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Abstract

This work presents an empirical approach
to quantifying the loss of lexical rich-
ness in Machine Translation (MT) systems
compared to Human Translation (HT). Our
experiments show how current MT sys-
tems indeed fail to render the lexical di-
versity of human generated or translated
text. The inability of MT systems to gen-
erate diverse outputs and its tendency to
exacerbate already frequent patterns while
ignoring less frequent ones, might be the
underlying cause for, among others, the
currently heavily debated issues related to
gender biased output. Can we indeed,
aside from biased data, talk about an algo-
rithm that exacerbates seen biases?

1 Introduction

Berman (2000) observed that the translation pro-
cess consists of deformation processes, one of
which he refers to as ‘quantitative impoverish-
ment’, a loss of lexical richness and diversity. Al-
though mitigated by a human translator, this loss
is to some extent inevitable as it is hard to re-
spect the multitude of signifiers and constructions
when translating one language into another. While
Berman (2000) studied the decrease of lexical rich-
ness of human translations (HTs) from a theoret-
ical point of view, Kruger (2012) demonstrated
using empirical methods that there is indeed a lex-
ical loss when comparing translations to original
texts. In the field of Machine Translation (MT),
Klebanov and Flor (2013) showed that Statistical
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MT (SMT) suffers considerably more from lexical
loss than HTs in a study focused on lexical tight-
ness and text cohesion. We are not aware of any
other research in this direction.

As generating accurate translations has been the
main objective of current MT systems, maintaining
lexical richness and creating diverse outputs has
understandably not been a priority. Nevertheless,
the issue of lexical loss in MT might at the same
time be a symptom and a cause of a more serious
issue underlying the current systems. The differ-
ence between a one-to-many relationship such as
the one illustrated in Figure 1, is very different
from the one illustrated in Figure 2 or Figure 3
from a (human) translator point of view. How-
ever, from a statistical point of view, they are not
always clearly distinguishable. When presented
with an ambiguous sentence, like ‘I am intelli-
gent’ or ‘See?’ where there is little context to
decide on a particular target variant of the same
source word, it essentially boils down to the same
thing: picking the translation that maximizes the
probability over the entire sentence. As such, the
loss of richness and diversity and the exacerba-
tion of already frequent patterns might not sim-
ply be limited to the loss of (near) synonyms or
rare words, but could also be the underlying cause
of, for example, the inability of statistical MT sys-
tems to handle morphologically richer language
correctly (Vanmassenhove et al., 2016; Passban et
al., 2018), the already observed issues with gender
bias (Vanmassenhove et al., 2018) in MT output or
the difficulties of dealing with agglutinative lan-
guages (Unanue et al., 2018).

The inability of neural models to generate di-
verse output has already been observed for tasks
involving language generation, where creating in-
trinsically diverse outputs is more of a necessity.
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uncountable
indénombrable

incalculable
innombrable

Figure 1: One-to-many relation between an English source
word and some of its possible French translations

see

voir
vois

voyons
voyez

voient

Figure 2: One-to-many relation between English verb ‘see’
and its conjugations in French

smart

intelligente
intelligent

intelligentes
intelligents

Figure 3: One-to-many relation between English adjective
‘smart’ and its male and female counterparts in French

However, from a translation point of view, the abil-
ity of MT systems to be (1) consistent and (2) learn
and generalize well are –compared to previous MT
systems– the biggest asset of NMT. We however,
hypothesize that this type of generalization might
as well have serious drawbacks and that diversity,
although not deemed a priority, is of importance
for the field of MT as well. Overgeneralization
over a seen input and the exacerbation of domi-
nant forms might not only lead to a loss of lexical
choice, but could also be the underlying cause of
gender bias exacerbation. Although, in the con-
text of gender, some researchers have already al-
luded to the existence of so-called ‘algorithmic
bias’ (Zhao et al., 2017; Prates et al., 2019), no
empirical evidence has been provided so far.

With our empirical approach, comparing the
lexical diversity of different MT systems and fur-
ther analyzing the frequencies of words, we aim to
shed some light on the relation between the loss
of diversity and the exacerbation or loss of cer-
tain words. Thus, the first objective of our work
is to verify how NMT compares to SMT and HT
in terms of lexical richness or the loss thereof. The
second objective is to quantify to what extent the
different MT architectures favour translations that
are more frequently observed in the training data.

The structure of the paper is the following: re-
lated work is described in Section 2; Our hypothe-

ses are defined in details in Section 3; information
on the data and the MT systems used in our experi-
ments is provided in Section 4; Section 5 discusses
the results of our experiments and finally, we con-
clude and provide some ideas for future work in
Section 6.

2 Related Work

In the field of linguistics, Berman (2000) re-
searched the so-called deforming tendencies that
are inherent to the act of translation. Although
these tendencies can be mitigated by the (human)
translator, they are to a large extent inevitable.
Quantitative impoverishment (or lexical loss), is
one of the tendencies mentioned. Kruger (2012)
compared human-translated to comparable non-
translated English texts and found the translations
to be more simplified in terms of language use than
the original writings.

In the field of MT, the concept of lexical
loss/diversity and its importance is indirectly re-
lated to the research of Wong and Kit (2012) on
cohesion. They illustrated the relevance of the
under-use of linguistic devices (super-ordinates,
meronyms, synonyms and near-synonyms) for
SMT in terms of cohesion. More closely related to
our work is the work of Klebanov and Flor (2013)
who presented findings regarding the loss of as-
sociative texture by comparing original and back-
translated texts, references and system translations
and a set of different MT systems. Although the
destruction of the underlying networks of signi-
fication might be, to some extent, unavoidable in
any translation process, the work of Klebanov and
Flor (2013) shows that SMT specifically suffers
from lexical loss, more than HT.

Lexical diversity or the loss thereof has also
been used as a feature to estimate the quality of
MT systems. Bentivogli et al. (2016) used lexical
diversity, measured by using the type-token ratio
(TTR), as an indicator of the size of vocabulary
as well as the variety of subject matter in a text.
Their experiments compared SMT to NMT and the
results suggested that NMT is better able to cope
with lexical diversity than SMT.
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3 Hypothesis

Data-driven statistical MT paradigms1 are con-
cerned with (i) identifying the most probable tar-
get words, phrases, or sub-word units given a
source-language input sentence and the preceding
decoded information, via the translation model,
and (ii) chaining those words, phrases or sub-word
units in a way that maximizes the likelihood of the
generated sentence with respect to the grammatical
and stylistic properties of the target language, via
the language model. In NMT, where translation
and language modeling are co-occurring in the de-
coder, it boils down to finding the most likely word
at each time step.

Our hypothesis is that the inherent nature of
data-driven MT systems to generalise over the
training data has a quantitatively distinguishable
negative impact on the word choice, expressed
by favouring more frequent words and disregard-
ing less frequent ones. We hypothesize that the
most visible effect of such bias is to be found in
the word frequencies and the disappearance (or
‘non-appearance’) of scarce words. Apart from a
general effect on lexical diversity, such behaviour
might also lead to the disappearance or amplified
use of certain morphological variants of the same
word, accounting, for example, for the already ob-
served over-use of male forms in ambiguous sen-
tences, the preference for certain verb forms over
other less frequent ones (3rd person > 1st person),
or the difficulties of MT systems to appropriately
handle morphologically richer target languages in
general.

Because NMT handles translation and language
modelling (or alignment) jointly (Bahdanau et al.,
2015; Vaswani et al., 2017), which makes it harder
to optimize compared to SMT, we further hypoth-
esise that NMT is more susceptible to problems re-
lated to overgeneralisation.

We present our experiments and analyses in Sec-
tion 4 and Section 5.

4 Empirical evaluation

To test our hypothesis we built three types
of MT systems and analysed their output for
two language pairs on Europarl (Koehn, 2005)
data. The language pairs are English → French
(EN-FR) and English → Spanish (EN-ES). We
1Despite the fact that often phrase-based SMT is labeled as
‘statistical’ and contrasted to ‘neural’ MT or NMT, we ought
to stress that both approaches are in fact statistical.

Language pair Train Test Dev
EN–FR 1,467,489 499,487 7,723
EN–ES 1,472,203 459,633 5,734

Table 1: Number of parallel sentences in the train, test and
development splits for the language pairs we used.

trained attentional RNN (Bahdanau et al., 2015),
Transformer (Vaswani et al., 2017) and Moses
MT (Koehn et al., 2007) systems. To draw more
general conclusions on the effects of bias propaga-
tion and loss of lexical richness, we assessed out-
put from seen (during training) and unseen data.

Data We used +/- 2M sentence pairs from the
Europarl corpora for each of the language pairs.
We randomised the order of the sentence pairs and
split the data into train, test and development sets,
filtering out empty lines. Details on the different
datasets can be found in Table 1. We chose to in-
clude large quantities of data in our test sets – the
unseen data – in order to maximise the language
variability and explore general tendencies.

MT systems For each of the three MT archi-
tectures we first trained a standard MT system
(the forward or FF system) on the original data.
For the RNN and Transformer systems we used
OpenNMT-py. The systems were trained for 150K
steps, saving an intermediate model every 5000
steps. We scored the perplexity of each model on
the development set and chose the one with the
lowest perplexity as our best model, used later for
translation. The options we used for the neural sys-
tems are as follows:

• RNN: size: 512, RNN type: bidirectional
LSTM, number of layers of the encoder and
of the decoder: 4, attention type: mlp,
dropout: 0.2, batch size: 128, learning opti-
mizer: adam (Kingma and Ba, 2014) and learn-
ing rate: 0.0001.

• Transformer: number of layers: 6, size: 512,
transformer ff: 2048, number of heads: 8,
dropout: 0.1, batch size: 4096, batch type: to-
kens, learning optimizer adam with beta2 =
0.998, learning rate: 2.

All neural systems have the learning rate decay
enabled and their training is distributed over 4
nVidia 1080Ti GPUs. The selected settings for
the RNN systems are optimal according to (Britz
et al., 2017); for the Transformer we use the set-
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Language pair SRC TRG
EN–FR 113,132 131,104
EN–ES 113,692 168,195

Table 2: Training vocabularies for the English, French and
Spanish data used for our models.

tings suggested by the OpenNMT community2 as
the optimal ones that lead to quality on par with the
original Transformer work (Vaswani et al., 2017).

For the SMT systems we use Moses (Koehn et
al., 2007) with default settings and a 5-gram lan-
guage model with pruning of bigrams. Each sys-
tem is further tuned with MERT (Och and Ney,
2003) until convergence or for a maximum of 25
iterations.

For the neural systems, we opted not to use sub-
word units as is typically done for NMT. This is
because we focus on the word frequencies in the
translations and do not want any algorithm for
splitting into sub-word units to add extra variabil-
ity in our data. To construct the dictionaries we
use all words in our training data. Table 2 (first
two columns) shows the training vocabularies for
the source and target sides.

To assess how MT amplifies bias and loss of
lexical richness, along with the original-data sys-
tems, we trained MT with backtranslated (BT)
data, which is typically used to complement orig-
inal data for MT training when the quantity of
the original data is not sufficient for reaching high
translation quality (Sennrich et al., 2016; Poncelas
et al., 2018).

We first trained MT systems for the reverse lan-
guage directions, i.e. for FR–EN and ES–EN. We
used the same data sets, but reversed the associ-
ations of the source and the target with FR/ES
→ EN instead of EN → FR/ES. We then used
these reversed (REV or rev) systems to translate
the training set: the same set used for training the
FF systems and the REV systems. That is, we use
a system trained on (say) FR–EN data to translate
the same FR set into English (EN*). The aim is to
see what is the impact of the underlying algorithms
on the data in the most-favourable scenario; when
the data has already been seen. With the trans-
lated English target data, we trained new systems
for the EN*→FR and EN*→ES directions, where
the source data was the backtranslated set. We re-
fer to these systems with BACK and use the suffix
back to denote them. We end up with what can

2http://opennmt.net/OpenNMT-py/FAQ.html

Lang. EN* FR*/ES*
pair RNN SMT Trans. RNN SMT Trans.

EN–FR 28,742 106,441 40,321 36,991 123,770 42,309
EN–ES 27,349 118,362 40,629 39,805 138,193 44,545

Table 3: Vocabularies of the English translation from the
REV systems, used as source for the BACK systems and the
French/Spanish output from the BACK systems.

be seen as a combination of back-translation and
round-trip-translation. See Figure 4 for a visual-
ization of the pipeline of systems.

FR - EN

training data 1

FR⇒ EN*

MT system 1: REV

EN* - FR

training data 2

EN⇒ FR*
MT system 2: BACK

Figure 4: Back-translated data pipeline.

For the REV and BACK systems we used the
same settings as for the FF ones. However, at
this stage, the source side of the training data is
different and thus impacts the learnable vocabu-
lary. Table 3 presents the source-side vocabulary
sizes for the RNN, SMT and Transformer systems.
These are in practice the number of distinct words
of the translations produced by the REV systems.
Compared to Table 2, this table clearly shows how
source and target vocabularies are comparable in
the original datasets, but translating the same orig-
inal English dataset with the neural REV systems
(RNN and Transformer) results in a huge drop in
vocabulary size; with the SMT REV systems the
decrease is still significant, but not as profound as
in the former cases.

In Table 4 we present automatic evaluation
scores – BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) – for the 12 analysed
systems. For completeness we present BLEU and
TER for the REV systems in Table 5, although
we do not consider them in our analysis. For the
test set we performed a statistical significance test
using the multeval tool (Clark et al., 2011). For
p < 0.05 all results in Table 4 are statistically sig-
nificant.

In what follows we use the following de-
notations to indicate the system we refer to:
{src}-{trg}-{system}-{dir}, where
{src} indicates the source language ‘en’, that is
English, {trg} indicates the target languag – ‘fr’
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System Dev set Test set
reference BLEU↑ TER↓ BLEU↑ TER↓

en-fr-rnn-ff 33.7 50.7 33.8 51.0
en-fr-smt-ff 35.9 50.4 35.7 50.7
en-fr-trans-ff 35.9 49.5 36.0 49.4
en-fr-rnn-back 32.8 52.1 33.0 52.1
en-fr-smt-back 35.2 51.0 35.0 51.3
en-fr-trans-back 36.3 49.8 36.3 49.9
en-es-rnn-ff 37.4 45.3 37.9 45.3
en-es-smt-ff 38.5 45.8 38.6 45.9
en-es-trans-ff 39.4 44.5 39.5 44.5
en-es-rnn-back 36.0 47.0 36.3 47.0
en-es-smt-back 38.0 46.5 38.0 46.5
en-es-trans-back 39.4 45.2 39.3 45.5

Table 4: Automatic evaluation scores (BLEU, TER) for all
MT systems.

for French and ‘es’ for Spanish – and the system
is one of ‘HT’ for human translation, ‘smt’ for
SMT, ‘rnn’ for the RNN models and ‘trans’ for
the Transformer models; {dir} is one of ‘ff’ to
indicate that the system is the forward, trained on
the original data, ‘back’ to indicate that the system
is trained with back-translated data or ‘rev’ to
denote that it is the reverse system, trained after
swapping source and target (the human translation
has no dir index).

System reference BLEU↑ TER↓
en-fr-rnn-rev 33.3 50.2
en-fr-smt-rev 36.5 47.1
en-fr-trans-rev 36.8 46.8
en-es-rnn-rev 37.8 45.0
en-es-smt-rev 39.2 44.0
en-es-trans-rev 40.4 42.7

Table 5: Automatic evaluation scores (BLEU and TER) for
the REV systems.

Evaluated output In total we trained 18 MT
systems. To assess the validity of our hypothesis
and to provide a quantitative analysis of the inves-
tigated phenomena, we use the outputs from the FF
and the BACK systems; the REV systems are used
just to generate the backtranslated data.

5 Analysis

In the analysis we compare word frequencies of
the original target data to the translation output of
the forward (FF) and backward (BACK) MT sys-
tems. We investigate two scenarios: (i) seen and
(ii) unseen data. For (i) we translate the original
source side of the training set (i.e. the English sen-
tences) with the FF and with the BACK systems.
The reason behind performing this kind of test is
that since the MT system has seen this data during

training, any loss of lexical richness and/or bias ex-
acerbation are due to the inherent workings of the
systems. That is, the observed differences between
lexical diversity on seen data can only be attributed
to the algorithm itself. For (ii) we are evaluating
the lexical diversity on the (unseen) test set. This
evaluation scenario is the one that gives us an indi-
cation of the overall lexical diversity of the transla-
tions produced by MT systems as compared to the
data they were trained on.

Language diversity score Lexical diversity
(LD) refers to the amount or range of different
words that are used in a text. The greater that
range, the higher the diversity. Although LD
has many applications (neuropathology, data min-
ing, language acquisition), coming up with a ro-
bust index to quantify it has proven to be a diffi-
cult task. A comparison between different mea-
sures of LD (McCarthy and Jarvis, 2010) con-
cluded by saying that, although there is no con-
sensus yet, LD can be assessed in different ways,
with each measurement having its own assets and
drawbacks. Therefore, we evaluated LD by using
four different widely used metrics: type/token ra-
tio (TTR) (Templin, 1975), Yule’s K (in practice,
we use the reverse Yule’s I) (Yule, 1944), and the
measure of textual lexical diversity (MTLD) (Mc-
Carthy, 2005).

The easiest lexical richness metric is TTR. TTR
is the ratio of the types, i.e. total number of differ-
ent words in a text to its tokens, i.e. the total num-
ber of words. A high/low TTR indicates a high/low
degree of lexical diversity. While TTR is one of
the most widely used metrics, it has some draw-
backs linked to the assumption of a linear relation
between the types and the tokens. Because of that,
TTR is only valid when comparing texts of a sim-
ilar size, as it decreases when texts become longer
due to repetitions of words (Brezina, 2018).

Yule’s characteristic constant, or Yule’s K, is a
probability model of the changes that take place in
the lexical frequency spectrum of a text as the text
becomes longer. Yule’s K and its reverse Yule’s
I are considered to be more immune to fluctua-
tions related to text length than TTR (Oakes and
Ji, 2013).

Another metric used to study lexical richness
and diversity is MTLD. The difference with the
two previous methods is that MTLD is evaluated
sequentially as the mean length of sequential word
strings in a text that maintain a given TTR value
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(McCarthy, 2005). A more recent study by Mc-
Carthy and Jarvis (2010) shows that MTLD is the
most robust with respect to text length.

Our metrics are presented in Table 6 and Ta-
ble 7. Higher/lower scores indicate higher/lower
lexical richness. Table 6 shows the metrics for the
human and the machine translations of the training
set, i.e. the seen data, and Table 7 shows the scores
for the human (HT) and the machine translations
of the test sets, i.e. the unseen data. Due to the
large number of output words, e.g. the rnn-ff trans-
lation of the EN–FR test set contains 14 561 653
words, and the low vocabulary size relative to the
total number of words, our TTR scores are quite
low. For readability and for ease of comparison we
present these scores multiplied by a factor of 1000.
We tested pairwise statistical significance through
bootstrap sampling following (Koehn, 2004). The
scores for all MT variants are significantly differ-
ent from the HT variant.

Translation Yules I TTR MTLD
* 1000

en-fr-HT 9.2793 2.9277 127.1766
en-fr-rnn-ff 0.7107 0.8656 109.4506
en-fr-smt-ff 6.7492 2.6442 118.1239
en-fr-trans-ff 1.1768 1.0925 120.5179
en-fr-rnn-back 0.7587 0.8776 116.8942
en-fr-smt-back 7.8738 2.7496 120.9909
en-fr-trans-back 1.0325 1.0172 121.5801
en-es-HT 12.3065 3.7037 99.0850
en-es-rnn-ff 0.6298 0.9394 89.3562
en-es-smt-ff 7.3249 3.1170 95.1146
en-es-trans-ff 1.0022 1.1581 96.2113
en-es-rnn-back 0.7355 0.9829 95.7198
en-es-smt-back 8.1325 3.2166 95.1479
en-es-trans-back 0.9162 1.1014 95.0886

Table 6: Lexical richness metrics (Train set).

Translation Yules I TTR MTLD
* 1000

en-fr-HT 33.6709 5.7022 124.1889
en-fr-rnn-ff 4.4766 2.1969 106.1370
en-fr-smt-ff 21.1230 4.8034 113.9262
en-fr-trans-ff 6.5352 2.5957 118.9642
en-fr-rnn-back 5.1490 2.3092 112.9991
en-fr-smt-back 25.7705 5.1254 117.6979
en-fr-trans-back 6.7921 2.6287 119.1729
en-es-HT 48.2366 7.6151 97.0591
en-es-rnn-ff 4.7988 2.6250 85.4589
en-es-smt-ff 24.6771 5.9171 92.6397
en-es-trans-ff 6.7967 3.0432 94.4709
en-es-rnn-back 6.0098 2.8357 92.4704
en-es-smt-back 28.0153 6.1887 92.3310
en-es-trans-back 7.3824 3.1483 92.8928

Table 7: Lexical richness metrics (Test set).

Word frequencies and bias In order to
prove/disprove our hypothesis, along with inves-
tigating lexical richness, we aim to investigate
to what extent MT systems propagate bias in
the output. This we assess by whether more/less
frequent words in the human translation have
higher/lower frequency in the MT output (see
Section 3). As soon as we started training the
BACK systems, the first thing we observed was
the reduced vocabularies from the FF systems.
The loss of certain words (in the case of unknown
words, the RNN and Transformer systems would
generate the <unk> token) already suggests
biased MT. Comparing Table 2 and Table 3, we
see that a lot of words are not accounted for in
all systems, but that the RNN and Transformer
models suffer the most. We believe this is due
to the fact that NMT systems’ advantage over
more traditional systems, namely its ability to
generalize and learn over the entire sentence, has
a negative affect on lexical diversity, particularly
for the least frequent words.

Due to the differences in vocabularies and sen-
tence lengths of the generated translations, in or-
der to conduct a realistic comparison of the fre-
quencies we applied 3 post-processing steps on the
collected data: (i) we accounted for sentence vari-
ability by normalizing the frequency of each word
(in the HT or the MT output) by the length of sen-
tences in which it appears, (ii) we normalized the
frequency of each word (in the HT or the MT out-
put) by the accumulated frequency, reducing each
frequency to a probability, and (iii) to account for
the missing words in the MT output we counted
words with zero frequencies separately. In addi-
tion, we need to make a distinction between fre-
quent and non-frequent words. While this is a hard
task in itself, here we commit to the average nor-
malized word frequency of the human translation.

Once we applied the aforementioned post-
processing we compactly represent our data in six
classes:

• Frequency increase of frequent words: for a
frequent word in the HT, its frequency in the
MT is higher. We denote this class using
‘+ +’ symbol combination. This class also
indicates positive bias exacerbation.

• Frequency decrease of frequent words: for a
frequent word in the HT, its frequency in the
MT is lower (but not zero). We denote this
class using ‘+ -’ symbol combination.
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• Frequency increase of non-frequent words:
for a non-frequent word in the HT, its fre-
quency in the MT is higher. We denote this
class using ‘- +’ symbol combination.

• Frequency decrease of non-frequent words:
for a non-frequent word in the HT, its fre-
quency in the MT is lower (but not zero). We
denote this class using ‘- -’ symbol combi-
nation. This class indicates negative bias ex-
acerbation.

• Zero frequency of frequent words: a frequent
word in the HT, does not appear in the MT.
We denote this class using ‘+ 0’ symbol
combination.

• Zero frequency of non-frequent words: a non-
frequent word in the HT, does not appear in
the MT. We denote this class using ‘- 0’
symbol combination. This class indicates
negative bias exacerbation.

For each of these classes we count the (normal-
ized) number of words, and we accumulate the ab-
solute value of the differences for each of these
cases. We present our results for the training data
in Table 8, Table 10 and for the test data – in Ta-
ble 9, Table 11. The numbers in Table 8 and Ta-
ble 9 can be interpreted as the amount of trans-
lated words with higher, lower or zero frequency
compared to the human translation.3 The numbers
in Table 10 and Table 11 quantify the differences
between frequencies; they indicate the amount of
increase or decrease in the frequencies presented
by an MT system as compared to the HT. To de-
rive information from these numbers, one should
compare the ’+ +’ to ‘+ -’ and ‘- +’ to ‘- -’
and ’+ 0’ to ‘- 0’.

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 3710 3023 10157 18683 10 95519
en-fr-smt-ff 3362 3381 32577 46714 0 45068
en-fr-trans-ff 3839 2901 12398 24403 3 87558
en-fr-rnn-back 3356 3372 13009 17253 15 94097
en-fr-smt-back 3246 3496 34111 43472 1 46776
en-fr-trans-back 3482 3254 14610 20962 7 88787
en-es-rnn-ff 4667 3532 9929 19149 41 130875
en-es-smt-ff 4276 3963 39817 56169 1 63967
en-es-trans-ff 4626 3601 11379 25698 13 122876
en-es-rnn-back 4265 3951 13716 17872 24 128365
en-es-smt-back 4006 4233 39636 51831 1 68486
en-es-trans-back 4288 3929 14295 22032 23 123626

Table 8: Frequency exacerbation and decay count (Train set)

3Note that these numbers are normalized for fair comparison.

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 2917 2335 10653 15400 11 57623
en-fr-smt-ff 2652 2610 20587 26949 1 36140
en-fr-trans-ff 2997 2264 12537 17430 2 53709
en-fr-rnn-back 2642 2610 13513 14963 11 55200
en-fr-smt-back 2577 2684 22604 26608 2 34464
en-fr-trans-back 2701 2554 14932 17101 8 51643
en-es-rnn-ff 3541 2669 10636 16425 27 75113
en-es-smt-ff 3252 2982 23389 29057 3 49728
en-es-trans-ff 3508 2716 12069 19046 13 71059
en-es-rnn-back 3241 2971 14394 15847 25 71933
en-es-smt-back 3163 3072 24547 28389 2 49238
en-es-trans-back 3256 2967 15160 18606 14 68408

Table 9: Frequency exacerbation and decay count (Test set)

System + + + - - + - - + 0 - 0
en-fr-rnn-ff 840.76 687.16 46.36 115.27 1.47 83.22
en-fr-smt-ff 664.86 555.60 31.17 119.64 0.00 20.79
en-fr-trans-ff 663.00 552.74 49.98 108.63 0.40 51.20
en-fr-rnn-back 770.72 680.73 83.68 96.68 2.19 74.81
en-fr-smt-back 620.67 525.26 40.36 112.35 0.13 23.29
en-fr-trans-back 639.69 568.68 75.88 90.25 1.05 55.58
en-es-rnn-ff 733.44 535.15 42.54 117.47 4.93 118.43
en-es-smt-ff 547.86 423.87 33.22 129.73 0.12 27.35
en-es-trans-ff 587.22 436.02 47.61 119.98 1.37 77.46
en-es-rnn-back 677.23 564.31 94.47 101.57 2.92 102.90
en-es-smt-back 561.03 438.09 44.31 133.35 0.12 33.78
en-es-trans-back 548.37 438.33 72.27 98.11 2.33 81.87

Table 10: Accumulated frequency differences (Train set)

Remarks on automatic evaluation The sum-
mary of our results allows us to draw the following
conclusions:

1. Lexical richness All metrics and results pre-
sented in Table 6 and Table 7 and for both
language pairs indicate that neither of the MT
systems reaches the lexical richness of the HT.
While SMT systems (for both language pairs)
retain more language richness according to two
out of the three metrics (Yule’s I and TTR) than
the neural methods, the MTLD scores indicate
that the Transformer systems lead to transla-
tions of higher lexical richness. This we may
account for the different numbers of distinct
words produced by SMT and neural systems,
which may be favoured by Yule’s I and TTR.
However, consistently, the worst systems are
the RNN ones.

2. Automatic quality evaluation vs. lexical rich-
ness: The results in Table 4 show that the Trans-
former systems perform best. The only lexical
richness metric that corroborates the BLEU and
TER scores is MTLD. This observation can act
as a future research direction for integrating or
improving quality evaluation metrics of MT to
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System + + + - - + - - + 0 - 0
en-fr-rnn-ff 827.07 655.81 68.84 133.21 2.48 104.41
en-fr-smt-ff 790.41 640.60 60.98 156.94 0.13 53.71
en-fr-trans-ff 662.76 533.83 73.15 123.07 0.31 78.70
en-fr-rnn-back 751.49 655.35 112.32 114.16 2.28 92.01
en-fr-smt-back 679.17 551.88 64.50 142.50 0.34 48.96
en-fr-trans-back 625.59 548.18 104.26 107.39 1.41 72.88
en-es-rnn-ff 726.16 509.28 67.76 134.45 4.16 146.04
en-es-smt-ff 679.08 503.57 70.86 169.33 0.38 76.67
en-es-trans-ff 592.32 414.37 73.00 134.59 1.84 114.52
en-es-rnn-back 653.89 533.03 128.86 119.04 4.22 126.46
en-es-smt-back 630.86 462.82 74.19 165.11 0.31 76.81
en-es-trans-back 538.03 415.49 103.32 118.89 2.40 104.57

Table 11: Accumulated frequency differences (Test set)

accommodate for lexical richness by possibly
adopting features from MTLD.

3. Bias To understand how the inherent proba-
bilistic nature of PB-SMT and NMT systems
exacerbates (or not) the bias, we rely on the
result in Table 8, Table 9, Table 10 and Ta-
ble 11. More precisely, we focus on the com-
parison between ‘[+ +]’ and ‘[+ -]’, and
the ‘[- +]’ and ‘[- -]’ classes as well as
the values in the ‘[+ 0]’ and ‘[- 0]’ classes.
One could simplify the analysis by joining the
latter two classes together with ‘[+ -]’ and
‘[- -]’. However, their independent analy-
sis carries more important information. Pre-
cisely, we see that all of the systems lose less
frequent words, indicated by the low numbers
for the ‘[+ 0]’ class for both the training and
the test set translations. Second, not all MT sys-
tems produce more words with higher frequen-
cies (for the Train set: en-fr-PB-SMT-ff with
3362 vs 3381, en-fr-PB-SMT-back with 3246
vs 3496 and en-es-PB-SMT-back with 4006 vs
4233; for the test set: en-fr-PB-SMT-back with
2577 vs 2684), but the accumulative normalized
frequency for such words is higher than that of
the HT. The accumulated frequency differences
indicate that MT systems are indeed biased to-
wards these more frequent words. This obser-
vation, together with the fact that all MT sys-
tems suffer from loss of less frequent words,
further supports our hypothesis that MT sys-
tems target learning the more frequent words
and disregard the less frequent ones.

4. Seen and unseen data We divided our exper-
iments over seen and unseen data. From the
perspective of lexical richness we see the same
trends in both cases, although a slight decrease

can be observed for the unseen test set (mea-
sured by the MTLD metric). With regards to the
word frequencies comparing ‘+ +’ and ‘+ -’
classes in Table 10 and Table 11 we see similar
trends. Furthermore, more words are lost alto-
gether when translating the unseen test set.

It should be stressed that in this work we looked
at the frequency of words, and as such the RNN
and Transformer models we trained are not op-
timized according to state-of-the-art settings. In
particular, no BPE is used to account for out-of-
vocabulary problems, and the vocabularies have
not been restricted prior to training (typically the
vocabulary of an NMT system consists of the K,
e.g. 50k most frequent words/tokens).

Another observation that we ought to note is that
the BACK systems score quite high not only based
on word frequencies and lexical richness metrics,
but also based on the evaluation metrics presented
in Table 4. We assume this is due to the fact that the
simplified source (translated by the REV systems)
changes the complexity of the learned association.
We plan to further investigate these systems.

Semi-manual evaluation To obtain a more con-
crete image of the observed bias exacerbation by
MT, we looked into the translations of 15 random
English words: ‘picture’, ‘create’, ‘states’, ‘hap-
pen’, ‘genuine’, ‘successful’, ‘also’, ‘reasons’,
‘membership’, ‘encourage’, ‘selling’, ‘site’, ‘vi-
brant’, ‘still’ and ‘event’. This evaluation does not
have the intention to be exhaustive, as the general
tendencies of the systems have already been dis-
cussed in the previous sections. However, looking
into some actual translations produced by the sys-
tems does further clarify the exacerbation effect of
the learning algorithm.

Let us first look at the Spanish translations of
the English word ‘picture’, presented in Figure 5.
The original data shows quite a lot of diversity as
‘picture’ can be translated into among others ‘ima-
gen’, ‘imágenes’, ‘visión’, ‘foto’,‘fotografı́as’ and
‘fotos’. However, when we look at the output of
the EN–ES MT systems, we see that all of them
use the most frequent translation –‘imagen’– even
more frequently than in the original data. This
comes at the expense of the other translation vari-
ants. Although the second most frequent transla-
tion (‘imágenes’) is still frequent, all others show
a decrease and the least frequent ones disappear
entirely.
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Similar, though slightly different patterns are
observed for the translations of the other words we
examine. Also presented in Figure 5 are the trans-
lations of the English verb ‘happen’ into the Span-
ish verbs ‘ocurrir’, ‘suceder’,‘pasar’, ‘acontecer’
and ‘pasarse’ and the English conector ‘also’ into
‘también’, ‘además’ and ‘igualmente’. Again, the
graphs show how the most frequent translation(s)
gain in relative frequency at the cost of less fre-
quent options.
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Figure 5: Relative frequencies of the Spanish translations of
the English words ‘picture’ and ‘happen’.

6 Conclusions and Future Work

This work investigates bias exacerbation and loss
of lexical richness through the process of MT. We
analyse the problem of loss of lexical richness us-
ing a number of LD metrics on the output of 12 dif-
ferent MT systems: SMT, RNN and Transformer

models for EN–FR and EN–ES with original and
back-translated data.

Via our experiments and their subsequent anal-
ysis, we observe that the process of MT causes
a general loss in terms of lexical diversity and
richness when compared to human-generated text.
This confirms our first hypothesis. Furthermore,
we investigate how this loss comes about and
whether it is indeed the case that the more fre-
quent words observed in the input occur even more
in the output, negatively affecting the frequency
of less seen events or words by causing them to
become even rarer events or causing them to dis-
appear altogether. Our analysis shows that MT
paradigms indeed increase/decrease the frequen-
cies of more/less frequent words to such extend
that a very large amount of words are completely
‘lost in translation’. We believe, this demon-
strates indeed that current systems overgeneralize
and thus, we deem it appropriate to speak of a form
of algorithmic bias.

Overall, the RNNs systems are among the worst
performing in terms of LD, although we do need to
take into account that, for the sake of comparison,
we did not use BPE, which might gave the neural
models a disadvantage compared to the SMT sys-
tems. While Transformer models are the best ones
according to the evaluation metrics, SMT seems
to retain the most lexical richness according to the
LD metrics we used (TTR, Yule’s I and MTLD).

As research on language generation has already
accounted for the lack of diverse outputs, in the
future, we aim to lock into potential solutions to
overgeneralization of current trnaslation models.
However, allowing for a certain degree of random-
ness while maintaining a strong learning (and thus
generalizing) ability is a very complex and poten-
tially contradictory task.
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