
Nariyoshi YAMAI*, Tadashi SE K O t, Noboru K U B O ^ and Toru KAW ATA^

t D epartm ent of Inform ation Engineering, Nara National College of Technology,
Yam atokoriyam a, Nara 639-11, Japan

I t Com puter Systems Laboratories, C orporate Research and Development Group,
SH ARP C orporation, Tenri, Nara 632, Japan

A n Efficient Enum eration A lgor ithm of Parses
for A m biguous C ontext-Free Languages

Abstract

An efficient algorithm that enum erates parses of ambiguous context-free languages is described, and its time
and space complexities are discussed.

W hen context-free parsers are used for natural language parsing, pa ttern recognition, and so forth, there
may be a great num ber of parses for a sentence. One common strategy for efficient enum eration of parses is
to assign an appropriate weight to each production, and to enum erate parses in the order of the to tal weight
of all applied production. However, the existing algorithm s taking this strategy can be applied only to the
problems of lim ited areas such as regular languages; in the other areas only inefficient exhaustive searches
are known.

In this paper, we first introduce a hierarchical graph suitable for enum eration. Using this graph, enu­
meration of parses in the order of acceptablity is equivalent to finding paths of this graph in the order
of length. Then, we present an efficient enum eration algorithm with this graph, which can be applied to
arbitrary context-free gram m ars. For enum eration of k parses in the order of the to tal weight of all applied
productions, the time and space complexities of our algorithm are 0 (n 3 + k n 2) and 0 (nz + fcn), respectively.

1 Introduction

Context-free parsers are commonly used for na tu ra l language parsing, pa tte rn recognition, and so forth.
In these applications, there may be a great num ber of parses (or derivations) for a sentence, only a few
of which would be needed in later processes. Therefore, we look up only a few promising parses and do
not make an inefficient exhaustive search of parses. In order to find a few promising parses efficiently, we
often take a stra tegy th a t an appropriate weight is assigned to each production and parses are looked up in
the order of the to ta l weight of all applied productions. If the assigned weight is selected carefully to have
strong correlation to w hether a parse is accepted or not, looking up parses in the order of the to ta l weight is
equivalent to enum eration of parses in the order of acceptability. For example, in the punctuation problem
of Japanese sentences, the num ber of the phrases of the sentence is known to be an excellent candidate for
the weight of parses. However, the algorithm s proposed so far th a t took this stra tegy are applied only to
the problems of the lim ited areas such as regular languages, and they are not applied to general context-free
languages.

In this paper, we present an efficient enum eration algorithm based on this strategy, which can be applied
to general context-free gram m ars. We introduce a d a ta s truc tu re suitable for enum eration of parses named

-286- International Parsing Workshop '89

a parse graph, and present how to construct a parse graph in section 3. W ith a parse graph, a path between
two special vertex, some of whose arcs are replaced iteratively by the path denoted by their labels, represents
a right parse of the parsed sentence. Because the length of paths represents the to ta l weight of all applied
productions for parses, enum eration of parses in the order of the total weight of all applied productions is
equivalent to finding paths on the parse graph in the order of length. In section -4. we show the outline of
how to enum erate the parses of the ambiguous sentence in the order of their weight, using the parse graph.
We also discuss the time and space complexities of the algorithm in tha t section.

2 Context-Free Parsing Algorithm

Several general context-free parsing algorithm s have been proposed so far, namely Cocke-Y ounger-K asam i
algorithm [2, 3], Earley’s algorithm[4], V aliant’s algorithm[5j, G raham -H arrison-R uzzo algorithm [6, 8], and
so forth. The features of these algorithm s are the following. Cocke-Y ounger-K asam i algorithm (CYK
algorithm for short) is a kind of the bottom up parsing algorithm s, and has 0 (n 3) time complexity, w h e r e n

is the length of the sentence. In this algorithm , the gram m ar is required to be w ritten in Chomsky normal
form. E arley’s algorithm is a kind of the top down parsing algorithm s, and has 0 (n 3) time complexity.
By con trast with CYK algorithm , no special production form is required in Earley’s algorithm . V aliant’s
algorithm and G raham -H arrison-R uzzo algorithm (GHR algorithm for short) are the modified versions of
CYK algorithm and Earley’s algorithm , respectively. Both of them use the technique of m atrix m ultiplication
in order to reduce the time complexity, The time complexity of V aliant’s algorithm is 0 (n 2 81) and th a t of
GHR algorithm is 0 (n 3/ lo g n). However, in both algorithm s, the overhead for m atrix m ultiplication is so
large th a t these algorithm s don’t seem suitable for the practical use.

In this paper, we adopt E arley’s algorithm as the base of our algorithm because of the following two
reasons:

(1) No special production form is required.

(2) E arley’s algorithm seems more suitable than V aliant’s algorithm and GHR algorithm because the
overhead of these two algorithm s is quite large.

Let G = (V^v, Vt , P , S) be a gram m ar, where Vy is the set of nonterm inal symbols, Vj is the set of
term inal symbols, P is the set of productions, and 5 € Vy is the s ta r t symbol. In Earley’s algorithm , the
item lists /q, A , . . . , I n+i are created, where n is the length of the parsed sentence. Each item list consists
of several i tems [A — a ■ /3 (p), /] , where A — a ft G P, p is the index num ber of the production, is the
m eta symbol th a t shows how much of the right side of the production has been recognized so far, and / is
an integer which denotes the position in the input string at which we began to look for th a t instance of the
production. The set of item lists {/o, A , . . . , / n , / n+i} is called the parse list.

As for the tim e and space complexities for Earley’s algorithm , the following are known[l].

(e - 1) The time and space complexities for parsing a sentence by E arley’s algorithm are 0 (n 3) and 0 (n 2),
respectively, where n is the length of the parsed sentence.

(e - 2) T he tim e com plexity for deriving a parse from the parse list is 0 (n 2), where n is the length of the
parsed sentence.

-287- International Parsing Workshop '89

3 Parse Graphs

3.1 T h e fe a tu res o f p arse grap h s

The parse graph is a directed graph which consists of several connected com ponents. Each connected
com ponent is called a layer of the parse graph. Each layer is an acyclic graph that has only one source,
and it corresponds to either a nonterm inal symbol or an integer. An layer corresponding to a nonterm inal
symbol has only one sink. W ith this graph, we can extract parses more efficiently than with a parse list of
Earley’s algorithm . As shown in the next section, a path between two special vertex, some of whose arcs
are replaced iteratively by the path denoted by their labels, represents a right parse of the parsed sentence.

In the rem ainder of this paper, we use the following notations.

L (f) The layer corresponding to an integer / .

L{A) The layer corresponding to a nonterm inal symbol .4.
L(v) The layer containing a • tex v.
L(e) The layer containing an .̂rc e.
Uj(A') The source of the layer L(X) , where X is either an integer, a nonterm inal

symbol, a vertex, or an arc.
vt(A) The sink of the layer L{A), where .4 is a nonterm inal symbol. Note th a t the

layer corresponding to a nonterm inal symbol has only one sink.

In the parse graph, each arc has one of the following labels.

(1) An index num ber of the production p, which denotes the derivation by .4 — a (p).

(2) A nonterm inal symbol A, which denotes the derivation A ^ e.

(3) The index of a vertex v , which denotes the path from u,(y) to v.

W hen we describe the arc e = (m, v) with its label of each kind, we use the notations e(p), e(A), e[u], or
the alternative notations (u,t> ;(p)), (u , v \ (A)) , (« ,u ;[v j), respectively.

Instead of an item of the form [A — ot-fi (j>), /] in Earley’s algorithm , we use the trip let [.4 — or-/? (p), / , y]
as an item of our algorithm for constructing a parse graph, where v is the index of a vertex.

For exam ple, we parse the sentence xx of the gram m ar shown in Figure 1. The parse list and the parse
graph generated from this sentence are shown in Figure 2 and Figure 3, respectively.

In Figure 3, the label “(2)” of the arc from vertex # 8 to vertex # 9 indicates the derivation by 5 — 5 / (2),
the label “ (5)” of the arc from vertex # 0 to vertex # 1 indicates the derivation 5 ^ 6 , and the label “[7]”
of the arc from vertex # 2 to vertex # 8 indicates the paths from vertex # 0 to vertex # 7 .

-288- Intemational Parsing Workshop '89

Our algorithm for constructing a parse graph is based on Earley’s algorithm . In Earley’s algorithm , one of
three operations is performed on each item, depending on its form, to add more items to the item lists. In
our algorithm , these operations not only add more items to item lists but also add new vertices and arcs to
the parse graph, shown as follows.

3.2 A n a lg o r ith m for c o n s tr u c tin g a p arse graph

S - € (1)
S — S J (2)
J - F (3)
J -* / (4)
F —* x (5)
I —► X (6)

Figure 1: An ambiguous context-free gram m ar

-289- International Parsing Workshop '89

Io

h

S' — •5$ (0), 0, 0
s — (1), 0, 0
s — ■S J (0), 0, 0

' S' — S - $ (0), 0, 1
s — 5 • .7 (2), o, 2
J — ■F (3), 0, 0
J — ■I (4), 0, 0
F — ■i (5), 0, 0
I —- ■i (6), 0, 0

F — x • (5), 0, 0
I — x- (6), 0, Q
J — F- (3), 0, 4
J — I- (4), 0, 6
s — SJ- (2), 0, 8
S' — S - $ (0), o, 10
s — 5 • J (2), 0, 11
J — ■F (3), 1, 12
J — ■I (4), 1, 12
F — ■x (5), 1, 12
I —* ■I (6), 1, 12

F — X" (5), 1, 12
I — I- (6), 1, 12
J — F- (3), 1, 14
J — I- (4), 1, 16
S — SJ- (2), 0, 18
S' — s ■ $ (0), 0, 20
s — 5 • J (2), 0, 21
J — ■F (3), 2, 22
J — ■I (4), 2, 22
F — ■x (5), 2, 22
I — ■X (6), 2, 22

S' — 5$. (0), o, 20

Layer 0:

.i ?**0 j z u 0 j .2lK 3
2 8 g

|- (- -K D

\ (3)

h'-^KD >
5 ,/ * 7

[51 / < 4>

6

[9] K D
10

^Uoiizi*o<2i>o
11 18 19

[19]

20

[19]
* o

21

Layer 1:

r — K D
13

\ (3)

^ > 15 /▼ 17

[151 / < 4>

12 18

Layer 2:

o
22

Layer S:

y-
V»<S) vi(S)

(p) : a label "production p"

[v] : a label “vertex v“

<S> : a label "nonterminal S'

Figure 3: A parse graph for the sentence xx of the
gram m ar in Figure 1

h :

re 2: A parse list for the sentence xx of the
gram m ar in Figure 1

-290- International Parsing Workshop '89

The scanner is performed when an item in Ij is of the form [.4 — a ■ aJ + l 3 (p) , f , v] . It puts the item
[*4 — a a j +1 • 3 {p), / , v] to Ij + l .

O p e r a t io n 2 (p r e d ic to r)

The predictor is performed when an item in Ij is of the form [.4 — a • B 3 [p) , f , v]. It adds items [B —
•7 k (Pk) * j i i>iO)] for B-productions B — ~{k (pk) to Ij, except in the case where these items have already
been added to Ij. If the vertex v, (j) have not been created yet, the predictor creates v,{j) to the layer
L(j) . Especially, in the case where B => C LC2 • • • Cm e and C LC V --C m G Vy, the predictor adds the
vertices vs{B) , v u u2, . . . , ym_ !, vm , vt{B), and the arcs (t>,(B), v{\ (C L)), (, i'2;(C 2)), (e?2, vy, (C3)),
(t'm — 2 1 ym — I i (C m— L)) t (^m — 1 ? L'm ; (Cm)), (um, (p)) to 1 (5) if they are not in L{B) , and performs one
of the following:

(a) If an item of the form [.4 — q B • 3 (p) , f , w] is already in Ij, then add the arc (v , w \ (B)) to the parse
graph.

(b) O therwise, add the vertex w and the arc (v ,w' , (B)) to the parse graph, and add the item [.4 —
q B • 0 [p) , f , w] to Ij.

O p e r a t io n 3 (c o m p le te r)

The completer is performed when an item in Ij is of the form [.4 — a • (p) , f , v] . It performs one of the
following:

(a) If / = j , then the item would be processed by the predictor. Therefore, the com pleter does nothing.

(b) If / ^ and there exists an item of the form [A — ,3 • (9-),/, u] (p ^ q, u ^ v) in /j, and the arc
(u, w ; (<7)) in the parse graph, then add the arc (v , w\ (/>)) to the parse graph.

(c) Otherw ise, add a new vertex 1 and a new arc {v , x; (p)) to the parse graph. Furtherm ore, for all items
of the form [Bk — Ik ■ Abk ipk), f k , ^k] in / / , perform one of the following:

(c - 1) If there exists an item of the form [Bk — 7*.4 • 6 k (pk) , f k , Vk] in Ij where uk ̂ v*, then add a
new arc [uk , i>*;[1]) to the parse graph.

(c -2) O therw ise, add a new vertex vk and a new arc (u*, t;*; [z]) to the parse graph, and add a new
item [Bk — 7kA ■ 6 k (Pk), A , Vfc] to Ij.

We describe our algorithm for constructing a parse graph as follows:

A lgorith m 1. A n a lgorithm for con stru ctin g a parse graph

A context-free gram m ar G = {Vy, V j, P, S) and a sentence a La2 • • • an are given.

[step 1] Add the m eta symbol “$n to the tail of the sentence. Add the production S' — 5$ (0) to P.
C reate the parse graph consisting of r , (0). C reate the item list Iq consisting of [5 ' — -5$ (0), v,(0)].

[step 2] C reate the item lists Iq , / 1 , . . . , /„+i in order, by perform ing the following operations from k = 1
to k = n.

O p e r a t i o n 1 (s c a n n e r)

-291- Intemational Parsing Workshop '89

(1) Perform the predictor or the completer to add items to the item list Ik, until no more items can
be added to I

(2) Then, perform the scanner to add items to Ik+i-

[s te p 3] If / n+i has an item of the form [5/ —* 5$ • (0), u], then it means that the parser accepts the
sentence, and the algorithm term inates. Otherwise, it means tha t the parser rejects the sentence, and
the algorithm term inates.

Note that this algorithm is the same as Earley's algorithm except the portion for constructing a parse
graph.

As for the time and space complexities of this algorithm , the following theorem holds.

T h e o r e m 1. The time and space complexities of our algorithm are both 0 (n 3), where n is the length
of the sentence.

(proof) Consider the number of items in the item lists. Acc«. .ding to three operations, namely the
scanner, the predictor and the com pleter, each item list does not have items such th a t their first and second
com ponents are the same. Therefore, each item list has 0 (n) items, because the num ber of the kinds of the
first com ponent is constant, and tha t of the second com ponent is not more than n + 2. Hence, the num ber
of items of the parse list is 0 (n 2), because the parse list consists of n + 2 item lists. Consider the time and
space complexities of the operations per item.

(1) As for the scanner, the time and space complexities are both 0 (1).

(2) As for the predictor, at most 0(\P\) items are added to the item list, and 0 (|P |) vertices and arcs are
added to the parse graph, where |P | denotes the num ber-of the productions. Therefore, the tim e and
space complexities are both 0 (|P |) = 0 (1).

(3) As for the com pleter, if the second component of the performed item is / , the com pleter scans all items
in I f , adds at most 0 (n) items to the item list, and adds at most 0 (n) vertices and arcs to the parse
graph. Therefore, the time and space complexities are both 0 (n) .

Consequently, the time and space complexities of the operations per item is 0 (n) . Therefore, the tim e and
space complexities of the parse graph construction algorithm are both 0 (n 3). □

Com pared with (e-1) in section 2, the tim e complexity for constructing a parse graph is the same as
E arley’s algorithm , but the space complexity is worse because the num ber of arcs in a parse graph is 0 (n 3).

4 Enum eration o f Parses

4.1 Extracting parses

In order to ex tract parses from a parse graph, we introduce a traversal paths of a parse graph. The no tation
7r(u, v) represents traversal paths from u to v.

A traversal path from a vertex it to a vertex v is defined as follows provided th a t L(u) = L(v).

(1) A null sequence is defined as a traversal path if u = v .

-292- International Parsing Workshop '89

(2) The sequence of the arcs where e x = (i t , - , i \) , is defined as a traversal pa,th if a = u i , v i =

Uo, U2 = « 3 . • • • . y n - l = « n , = y -

(3) Let e i e 2 • • • c n be a traversal path from u to v . in which an arc e; is labeled with a nonterm inal symbol
.4. The-sequence of the arc e'i • • • e,_ i tt(i’3(.4). i’t(.4))e,-+i • • • en in which e,(.4) is replaced by a traversal
path JrfwjM), is defined as a traversal path.

(4) Let eieo • • • en be a traversal path from u to u, in which an arc e, is labeled with the index of a vertex
v. The sequence of the arc eL • • • e ,_ Lx (vs[v), v)e, + l • • • en in which e,[u] is replaced by a traversal path
ic[v, (v) ,v) is defined as a traversal path.

Especially, the traversal path that has only the arcs labeled with the index of the production is called a
proper traversal path. The notation r* (u , v) represents proper traversal paths from u to v. This notation is
also used to represent the sequence of the labels of the proper traversal paths.

As for the relationship between proper traversal paths and parses, the following theorem holds.

T heorem 2. If there exist two items [A — or • 7 (p), / , u] E / j , [-4 — a/3 • 7 (p), / , v] € Ik, where
a ,/? , 7 G V m, the sequence of the labels r* (u ,v) is the reverse order of the sequence of the production
num bers used for the rightm ost derivation aJ + 1 • • • .

r m

(proof) It is easy to prove this theorem by induction on the length of the derivation sequence. □

Let u((0) be the third com ponent v of the item [5' —• 5 S ■ (0), 0, v] € / n+ 1 - According to theorem 2,
the sequences of the labels 7rm(u,(0), vt(0)) represent the right parses of the parsed sentence. An exam ple of
a proper traversal path of the parse graph in Figure 3 is shown in Figure 4, where Uj(0) is vertex # 0 and
yt(0) is vertex # 20 .

A right parse can be ex tracted from the parse graph by searching a proper traversal pa th from i/f(0)
toward tfj(O). This extraction can be done w ithout backtracking, because each layer has only one source.
Therefore, the following theorem holds.

T heorem 3. If the given gram m ar is cycle-free, the tim e complexity for ex tracting a parse is O(n),
where n is the length of the sentence.

(proof) If the gram m ar is cycle-free, the length of the parse is O(n) . Therefore, the tim e complexity is
O(n) . □

C om pared with (e-2) in section 2, the time complexity for ex tracting a parse is be tte r than Earley’s
algorithm .

4.2 An algorithm for parse enumeration

Using a parse graph, enum eration of the parses in the order of the to ta l weight is equivalent to enum eration
of the proper traversal paths from ^j(O) to vt(0) in the order of the length. W hile m any researchers have
developed the algorithm s for finding the k shortest paths[9, 10, 11, 12, 13], we apply one of them developed
by K atoh, Ibaraki and Mine[10] to the parse graph recursively. Because of the lack of the space, we explain

-293- Intemational Parsing Workshop '89

o --^ -- O
\0 ! 20

I

O -------------------------s --------------------- KD--------- ^ -------- > _
\ ° / v 1 ,' 18 W 19

I \
I \

fy -<-s->- >o--- 0--(> [131 >0 ^ -6
\0 ! \ 2 ; 8 9 ',12 / 14 17

i \
i \

o!!k) aJ5 U o !^d
vs(S) vt(S) \0 / 4 7 12 13

right parse: 1 5 3 2 5 3 2

Figure 4: A proper traversal path from vertex # 0 to vertex #20

only the outline of the algorithm . The details of the algorithm are described in [14]. In the following
discussion, the k- th shortest traversal path from i/,(0) to vt(0) is referred to as x*.

First of all, derive the shortest path tree for v,(0), denoted as T (v s(0)), which consists of the arcs of the
shortest paths from i!,(0) to all o ther vertices. The shortest path tree can easily be derived in the algorithm
for constructing a parse graph, x 1 can be extracted from T (uJ(0)). tt2 consists of the path o fT (v ,(0)) from
MO) to a vertex u, the arc (u, v) where v is one of the vertices on 7T1, and the subpath of from v to v*(0).
Therefore, the num ber of the candidates of tt2 is the same as the sum o f the in-degree of all vertices on the
shortest path . As for the parse graph, the length of the shortest path and the in-degree of a vertex are both
0 (n)[l4] , and hence we can derive tt2 in 0 (n 2). In order to derive t 3, all paths from vf(0) to ut(0) except
tt1 and x 2 are divided into three sets as follows (see Figure 5):

(1) The set of paths th a t join the subpath common to tt1 and tt2. The shortest path in this set is referred
to as i a .

(2) T he set of paths th a t jo in x 1, and contain the subpath common to x l and x2 as their final subpath .
The shortest pa th in this set is referred to as x*,.

(4) The set of paths th a t jo in x 2, and contain the subpath common to x 1 and x2 as their final subpath .
The shortest pa th in this set is referred to as xc.

xa , Xi, and xc can be derived in the same m anner as deriving x2 in 0 (n 2), respectively, x 3 is the shortest one
of xa , Xfc, and xc, and the rest of these paths are stored in another set as the candidates of x 4. x 4, x 5, . . . are
derived by repeating the sim ilar calculation. Therefore, the time and space complexities of the enum eration
of the k shortest paths are 0 (n 3 + k n2) and 0 (n 2 + k n), respectively.

In the above discussion, the k shortest paths are derived. However, we can also derive the k longest
paths in the sam e m anner.

294- International Parsing Workshop '89

Figure 5: The relation among t l , x2, and t 3

Table 1: The time and space complexities of our algorithm s (n :the length of the sentence)

Com plexity Construction of parse graph Enum eration of k parses
Tim e 0 (n 3) 0 (n 3 + k n 2)
Space 0 (" 3) 0 (n 2 4- kn)

We sum m arize the tim e and space complexities of our algorithm s in Table 1.

5 Conclusion

In this paper, we have presented an algorithm for the enum eration of the parses in the order of the accept­
ability. This algorithm can be applied to the general context-free languages. In order to enum erate parses
efficiently, we have in troduced a d a ta s truc tu re suitable for the enum eration called the parse graph. Using
a parse graph, we can enum erate k parses in the order of acceptability efficiently in 0 (n z + k n 2).

A cknow ledgem ent

We appreciate Prof. Isao Shirakawa and Prof. Hideo M iyahara of Osaka University for their helpful su p p o r t .

The first au thor thanks Prof. Toshiro Araki, Dr. Hiroshi Deguchi, Dr. Shinji Shimojo of Osaka University,
and Mr. Toshiyuki Masui of SH ARP C orporation for their helpful suggestions and com m ents on this paper.

-295- Intemational Parsing Workshop '89

1] Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling, Vol. 1 :Parsing,
Prentice-Hall, 1972.

Kasami. T., “An efficient recognition and syntax analysis algorithm: for context-free languages” , Science
Report, AF CRL-65-758, Air Force Cambridge Research Laboratory, 1965.

Younger, D. H., “Recognition and parsing of context-free languages in time n3” , Information and
Control, 10, pp .189-208, 1967.

Earley, J., “An efficient context-free parsing algorithm” , Communication of A.C.M., 13-2, pp.94-102,
1970.

Valiant, L. G., “General context-fiee recognition in less than cubic time” , J.C.S.S., 10, pp.308-315,
1975.

G raham, S. L., Harrison, M. A., and Ruzzo, W. L., “On line context-free recognition in less than cubic
tim e” , Proc. 8 th Annu. A.C.M. Symp. on Theory of Computing, pp .112-120, 1976.

Graham , S. L., and Harrison, M. A., “Parsing of general context-free languages” , Advances in Comput­
ers, 14, Academic Press, pp.415-462, 1976.

Graham , S. L., and Harrison, M. A., “An improved context-free recognizer” , A.C.M. Trans, on Pro­
gramming Languages and Systems, 2-3, pp.415-462, 1980.

Yen, J. Y., “Finding the K shortest loopless paths in a network” , Management Science, 17, pp .712-716,
1971.

Katoh, N., Ibaraki, T., and Mine, H., “An efficient algorithm for K shortest simple paths” , Networks,
12, pp.411-427, 1982.

Fox, B. L., ‘‘D ata structures and computer science techniques in operations research” , Operations
Research, 26, pp.686-717, 1978.

[12] Denardo, E. V., and Fox, B. L., “Shortest-route methods: 1. reaching, pruning and buckets” , Operations
Research, 27, p p .161-186, 1979.

[13] Lawer, E. L., “A procedure for computing the K best solutions to discrete optimization problems and
its application to the shortest path problem” , Management Science, 18, pp.401-405, 1972.

[14] Yamai, N., “A s tudy for parsing of ambiguous languages using hierarchical graph representation of all
derivations” , Master Thesis of Osaka University, 1986 (in Japanese).

R eferences

-296- Intemational Parsing Workshop '89

