
Docria: Processing and Storing Linguistic Data with Wikipedia

Marcus Klang
marcus.klang@cs.lth.se

Lund University
Department of Computer Science

S-221 00 Lund, Sweden

Pierre Nugues
pierre.nugues@cs.lth.se

Lund University
Department of Computer Science

S-221 00 Lund, Sweden

Abstract

The availability of user-generated con-
tent has increased significantly over time.
Wikipedia is one example of a cor-
pus, which spans a huge range of top-
ics and is freely available. Storing and
processing such corpora requires flexi-
ble document models as they may con-
tain malicious or incorrect data. Docria
is a library which attempts to address
this issue with a model using typed
property hypergraphs. Docria can be
used with small to large corpora, from
laptops using Python interactively in a
Jupyter notebook to clusters running map-
reduce frameworks with optimized com-
piled code. Docria is available as open-
source code at https://github.
com/marcusklang/docria.

1 Introduction

The availability of user-generated content has in-
creased significantly over time. Wikipedia is one
example of a corpus, which spans a huge range
of topics and is freely available. User-generated
content tests the robustness of most tools as it
may contain malicious or incorrect data. In ad-
dition, data often comes with valuable metadata,
which might be semi-structured and/or incom-
plete. These kinds of resources require a flexible
and robust data model capable of representing a
diverse set of generic and domain-specific linguis-
tic structures.

In this paper, we describe a document model
which tries to fill the gap between fully structured
and verifiable data models and domain-specific
data structures. This model, called Docria, aims at
finding a tradeoff between the rigidity of the for-
mer and the specificity of the latter. To show its
merits, we contrast the application of fully struc-

tured data models to practical noisy datasets with
the simplicity of Docria.

2 Related Work

Linguistically annotated data have been stored in
many different formats, often developed to solve
practical problems. We can group prior work into
three categories:

Formats – the technical formats which are used
to serialize the data;

Document models – conceptual descriptions of
how the data is connected, often mapped to
concrete software implementations;

Applications and tooling – user-facing applica-
tions for annotation, search, etc.

in this section, we will focus on the low-level
formats and libraries to parse and access the data
contained within.

Pustylnikov et al. (2008), in their work on uni-
fying 11 treebanks, made a summary of formats
typically used, which shows a dominance of XML
variants and CoNLL-like formats. We examine
some of them here.

Tabular annotation. The tabular annotation in
plain text is one of the simplest formats: One to-
ken per line and white space separation for the data
fields connected to the token followed by a dou-
ble line separation to mark a sentence. This kind
of format was used first in the CoNLL99 task on
chunking (Osborne, 1999) and then on subsequent
tasks. Its main merits are the ease of use with re-
gards to writing parsers and its readability without
documentation.

Universal Dependencies (Nivre et al., 2019) is
an example of a recent project for multilingual cor-
pora using this format. It defines a variant called
CoNLL-U, an adaption of the format used in
CoNLL-X shared task on multilingual dependency

parsing (Buchholz and Marsi, 2006). CoNLL-U
includes field descriptions at the start of a docu-
ment using hashtag (#) comments, adds subword
support, and a field, if used, would allow for unto-
kenization by including information about spacing
between tokens.

CoNLL-* formats are tightly connected to data
used in the shared tasks. Variations of these plain-
text formats in the wild have no real standard and
are mostly ad-hoc development. The field separa-
tion is a practical aspect, which may vary: spaces
or tabulations. Depending on the corpus, these
are not interchangeable as the token field might
include ordinary spaces as part of the data field.

Semi-structured formats. Semi-structured for-
mats specify stricter rules and a frequent choice
is to follow the XML syntax to implement them
(Bray et al., 2008). XML is hierarchical and can
support higher-order structures such as sections,
paragraphs, etc. XML has been used successfully
in the development of the TIGER Corpus (TIGER
XML) (Brants et al., 2002) and the Prague Depen-
dency Treebank (PML) (Hajič et al., 2018).

The XML annotation relies on a schema defin-
ing its content on which programs and users must
agree. Aside from TIGER XML and PML, the
Text Encoding Initiative (TEI) and FoLiA XML
(van Gompel and Reynaert, 2013) are general pur-
pose XML schema definitions focused on linguis-
tic and text annotation. TEI and FoLiA provide ex-
tensive documentation and guidelines on how data
should be represented in XML.

Graph formats. From primarily hierarchical
formats, the NLP Interchange Format (NIF) pro-
vides a graph-oriented way of connecting infor-
mation which builds on existing standards such as
LAF/GrAF, RFC 5147, and RDF. The main inno-
vation in NIF is a standardized way of referring to
text with offsets also known as a stand-off anno-
tation. NIF is similar to WIKIPARQ (Klang and
Nugues, 2016).

3 Docria

Docria is a document model based on typed prop-
erty hypergraphs. We designed it to solve scala-
bility and tooling problems we faced with the au-
tomatic processing and annotation of Wikipedia.
This corresponds notably to:

• The lack of document models and storage so-
lutions that could fit small and large corpora

and that could be compatible with research
practices;

• The impossibility to use the same document
model with potentially costly large-scale ex-
traction algorithms on a cluster with a map-
reduce computing framework such as Apache
Spark.

Motivation. These aspects were dominant in the
construction of Docria, for which we set a list of
requirements:

Openness – release the library as open source1;
share processed corpora such as Wikipedia in
formats used by this library; invite others to
use the library for various tasks;

Scalability – from small corpora using a few lines
of code to show a concept on a laptop to
large-scale information extraction running on
multiple computers in a cluster with opti-
mized code;

Low barrier – progressive learning curve, sensi-
ble defaults, no major installations of services
or configurations. Specifically, we wanted to
reduce barriers when we shared larger cor-
pora with students for use in project courses;

Flexibility – capable of representing a diverse set
of linguistic structures, adding information
and structures progressively, changing struc-
ture as needed;

Storage – reducing disk-space and bandwidth re-
quirements when distributing larger corpora.

Design. To meet these goals, we implemented
Docria in both Python and Java with a shared con-
ceptual model and storage format. One of the user
groups we had in mind in the design step was
students in computer science carrying a course
project. As our students have programming skills,
we elected a programmer-first approach with a fo-
cus on common tasks and algorithms and a tooling
through an API.

Python with Jupyter notebooks provides an in-
teractive Read-Evaluate-Print-Loop (REPL) with
rich presentation possibilities. We created exten-
sions for it to reduce the need for external tool-
ing and so that with a few lines of code, a pro-
grammer can inspect the contents of any Docria

1https://www.github.com/marcusklang/
docria

20 24 40 48

Offsets

Lund
Span

Deprel

Sentence

NE

Token Lund

LOC

T

Relation

. . .

Annotation
Layers

Lund is a city.
Text

Property

connection

Figure 1: Docria data model

document. Through a matching implementation
in Java, Docria provides a path to scale up when
needed, as specific tasks can be orders of magni-
tudes faster than with a CPython implementation.

Docria documents consist of text collections
and layers, shown in Figure 1. Text collections
allow for multiple representations of a single text.
A layer is a collection of nodes. These nodes can
have fields which refer to the text collections. One
particular restriction we impose is that a user must
define a schema per layer. This is essential for in-
trospection and verification of the data contained
in documents. The schema defines the available
fields and their data type with support for meta-
data.

Datatypes. The datatypes include basic types
such as Boolean, integer, float, and string. Ad-
vanced types include text spans, node spans, node
references, and node array references, which en-
able a programmer to represent graph structures.
Field types, which are node references, must spec-
ify a target layer. In addition, this restriction re-
sults in well-defined dependencies between layers,
which can be used in the future for partial docu-
ment reconstruction when reading.

Using a relational database analogy, layers cor-
respond to tables; they contain nodes which are
equivalent to rows with fields, which are typed
columns with specialized support for references to
other nodes in other layers.

Stand-off references. Docria uses stand-off ref-
erences in which we separate text from linguistic
layers. These layers refer to ranges in the origi-
nal text. To simplify the implementation and re-

duce sources of common bugs, the text string is
split into pieces according to the offsets and stores
text as a list of substrings, which is reconstructed
without a loss by a join. Offsets, when serialized,
only refer to spans of substrings. Software imple-
mentations can reconstruct offsets by computing
the actual substring length and creating a lookup
table. This will generate correct offsets even if
the in-memory representation of a string differs,
which is the case with standard strings in Java and
Python 3.

Binary format. For the binary format, we
selected MessagePack. MessagePack is self-
describing, has an open well-defined specification,
and has multiple open-source implementations in
a diverse set of programming languages. The bi-
nary format can be used on a per document ba-
sis or in an included collection container, which
writes multiple binary documents in sequence.
This binary format was also designed to allow for
a quicker content listing by separating content into
compartments which can be read independently:
document properties, schema, text, and layer data.

The Wikipedia corpus. We used the official
REST API provided by Wikimedia and a page
listing from the official dump page to collect the
Wikipedia corpus. We downloaded all the pages
in HTML format from this page listing in Octo-
ber 2018. This HTML format was processed and
converted into a DOM using JSoup. Using recur-
sive rules, we transformed the DOM into a flat
text representation with structural layers referring
to ranges such as section, paragraph, and anchors.
Furthermore, we linked anchors to Wikidata by
translating page targets to Q-numbers where avail-
able. We also retained formatting, such as bold
and italics. We stored all this information using
Docria.

In this dump, there are 5,405,075 pages exclud-
ing redirections.

4 Evaluation

We applied the spaCy library2 to annotate all the
English Wikipedia pages with parts of speech, en-
tities, and dependency graphs, and we made the
result available at http://fileadmin.cs.
lth.se/papers/nodalida2019/. On av-
erage, each page of the corpus, after annotation,

2https://spacy.io/

contains 72.2 sentences, 901.8 tokens, 144.8 enti-
ties, and 4,383 characters.

We used this annotated corpus to evaluate the
technical aspects of Docria and compare them to
XML. We chose XML as it is pervasive in the liter-
ature and capable of representing all the structures
present in Wikipedia.

We selected FoLiA as the XML format. FoLiA
is well-defined, has good tooling, defines a diverse
set of structural annotations which covers most, if
not all, aspects of Wikipedia. FoLiA also has an
official Python library, which we used to read doc-
uments.

Millions of XML files can be stored uncom-
pressed in a file system. However, this often
results in considerable overhead in terms of ac-
cess times and reading and is therefore not prac-
tical for efficient processing. In addition, XML is
verbose and contains redundant information. All
this makes compression and streaming a neces-
sity when storing and processing millions of doc-
uments.

To compare FoLiA XML with Docria, we chose
to use a sequential tarball format with a bzip2
compression. We chose this format as it pro-
vided the most similar way to store documents
in sequence applicable to both FoLiA XML and
Docria. We created one XML file per article in-
memory and saved them in a sequence using the
tarfile API of Python. The structures we included
for the comparison were section, paragraph, enti-
ties, tokens with their part of speech and lemma,
and dependency relations.

5 Benchmark

We stored the Wikipedia corpus in 432 parts, con-
taining on average 12,512 pages per part. Due to
time constraints, the metrics below are computed
using only 64 of the 432 parts.

First, we measured the difference in size when
compressed: FoLiA XML files are on average 2.47
times larger than the matching Docria files. The
compressed Docria parts have a mean size of 85.0
MB3 compared to 209.8 MB for the compressed
FoLiA XML parts. This translates to a compressed
size of 6.8 kB resp. 16.8 kB on average per page.

Secondly, we measured the cost of decompress-
ing the files in memory. Reading a single bzip2
Docria compressed file without any processing
and a 1 MB buffer requires, on an Intel Xeon at

31 MB = 1,000,000 bytes

3.40 GHz, 16.3 sec ± 18.9 ms compared to 104
seconds ± 136 ms to read FoLiA XML, both av-
eraged over 7 runs. Reading compressed FoLiA
XML over binary Docria tar-files is on average 6.4
times slower.

Uncompressed Folia XML documents are on
average 9.5 times larger per document with a mean
size of a page of 314.5 kB vs. 32.1 kB for Docria.
For comparison, the mean average size of raw
UTF-8 encoded text is of 4.4 kB per page. Put
another way, using the plain text as starting point,
Docria has an annotation overhead of 7.6 times vs.
69.6 times for XML.

6 Programming Examples

In this section, we show programs for three basic
operations:

1. Create a new document and add a token with
part-of-speech annotation.

2. Read a sequential tarball and print all the to-
kens of all the sentences of the corpus;

3. Read a sequential tarball and extract the enti-
ties of type person.

Create a document and add a part of speech.
We first create a document from a string and we
add a token layer. We then add a node to this layer,
spanning the 0..4 range and we annotate it with a
part of speech using the add() method as this:

Initial include
from docria import Document, \

DataTypes as T

Create a document
doc = Document()

Add main text
doc.maintext = "Lund University"

Create a token layer with two fields
doc.add_layer("token",

pos=T.string, text=T.span)

The token layer, when displayed
in a Jupyter notebook, will be
rendered as a HTML table.
tokens = doc["token"]

Adding a token node
referencing range 0:4
token = tokens.add(
pos="PROPN",
text=doc.maintext[0:4]

)

Print the tokens. We assume we have a tarball
of documents segmented into sentences and to-
kens, and annotated with the parts of speech. We
read the tarball with TarMsgpackReader and
we access and print the sentences, tokens, and
parts of speech using the Python dictionary syn-
tax.

from docria.storage \
import TarMsgpackReader

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
Materialize document
doc = rawdoc.document()

Lists all layers with field
types and metadata
doc.printschema()

Print the original text
Equivalent to doc.text["main"]
print(doc.maintext)

for sentence in doc["sentence"]:
Print the full sentence
print(sentence["tokens"].text())

for tok in sent["tokens"]:
Form <TAB> part-of-speech
print("%s\t%s" %

(tok["text"], tok["pos"])

Extract entities of a certain type. We assume
here that the tarball is annotated with entities
stored in an ENTITY layer. We read the tarball
and access the entities. We then extract all the en-
tities of category PERSON:

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
Materialize document
doc = rawdoc.document()

Get the entity layer
entities = doc["entity"]

Filter out PERSON in entity
layer having field label
equal to PERSON
query = (entities["label"]

== "PERSON")

for person in entities[query]:
Tokens represents potentially
many tokens, text()
transforming it to a string
from the leftmost
to the rightmost token.
print(person["tokens"].text())

7 Discussion

When converting the Wikipedia corpora to fit the
FoLiA XML format, we had issues identifying a
suitable span annotation for the Wikipedia anchor
link. We decided to associate it with the FoLiA
XML entity type.

In addition, when using stand-off annotations,
some documents did not pass validation with off-
set errors, possibly due to normalization issues
common to Wikipedia text. This gives an argu-
ment that these kinds of formats do not work re-
liably with noisy datasets. We instead included
the sentences as text and used the nospace attribute
to allow untokenization, which does increase ver-
bosity slightly.

Initially, we used the official foliapy library, but
we were unable to get a decent performance with
it, potentially addressed in the future. We resorted
to using the LXML DOM matching example doc-
uments with Folia. To ensure correctness, we ver-
ified samples of our XMLs using foliavalidator.

Acknowledgments

This research was supported by Vetenskapsrådet,
the Swedish research council, under the Det digi-
taliserade samhället program, grant number 340-
2012-5738.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-

gang Lezius, and George Smith. 2002. The tiger
treebank. In Proceedings of the workshop on tree-
banks and linguistic theories, volume 168.

Tim Bray, Eve Maler, François Yergeau, Michael
Sperberg-McQueen, and Jean Paoli. 2008.
Extensible markup language (XML) 1.0
(fifth edition). W3C recommendation, W3C.
Http://www.w3.org/TR/2008/REC-xml-20081126/.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Maarten van Gompel and Martin Reynaert. 2013. Fo-
lia: A practical xml format for linguistic annotation
— a descriptive and comparative study. Computa-
tional Linguistics in the Netherlands Journal, 3:63–
81.

Jan Hajič, Eduard Bejček, Alevtina Bémová, Eva
Buráňová, Eva Hajičová, Jiřı́ Havelka, Petr Ho-

mola, Jiřı́ Kárnı́k, Václava Kettnerová, Na-
talia Klyueva, Veronika Kolářová, Lucie Kučová,
Markéta Lopatková, Marie Mikulová, Jiřı́ Mı́rovský,
Anna Nedoluzhko, Petr Pajas, Jarmila Panevová,
Lucie Poláková, Magdaléna Rysová, Petr Sgall, Jo-
hanka Spoustová, Pavel Straňák, Pavlı́na Synková,
Magda Ševčı́ková, Jan Štěpánek, Zdeňka Urešová,
Barbora Vidová Hladká, Daniel Zeman, Šárka
Zikánová, and Zdeněk Žabokrtský. 2018. Prague
dependency treebank 3.5. LINDAT/CLARIN dig-
ital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Marcus Klang and Pierre Nugues. 2016. WIKIPARQ:
A tabulated Wikipedia resource using the Parquet
format. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC 2016), pages 4141–4148, Portorož, Slovenia.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Gabrielė Aleksandravičiūtė, et al. 2019.
Universal dependencies 2.4. LINDAT/CLARIN
digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

M. Osborne. 1999. CoNLL-99. Computational Nat-
ural Language Learning. Proceedings of a Work-
shop Sponsored by The Association for Computa-
tional Linguistics. Association for Computational
Linguistics (ACL).

Olga Pustylnikov, Alexander Mehler, and Rüdiger
Gleim. 2008. A unified database of dependency
treebanks: Integrating, quantifying & evaluating de-
pendency data. In LREC 2008.

