
"•-*1 N€ limarlcka, Harri Jappinen,
' /\arno Lehtola,

Melainki Univer;-i ty of Technology
p.spoC', Finland

A COMPUTATIONAL MODEL OF FINNISH SENTENCE STRUCTURE 1

Introdjcbion

The present paper propounds an outline of a computational model of Finnish

sentence structures. Although we focus on Finnish we feel that the ideas

behind the model might be applicable to other languages as well, in

particular to other inflectional free word order languages.

A parser based on this model is being implemented as a component of a

larger system, namely a natural language data base interface. There it will

follow a component of morphological analysis (see JSppinen et al C83);

hence, throughout the present paper it is assumed that all relevant morpho

logical and lexical information is computationally available for all words

in a sentence. Even though we have a data base application in mind, sen

tence analysis will be based on general linguistic knowledge. All applica-

tio-. dependent inferences are left to subsequent modules which are not

discussed here.

The linguistic foundations

We shall freely borrow ideas of Anderson [1], [2], Tarvainen [11] and Paju-

nen [9] , and Fillmore C33, m and Siro ClOj concerning dependency and case

grammars. We shall use the latter grammar to introduce semantics into syn-

tacs and the former to give a basis for a functional syntax where the

subordinate dependency relations are specified with formal binary rela

tions. The structure which these grammars will impose on sentences is a

dependency-constituency hybrid structure with labelled dependants, similar

to the sister-dependency structure of Hudson [7]. We shall briefly expli

cate and reason our choices.

1 This research is supported by SITRA (Finnish National Fund for Research

and Development), PL 329, 00120 Helsinki 12, Finland

169

A Computational Model of Finnish Sentence Structure
Esa Nelimarkka, Harri Jä ppinen, Aarno Lehtola
Proceedings of NODALIDA 1983, pages 169-177

Firstly, Finnish is a "free word order" language in the sense that the

order of the main constituents of a sentence is relatively free. Variations

of word order configurations convey thematical and discursional infor

mation. Hence, we must be ready to meet sentences with seemingly odd word

orders which in a given context, however, are quite natural.

The computational model should acknowledge this state of affairs and be

adjusted to cope efficiently with it. This demands a structure within which

word order variations can be conveniently described. An important case in

point is to avoid discontinuities in the structure caused by transfor

mations.

We argue that a dependency-constituency hybrid structure induced by a

dependency grammar meets the requirements. This structure consists of part-

of-whole relations of constituents and labelled binary dependency relations

within a constituent.

The sentence "Nuorena poika heitti kiekkoa" ("As young, the boy (used to)

throw the discus"), for example, will be given the structure

(1) heitti

adverbial /subject object
TIME / AGENT ^ NEUTRAL

Nuorena poika kiekkoa

or, a linearized equivalent with labelled parentheses,

(2) ((Nuorena)a(jyi (poika)gubj heitti (kiekkoa)obj)
TIME AGENT NEUTRAL

where parentheses indicate constituent boundaries and, within each

constituent, the word without parentheses is the head. (To be more pre

cise, an inflected word appears as a complex of all its syntactic,

morphological and semantic properties. Hence, our structure represen

tation is a tree with nodes which are labelled with complex

expressions.)

The advantage of such structures lies in the fact that many word order

varying transformations can now be localized to a permutation of the

head and its dependants in a constituent. As an example we have the

permutations

170

170Proceedings of NODALIDA 1983

{?.') ((Poi^a) ̂ heitti (nviorena)^^!^! (kiekkoa)q 5 -j)

(2 ’’) (Heittiko (poika)g;ibj (naorena)^^^! (kiekkoa)ob-j)

(?'*') ((Kiekkoako)obj (poika)gijbj heitti (nuorena)a(jvi)

Having reduced the depth of stuructures (by having a verb and its sub-

,ie<.-L, ob.iect, adverbials etc. on the same level) we bypass many

discontinuities that would have appeared in a deeper structure as a

result of rising transformations.

The second argument *̂ or our choices is the well acknowledged prominent

role of a finite verb in regard to the form and meaning of a sentence.

The meaning of a verb (or a word of other categories as well) includes

knowledge of its deep cases, and the choice of a particular verb to

express this meaning determines to a great extent what deep cases are

nresent on the surface level and in what functions.

Moreover, due to the free word order of Finnish, the main means to

indicate the function of a word in a sentence is the use of surface

case suffixes, and very often the actual case depends not only on tV)e

Intended function or role but on the verb as well.

Both of these arguments speak well for a combination of dependency and

case grammars. We claim that such a combination can be put into a

computational form, and that the resulting model is one which effi

ciently takes advantage of the central role of the constituent head in

the actual parsing process. We shall outline below how this can be done

with finite 2-way tree automata.

Specification of dependency structures

In a dependency approach the description of a constituent associates

the head with a specification of its dependants and their order.

Hays [53 used the notation

(3)

p. ̂ C-
'-11 ^ 2

or its linear equivalent,

(3') Ci(Ci^ * Ci^),

171

171Proceedings of NODALIDA 1983

to describe the dependants of a word in a category

Such a formalism is not suitable for our purposes. Firstly, due to free

word order, one would either have to postulate permutation transfor

mations or directly proliferate the "frame” (3) to the different word

order configurations, to

(4)

for example. Secondly, in case of an inflectional language, the defini

tion of dependants with restrictions on mere categories would not suf

fice. Morphological conditions on the head and its dependants are

needed, too. This would lead to another kind of frame multiplication:

(5)

[<morph cond>3

^ i l ' ^13

[<morph cond>3 I<morph cond>3 [...3

Ci
[<morph cond>3

I<morph oond>3 [.> >3
'̂ i3

[. . . 3

where the different frames describe mutually exclusive morhological

situations. Thirdly, we wish to know the syntactic function of a depen

dant, not only its place, category, number, case etc. We shall now show

how to overcome these difficulties.

A 2-way finite tree automaton -model

We begin with a unification of the frames (5) by abstracting the laws

that govern the restrictions on the head and its dependants in such a

sequence. These abstractions, which we call functions, are defined as

formal binary relations on the set of inflected words (which are con

sidered as complexies of all their relevant properties). It is no

surprise that these abstract functions will correspond to — and are

named after — the traditional parsing categories like subject, object,

adverbial, genetive attribute etc. After the adoption of these abstract

functions the sequence (5) reduces to a single "relation frame"

(6)

.11 .12 J3

172

172Proceedings of NODALIDA 1983

iLr.’ar expression

)') C. * ^32 ^^3^ ’

/here the f^'s stand for functions.

We are still left with the permutational variants

(7)

Js

Our ’̂inal step is to combine these relation frames with a structure

building 2-way finite tree automaton. At this point we also give a

computational -̂ crm to the idea of the dominance of the head of the

constituent v/ith respect to its form and meaning.

Recall that a standard 2-way finite automaton consists of a set of

states, one of which is a starting state and some of which are final

states, and of a set of transition arcs between the states. Each arc

recognir.es a word, changes the staie of the automaton and moves the

reading head either to the left or right. (Cf. Hopcroft-Ullman 16].)

We modify this standard notion to recognize left and right side depen

dants of a word - obligatory, facultative valencial dependants and free

ones - starting from the most immediate neighbour.

Instead of recognizing words (or a word categories) we make these auto

mata recognize functions, l.e. occurances of abstract relations between

the postulated head and its left or right neighbour. Secondly, in addi

tion to recognition we make the "arcs" build the structure determined

by the observed function, e.g. attach the neighbour as a dependant,

label it in agreement with the function and its interpretation etc.

An illustration

We approximate the syntactic function "object" of a finite verb with

the two productions

173

173Proceedings of NODALIDA 1983

8̂)

RELATION :Ob ject
(RecognObj — > (D := Ob jec t) (C : —D) (DELETE D))

RELATION:RecognObj
((R=-*-transi t i ve -nomina l) (D=-*-nomi nal ^sen tence)

-> ((D = P a r t i t i v e) -> (D = P l u r a l) ;
((D = S in g u la r) -> (D=-countab le>;

((D=*^countabl e) (R=<Negative
+pob j >)))) ;

((D = A c c u s a t i v e) (R = P o s i t i v e >) ;
((D=Nomi n a t i ve> (R=Posi t i ve)

-> (D = P lu r a l) ;
<(D = S i ng u la r > (R= A c t i ve

< Ind i c a t i ve
Condi t i o n a l
P o t e n t i a l
(I m p e r a t i v e 3 P) >))) ;

((D=Benet i ve S i n g u l a r) (R=Posi t i ve
<Pass i ve

(A c t i v e Im p e r a t i v e <1P 2P >)>)))

The relation "RecognObj” in the above production form is a kind of

boolean expression of the morphological restrictions on a finite verb

and its nominal object. The relation "Object", on the other hand, after

a succesfull match of these conditions, labels the postulated dependant

(D) as "object" and attaches it to the postulated regent (R).

The fragment

(9)

AUTOMATON:Verb

STATE :?V
((D=+phrase> > (Subject -> (C :=?VS L E F T)) ;

(Object “ > (C:='?VO L E F T)) ;
(Adverbial —> (C:=7V L E F T)) ;
(GenSubj -> (C :=VS? R IG H T)) ;
(SentAdvl —> (C:=7V R I G H T)) ;
(T => , (C:=V? RIGHT))) ;

((D=-p) i ra5e) -> (C :=V? R IGHT))

STATE :?VS
((D=+phrase)

((D=-phrase)

-> (Ob jec t -> (C:=?VSO L E F T)) ;
(A d v e r b i a l (C :=?VS L E F T)) ;
(Sen tAdv l -> (C :=VS? R IG H T)) ;
(T -> (C :=VS? R IG H T))) ;

-> (C :=VS? RIGHT) (Bu i IdPh ras eOn RIGHT));

of a verb automaton recognizes and builds, for example, partial

structures like

(1 0) ..V , V ,

subj obj idvl obobj subj

174

174Proceedings of NODALIDA 1983

Pars in g w ith a sequence o f 2-way automata

So far we have shown how to associate a 2-way automaton to a word via

its syntactic category. This gives a local description of the language.

We argue that with a few simple control Instructions we can make these

local automata activate each other and actually parse an input

sentence.

An unfinished parse consists of a sequence of constituents, which may

be complete or incomplete. Further, each such constituent is associated

with an automaton in some state and reading position. Now, the question

is how to activate these automata. At any time, exactly one of the

automata is to be active, i.e. trying to find dependants to the consti

tuent head in the immediate neighbourhood.

Only a completed constituent (one featured as +phrase) is to be matched

as a dependant. To start the completion of an uncomplete constituent

the control has to be moved to this constituent. This is done with a

push-like control operation "BuildPhraseOnRight" which deactivates the

current automaton and activates the neighbour next to the right (see

the illustration above).

On the other hand, a tree in a final state will be labelled as a

+phrase (along with other relevant labels such as isentence, inominal,

imain etc.). Pop-like control operations ”FindRegOnLeft" and

FindRegOnRight" deactivate the current constituent (i.e. the

corresponding automaton) and activate the leftmost or rightmost consti

tuent, respectively.

We claim that such simple "local control" yields a strongly data driven

bottom-up and left-to-right strategy which has also top-down features

in the form of expectations on lacking dependants.

We use heuristic rules to reduce the number of alternative postulates

in the course of parsing. For example, we might include the production

((R1 = ',')(R2 = 'etta')(C = +trans +cogn) -> (C:=SV7SentO RIGHT)

(BuildPhraseOnRIGHT))

in the state VS? of the verb automaton to recognize an evident forth

coming sentence object of a cognitive verb and to set the verb to the

state SV?SentO to wait for this sentence.

175

175Proceedings of NODALIDA 1983

Comparison

Our model, as we have shown, consists of a collection of finite tran

sition networks which activate each other with pop- and push-like

control operations. How does our approach then differ from, say. Woods'

ATN-formalism, which seems to have similar characteristics?

One difference is the use of 2-way automata Instead of 1-way automata.

There are also other major differences. ATN-parsers seem to use pure

constituent structures containing non-terminal auxiliary categories

(VP, NP, AP...) without explicit use of dependency relations within a

constituent. In our dependency oriented model non-terminal categories

are not needed, and a constituent is not postulated until its head is

found. In fact, each word collects actively its dependants to make up a

consitutent where it is the head.

A further characteristic of our model is the late postulation of ̂

function or a semantic role. Trees are built blindly without any prede

cided purpose. The function or semantic role of a constituent is not

postulated until some earlier or forthcoming neighbour is activated to

recognize dependants of its own. Thus, a constituent just waits to be

chosen into some function.

The above feature explains why no registers are needed in our approach.

Conclusions

We have outlined a model of Finnish which is based on 2-way structure

building transition networks. We have, as the above illustration exhi

bits, specified our model with a kind of production-rule formalism.

A compiler which compiles such descriptions into LISP is under

construction. This LISP-code is further compiled into a directly execu

table code so that no interpretation of the productions or production

packets of the grammar is necessary. That is, most of the linguistic

knowledge is put into active form. We hope to get Implementational

results in early spring 1984.

176

176Proceedings of NODALIDA 1983

Rf"'!'erer-?e3

£l] Anderson, J.: The Grammar of Case; Towards a LocalIstic Theory.
Cambridge University Press, London 4 New York, 1971.

[2] Anderson, J.: On Case Grammar. Croom Helm, London 1977.

£33 Fillmore, C.; The case for a case. In Universals in Linguistic
Theory (eds. Bach, E., and Harms, T.), Holt, Rinehart 4
Winston, New York 1968, 1—88.

£43 Fillmore, C.: Types of lexical information. In Semantics:
An Interdisciplinary Reader (eds. Steinberg, D., and
Jacobovitz, L.), Cambridge University Press, 1971, 109— 137.

£53 Hays, D.; Dependency theory; A formalism and some observations.
Language 40, 1964, 511—525.

£63 Hopcroft, J., and Ullman, J; Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, Mass.,
1979.

£73 Hudson, R.: Arguments for a Non-transformational Grammar.
The University of Chicago Press, 1976.

£83 JSppinen, H., et al.; Morphological Analysis of Finnish;
A Heuristic Approach. Helsinki Univ. of Tech., Digital Systems
Laboratory, Report B26, 1983.

£93 Pajunen, A.; Suomen kielen verbien leksikaalinen kuvaus.
Lisensiaattityo. Turun yliopiston suomalaisen ,ja yleisen kie-
litieteen laitos, 1982.

£103 Siro, P.; Si.iakielioppi (2., korjattu painos). Oy Gaudeamus Ab,
Helsinki, 1977.

£113 Tarvainen, K.; Dependensslkielioppl. Oy Gaudeamus Ab, Helsinki,
1977.

£123 Woods, W.; Transition network grammar for natural language
analysis. Communications of the ACM 13, 1970, 591—606.

177

177Proceedings of NODALIDA 1983

