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Abstract

We follow the step-by-step approach to neu-
ral data-to-text generation we proposed in
Moryossef et al. (2019), in which the gener-
ation process is divided into a text-planning
stage followed by a plan-realization stage. We
suggest four extensions to that framework: (1)
we introduce a trainable neural planning com-
ponent that can generate effective plans sev-
eral orders of magnitude faster than the orig-
inal planner; (2) we incorporate typing hints
that improve the model’s ability to deal with
unseen relations and entities; (3) we introduce
a verification-by-reranking stage that substan-
tially improves the faithfulness of the resulting
texts; (4) we incorporate a simple but effective
referring expression generation module. These
extensions result in a generation process that is
faster, more fluent, and more accurate.

1 Introduction

In the data-to-text generation task (D2T), the input
is data encoding facts (e.g., a table, a set of tuples,
or a small knowledge graph), and the output is a
natural language text representing those facts.1 In
neural D2T, the common approaches train a neural
end-to-end encoder-decoder system that encodes
the input data and decodes an output text. In re-
cent work (Moryossef et al., 2019) we proposed to
adopt ideas from “traditional” language generation
approaches (i.e. Reiter and Dale (2000); Walker
et al. (2007); Gatt and Krahmer (2017)) that sep-
arate the generation into a planning stage that de-
termines the order and structure of the expressed
facts, and a realization stage that maps the plan to
natural language text. We show that by breaking
the task this way, one can achieve the same fluency

1In this paper, we focus on a setup where the desired out-
put represents all and only the facts expressed in the dataset.
Other variants also involve content selection, allowing the
process to select which subset of the facts to express.

of neural generation systems while being able to
better control the form of the generated text and to
improve its correctness by reducing missing facts
and “hallucinations”, common in neural systems.

In this work we adopt the step-by-step frame-
work of Moryossef et al. (2019) and propose
four independent extensions that improve aspects
of our original system: we suggest a new plan
generation mechanism, based on a trainable-yet-
verifiable neural decoder, that is orders of mag-
nitude faster than the original one (§3); we use
knowledge of the plan structure to add typing in-
formation to plan elements. This improves the sys-
tem’s performance on unseen relations and entities
(§4); the separation of planning from realizations
allows the incorporation of a simple output verifi-
cation heuristic that drastically improves the cor-
rectness of the output (§5); and finally we incorpo-
rate a post-processing referring expression gener-
ation (REG) component, as proposed but not im-
plemented in our previous work, to improve the
naturalness of the resulting output (§6).

2 Step-by-step Generation

We provide a brief overview of the step-by-step
system. See Moryossef et al. (2019) for further
details. The system works in two stages. The first
stage (planning) maps the input facts (encoded as
a directed, labeled graph, where nodes represent
entities and edges represent relations) to text plans,
while the second stage (realization) maps the text
plans to natural language text.

The text plans are a sequence of sentence
plans—each of which is a tree— representing the
ordering of facts and entities within the sentence.
In other words, the plans determine the separa-
tion of facts into sentences, the ordering of sen-
tences, and the ordering of facts and entities within
each sentence. This stage is completely verifiable:
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the text plans are guaranteed to faithfully encode
all and only the facts from the input. The real-
ization stage then translates the plans into natu-
ral language sentences, using a neural sequence-
to-sequence system, resulting in fluent output.

3 Fast and Verifiable Planner

The data-to-plan component in Moryossef et al.
(2019) exhaustively generates all possible plans,
scores them using a heuristic, and chooses the
highest scoring one for realization. While this
is feasible with the small input graphs in the
WebNLG challenge (Colin et al., 2016), it is also
very computationally intensive, growing exponen-
tially with the input size. We propose an alter-
native planner which works in linear time in the
size of the graph and remains verifiable: generated
plans are guaranteed to represent the input faith-
fully.

The original planner works by first enumerat-
ing over all possible splits into sentences (sub-
graphs), and for each sub-graph enumerating over
all possible undirected, unordered, Depth First
Search (DFS) traversals, where each traversal cor-
responds to a sentence plan. Our planner com-
bines these into a single process. It works by
performing a series of what we call random trun-
cated DFS traversals. In a DFS traversal, a node
is visited, then its children are visited recursively
in order. Once all children are visited, the node
“pops” back to the parent. In a random truncated
traversal, the choice of which children to visit
next, as well as whether to go to the next children
or to “pop”, is non-deterministic (in practice, our
planner decides by using a neural-network con-
troller). Popping at a node before visiting all its
children truncates the DFS: further descendants of
that node will not be visited in this traversal. It be-
haves as a DFS on a graph where edges to these de-
scendants do not exist. Popping the starting node
terminates the traversal.

Our planner works by choosing a node with a
non-zero degree and performing a truncated DFS
traversal from that node. Then, all edges vis-
ited in the traversal are removed from the input
graph, and the process repeats (performing an-
other truncated DFS) until no more edges remain.
Each truncated DFS traversal corresponds to a
sentence plan, following the DFS-to-plan proce-
dure of Moryossef et al. (2019): the linearized
plan is generated incrementally at each step of the

traversal. This process is linear in the number of
edges in the graph.

At training time, we use the plan-to-DFS map-
ping to perform the correct sequence of traversals,
and train a neural classifier to act as a controller,
choosing which action to perform at each step. At
test time, we use the controller to guide the trun-
cated DFS process. This mechanism is inspired
by transition based parsing (Nivre and McDonald,
2008). The action set at each stage is dynamic.
During traversal, it includes the available children
at each stage and POP. Before traversals, it in-
cludes a choose-i action for each available node
ni. We assign a score to each action, normalize
with softmax, and train to choose the desired one
using cross-entropy loss. At test time, we either
greedily choose the best action, or we can sam-
ple plans by sampling actions according to their
assigned probabilities.
Feature Representation and action scoring.
Each graph node ni corresponds to an en-
tity xni , and has an associated embedding vec-
tor xni

. Each relation ri is associated with
an embedding vector ri. Each labeled in-
put graph edge ek = (ni, r`, nj) is repre-
sented as a projected concatenated vector ek =
E(xni

; r`;xnj
), where E is a projection matrix.

Finally, each node ni is then represented as a
vector ni = V[xni

;
∑
ej∈π(i) ej;

∑
ej∈π−1(i) ej],

where π(i) and π−1(i) are the incoming and out-
going edges from node ni. The traverse-to-child-
via-edge-ej action is represented as ej, choose-
node-i is represented as ni and pop-to-node-i is
represented as ni + p where p is a learned vector.
The score for an action a at time t is calculated
as a dot-product between the action representation
and the LSTM state over the symbols generated
in the plan so far. Thus, each decision takes into
account the immediate surrounding of the node in
the graph, and the plan structure generated so far.
Speed On a 7 edges graph, the planner of
Moryossef et al. (2019) takes an average of 250
seconds to generate a plan, while our planner takes
0.0025 seconds, 5 orders of magnitude faster.

4 Incorporating typing information for
unseen entities and relations

In Moryossef et al. (2019), the sentence plan trees
were linearized into strings that were then fed
to a neural machine translation decoder (Open-
NMT) (Klein et al., 2017) with a copy mecha-
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nism. This linearization process is lossy, in the
sense that the linearized strings do not explicitly
distinguish between symbols that represent enti-
ties (e.g., BARACK OBAMA) and symbols that rep-
resent relations (e.g., works-for). While this
information can be deduced from the position of
the symbol within the structure, there is a benefit
in making it more explicit. In particular, the de-
coder needs to act differently when decoding re-
lations and entities: entities are copied, while re-
lations need to be verbalized. By making the typ-
ing information explicit to the decoder, we make it
easier for it to generalize this behavior distinction
and apply it also for unseen entities and relations.
We thus expect the typing information to be espe-
cially useful for the unseen part of the evaluation
set.

We incorporate typing information by concate-
nating to the embedding vector of each input sym-
bol one of three embedding vectors, S, E or R,
where S is concatenated to structural elements
(opening and closing brackets), E to entity sym-
bols and R to relation symbols.

5 Output verification

While the plan generation stage is guaranteed to be
faithful to the input, the translation process from
plans to text is based on a neural seq2seq model
and may suffer from known issues with such mod-
els: hallucinating facts that do not exist in the in-
put, repeating facts, or dropping facts. While the
clear mapping between plans and text helps to re-
duce these issues greatly, the system in Moryossef
et al. (2019) still has 2% errors of these kinds.

Existing approaches: soft encouragement via
neural modules. Recent work in neural text
generation and summarization attempt to address
these issues by trying to map the textual outputs
back to structured predicates, and comparing these
predicates to the input data. Kiddon et al. (2016)
uses a neural checklist model to avoid the rep-
etition of facts and improve coverage. Agarwal
et al. (2018) generate k-best output candidates
with beam search, and then try to map each can-
didate output back to the input structure using a
reverse seq2seq model trained on the same data.
They then select the highest scoring output candi-
date that best translates back to the input. Mohiud-
din and Joty (2019) reconstructs the input in train-
ing time, by jointly learning a back-translation
model and enforcing the back-translation to re-

construct the input. Both of these approaches are
“soft” in the sense that they crucially rely on the
internal dynamics or on the output of a neural net-
work module that may or may not be correct.

Our proposal: explicit verification. The sepa-
ration between planning and realization provided
by the step-by-step framework allows incorporat-
ing a robust and straightforward verification step,
that does not rely on brittle information extraction
procedures or trust neural network models.

The plan-to-text generation handles each sen-
tence individually and translates entities as copy
operations. We thus have complete knowledge of
the generated entities and their locations. We can
then assess the correctness of an output sentence
by comparing2 its sequence of entities to the en-
tity sequence in the corresponding sentence plan,
which is guaranteed to be complete.

We then decode k-best outputs and rerank them
based on their correctness scores, tie-breaking us-
ing model scores. We found empirically that, with
a beam of size 5 we find at least one candidate
with an exact match to the plan’s entity sequence
in 99.82% of the cases for seen entities and rela-
tions compared to 98.48% at 1-best, and 72.3% for
cases of unseen entities and relations compared to
58.06% at 1-best. In the remaining cases, we set
the system to continue searching by trying other
plans, by going down the list of plans (when using
the exhaustive planner of Moryossef et al. (2019))
or by sampling a new plan (when using the linear
time planner suggested in this paper).

6 Referring Expressions

The step-by-step system generates entities by first
generating an indexed entity symbols, and then
lexicalizing each symbol to the string associated
with this entity in the input structure (i.e., all oc-
currences of the entity 11TH MISSISSIPPI IN-
FANTRY MONUMENT will be lexicalized with
the full name rather than “it” or “the monument”).
This results in correct but somewhat unnatural
structures. In contrast, end-to-end neural gener-
ation systems are trained on text that includes re-
ferring expressions, and generate them naturally
as part of the decoding process, resulting in natu-
ral looking text. However, the generated referring
expressions are sometimes incorrect. Moryossef
et al. (2019) suggests the possibility of handling

2We use Levenshtein-distance (Levenshtein, 1966).
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this with a post-processing referring-expression
generation step (REG). Here, we propose a con-
crete REG module and demonstrate its effective-
ness. One option is to use a supervised REG mod-
ule (Ferreira et al., 2018), that is trained to lexical-
ize in-context mentions. Such an approach is sub-
optimal for our setup as it is restricted to the enti-
ties and contexts it seen in training, and is prone to
error on unseen entities and contexts.

Our REG solution lexicalizes the first mention
of each entity as its associated string and attempts
to generate referring expressions to subsequent
mentions. The generated referring expressions can
take the form “PRON”, “X” or “THE X” where
PRON is a pronoun3, and X is a word appearing
in the entity’s string (allowing, e.g., John, or the
monument). We also allow referring to its en-
tity with its entire associated string. We restrict
the set of allowed pronouns for each entity ac-
cording to its type (male, female, plural-animate,
unknown-animate, inanimate).4 We then take, for
each entity mention individually, the referring ex-
pression that receives the best language model
score in context, using a strong unsupervised neu-
ral LM (BERT (Devlin et al., 2018)). The sys-
tem is guaranteed to be correct in the sense that it
will not generate wrong pronouns. It also has fail-
ure modes: it is possible for the system to gener-
ate ambiguous referring expressions (e.g., John is
Bob’s father. He works as a nurse.), and may lex-
icalize Boston University as Boston. We find that
the second kind of mistake is rare as it is handled
well by the language model. It can also be con-
trolled by manually restricting the set of possible
referring expression to each entity. Similarly, it is
easy to extend the system to support other lexical-
izations of entities by extending the sets of allowed
lexicalizations (for example, supporting abbrevia-
tions, initials or nicknames) either as user-supplied
inputs or using heuristics.

7 Evaluation and Results

We evaluate each of the introduced components
separately. Tables listing their interactions are
available in the appendix. The appendix also lists
some qualitative outputs. The main trends that we
observe are:

3One of he, his, him, himself, she, her, hers, herself, they,
them, theirs, it, its, itself.

4We extract the types from DBPedia pages for the enti-
ties. In case we cannot deduce a type, we do not allow any
pronoun.

• The new planner causes a small drop in
BLEU, but is orders of magnitude faster
(§7.1).

• Typing information causes a negligible drop
in BLEU overall, but improves results sub-
stantially for the unseen portion of the dataset
(§7.2).

• The verification step is effective at improv-
ing the faithfulness of the output, practically
eliminating omitted and overgenerated facts,
reducing the number of wrong facts, and in-
creasing the number of correctly expressed
facts. This is based on both manual and auto-
matic evaluations. (§7.3).

• The referring expression module is effective,
with an intrinsic correctness of 92.2%. It sub-
stantially improves BLEU scores. (§7.4).

Setup We evaluate on the WebNLG dataset
(Colin et al., 2016), comparing to the step-by-
step systems described in Moryossef et al. (2019),
which are state of the art. Due to randomness in-
herent in neural training, our reported automatic
evaluation measures are based on an average of 5
training runs of each system (neural planner and
neural realizer), each run with a different random
seed.

7.1 Neural Planner vs Exhaustive Planner

We compare the exhaustive planner from
Moryossef et al. (2019) to our neural planner, by
replacing the planner component in the Moryossef
et al. (2019) system. Moving to the neural planner
exhibits a small drop in BLEU (46.882 dropped
to 46.506). However, figure 1 indicates 5 orders
of magnitude (100,000x) speedup for graphs with
7 edges, and a linear growth in time for number
of edges compared to exponential time for the
exhaustive planner.

7.2 Effect of Type Information

We repeat the coverage experiment in (Moryossef
et al., 2019), counting the number of output texts
that contain all the entities in the input graph, and,
of these text, counting the ones in which the enti-
ties appear in the exact same order as the plan. In-
corporating typing information reduced the num-
ber of texts not containing all entities by 18% for
the seen part of the test set, and 16% for the un-
seen part. Moreover, for the text containing all
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Figure 1: Average (+std) planning time (seconds) for different graph sizes, for exhaustive vs neural planner.

Moryosef et al Moryosef et al Exhaustive Neural
StrongNeural BestPlan +Verify +Verify

Expressed 360 417 426 405
Omitted 41 6 0 2
Wrong 39 17 14 30
Over-generation 29 3 0 4
Wrong REG - - 0 3

Table 1: Manual correctness analysis comparing our
systems with the ones from Moryossef et al. (2019).

entities, the number of texts that did not follow
the plan’s entity order is reduced by 46% for the
seen part of the test set, and by 35% for the un-
seen part. We also observe a small drop in BLEU
scores, which we attribute to some relations being
verbalized more freely (though correctly).

7.3 Effect of Output Verification
The addition of output verification resulted in neg-
ligible changes in BLEU, reinforcing that auto-
matic metrics are not sensitive enough to out-
put accuracy. We thus performed manual analy-
sis, following the procedure in Moryossef et al.
(2019). We manually inspect 148 samples from
the seen part of the test set, containing 440 re-
lations, counting expressed, omitted, wrong and
over-generated (hallucinated) facts.5 We compare
to the StrongNeural and BestPlan systems from
Moryossef et al. (2019). Results in Table 1 indi-
cate that the effectiveness of the verification pro-
cess in ensuring correct output, reducing the al-
ready small number of ommited and overgener-
ated facts to 0 (with the exhaustive planner) and
keeping it small (with the fast neural planner).

5A wrong fact is one in which a fact exists between the
two entities, but the text implies a different fact from the
graph, while over-generated is either repeating facts or in-
venting new facts.

7.4 Referring Expression Module
Intrinsic evaluation of the REG module. We
manually reviewed 1,177 pairs of entities and re-
ferring expressions generated by the system. We
find that 92.2% of the generated referring expres-
sions refer to the correct entity.

From the generated expressions, 325 (27.6%)
were pronouns, 192 (16.3%) are repeating a one-
token entity as is, and 505 (42.9%) are generating
correct shortening of a long entity. In 63 (5.6%)
of the cases the system did not find a good sub-
stitute and kept the entire entity intact. Finally, 92
(7.82%) are wrong referrals. Overall, 73.3% of the
non-first mentions of entities were replaced with
suitable shorter and more fluent expressions.

Effect on BLEU scores. As can be seen in Table
2, using the REG module increases BLEU scores
for both the exhaustive and the neural planner.

- REG
Exhaustive Planner 46.882 47.338
Neural Planner 46.506 47.124

Table 2: Effect of the REG component on BLEU score

8 Conclusions

We adopt the planning-based neural generation
framework of Moryossef et al. (2019) and extend it
to be orders of magnitude faster and produce more
correct and more fluent text. We conclude that
these extensions not only improve the system of
Moryossef et al. (2019) but also highlight the flex-
ibility and advantages of the step-by-step frame-
work for text generation.
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