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Abstract
In this paper, we present a Bayesian ap-
proach to natural language semantics. Our
main focus is on the inference task in
an environment where judgments require
probabilistic reasoning. We treat nouns,
verbs, adjectives, etc. as unary predicates,
and we model them as boxes in a bounded
domain. We apply Bayesian learning to
satisfy constraints expressed as premises.
In this way we construct a model, by spec-
ifying boxes for the predicates. The prob-
ability of the hypothesis (the conclusion)
is evaluated against the model that incor-
porates the premises as constraints.

1 Introduction

Goodman et al. (2008) interpret natural language
expressions as probabilistic programs, which are
evaluated through Markov chain Monte Carlo
(MCMC) methods. This technique assigns mean-
ings to various phenomena, including graded ad-
jectives (Lassiter and Goodman, 2017). Bernardy
et al. (2019, 2018) combine this approach with the
idea (present in much recent computational lin-
guistic literature (Mikolov et al., 2013, 2018; Pen-
nington et al., 2014) (but which can be traced back
to Gärdenfors (1990)) that individuals are encoded
as points in a multidimensional space. Using this
approach they construct Bayesian models of in-
ference for natural language. While these models
work well for many cases, they generate serious
complexity problems for others.

In this paper we propose a simplified geomet-
ric model that allows us to reduce the need for
sampling, and the complexity that it can create.
In certain cases we eliminate sampling altogether.
We model properties as (unions of) boxes, and
we identify individuals as points. To estimate the
probability of a predication being true, we deter-
mine the likelihood that an individual, a set of

individuals, or another property is contained in a
box corresponding to a predicate. This framework
gives us a more tractable procedure for evaluating
the probability of sentences exhibiting the same
syntactic and semantic constructions that the ap-
proaches proposed by Bernardy et al. (2019, 2018)
cover, but it extends to all representations of pred-
icates in a probabilistic language.

The alternative system for evaluating arguments
that we propose brings us closer to the prospect of
a wide coverage probabilistic natural language in-
ference system. Such a system will be useful for
the Recognising Textual Entailment task (Dagan
et al., 2009), which encompasses non-logical ar-
guments based on real world knowledge and lexi-
cal semantics. It can also be applied in other NLP
tasks that rely on probabilistic assessment of infer-
ence.

2 Interpretation of predicates as boxes

An underlying assumption of a Bayesian inter-
pretation of natural language is that one has an
(immanent) space of all (relevant) individuals,
and predicates are represented as measurable sub-
spaces of this space.

We treat every linguistic predicate as a box in an
n-dimensional euclidean space. (A scaled n-cube
whose faces are orthogonal to the axes.) To sim-
plify computing the volume of a box, we also take
the underlying space of individuals itself to be a
box of a uniform density. Without loss of general-
ity, we can assume that this box is of dimension 1
in all directions, and it is centred at the origin. We
denote this unit box by U .

Formally, with each predicate P we associate
two vectors of dimension n, P c and P d, where
P c is the centre of the box and P d

i is the (posi-
tive) width of the box in dimension i. Hence, the
subspace associated with P is the subspace S(P )



given by

P (x) = ∀i.||xi − P c
i || < P d

i

Note that S(P ) itself never extends past the com-
plete space:

S(P ) = U ∩
{
x
∣∣∣∀i.||xi − P c

i || < P d
i

}
(A box could isomorphically be defined using

lower and higher bounds P l and P h with P c =
0.5(P h + P l) and P d = 0.5(P h − P l)).

Typically, P c and P d will be themselves sam-
pled. In our experiments, P c

i is taken in the uni-
form distribution on [0, 1], while 1/P d

i is taken in
a beta distribution with parameters a = 2, b = 8.

2.1 Relative clauses
Boxes are closed under intersections. Thus if we
use the expression P ∧Q to denote the intersection
of the predicates P and Q, we have (P ∧ Q)li =
max(P l

i , Q
l
i) and (P ∧Q)hi = min(P h

i , Q
h
i ). The

centre and the width of the box ((P ∧Q)c and (P ∧
Q)d respectively) are recovered using the habitual
formula.

2.2 Quantifiers
With this in place, we can interpret quantifiers. In
classical formal semantics the phrase “every P is
Q” is interpreted by

∀x.P (x)→ Q(x)

A naive translation of this formula yields:

∀x.(∀i.||xi − P c
i || < P d

i )→ (∀i.||xi −Qc
i || < Qd

i )

Enforcing this condition as such in a proba-
bilistic programming language is expensive. It re-
quires:

1. Sampling an individual x.

2. Verifying if x satisfies the hypothesis (P (x)).
If not, go back to point 1.

3. Check if x satisfies the conclusion (Q(x)). If
not, stop, otherwise loop back to point 1.

Typically this loop is iterated thousands of times,
in order to ensure that we do not miss (too many)
points x where P holds but Q does not. Even
though optimisations are possible in the general
case, the above algorithm is inefficient. The con-
dition that it tests is really intended to check the

inclusion of S(Q) in S(P ). Because both spaces
are boxes, this test can be done without sampling
by checking the following geometric constraint:

∀i.P l
i ≤ Ql

i ∧ P h
i ≤ Qh

i

where P l = P c − P d and P h = P c + P d.

2.3 Generalised quantifiers
Generalised quantifiers can also be efficiently im-
plemented with box models. Consider the phrase
“most P are Q.” Following Bernardy et al. (2019,
2018), “most P are Q” can be interpreted as

V (P ∧Q) ≥ θV (P )

for a suitable proportion θ matching the semantics
of “most” in the context. Here, V (P ) stands for
the measure of S(P ) in the space of individuals.
In general, this measure is given by

V (P ) =

∫
1(P (x))PDFInd(x) dx

with 1(c) being 1 if the condition c is true and 0
otherwise. Considering that individuals are ele-
ments in a high-dimensional space, if either the
density of individuals PDFInd or P (x) is non-
trivial, the above integral is often non-computable
symbolically. (This is the case, for example, if
PDFInd is a Gaussian distribution). Instead it
must be approximated numerically, often using a
Monte Carlo method.

By contrast, if S(P ) is a box in a uniform space,
then we have

V (P ) =
∏
i

(P ∧ U)di

Thus, “most P are Q” is interpreted as follows:∏
i

(P ∧Q)di ≥ θ
∏
i

P d
i

2.4 Graded predicates
We want our models to support predicates that cor-
respond to comparative degree properties. To ac-
commodate these properties we associate a degree
function with predicates.

The degree to which an individual x satisfies a
property P is

s(P, x) = 1−max

{
||xi − P c

i ||
P d
i

∣∣∣∣i ∈ [1..n]

}



This definition entails that the subspace corre-
sponding to a predicate coincides with the space
where its degree of satisfaction is positive. For-
mally:

x ∈ S(P ) iff. s(P, x) > 0

Additionally, the maximal degree of satisfaction is
1.

The phrase “x is taller then y” is interpreted as
x satisfying the Tall predicate to a larger degree
than y:

s(Tall, x) > s(Tall, y).

Predicates formed from positive comparatives
are also boxes. For example, the predicate P (x) =
J“x is taller than k”K for some constant individual
k is a box centered at Tallc and whose widths is
given by

Talld = (1− s(Q, y))P d

2.5 Negation and union
Boxes are closed under intersection, but not un-
der negation nor union. Thus, in general, a pred-
icate is represented by a union of disjoint boxes.
If a predicate can be represented by a single box,
we call it a box-predicate. Measuring the volume
and checking intersection of general predicates is
a straightforward combinatorial extension of the
corresponding box-predicate algorithms.

However, general predicates cannot be associ-
ated with a degree, in the sense of the previous
section – only box-predicates can. This limitation
is in fact a welcome result. It correctly rules out
phrases like “John is more not-tall than Mary” or
“John is more tall or happy than Mary” as infe-
licitous, but sustains “John is shorter than Mary”.
Traditional formal semantic approaches to grad-
able predicates (e.g. Klein, 1980; Kennedy, 2007)
have a problem excluding cases like “John is more
not-tall than Mary.”

3 Comparison with bisected multivariate
Gaussian model

We highlight a few important differences between
the present box model and the bisected multivari-
ate Gaussian model proposed by Bernardy et al.
(2018).

In the Gaussian model, individuals are repre-
sented as vectors, sampled in a multivariate Gaus-
sian distribution of dimension k, with a zero mean
and a unit covariance matrix. A (unary) linguis-
tic predicate is represented as a pair of a bias b

and a vector d: d is obtained by normalising a vec-
tor sampled in the same distribution as individuals,
while b is sampled in a standard normal distribu-
tion. The interpretation of a predicate can be un-
derstood as a hyperplane orthogonal to dwith b be-
ing the shortest distance from the origin to the hy-
perplane. An individual satisfies a predicate P if it
lies on the far side of the hyperplane, as measured
from the origin. Hence, every predicate partitions
the vector space into two parts: one of individu-
als satisfying P , and one of individuals satisfying
not-P .1

In the box model, a linguistic predicate is rep-
resented as a box, and individuals satisfy the pred-
icate if they lie inside the boundary of the box.
Here, individuals are sampled in a uniform distri-
bution. For gradable predicates, we see here an
important difference: in the Gaussian model, an
individual has a higher degree of P if and only
if it lies further from the origin, while in the box
model, having a higher degree of P means lying
closer to the center of the box.

Priors differ between the Gaussian model and
the box model. In the Gaussian model, an arbitrary
individual has a 0.5 chance of satisfying an arbi-
trary predicate when no additional information is
given. In contrast, in the box model, the same sit-
uation has a 0.15 chance of holding. While these
priors are somewhat arbitrarily chosen, they re-
flect the different geometric structures of the two
models. If, in the box model, an arbitrary predi-
cate corresponded to a box covering half the space,
any additional predicate would force intuitively
very non-probable configurations of the space. In
particular, each additional predicate would have a
lower probability of holding for an arbitrary indi-
vidual.

The Gaussian model evaluates the size of
a predicate by estimating the volume of the
space beyond the corresponding hyperplane us-
ing MCMC sampling. Similarly, degrees of predi-
cate inclusion (used for the interpretation of gener-
alised quantifiers) are calculated by estimating the
volume of the overlapping space. Approximation
of the volumes by sampling is required since the
density of individuals in the space is non-trivial.
By contrast, in the box model, the volume of a
predicate extension can be calculated by symbolic

1In a recent work, Bernardy et al. (2019) propose a Gaus-
sian model in which a predicate divides the space into three
disjoint sections, but we set aside a detailed comparison with
that model.



means, since every such extension is a box, the
surrounding space is bounded, and individuals are
distributed uniformly in this space.

The evaluation of inclusion differs between the
two models. In the Gaussian model, a predicate
P is fully contained in a predicate Q if and only
if the corresponding hyperplanes are parallel and
the distance of P from the origin is greater than
the distance of Q from the origin. This configura-
tion is stochastically impossible to obtain, mean-
ing that the system would fail to evaluate any ar-
gument with “every P is Q” among its premises.
This condition can be relaxed in several ways to
make it satisfiable. Bernardy et al. (2019, 2018)
sample elements from P and check if all satisfy
Q. The issue with this approach is that if the pred-
icate P is far from the origin, then the density of
individuals is so low that sampling does not con-
verge in a reasonable time. Another possibility is
to check that the angle between the planes defin-
ing P and Q is less than a certain threshold α. But
this raises another issue: implication is no longer
transitive (even if the angle between P and Q is
less α and the angle between Q and R is also, it
does not follow that P andR are also separated by
an angle less than α.)

By contrast, the box model interprets inclusion
of P in Q by placing the box for P strictly inside
the boundaries of Q. This is easier to obtain, by
sampling the dimensions for the box P within the
boxQ. As a consequence, any predicate contained
in another predicate has a strictly lower chance of
holding for an arbitrary individual than any arbi-
trary predicate has.

We did a preliminary evaluation of our model
using the testsuite for probabilistic inference de-
veloped by Bernardy et al. (2019). While there
is no gold standard to evaluate against, the results
obtained by our model are more stable than the
ones obtained from the Gaussian model. This is
likely to depend on the indeterminacy introduced
by sampling in the Gaussian model: increasing the
number of samples would improve stability, but
also lead to longer computation times.

4 Related Work

Boxes in Euclidean spaces are simple objects, and
as such they have already been considered as ge-
ometric representations of predicates. Vilnis et al.
(2018) use boxes to encode WordNet lexical en-
tries (unary predicates) in order to predict hyper-

nyms. Like us, they take the distribution in the
vector space to be uniform, and the probability of
a predicate is defined as the volume of the corre-
sponding box. In our work, we use a Bayesian
model. It is best suited to represent a small number
of predicates, and to fully model the uncertainty of
the boundary for each box. Vilnis et al. (2018) opt
for a neural network to learn a large number of box
positions. This is appropriate, given that their data
set is the complete WordNet hypernym hierarchy.
Their model converges on a single mapping of
predicates to precise box boundaries, rather than
to a distribution of such mappings.

We have not yet tested the box representation of
words by Vilnis et al. (2018) for our task, but we
plan to do so in future work. As our approach ap-
plies Bayesian sampling, we will need to modify
the sizes of certain boxes to deal with a data set of
this kind. It is important to recall that because their
representations are learned for the purpose of de-
tecting the WordNet hypernymy, they do not need
to contain any additional lexical information not
required for this task.

5 Future Work and Conclusion

We present an approach to natural language in-
ference based on Bayesian probabilistic semantics
for natural language. It differs from the work of
Bernardy et al. (2019, 2018) in several respects.
The main distinction is that we model predicates
as boxes contained in a unit box, while they use
(infinite) subsets of a vector space equipped with
a Gaussian density. The density of the distribution
in the current approach is uniform, which allows
us to construct a more computationally efficient
system for estimating the probability of the con-
clusion of an argument, given its premises. Our
system is more stable than the one described by
Bernardy et al. (2019) when tested against their
test suite.

We have been relying on expert subjects for
judgments on the strength of probabilistic infer-
ences. In future work, we plan to collect crowd-
sourced data to ground these estimates or try
to crowd source existing categorically annotated
datasets like the FraCas test suite (Cooper et al.,
1996), and use the mean judgments that we obtain
as the target values for our system. Another way
of testing our system would be to evaluate against
the categorically annotated datasets, e.g. the Fra-
CaS test suite. Success in this case would con-



sist in assigning high probability to yes cases, low
probability to no cases, and intermediate values to
unknown instances.

Instead of boxes, one could use arbitrary convex
polytopes. This would give a more precise, but
more computationally expensive model. We leave
further evaluation of this trade-off to future work.
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