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Abstract

An efficient algorithm that enumerates parses of ambiguous context-free languages is described, and its time
and space complexities are discussed.

When context-free parsers are used for natural language parsing, pattern recognition, and so forth, there
may be a great number of parses for a sentence. One common strategy for efficient enumeration of parses is
to assign an appropriate weight to each production, and to enumerate parses in the order of the total weight
of all applied production. However, the existing algorithms taking this strategy can be applied only to the
problems of limited areas such as regular languages; in the other areas only inefficient exhaustive searches
are known.

In this paper, we first introduce a hierarchical graph suitable for enumeration. Using this graph, enu-
meration of parses in the order of acceptablity is equivalent to finding paths of this graph in the order
of length. Then, we present an efficient enumeration algorithm with this graph, which can be applied to
arbitrary context-free grammars. For enumeration of k parses in the order of the total weight of all applied
productions, the time and space complexities of our algorithm are 0(n3+kn2) and o (nz+ fcn), respectively.

1 Introduction

Context-free parsers are commonly used for natural language parsing, pattern recognition, and so forth.
In these applications, there may be a great number of parses (or derivations) for a sentence, only a few
of which would be needed in later processes. Therefore, we look up only a few promising parses and do
not make an inefficient exhaustive search of parses. In order to find a few promising parses efficiently, we
often take a strategy that an appropriate weight is assigned to each production and parses are looked up in
the order of the total weight of all applied productions. If the assigned weight is selected carefully to have
strong correlation to whether a parse is accepted or not, looking up parses in the order of the total weight is
equivalent to enumeration of parses in the order of acceptability. For example, in the punctuation problem
of Japanese sentences, the number of the phrases of the sentence is known to be an excellent candidate for
the weight of parses. However, the algorithms proposed so far that took this strategy are applied only to
the problems of the limited areas such as regular languages, and they are not applied to general context-free
languages.

In this paper, we present an efficient enumeration algorithm based on this strategy, which can be applied
to general context-free grammars. We introduce a data structure suitable for enumeration of parses named
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a parse graph, and present how to construct a parse graph in section 3. With a parse graph, a path between
two special vertex, some of whose arcs are replaced iteratively by the path denoted by their labels, represents
a right parse of the parsed sentence. Because the length of paths represents the total weight of all applied
productions for parses, enumeration of parses in the order of the total weight of all applied productions is
equivalent to finding paths on the parse graph in the order of length. In section 4 we show the outline of
how to enumerate the parses of the ambiguous sentence in the order of their weight, using the parse graph.
We also discuss the time and space complexities of the algorithm in that section.

2 Context-Free Parsing Algorithm

Several general context-free parsing algorithms have been proposed so far, namely Cocke-Younger-Kasami
algorithm[2, 3], Earley’s algorithm[4], Valiant’s algorithm[5j, Graham-Harrison-Ruzzo algorithm[6, 8], and
so forth. The features of these algorithms are the following. Cocke-Younger-Kasami algorithm (CYK
algorithm for short) is a kind of the bottom up parsing algorithms, and has o0 (n 3) time complexity, where n
is the length of the sentence. In this algorithm, the grammar is required to be written in Chomsky normal
form. Earley’s algorithm is a kind of the top down parsing algorithms, and has 0(n3) time complexity.
By contrast with CYK algorithm, no special production form is required in Earley’s algorithm. Valiant’s
algorithm and Graham-Harrison-Ruzzo algorithm (GHR algorithm for short) are the modified versions of
CYK algorithm and Earley’s algorithm, respectively. Both of them use the technique of matrix multiplication
in order to reduce the time complexity, The time complexity of Valiant’s algorithm is 0(n2 81) and that of
GHR algorithm is 0(n3/log n). However, in both algorithms, the overhead for matrix multiplication is so
large that these algorithms don’t seem suitable for the practical use.

In this paper, we adopt Earley’s algorithm as the base of our algorithm because of the following two
reasons:

(1) No special production form is required.

(2) Earley’s algorithm seems more suitable than Valiant’s algorithm and GHR algorithm because the
overhead of these two algorithms is quite large.

Let G = (V™, Vt,P,S) be a grammar, where Vy is the set of nonterminal symbols, Vj is the set of
terminal symbols, P is the set of productions, and 5 € Vy is the start symbol. In Earley’s algorithm, the
item lists /q, A, ..., In+i are created, where n is the length of the parsed sentence. Each item list consists
of several items [A — a w3 (p), /], where A — aft G P, p is the index number of the production, is the
meta symbol that shows how much of the right side of the production has been recognized so far, and / is
an integer which denotes the position in the input string at which we began tolookforthatinstanceofth
production. The set of item lists {/o, A,...,/n,/n+i} is called theparse list.

As for the time and space complexities for Earley’s algorithm, the following are known[l].

(e-1) The time and space complexities for parsing a sentence byEarley’s algorithm are0 (n3)and 0(n2),
respectively, where n is the length of the parsed sentence.

(e-2) The time complexity for deriving a parse from the parse list is 0(n2), where n is the length of the
parsed sentence.
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3 Parse Graphs

3.1 The features of parse graphs

The parse graph is a directed graph which consists of several connected components. Each connected

component is called a layer of the parse graph. Each layer is an acyclic graph that has only one source,

and it corresponds to either a nonterminal symbol or an integer. An layer corresponding to a nonterminal

symbol has only one sink. With this graph, we can extract parses more efficiently than with a parse list of

Earley’s algorithm. As shown in the next section, a path between two special vertex, some of whose arcs

are replaced iteratively by the path denoted by their labels, represents a right parse of the parsed sentence.
In the remainder of this paper, we use the following notations.

L(f) The layercorresponding to an integer /.

L{A) The layercorresponding to a nonterminal symbol .4.

L(v) The layercontaining a ¢« tex v.

L(e) The layercontaining an “rc e.

Uj(A) The source of the layer L(X), where X is either an integer, a nonterminal
symbol, a vertex, or an arc.

vt(A)  The sink of the layer L{A), where 4 is a nonterminal symbol. Note that the
layer corresponding to a nonterminal symbol has only one sink.

In the parse graph, each arc has one of the following labels.

(1) An index number of the production p, which denotes the derivation by .4 — a (p).

(2) A nonterminal symbol A, which denotes the derivation A * e
(3) The index of a vertex v, which denotes the path from u,(y) to v.

When we describe the arc e = (m, v) with its label of each kind, we use the notations e(p),e(A),e[u], or
the alternative notations (u,t>;(p)), (u,v\(A)), («,u;[v]), respectively.

Instead of an item of the form [A — ot-fi (j>), /] in Earley’s algorithm, we use the triplet [.4 — or-/? (p),/, V]
as an item of our algorithm for constructing a parse graph, where v is the index of a vertex.

For example, we parse the sentence xx of the grammar shown in Figure 1. The parse list and the parse
graph generated from this sentence are shown in Figure 2 and Figure 3, respectively.

In Figure 3, the label “(2)” of the arc from vertex #8 to vertex #9 indicates the derivation by 5 — 5/ (2),
the label “(5)” of the arc from vertex #0 to vertex #1 indicates the derivation 5~ 6, and the label “[7]”
of the arc from vertex #2 to vertex #8 indicates the paths from vertex #0 to vertex #7.
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3.2 An algorithm for constructing a parse graph

Our algorithm for constructing a parse graph is based on Earley’s algorithm. In Earley’s algorithm, one of
three operations is performed on each item, depending on its form, to add more items to the item lists. In
our algorithm, these operations not only add more items to item lists but also add new vertices and arcs to

the parse graph, shown as follows.

S- £
S —SJ
J- F
J-*/
F —=x
1 —PX

Figure 1. An ambiguous context-free grammar
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Operation 1 (scanner)

The scanner is performed when an item in 1j is of the form [4 — a maJ+l3 (p),f,v]. It p
[*4 — aaj+l «3 {p), /, V] to Ij+I.

Operation 2 (predictor)

The predictor is performed when an item in |j is of the form [4 — a B3 [p),f, v]. It adds items [B —
o7k (Pk)* ii>i0)] for B-productions B — ~k (pk) to 1j, except in the case where these items have already
been added to I1j. If the vertex v,(j) have not been created yet, the predictor creates v,{j) to the layer

L(j). Especially, in the case where B => CLC2«+Cm eand CLCV--Cm GVy, the predictor adds the
vertices vs{B), vu u2, ..., ym_!, vm, vt{B), and the arcs(t>(B), v{\(CL), ( , i2;(C2)), (€,vy, (C3)),
(tm=221ym—i (Cm—)t (“"m—=?L'm; (Cm)), (um, (p)) to 1(5) if they are not in L{B), and performs one
of the following:

(a) If an item of the form [4 — qB <3 (p),f,w] is already in 1j, then add the arc (v,w\(B)) to the parse
graph.

(b) Otherwise, add the vertex w and the arc (v,w',(B)) to the parse graph, and add the item [4 —
gqB <0 [p).f,w] to Ij.
Operation 3 (completer)

The completer is performed when an item in 1j is of the form [4 — a * (p),f,v]. It performs one of the
following:

(a) If/ = j, then the item would be processed by the predictor. Therefore, the completer does nothing.

(b) If/ ~ and there exists an item of the form [A — 3+ (%),/,ul (p " g, u ™ v )in /j, and the arc
(u, w; ()) in the parse graph, then add the arc (v,w\ (/>)) to the parse graph.

(c) Otherwise, add a new vertex 1+ and a new arc {v,x;(p)) to the parse graph. Furthermore, for all items
of the form [Bk — Ik mAbk ipk), fk,”k] in //, perform one of the following:

(c-1) If there exists an item of the form [Bk — 7*4 <6k (pk),fk,Vk] in Ij where uk® v*then add a
new arc [uk,i>*[1]) to the parse graph.

(c-2) Otherwise, add a new vertex vk and a new arc (u*, t*; [z]) to the parse graph, and add a new
item [Bk — 7kA msk (Pk), A, Vg to 1j.

We describe our algorithm for constructing a parse graph as follows:

Algorithm 1. An algorithm for constructing a parse graph

A context-free grammar G = {Vy, Vj, P, S) and a sentence ala2ee+ean are given.

[step 1] Add the meta symbol “$n to the tail of the sentence. Add the productionS' — 5% (0) toP.

Create the parse graph consisting of r,(0). Create the item list Iq consisting of [5' — -5$% (0), v,(0)].
[step 2] Create the item lists Iq,/1,..., /,,+i in order, by performing the following operations from k = 1
to k = n.
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(1) Perform the predictor or the completer to add items to the item list Ik, until no more items can
be added to |

(2) Then, perform the scanner to add items to Ik+i-

[step 3] If /n+i has an item of the form [5/ —* 5% « (0), u], then it means that the parser accepts the
sentence, and the algorithm terminates. Otherwise, it means that the parser rejects the sentence, and
the algorithm terminates.

Note that this algorithm is the same as Earley's algorithm except the portion for constructing a parse
graph.
As for the time and space complexities of this algorithm, the following theorem holds.

Theorem 1. The time and space complexities of our algorithm are both 0(n3), where n is the length
of the sentence.

(proof) Consider the number of items in the item lists. Acc« .ding to three operations, namely the
scanner, the predictor and the completer, each item list does not have items such that their first and second
components are the same. Therefore, each item list has 0(n) items, because the number of the kinds of the
first component is constant, and that of the second component is not more than n + 2. Hence, the number
of items of the parse list is 0(n2), because the parse list consists of n + 2 item lists. Consider the time and
space complexities of the operations per item.

(1) As for the scanner, the time and space complexities are both 0(1).

(2) As for the predictor, at most O(\P\) items are added to the item list, and 0 (|P|) vertices and arcs are
added to the parse graph, where |P| denotes the number-of the productions. Therefore, the time and
space complexities are both 0(|P|) = 0(1).

(3) As for the completer, if the second component of the performed item is /, the completer scans all items
in If, adds at most 0(n) items to the item list, and adds at most 0(n) vertices and arcs to the parse
graph. Therefore, the time and space complexities are both 0(n).

Consequently, the time and space complexities of the operations per item is 0(n). Therefore, the time and
space complexities of the parse graph construction algorithm are both 0(n3). O

Compared with (e-1) in section 2, the time complexity for constructing a parse graph is the same as
Earley’s algorithm, but the space complexity is worse because the number of arcs in a parse graph is 0(n3).

4 Enumeration of Parses

4.1 Extracting parses

In order to extract parses from a parse graph, we introduce a traversal paths of a parse graph. The notation
7r(u, v) represents traversal paths from u to v.
A traversal path from a vertex it to a vertex v is defined as follows provided that L(u) = L(v).

(1) A null sequence is defined as a traversal path ifu = v.
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2=y The sequence of the arcs where <« = - vy, is defined as a traversal path if . - i v -

Uo, U2 = «3. eee. yn-1 = «n, = y-

(3) Let eie2++-cn be a traversal path from u to v. in which an arc e; is labeled with a nonterminal symbol
4. The-sequence of the arc €' eeee, itt(i’3(.4). it(.4))e,-+i ***en in which e,(.4) is replaced by a traversal
path JrfwjM), is defined as a traversal path.

(4) Let eieo ee*en be a traversal path from u to u, in which an arc e, is labeled with the index of a vertex
v. The sequence of the arc eLesee, Lx(vs[v), v)e,+1 eeeen in which e,[u] is replaced by a traversal path
ic[v,(v),v) is defined as a traversal path.

Especially, the traversal path that has only the arcs labeled with the index of the production is called a
proper traversal path. The notation r*(u, v) represents proper traversal paths from u to v. This notation is
also used to represent the sequence of the labels of the proper traversal paths.

As for the relationship between proper traversal paths and parses, the following theorem holds.

Theorem 2. |If there exist two items [A — a e 7 (p),/, u] E /j, [4 — a3 +7 (p),/, v] € Ik, where
a,/?, 7 G Vm the sequence of the labels r*(u,v) is the reverse order of the sequence of the production
numbers used for the rightmost derivation o altleeo.

(proof) It is easy to prove this theorem by induction on the length of the derivation sequence. O

Let u((0) be the third component v of the item [5' — 5S m (0), 0, v] € /n+1- According to theorem 2,
the sequences of the labels an{u,(0), vt(0)) represent the right parses of the parsed sentence. An example of
a proper traversal path of the parse graph in Figure 3 is shown in Figure 4, where Uj(0) is vertex #0 and
yt(0) is vertex #20.

A right parse can be extracted from the parse graph by searching a proper traversal path from i/f(0)
toward tfj(O). This extraction can be done without backtracking, because each layer has only one source.
Therefore, the following theorem holds.

Theorem 3. If the given grammar is cycle-free, the time complexity for extracting a parse is O(n),
where n is the length of the sentence.

(proof) If the grammar is cycle-free, the length of the parse is O(n). Therefore, the time complexity is
O(n). O

Compared with (e-2) in section 2, the time complexity for extracting a parse is better than Earley’s
algorithm.

4.2 An algorithm for parse enumeration

Using a parse graph, enumeration of the parses in the order of the total weight is equivalent to enumeration
of the proper traversal paths from 7j(O) to vt(0) in the order of the length. While many researchers have
developed the algorithms for finding the k shortest paths[9, 10, 11, 12, 13], we apply one of them developed
by Katoh, Ibaraki and Mine[10] to the parse graph recursively. Because of the lack of the space, we explain
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Figure 4: A proper traversal path from vertex #0 to vertex #20

only the outline of the algorithm. The details of the algorithm are described in [14]. In the following
discussion, the k-th shortest traversal path from i/,(0) to vt(0) is referred to as x*.

First of all, derive the shortest path tree for v,(0), denoted as T(vs(0)), which consists of the arcs of the
shortest paths from il (0) to all other vertices. The shortest path tree can easily be derived in the algorithm
for constructing a parse graph, x1can be extracted from T(uJ(0)). tt2 consists of the path ofT(v,(0)) from
MO) to a vertex u, the arc (u, v) where v is one of the vertices on 711, and the subpath of  from v to v*(0).
Therefore, the number of the candidates of tt. is the same as the sum of the in-degree of all vertices on the
shortest path. As for the parse graph, the length of the shortest path and the in-degree of a vertex are both
0(n)[14], and hence we can derive tt2 in 0(n2). In order to derive t3, all paths from vf(0) to ut(0) except
ttl and x2 are divided into three sets as follows (see Figure 5):

(1) The set of paths that join the subpath common to wl and w2. The shortest path in this set is referred
to as ia.

(2) The set of paths that join x1, and contain the subpath common to x| and x2as their final subpath.
The shortest path in this set is referred to as x*.

(4) The set of paths that join x2, and contain the subpath common to x1and x2as their final subpath.
The shortest path in this set is referred to as xc.

xa, Xi, and xccan be derived in the same manner as deriving x2 in 0(n2), respectively, x3is the shortest one
of xa, X¢ and xc, and the rest of these paths are stored in another set as the candidates of x4. x4,x5,... are
derived by repeating the similar calculation. Therefore, the time and space complexities of the enumeration
of the k shortest paths are 0(n3+ kn2) and 0(n2+ kn), respectively.

In the above discussion, the k shortest paths are derived. However, we can also derive the k longest
paths in the same manner.
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Figure 5; The relation among tl, x2, and 3

Table 1. The time and space complexities of our algorithms (n:the length of the sentence)

Complexity Construction of parse graph  Enumeration of k parses
Time 0(n3) 0(n3+ kn2)
Space 0("3) 0(n2 4 kn)

We summarize the time and space complexities of our algorithms in Table 1.

5 Conclusion

In this paper, we have presented an algorithm for the enumeration of the parses in the order of the accept-
ability. This algorithm can be applied to the general context-free languages. In order to enumerate parses
efficiently, we have introduced a data structure suitable for the enumeration called the parse graph. Using
a parse graph, we can enumerate k parses in the order of acceptability efficiently in o (nz + kn2).
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