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Abstract

We propose a method to represent dependency trees as dense vectors through the recursive appli-
cation of Long Short-Term Memory networks to build Recursive LSTM Trees (RLTs). We show
that the dense vectors produced by Recursive LSTM Trees replace the need for structural features
by using them as feature vectors for a greedy Arc-Standard transition-based dependency parser.
We also show that RLTs have the ability to incorporate useful information from the bi-LSTM
contextualized representation used by Cross and Huang (2016) and Kiperwasser and Goldberg
(2016b). The resulting dense vectors are able to express both structural information relating to the
dependency tree, as well as sequential information relating to the position in the sentence. The
resulting parser only requires the vector representations of the top two items on the parser stack,
which is, to the best of our knowledge, the smallest feature set ever published for Arc-Standard
parsers to date, while still managing to achieve competitive results.

1 Introduction

Neural network-based dependency parsers have typically relied on combination of raw features, as rep-
resented by their dense vector embeddings to represent features of a sentence as well as the parser state
(Chen and Manning, 2014; Weiss et al., 2015; Andor et al., 2016; Zhou et al., 2015). On the other hand,
there has been substantial work on using innovative deep learning architectures to build more informative
feature representations.

One approach has been to model an input sentence using bi-directional Long Short-Term Memory
Networks (bi-lstms) (Cross and Huang, 2016; Kiperwasser and Goldberg, 2016b). The result is a vector
for each word that encodes both its information, and relevant information from other parts of the sentence.
This approach enabled better results with fewer features than was possible before (Cross and Huang,
2016; Shi et al., 2017).

Another approach has been to represent the dependency tree itself with some form of recursive net-
work, either bottom-up (Dyer et al., 2015; Kiperwasser and Goldberg, 2016a; Stenetorp, 2013), or top-
down (Le and Zuidema, 2014).

In this paper we propose a new method of recursively modelling dependency trees using LSTMs,
which we call Recursive Tree LSTMs. Our experiments show that this method of representation is very
powerful, and can even be used as an additional layer of encoding over bi-lstm feature representation,
which results in a more informative model. The final parser is capable of achieving competitive results
with a feature set consisting of only the top two items on the stack, which is the smallest feature set for
an Arc-Standard dependency parser used successfully to date.

2 Recursive LSTM Trees (RLTs)

We propose a method of representing a dependency tree as a single dense vector that results from the
repeat application of an encoding mechanism to sequences of head-dependent pairs.
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Figure 1: A compact representation showing how a subtree (left) is arranged as a sequence to produce a
tree vector for the head token hτ (right). The encoding mechanism here is a single forward LSTM. The
operation � is concatenation, ↑ is input, ⇀ is the passing of the internal state from one LSTM step to
another, and ⇑ is the output of the LSTM. < S > represents the start tag, and is used both to signifiy
the start of the head/child sequence and as a base case for leaf nodes, such as in the case of bτ . The
construction of xτ and yτ is done in the same way as for bτ and is omitted for brevity.

Each node in the tree represents a head token’s interaction with the representations of all of its imme-
diate dependents. Similarly, the representations of each of these dependents are themselves the result of
the interaction between their token and the representations of their corresponding dependents.

Each token has 2 representations, a vector representation v and a tree representation τ . The vector
representation is the raw description of a token in its sentence, which in the most basic form can simply
be the concatenation of the word and part-of-speech vectors of that token. However, contextualized
representation has been shown to be a richer, more informative feature about a token and its position
in a sentence (Cross and Huang, 2016; Kiperwasser and Goldberg, 2016b). We experiment with both
approaches and confirm that a contextualized vector does improve the performance of RLTs, in addition
to its properties being carried over to the RLTs themselves, meaning that parsing can be done with
minimal features.

The tree representation of a token, on the other hand, encodes the dependency information of a token
and its dependents. Consider a simple subtree consisting of a head token h and its dependents a and b as
illustrated in Figure 1. The subtree is represented as a sequence of pairs of head vectors (hv) and child
trees (aτ , bτ ). These pairs are then input to the encoding mechanism with the final output being the head
tree vector hτ .

The first pair in the sequence representation is always (hv, < S >), where < S > has the same size
as the output size of the encoding mechanism and represents the start tag of the sequence. This also
serves as the base case for leaf nodes in the dependency tree as well as for tokens without dependents in
partially built trees while parsing.

Each input pair uses the same hv which is then concatenated with the tree representation of the de-
pendent. The dependents are presented in their order of appearance in the sentence, and the encoding
mechanism output at each step can be taken to represent the subtree of h including the dependents intro-
duced up to that step. The recursive element of this formulation is the repeat application of the encoding
mechanism, in a bottom-up approach, in order to produce tree representations for tokens that are then
used in turn to produce the tree representations of their corresponding heads.

The head token h has one dependent who also has dependents and another which has none. bτ is
represented by the base case with (bv � < S >), while aτ requires 2 additional steps to incorporate
information from xτ and yτ .

The dependents aτ and bτ must be calculated first before hτ can be produced, and by extension xτ and
yτ are required first in order to calculate aτ . In this way the final dependency tree representation is built
recursively, bottom-up, with the final representation being the tree representation ROOTτ .



Stack Buffer

Input Layer

Softmax Layer Softmax Layer

Parsing Hidden Layer Labelling Hidden Layer

Figure 2: Example of a parser configuration with features using RLTs.

3 Implementation & Training Details

We implemented1 our model in python using the DyNet framework (Neubig et al., 2017). The encoding
mechanisms used by the RLTs in our experiments used 2 layers of LSTMs of size 256. For experiments
using bi-lstm contextualized representation, we also used 2 layers of bi-lstms of size 256 in each direc-
tion. For the basic vector representations we used randomly initialized part-of-speech tag vectors of size
50, and for word embeddings we used vectors of size 100 initialized using the GloVe vectors (Pennington
et al., 2014) trained on 6B. tokens with 400k vocabulary.

The tree vectors of relevant RLTs are then concatenated and passed as input to two sets of two feed-
forward hidden layers of size 256, with rectified linear units (ReLUs) (Nair and Hinton, 2010) as activa-
tion functions. The two sets of hidden layers are responsible for modelling the relevant information for
dependency parsing and dependency labelling separately, similar to the hierarchical architecture used by
Cross and Huang (2016). We set a dropout rate of 0.3 on all LSTMs (Gal, 2015) and the hidden layers
(Hinton et al., 2012). In our experiments we tried different dropout rates, but the differences were too
small to experiment with separate dropout rates for different layers. The final output layers are two sepa-
rate softmax layers with the same structure as in the setup of Cross and Huang (2016), in which the scores
of the output layer corresponding to {SH,LA,RA} uses the output of the dependency parsing hidden
layers, and the output layer scoring dependencies {DEP} uses the output of the dependency labelling
hidden layers, whereDEP is the set of all possible dependency labels. An illustration of the architecture
of the parser is show in figure 2. All weights and pos tag vectors were initialised uniformly (Glorot and
Bengio, 2010). For training we use a negative log likelihood loss function, −

∑
i log(yi), where yi is

the score of the gold transition from the final softmax layer for the training input/output pair i in the
mini-batch. We use mini-batch updates of 10 sentences, and stop training after 30 epochs. We optimize
the model parameters using Adam (Kingma and Ba, 2014) with a learning rate α = 1× 10−3. We train
our models using the Wall Street Journal (WSJ) section from the Penn Treebank (Marcus et al., 1993).
We use §2-21 for training, §22 for development, and §23 for testing. We use Stanford Dependencies
(SD) (De Marneffe et al., 2006) converted from constituency trees using version 3.3.0 of the converter.
As is standard we use predicted POS tags for the train, dev, and test sets. We report unlabeled attachment
score (UAS) and labeled attachment score (LAS), with punctuation excluded. The models are tuned on

1Implementation available at https://github.com/MohabElkaref/rlt



Encoding Type UAS LAS
word/pos embeddings 92.94 90.61
contextualized vectors 94.26 92.01
K & G (2016a) 93.3 90.8
Dyer et al. (2015) 93.2 90.9

Table 1: Development set scores on WSJ (SD)
comparing between hv being a concatenation of
the tokens word/pos vectors and hv being a con-
catenation of contextualized vectors.

Feature Set UAS LAS
{s0−3, b0−3} 94.26 92.01
{s0,1, b0} 94.23 91.99
{s0,1} 93.88 91.72

Table 2: Development set scores for different fea-
ture sets, using a bi-lstm contextualized vector as
hv, for Forward and Bi-directional encoding.

the development set, with the tuning that produced the highest UAS used to obtain the final scores on the
test set. We additionally report results on the Universal Dependency set used in the CoNLL‘18 shared
task in Table 4 for Catalan, German, English, Spanish, French, Italian, and Norwegian.

4 Experiments & Results

For our initial set of experiments we trained models that used the top 4 RLTs on the stack, and the front
4 on the buffer as input features to the feed forward hidden layer. We compare our results initially to
those of Dyer et al. (2015), who used Stack-LSTMs, and Kiperwasser and Goldberg (2016a), who used
Hierarchical Tree-LSTMs, since they are the closest in the literature to our approach. We make a more
complete comparison with state of the art Transition-based parsers in table 3.

Recursive representation was used by Dyer et al. (2015) to represent elements on the stack, similar
to our approach. However, their representation is computed through the recursive application of a feed-
forward composition function that encodes a (head, relation, dependent) tuple, encoding children in the
order in which they are reduced. Kiperwasser and Goldberg (2016a) uses a bottom up recursive ap-
proach to build a tree representation as well, but separates the sequence of children into a left and a right
sequence, with the head itself being the start of both sequences, and the final representation of the sub-
tree being a concatenation of the output of both sequences. As in our work, Kiperwasser and Goldberg
(2016a) use bi-LSTM vectors to represent words being input to the encoding LSTM.

When setting hv to be the concatenation of the word and pos vectors, the resulting accuracy score,
shown in table 1, approaches the performance of Dyer et al. (2015) and Kiperwasser and Goldberg
(2016a). Using bi-lstm contextualized representation as hv, however, significantly improves accuracy to
94.26/92.01 on the development set and beating both of our baselines.

Our second set of experiments were to investigate whether or not RLTs retain the properties of the bi-
lstm representation in addition to its own, i.e., produce an hτ that can represent a token’s special position
in a sentence in addition to representing it as the head of its own subtree.

The results shown thus far are the results of a wide feature set, the first 4 items on both structures
{s0−3, b0−3}, which is comparable to earlier feature sets used by Weiss et al. (2015) and Chen and Man-
ning (2014), but without the need for structural features, such as left-most and right-most dependents
which are already encoded in the way a tree vector is produced. The results in Table 2 show the perfor-
mance of our RLT models on increasingly small feature sets. This second set of experiments show that
RLTs are also able to represent contextual information about the node from the bi-lstm layer in addition
to its own structural information. Interestingly the drop in the accuracy of RLTs with the complete re-
moval of buffer features is limited. Our minimal feature set here consists of only the top 2 items on the
stack {s0,1}. These 2 elements represent the fundamental task of an Arc-Standard parser, which is to
decide whether or not these 2 words are related, and so are not themselves contextual features.

5 Discussion

Vector tree representation has a long history, primarily used to model constituency trees using Recursive
neural networks (Goller and Kuchler, 1996; Socher et al., 2010). Such networks relied on the repeat
application of a feed forward layer to encode a fixed maximum number of relations. Adapting this



UAS LAS
This work

8 feats. + word/pos embeddings 92.72 90.55
8 feats. + contextualized vectors 94.13 92.11
2 feats. + contextualized vectors 94.04 91.93

Recursive Tree
Le and Zuidema (2014) 93.84 91.51
Dyer et al. (2015) 93.1 90.9
Kiperwasser and Goldberg (2016a) 93.0 90.9
Ballesteros et al. (2016) 93.56 91.42

Feed Forward
Chen and Manning (2014) 91.80 89.60
Weiss et al. (2015) 93.99 92.05
Andor et al. (2016) 94.61 92.79

Bi-lstm contextualized representation
Cross and Huang (2016) 93.42 91.36
Kiperwasser and Goldberg (2016b) 93.9 91.9
Shi et al. (2017) 94.53 N/A

Table 3: Test set scores on WSJ (SD) for some of the highest scoring Transition-based Dependency
Parsers in current literature. Contextualized vectors refer to the bi-lstm vector representation used for hv,
and word/pos embeddings refers to the concatenation of these vectors to represent hv. 8 feats. refers to
the use of the top 4 items on the stack and buffer, 2 feats. refers to the use of the top 2 items on the stack.

Corpus UAS LAS
ca ancora 90.34 87.72
de gsd 76.71 71.56
en ewt 82.86 80.18
es ancora 89.78 87.10
fr gsd 84.15 80.04
it isdt 90.45 88.22
no bokmal 85.83 82.70

Table 4: Test set scores on 7 corpuses from the CONLL‘18 shared task. These sets use Universal
Dependencies, and use an F1 score calculation for UAS and LAS that includes punctuation.

approach to an arbitrary number of dependents results in deep narrow trees and the gradient vanishing
problem. One approach to deal with this has been the Tree-LSTM model, an amended gating mechanism
proposed by Tai et al. (2015) based on LSTMs.

For transition-based parsing earlier work with recursive representation includes Stenetorp (2013), who
uses a recursive layer to model dependency trees in a manner similar to that used in constituency parsers,
but does not produce a high accuracy.

Our main comparisons have been with the work of Kiperwasser and Goldberg (2016a) as it is the
closest to our work. They use a bottom up recursive approach to build a tree representation as well,
but separate the sequence of children into a left and a right sequence, with the head itself being the
start of both sequences, and the final representation of the subtree being a concatenation of the output
of both sequences. As in our work, Kiperwasser and Goldberg (2016a) use bi-lstm vectors to represent
words being input to the encoding LSTM. We note that in the case of dependents that are leaf nodes in
the dependency tree, the representation of Kiperwasser and Goldberg (2016a) models the left sequence
backwards and the right sequence forwards. They do not encode information considering the entire set
of dependents.

We also compare our results with Dyer et al. (2015), who use a bottom encoding to represent words on
the stack, and then uses a stack-LSTM to represent the stack and buffer. The main point of interest here is
a recursive composition function which encodes a (head, relation, dependent) tuple, and represents heads
with multiple dependents by reapplying the composition function with the previous output as the head.
The dependents are encoded into this representation as they are added to the tree, which again means



an unordered representation of dependents. Our models suffered a drop in accuracy when we used an
unordered sequence of dependents, which could be a possible explanation for the ∼1% difference in
accuracy scores.

The performance of RLTs shows a considerable ability to encode structural information into a single
dense vector. This ability is highlighted when comparing with Weiss et al. (2015), where the resulting
accuracy scores are comparable but only with the additional representation of a structured perceptron.
Similarly, the scores of Kiperwasser and Goldberg (2016b) improve by using structural features in addi-
tion to the initial set of {s0−2, b0}, with the left and right-most modifiers of the first 3 and the left-most
modifier of the last, for a total of 11 contextualized features. In both of these cases the stack and buffer
features are similar, with RLTs showing an ability to implicitly encode useful structural features in the
final tree vector τ .

Additionally RLTs gain much from the use of contextualized vectors as the base representation v.
The structure of RLTs predictably is not capable of modelling the sequential position of a word in its
sentence, but it can retain the information modelled by the bi-lstm representation fed into it.

Finally, our model produces competitive results with a minimal feature set that, to the best of our
knowledge, has not yet been achieved for Arc-Standard, but has been achieved for Arc-Eager and Arc-
Hybrid by Shi et al. (2017). A key difference is that our minimal features set consisted of the top 2 items
on the stack, while Shi et al. (2017) used the first items from the stack and buffer, which did not work for
Arc-Standard. This difference could be due to the different definitions of the LA transition in particular
which use the front of the buffer as head, while Arc-Standard limits all transition effects to the stack. Our
results remain behind those of Andor et al. (2016) and Shi et al. (2017), both of whom used global loss
function, in addition to the latter’s exact decoding.

6 Conclusion & Future Work

In this work we proposed a recursive tree architecture capable of modelling both subtrees and whole
dependency trees. This method exploits the ability of deep learning to model combinations of features
as needed in dense vectors, moving further away from feature selection to more expressive architectures.
The resulting vector representation for each word encodes information that describes its position in its
dependency tree, as well as its sequential position in its original sentence.

Furthermore, the model might be useful for other applications as well, including question answering
and sentence similarity, as the final dense representation captures entire sentences.
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