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Abstract

Biased decisions made by automatic systems

have led to growing concerns in research com-

munities. Recent work from the NLP commu-

nity focuses on building systems that make fair

decisions based on text. Instead of relying on

unknown decision systems or human decision-

makers, we argue that a better way to protect

data providers is to remove the trails of sensi-

tive information before publishing the data. In

light of this, we propose a new privacy-aware

text rewriting task and explore two privacy-

aware back-translation methods for the task,

based on adversarial training and approximate

fairness risk. Our extensive experiments on

three real-world datasets with varying demo-

graphical attributes show that our methods are

effective in obfuscating sensitive attributes.

We have also observed that the fairness risk

method retains better semantics and fluency,

while the adversarial training method tends to

leak less sensitive information.

1 Introduction

Abuse and unauthorized use of sensitive infor-

mation, such as demographic data, have become

an ethical issue in our society. Such information

should not be taken into account when humans or

automatic decision making systems determine in-

surance rates, screen applicants for employment,

target customers for advertising, or bank loans.

Concerns about the fairness of decisions made

by machine learning systems have led to an in-

creasing body of work on the algorithmic fair-

ness problem (Pedreshi et al., 2008; Zemel et al.,

2013; Hardt et al., 2016; Chouldechova and Roth,

2018). Existing work on fairness learning largely

focused on unbiased decisions based on classifi-

cation. The algorithms made decisions for data

consumers (e.g., bank) based on input provided

by data producers (e.g., loan applicants), with the

sensitive attributes (e.g., age, gender, and race) be-

ing exposed. Those algorithms acting as decision-

makers are supposed to avoid discrimination on

the basis of demographic groups of the individu-

als. In this case, the decision-makers are trusted

to access sensitive attributes in a proper way.

However, we believe that it is doubtful that one

can rely on algorithmic decision-makers to pro-

vide fair estimation. For example, discrimina-

tion by gender among job applicants has been re-

ported (Calcagnini et al., 2015; Midtbøen, 2016).

It was also reported that racial disparities pledged

access to higher education (Farkas, 2003; Mick-

elson, 2003). Data producers are vulnerable to

biased decisions. Therefore, we argue that data

providers should also take the responsibility of

protecting their own sensitive information. Al-

though users may be allowed to conceal well-

structured sensitive attributes such as age and gen-

der, such sensitive information can still be pre-

dicted from unstructured text data (Blodgett et al.,

2016; Mac Kim et al., 2017; Elazar and Gold-

berg, 2018; Voigt et al., 2018). As suppress-

ing more sensitive information in text indicates

more privacy, we propose a new research chal-

lenge, privacy-aware text rewriting, namely pro-

tecting sensitive attributes in text data on behalf of

data providers by rewriting the text. A rephrased

privacy-aware text should i) reduce the leakage of

sensitive information; ii) retain as much semantic

meaning of the original text; iii) be grammatically

fluent.Compared with fair representation learning,

our work focuses on text in string form.

Transforming text into a form with less sensi-

tive information is challenging in two ways. The

first challenge is that there is a trade-off between

privacy preservation and semantic relevance or flu-

ency during rewriting. For example, “I am a soft-

ware engineer with 18 years of working experi-

ence.” shows that the author is probably over 40
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years old. Replacing ‘18 years’ with ‘more than

10 years’ altogether reduces the leakage of age in-

formation with slight shift of its semantic mean-

ing. Removing ‘18 years of working experience’

provides stronger privacy protection, while the se-

mantic loss is greater at the same time. The data

providers should leverage the trade-off depending

on varying scenarios. Another challenge is that

the indicators of such sensitive attributes are sub-

tle. For example, “I went to the restaurant with my

boyfriend. The food is yummy!” is a post from so-

cial media. ‘boyfriend’ is an explicit indicator for

female user, while ‘yummy’ is an implicit indicator

which can be ignored by humans and captured by

machine learning models. Automatic text rewrit-

ing tools help people detect and modify the subtle

indicators in their text.

To address the aforementioned problems, we

propose to develop a tool that rewrites text into

less sensitive ones. In this work, we design a

privacy-aware text rewriting framework based on

back-translation to reduce the leakage of sensi-

tive information. The models are optimized ac-

cording to the trade-off between a reconstruction

loss and a privacy risk loss. The reconstruction

loss focuses on semantic relatedness and gram-

matical fluency, and the privacy risk loss controls

the leakage of sensitive information. We further

explore two variants of the approach. The first

method formulates the privacy risk as an adver-

sarial loss derived from a text classifier. The sec-

ond method derives an upper bound of an ap-

proximate fairness risk measurement on text data,

which minimizes the discrepancy of generated text

among different demographic groups. Finally, we

conduct extensive experiments on three datasets

with varying demographic groups (i.e. Politics,

Gender, and Race). The results demonstrate the

effectiveness of our methods in terms of reduc-

ing the leakage rates of sensitive information and

retaining linguistic quality of the rewritten text.

This work provides a novel framework for sys-

tematic research on privacy-aware text rewriting,

including datasets, evaluation metrics and rewrit-

ing methods, which will promote the interest in

privacy preservation in our research community.

The main contributions of this work are:

• To provide the first proposal for protecting

sensitive attributes in text on behalf of data

providers.

• To design a privacy-aware back-translation

method for protecting sensitive information

in rewritten text.

• To provide datasets and evaluation metrics

for appropriate validation of method effec-

tiveness.

2 Privacy-Aware Text Rewriting

Privacy-aware rewriting modifies text to obfus-

cate a sensitive attribute. The bespoke methodolo-

gies aim to minimize the loss of fluency as well

as the change in the underlying semantics. We

consider a setup in which we have a set of in-

put text {X1, ..., XN}, where each text Xi is a

word sequence 〈x1, ..., xl〉. Each text is associ-

ated with a sensitive attribute S, such as gender or

race. The goal is to find a privacy-aware translator

f(X) : X → Y to modify X into another word

sequence Y = 〈y1, ..., yl〉, such that an attacker

g(Y ) : Y → S fails to predict the values of the

sensitive attribute S from the translated text Y .

2.1 Privacy-aware Back-Translation Model

Privacy-aware rewriting can be regarded as a

special monolingual machine translation (MT)

task, which aims to remove sensitive information

through rephrasing. In our experiment, there is

no existing parallel corpus to learn the patterns

of privacy-preserved rewriting. We use Back-

Translation to obtain a meaning-preserving repre-

sentation in the target language, and translate the

sentences back to the source language (Prabhu-

moye et al., 2018). Since we aim to preserve sen-

sitive information, we consider the risk from an

attacker in the back-translation phase.

In our work, the source language is English and

the target language is French. Let Z denote the

space of target language, we build two translation

models Ten→fr : X → Z and Tfr→en : Z →
X , respectively. We use the Transformer-based

model (Vaswani et al., 2017) for each translation

model. The back-translation procedure is formu-

lated as,

f(X) = Tfr→en(Ten→fr(X)) (1)

For each input text, the outcome of this model is a

sequence of words in English.

The goal of learning privacy-aware back-

translation is two-fold. Firstly, it aims to

find an optimal predictor f∗ that minimizes an

expected reconstruction loss EX,Y [L(f(X), Y )]
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with L(f(X), Y ) : X × Y → R, which

measures the discrepancy between predicted se-

quences f(X) and true target sequences Y . Sec-

ondly, the predictor should be reasonably fair to S

by achieving a low risk loss with regard to privacy

R(X,Y, S) : X × Y × S → R. Let F denote the

space of all possible predictors, we find the opti-

mal rewriting model f∗ by

f∗ = argmin
f∈F

EX,Y [L(f(X), Y )] + αR(X,Y, S)

(2)

where α controls the degree of privacy protection.

2.2 Adversarial Classifier

Given an accurate classifier, the risk of privacy

is able to be estimated by the negative classifica-

tion loss on the sensitive information. Our target

is finding the representations that are good at re-

constructing the sentences, while poor in predict-

ing sensitive labels. The setting is well-aligned

with generative adversarial networks (Goodfellow

et al., 2014). We construct the back-translation

model as f(X) = m(h(X)), where h(X) em-

ploys the two translators to map X into a sequence

of hidden representations of decoded words in the

source language. Then, m(·) maps the hidden rep-

resentations into the corresponding words. An ad-

versarial classifier adv(h(X)) is a linear classifier,

which takes the mean of all hidden representations

from h(X) to predict S. The risk is formulated as

adversarial classification loss Lc(adv(h(X)), S).
The encoder h(·) is trained to fool the adversar-

ial classifier adv(·) while optimizing the back-

translation predication f(X) in Eq.(4). Eq.(3)

merely optimizes the adversarial classifier. The

training is conducted by jointly optimizing the fol-

lowing two objectives:

argmin
adv

Lc(adv(h(X)), S) (3)

argmin
h,m

Lg(m(h(X)), X)− αLc(adv(h(X)), S)

(4)

where Lg is the cross entropy loss with La-

bel Smoothing (Szegedy et al., 2016) for the

transformer-based generator and Lc is the cross

entropy loss for the adversarial classifier. The neg-

ative parameter −α is implemented by a gradient-

reversal layer (GRL)(Ganin and Lempitsky, 2015)

during back-propagation and α controls the inten-

sity of adversarial training.

2.3 Fairness Risk Measurement

In this section, we define the privacy risk loss us-

ing fairness risk measurement. The perfect fair-

ness for rewriting is a statement of conditional in-

dependence of generated text Y ⊥⊥ S|X . Hold-

ing such condition, the sensitive translator conduct

similar generation results. Therefore, attackers

will not be able to infer the dependent attributes.

A privacy-aware translator f(X) learns a distri-

bution P (Y |X), while P (Y |X,S = a) denotes

the distribution of a subgroup translator depend-

ing on a particular demographic group attribute S.

The conditional independence is formulated as,

P (Y |X) = P (Y |X,S = a) (5)

Agarwal et al. (2018) pointed out that given finite

samples in training data, it is impossible to ensure

perfect fairness on the test sample. An approxi-

mate formalism of fairness measurement is used

to quantify the discrepancy of demographic pari-

ties, namely maximal deviation between subgroup

predictions (MDSP) (Calmon et al., 2017).

sup
y,s,s′

|Pr(Ŷ = y|S = s)− Pr(Ŷ = y|S = s′)|

(6)

where Ŷ is a single variable.

Inspired by the single-variable MDSP, we de-

fine the sequential MDSP (SMDSP) for text

rewriting as,

sup
a∈S

| logP (Y |X)− logP (Y |X,S = a)| (7)

where Y is the generated sequences. We obfuscate

the sensitive attribute by reducing the discrepancy

between privacy-aware translator and the most dif-

ferent subgroup translator.

The challenge of using the SMDSP is that

it is optimized on the whole sequences. How-

ever, the state-of-the-art encoder-decoder architec-

ture (Vaswani et al., 2017; Klein et al., 2017) gen-

erate words in a word-by-word manner.We derive

an upper bound of SMDSP by applying calculus

on the sequential deviation

D(X,Y, S = a)
.
= | logP (Y |X)− logP (Y |X,S = a)|

= |
l∑

i=1

logP (yi|X, y<i)−
l∑

i=1

logP (yi|X, y<i, S = a)|

≤
l∑

i=1

| logP (yi|X, y<i)− logP (yi|X, y<i, S = a)|

.
= Ua(X,Y )
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The composition of MDSP for each word is an

upper bound of SMDSP.

Ru(X,Y, S) = sup
a∈S

Ua(X,Y ) (8)

We replace the approximate fairness risk by its up-

per bound Eq.(8) and obtain a joint training objec-

tive.

Lα(X) = L(f(X), X) + αRu(X,Y, S) (9)

In training, each subgroup translator is pre-trained

beforehand with the training data labeled with

the corresponding sensitive attribute value. Their

parameters are kept fixed when minimizing the

privacy-aware rewriting model.

3 Experimental Setup

3.1 Datasets

In this paper we conduct experiments on three

tasks, which can lead to potential social-good ap-

plications, namely obfuscating gender, political

slant and race of the authors. .

Gender (Reddy and Knight, 2016) is a dataset

of reviews from Yelp annotated with the gender of

the authors, either male or female. The sentences

with low indication of gender (likelihood of gen-

der lower than 0.7) is filtered out.

Politics (Voigt et al., 2018) is a dataset of com-

ments on Facebook posts from 412 members from

the United States Senate and House. Each com-

ment is associated with the corresponding Con-

gressperson’s party affiliation as the sensitive at-

tribute, S ∈ {democratic, republican}.

Race (Blodgett et al., 2016) is a dataset based

on the dialectal tweets corpus (DIAL), including

59.2 million tweets. The tweets are categorized

into African-American English (AAE) or Standard

American English (SAE), which is highly corre-

lated to the race of the author. The predictor takes

into account both the content of the tweets and

the geolocations of the the authors. We filter out

the samples with predicted confidence lower than

80%, and tweets with less than 3 words. We con-

sider race as sensitive information of the dataset.

We also maintain the sentiment classification as a

target task for this corpus to check if the sentiment

information is still preserved after rewriting. The

sentiment labels are derived from emojis which are

associated with sentiments.

All the aforementioned corpora are split into

four disjoint parts: Class, training corpus for sen-

sitive attribute classifier; Train, training corpus

for privacy-aware text rewriting; Valid, validation

set; and Test, test set. The number of sentences for

each split of these datasets are listed in Table 1.

The datasets are publicly available at https:

//github.com/xuqiongkai/PATR

Dataset Class Train Valid Test

Gender 2.6M 200K 4K 4K
Politics 80K 200K 4K 4K
Race 80K 100K 4K 4K

Table 1: Data splits of Gender, Politics and

Race.

3.2 Models

We consider the following three models for

privacy-aware text rewriting. Back Trans is

the back translation model considered as base-

line. Adv is the model using adversarial training.

SMDSP model use Sequential Maximal Deviation

between Subgroup Predictions. We also compare

the quality of generated text of our systems with

those of an open-domain Paraphrase generation

system (Iyyer et al., 2018).

3.3 Implementation Details

We use Transformer (Vaswani et al., 2017) as the

translation architecture in our experiments. We re-

implement the transformer model based on Open-

NMT (Klein et al., 2017). In our experiments, we

use the same configurations, including 2 encoder

and decoder layers, 256-dimensional word embed-

ding and 256-dimensional hidden layers, drop out

rate 0.1, label smoothing weight 0.1. All models

use Beam Search decoding algorithm with beam

size 5.

We train English-French machine trans-

lation (En-Fr) and French-English back-

translation (Fr-En) using Europarl v7 from

WMT15 (Bojar et al., 2015). The words are

tokenized using Moses tokenizer (Koehn et al.,

2007). Our translation system achieves the BLEU

scores of 36.24% and 37.36% on En-Fr and Fr-En,

respectively. The En-Fr model is used to generate

the parallel corpus for all experiments.

3.4 Evaluation

The generated sentences are evaluated according

to both linguistic quality of the sentences and ob-

fuscation of the sensitive attribute. For each of

these two aspects, we conduct automatic evalua-

tion and human evaluation, respectively.
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Linguistic Quality focuses on evaluating the

quality of the results based on their semantic rele-

vance to the original text and gramatical fluency

of the generated sentences. We adopt four au-

tomatic evaluation metrics, BLEU, GLEU, ME-

TEOR and WMD. BLEU (Papineni et al., 2002)

and GLEU (Wu et al., 2016) measure the n-

gram matching between hypothesis and reference,

where GLEU considers both precision and recall.

METEOR (Banerjee and Lavie, 2005) further ap-

plies stemming and synonym matching. Word

Mover Distance (WMD) (Kusner et al., 2015)

calculates the optimal transport distance between

word embedding in original and generated sen-

tences1. Intuitively, BLEU and GLEU evaluate

fluency of the sentence as they are based on the

quality of n-grams, while WMD measures seman-

tic relevance as words can be regarded as atom se-

mantic components of sentences.

We also conduct human evaluation to judge the

fluency and relevance of the results2. For each set

of the results, two annotators are asked to judge

the quality of the results between the scales of 1-

5. The Kappa coefficients (McHugh, 2012) on

Gender, Politics and Race are 0.45, 0.47

and 0.74, respectively.

Obfuscation evaluates the leakage of sensitive

attributes of generated text. For automatic eval-

uation, we estimate the probability of sensitive at-

tribute on generated sentences using a Logistic Re-

gression with L2 regularization (Pedregosa et al.,

2011). For all the experiments, we use top 3K fre-

quent words as features. Based on the prediction

of classifier pi = P (S = i|X), we propose to

evaluate the obfuscation of the results using the

following three metrics:

1. Entropy evaluates the averaged entropy

(
∑

i−pi log pi) of all predictions. Higher

Entropy indicates better less sensitive infor-

mation leakage.

2. P-Acc, prediction accuracy, calculates the

portion of correct prediction of the sensitive

attribute. In the case of binary classification,

the score is better if it is closer to 50%.

1We use pre-trained word2vec model trained on
Google News dataset from https://code.google.

com/archive/p/word2vec/.
2We refer readers to Appendix A for more details about

the annotation guideline.

3. M-Acc, modification accuracy, calculates the

label probabilities of source and generated

sentences. If the probability of the sensitive

attribute decreases after rewriting, the modi-

fication is accepted. M-Acc counts the rate of

accepted sentence modifications.

In human evaluation, annotators are asked to

judge the sensitive attribute values of 300 sampled

sentences in test set. We use accuracy to evalua-

tion the awareness of sensitive information by hu-

man and automatic annotators. Due to the fact that

human judgments underperform automatic judg-

ments (see Table 4), we rely more on automatic

metric to evaluate the rewriting results.

4 Results and Analysis

We first conduct human evaluation and discuss

their relation to automatic evaluation metrics with

regard to semantic relevance, grammatical fluency

and obfuscation. Then, we compare our privacy-

aware models according to linguistic quality and

obfuscation. Later on, we test the semantic loss of

our models on the target task. Finally, we provide

some sample outputs for case study.

4.1 Human Evaluation

Firstly, we ask human annotators to evaluate lin-

guistic quality of Back Trans, Adv (α = 1) and

SMDSP (α = 1), based on the rewriting results

from 300 test samples, with regard to fluency (Flu)

and relevance (Rel)3. We calculate the Pearson

Correlation between human and automatic eval-

uation metrics. Table 2 shows the correlation of

semantic relevance between human and automatic

evaluation. WMD is clear winner among all auto-

matic metrics across the three datasets. According

to Table 3, GLEU is the measure that most cor-

related to human judgement in terms of fluency,

though METEOR falls slight short on the gender

corpus. Unsurprisingly, the widely used BLEU

is the relatively less correlated to human percep-

tion, which was also observed in machine transla-

tion (Wu et al., 2016; Callison-Burch et al., 2006).

Secondly, we compare the performance of pre-

dicting sensitive information between human an-

notators and automatic classifiers. We ask hu-

man annotators to classify the sensitive attributes

of 300 original sentences in test set. The accu-

racy of the annotations are illustrated in Table 4.

3We refer readers to Appendix A with more details on
annotation guideline.
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Exp BLEU GLEU METEOR WMD

Gender(Adv) 0.489 0.557 0.559 0.651
Gender(SMDSP) 0.414 0.507 0.511 0.645

Politics(Adv) 0.372 0.460 0.496 0.573
Politics(SMDSP) 0.358 0.474 0.476 0.563

Race(Adv) 0.311 0.545 0.532 0.127
Race(SMDSP) 0.242 0.386 0.367 0.382

Table 2: Correlation between semantic relevance and

automatic evaluation metrics on Gender, Politics

and Race. The most correlated automatic metrics are

bold.

Exp BLEU GLEU METEOR WMD

Gender(Adv) 0.265 0.287 0.222 0.297
Gender(SMDSP) 0.192 0.231 0.186 0.361

Politics(Adv) 0.180 0.260 0.277 0.200
Politics(SMDSP) 0.149 0.236 0.236 0.231

Race(Adv) 0.168 0.403 0.433 0.333
Race(SMDSP) 0.068 0.150 0.124 0.046

Table 3: Correlation between fluency and auto-

matic evaluation metrics on Gender, Politics and

Race. Top two correlated automatic metrics are bold.

To our surprise, human judgments are more than

10% worse than our classifiers on all the experi-

ments. For Politics, we ask one more anno-

tator for additional annotation and the accuracy of

the annotation is still lower than 65%. After in-

vestigating the datasets, we found that a large pro-

portion of samples are difficult for human anno-

tators while our classifier can predict them cor-

rectly. For example, in Gender, human strug-

gled in deciding whether “the food is delicious”

and “the people were nice” are posted by male or

female authors. For Politics, we observe sev-

eral cases that human tends to annotate them with

the opposite political slant when the sentences are

in negative sentiment, while actually the speaker

and the mentioned people support the same party,

e.g., “Patty Murray couldn’t be any more dishon-

est than this!”. Other examples like “today is such

a wonderful day!” and “God bless you guys” are

neutral to our annotators. Correctly annotating

these samples might require extensive background

in American politics4. To sum up, human annota-

tors fail to incorporate subtle indicators into their

decision, however, the classifiers manage to detect

them.

The human evaluation studies conclude that i)

we can rely on sensitive attribute classifiers for

obfuscation evaluation, and ii) we should look at

WMD for semantic relevance and GLEU for flu-

4The top weighted words of male or female for Gender,
democratic or republican for Politics, and SAE for Race
are listed in Appendix B to show the difficulty for human
annotators to capture subtle indicators.

Gender Politic Race

Automatic 77.3 93.7 82.7

Human 66.0 60.3 71.0

Table 4: Comparison of human and automatic judg-

ments on Gender, Politics and Race.

ency.

4.2 Adversarial Learning vs. SMDSP

We conduct automatic evaluation on text gener-

ated by Back Trans, Adv and SMDSP. The over-

all observations are i) Back Trans provides a pre-

liminary baseline for our task; ii) both Adv and

SMDSP are able to reduce the leakage of sensi-

tive information; and iii) SMDSP retains better

linguistic quality, while Adv manages to preserve

sensitive information.

We first compare the linguistic quality of the

results in Table 5. The Back Trans outperforms

both Adv and SMDSP on average because it does

not cope with sensitive attributes in training. The

performance of Adv model with the highest α ob-

tains less than half GLEU than that of Back Trans.

Although SMDSP with higher α also shows per-

formance reduction, the quality of generated text

are still competitive with Back Trans, with less

than 10% score reduction. In particular, SMDSP

with (α = 1) achieves even higher GLEU on both

Politics and Race than the baseline. We at-

tribute this to the regularization effect of SMDSP

on language modeling. Results of human evalu-

ation are coherent to automatic evaluation, in Ta-

ble 7. SMDSP achieves highest fluency results and

competitive relevance results.

Then, we show the obfuscation performance in

Table 6. Back Trans is a competitive baseline that

obfuscates the classifiers to some extent. Adv and

SMDSP are able to further reduce the obfusca-

tion score on all three datasets. Generally, models

with higher α achieve better obfuscation perfor-

mance. Adv tend to be more aggressive on pri-

vacy preservation than SMDSP. However, we ob-

serve that Adv acquires better privacy preserva-

tion by sacrificing the linguistic quality, e.g., Adv

(α = 5) basically chooses to ‘keep silent’ (pro-

duces almost no words) to protect the sensitive in-

formation on Politics5. We believe that gen-

erating totally non-sense sentences is too conser-

vative for our task. On the other hand, SMDSP

manages to protect sensitive attribute while keep-

ing the semantic meaning as much as possible. For

5All the generated sentences are empty on test set.
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Model Gender Politics Race
GLEU METEOR WMD GLEU METEOR WMD GLEU METEOR WMD

Back Trans 45.14 37.16 1.012 37.29 36.78 1.039 23.09 26.94 1.460

Adv(α = 1) 44.11 36.76 1.023 29.44 33.55 1.125 12.94 18.07 1.303
Adv(α = 2) 40.29 34.34 1.117 23.20 26.82 1.261 12.75 18.39 1.430
Adv(α = 5) 22.98 23.32 1.561 N/A N/A N/A 9.67 17.03 2.242

SMDSP(α = 1) 44.17 36.69 1.031 38.43 36.59 1.044 24.77 28.15 1.483
SMDSP(α = 2) 43.10 35.84 1.062 38.01 36.36 1.056 23.95 27.49 1.501
SMDSP(α = 10) 41.54 35.09 1.101 36.40 35.96 1.069 23.10 26.99 1.531
SMDSP(α = 100) 40.90 34.64 1.122 36.84 35.64 1.082 22.74 26.81 2.242

Table 5: Automatic evaluation of linguistic quality on Gender, Politics and Race.

Model Gender Politics Race
Entropy P-Acc M-Acc Entropy P-Acc M-Acc Entropy P-Acc M-Acc

Test(Ori) 0.5544 77.45 - 0.4873 93.05 - 0.3586 86.33 -

Back Trans 0.5617 72.45 48.90 0.5011 85.55 56.03 0.3960 74.68 62.35

Adv(α = 1) 0.5649 72.50 49.58 0.5026 84.90 57.25 0.4386 74.08 66.80
Adv(α = 2) 0.5644 70.23 52.73 0.5542 73.60 68.65 0.4623 73.40 69.13
Adv(α = 5) 0.5754 66.80 59.78 0.6931 50.00 93.15 0.5268 65.75 73.58

SMDSP(α = 1) 0.5711 71.80 50.18 0.5059 85.20 57.33 0.3989 74.85 62.48
SMDSP(α = 2) 0.5759 71.08 52.15 0.5066 84.95 58.35 0.4013 74.40 63.40
SMDSP(α = 10) 0.5768 70.88 53.05 0.5089 85.13 59.23 0.4007 74.08 63.65
SMDSP(α = 100) 0.5803 70.73 54.78 0.5129 85.08 59.90 0.4069 74.10 64.80

Table 6: Automatic evaluation of Obfuscation on Gender, Politics and Race.

Model Gender Politics Race
Flu Rel Flu Rel Flu Rel

Back Trans 4.68 4.09 4.60 4.31 4.31 3.88
Adv 4.66 4.13 4.42 4.01 3.84 3.53
SMDSP 4.73 4.14 4.60 4.21 4.37 3.98

Table 7: Human evaluation of fluency (Flu) and rele-

vance (Rel) on Gender, Politics and Race based

on the results of Back Trans, Adv (α = 1) and SMDSP

(α = 1) with the scales of 1-5.

example, SMDSP (α = 1) achieves both higher

relevance score and better obfuscation score than

Adv (α = 1) on Gender and Politics.

Finally, we demonstrate the training stability of

our models. The reconstruction losses of each

model on validation set of Gender, Politics

and Race are shown in Figure 1. We pre-train the

back translation model for 10 epochs on Gender

and 20 epochs on Politics and Race. Then,

we train Adv model and SMDSP model based

on the pre-trained model. We also include the

pre-trained model with the same total number of

training epochs in Black lines. After pre-training,

Back-Trans models start to overfit and get slightly

worse results on validation set. In most cases,

the losses of Adv are higher than Transformer,

and higher adversarial training intensity α de-

creases the performance of translation model. Adv

(α = 5) is not included in the plots, because their

losses are out of the range. In contrast, SMDSP

achieves better performance than Adv. The perfor-

mance of SMDSP is even better than Back Trans

on Gender and Race.

4.3 Target Task Performance

We evaluate sentiment classification (Sent) as the

target task and racial (Race) as sensitive attribute

on the Race. As shown in Table 8, the pre-

diction performance of both Race and Sent us-

ing Adv models decrease as the hyperparame-

ter α increases. Such trend shows that Adv im-

proves privacy preservation by obfuscating the se-

mantic meaning of the original text. In contrast,

Risk models successfully decrease the accuracy

on Race, while preserving the accuracy on Sent,

showing the robustness of the model on preserv-

ing semantic meanings of the text.

4.4 Case Study

We demonstrate generated examples in Figure 26.

For Gender, Back Trans generates the words

with clear tendency of gender, such as ‘yummy’

and ‘girlfriend’, while privacy-aware models use

‘delicious’, ‘amazing’ and ‘friend’ instead. For

Politics, Adv and SMDSP skip the name af-

ter Sir to hide the political affiliation of the person.

In the second example, Adv and SMDSP replace

‘love you’ with ‘help’ to reduce the political slant.

5 Related Work

Achieving fairness or preserving privacy through

removing sensitive information from text has been

explored by adversarial training (Li et al., 2018;

6Because the samples in Race are full of porny and vio-
lent words, they are excluded in the paper.
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Figure 1: Log perplexity(PPL) on valid set of Gender, Politics and Race. Red areas indicate pre-training

epochs and Blue areas represent the epochs for privacy-aware training.

Figure 2: Sample of original text, with sensitive attribute labels, and corresponding rewritten text using Back Trans,

Adv (α = 1) and SMDSP (α = 1) on Gender and Politics.

Model Race Sent

Test(Ori) 86.33 74.08
Back Trans 74.68 70.18

Adv(α = 1) 74.08 70.15
Adv(α = 2) 73.40 69.88
Adv(α = 5) 65.75 65.70

SMDSP(α = 1) 74.85† 69.88

SMDSP(α = 2) 74.40 70.23†

SMDSP(α = 5) 74.30 70.15†

SMDSP(α = 10) 74.08 70.60

SMDSP(α = 100) 74.10 70.83†

Table 8: Prediction accuracy (P-Acc) of classifica-

tion results of race and sentiment classification task

on Race. The results with higher accuracy than Back

Trans are marked with daggers (†).

Elazar and Goldberg, 2018; Coavoux et al., 2018)

and differential privacy (Fernandes et al., 2018).

These work considers text classification as the

target task and avoid data leakage by learning

privacy-preserving latent representations. In con-

trast, our work aims to generate text in string form

to protect sensitive information for data producers,

which can be viewed as a special form of fair rep-

resentation learning.

Paraphrase generation and text simplification

are two tasks closely related to privacy-aware

rewriting. Most models are based on monolingual

machine translation (Ibrahim et al., 2003; Zhao

et al., 2010; Wubben et al., 2012; Xu et al., 2012,

2016; Nisioi et al., 2017; Wang et al., 2016). Our

work focuses on generating obfuscated text in or-

der to conceal sensitive attribute.

There is a fast growing body of work on stylis-

tic language generation, which focus on gener-

ating text with particular styles (e.g., humour or

romantic) while trying to retain the meaning of

text (Mathews et al., 2016; Fu et al., 2018; Su

et al., 2018; Xu et al., 2019). Style transfer is also

considered as text rewriting, which adds style in-

formation to text (Shen et al., 2017; Prabhumoye

et al., 2018). In contrary, our work tries to elimi-

nate the additional sensitive information.

6 Conclusion

In order to protect sensitive information in text, we

propose a privacy-aware back-translation method

for text rewriting. Adversarial training and fair-

ness risk measurement based approaches are pro-

posed to incorporate the privacy risk. We propose

the evaluation metrics for the task to assess se-

mantic relevance, fluency and obfuscation of the

results. Our experimental results show that both

methods reduce the leakage of sensitive informa-

tion, and the fairness risk based method is able to

better retain fluency and relevance than the adver-

sarial one.
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