Society for Information Sci-
ence, 41(8), pp. 581-589.

I-lindle, Donald. 1990. "'Noun classification from
predicate-argument structures." Proc. 28 Meet-
ing of the ACL. Pittsburgh. PA, pp. 268-275.

Lewis, David D. and W. Bruce Croft. 1990. "'Term
Clustering of Syntactic Phrases". Proceedings of
ACM SIGIR-90, pp. 385-405.

Mauldin. Michael. 1991. "Retrieval Performance in
Ferret: A Conceptual Information Retrieval Sys-
tem." Proceedings of ACM SIGIR-91, pp. 347-
355.

Meteer, Marie, Richard Schwartz, and Ralph
Weischedel. 1991. "Studies in Part of Speech
Labeling." Proceedings of the 4th DARPA
Speech and Natural Language Workshop.

1B

Morgan-Kaufman, San Mateo, CA. pp. 331-336.
Sager, Naomi. 1981. Natural Language Information

Processing. Addison-Wesley.
Sparck Jones, Karen. 1972. "'Statistical interpreta-

tion of term specificity and its application in
retrieval." Journal of Documentation, 28(1), pp.
11-20.

Sparck Jones, K. and E. O. Barber. 1971. "What
makes automatic keyword classification effec-
tive?" Journal of the American Society for Infor-
mation Science, May-June, pp. 166-175.

Sparck Jones, K. and J. I. Tait. 1984. "Automatic
search term variant generation." Journal of
Documentation, 40(1), pp. 50-66.

Strzalkowski, Tomek and Barbara Vauthey. 1991.
"Fast Text Processing for Information
Retrieval." Proceedings of the 4th DARPA
Speech and Natural Language Workshop,
Morgan-Kaufman, pp. 346-351.

Strzalkowski, Tomek and Barbara Vauthey. 1992.
"Information Retrieval Using Robust Natural
Language Processing." Proc. of the 30th ACL
Meeting, Newark, DE, June-July. pp. 104-111.

Strzalkowski, Tomek. 1992. "TrP: A Fast and
Robust Parser for Natural Language." Proceed-
ings of the 14th International Conference on
Computational Linguistics (COLING), Nantes,
France, July 1992. pp. 198-204.

Runs base surf.trim query exp.

R ecall Precision Averages

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

3-pt Avg.
%chg

0.764
0.674
0.547
0.449
0.387
0.329
0.273
0.198
0.146
0.093
0.079

0.328

0.775 0.793
0.688 0.700
0.547 0.573
0.479 0A86
0.421 0A21
0.356 0.372
0.280 0.304
0.222 0.226
0.170 0.174

O.112 0.I 14

0.087 0.090

0.356 0.371
+8.3 +13.1

Table 3. Run statistics for CACM-3204 da-
tabase: with no NLP; with suffix trimmer,
and with both phrases and similarities.

Ran txt txt+nlp l con

Queries 50 50 50

con+nip

50

Tot. number of docs over all queries

Ret
Rel
RelRet
%chg

9980] 9980
6228 6228
1598 1835

+14.8

9788
6228
1927

+20.6

Recall Prec~ion Averages

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.6420
0.3727
0.2476
0.1543
0.1093
0.0611
0.0298
0.0160
0.0046
0.0000
0.0000

0.6917
0.4194
0.2959
0.2150
0.1513
0.0959
0.0396
0.0175
0.0047
0.0027
0.0000

0.7021
0.4476
0.3353
0.2202
0.1443
0.0851
0.0403
0.0187
0.0048
0.0000
0.0(K~

9975
6228
2062
+29.0

0.7539
0.4848
0.3641
0.2674
0.1735
0. I001
0.0665
0.0103
0.0024
0.0010
0.0010

Average Precisions

ll-pt 0.1489 0.1758 0.1817 0.2023
%chg +18.0 +22.0 +35.8

3-pt 0.1044 0.1322 I 0.1417 0.1555
%chg +26.6 [+35.7 +48.9

at 5 0.4360 0.5000 0.4680 0.4800
%chg +14.6 +7.3 +10.0

at 15 0.3453 0.3827 0.3880 0.4107
%chg +10.8 ~ +12.3 +18.9

i

at 100 0.2108 0.2384 0.2498 0.2712
%chg +13.0 +18.5 +28.6

Table 4. Ran statistics with TIPSTER WSJ database
with top 200 documents considered per each query:
(1) txt - with <narr> and <desc> fields only: (2)
txt+nlp - with <hart> and <desc> only including syn-
tactic phrase terms and similarities: (3) con - with
<desc> and <con> fields only; and (4) con+nip - with
<desc> and <con> fields including phrases and simi-
larities. In all cases documents preprocessed with
lexicon-based suffix-trimmer.

1 9

