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Introduction

The Fourth Conference on Machine Translation (WMT 2019) took place on Thursday, August 1 and
Friday, August 2, 2019 in Florence, Italy, immediately following the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019).

This is the fourth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, and the
third time at EMNLP 2028 in Brussels, Belgium. Prior to being a conference, WMT was held 10 times
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of four translation tasks: Machine Translation of News,
Biomedical Translation, Robust Machine Translation, and Similar Language Translation, two evaluation
tasks: Metrics and Quality Estimation, as well as the Automatic Post-Editing and Parallel Corpus
Filtering tasks.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2019 has received 48 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2019 featured 12 full research paper oral presentations and 102 shared task
poster presentations.

The invited talk was given by Marine Carpuat from the University of Maryland, College Park, USA. It
was titled “Semantic, Style & Other Data Divergences in Neural Machine Translation".

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri,
Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, and Karin Verspoor
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Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette Gra-

ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post and Marcos Zampieri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Results of the WMT19 Metrics Shared Task: Segment-Level and Strong MT Systems Pose Big Challenges
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Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin
Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post and Marcos
Zampieri

9:35–9:50 Test Suites

9:50–10:10 Results of the WMT19 Metrics Shared Task: Segment-Level and Strong MT Systems
Pose Big Challenges
Qingsong Ma, Johnny Wei, Ondřej Bojar and Yvette Graham
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11:00–12:30 Shared Task: Metrics

WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evalua-
tion
Julian Chow, Lucia Specia and Pranava Madhyastha

Meteor++ 2.0: Adopt Syntactic Level Paraphrase Knowledge into Machine Trans-
lation Evaluation
Yinuo Guo and Junfeng Hu

YiSi - a Unified Semantic MT Quality Evaluation and Estimation Metric for Lan-
guages with Different Levels of Available Resources
Chi-kiu Lo

EED: Extended Edit Distance Measure for Machine Translation
Peter Stanchev, Weiyue Wang and Hermann Ney

Filtering Pseudo-References by Paraphrasing for Automatic Evaluation of Machine
Translation
Ryoma Yoshimura, Hiroki Shimanaka, Yukio Matsumura, Hayahide Yamagishi and
Mamoru Komachi

11:00–12:30 Shared Task: Robustness

Naver Labs Europe’s Systems for the WMT19 Machine Translation Robustness Task
Alexandre Berard, Ioan Calapodescu and Claude Roux

NICT’s Supervised Neural Machine Translation Systems for the WMT19 Translation
Robustness Task
Raj Dabre and Eiichiro Sumita

System Description: The Submission of FOKUS to the WMT 19 Robustness Task
Cristian Grozea

xx



Thursday, August 1, 2019 (continued)

CUNI System for the WMT19 Robustness Task
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Abstract

This paper presents the results of the premier
shared task organized alongside the Confer-
ence on Machine Translation (WMT) 2019.
Participants were asked to build machine
translation systems for any of 18 language
pairs, to be evaluated on a test set of news
stories. The main metric for this task is hu-
man judgment of translation quality. The task
was also opened up to additional test suites to
probe specific aspects of translation.

1 Introduction

The Fourth Conference on Machine Translation
(WMT) held at ACL 20191 hosts a number of
shared tasks on various aspects of machine trans-
lation. This conference builds on 13 previous
editions of WMT as workshops and conferences
(Koehn and Monz, 2006; Callison-Burch et al.,
2007, 2008, 2009, 2010, 2011, 2012; Bojar et al.,
2013, 2014, 2015, 2016, 2017, 2018).

This year we conducted several official tasks.
We report in this paper on the news and similar
translation tasks. Additional shared tasks are de-
scribed in separate papers in these proceedings:

• biomedical translation (Bawden et al., 2019b)
• automatic post-editing (Chatterjee et al.,

2019)
• metrics (Ma et al., 2019)
• quality estimation (Fonseca et al., 2019)
• parallel corpus filtering (Koehn et al., 2019)
• robustness (Li et al., 2019b)

In the news translation task (Section 2), par-
ticipants were asked to translate a shared test
set, optionally restricting themselves to the pro-
vided training data (“constrained” condition). We

1http://www.statmt.org/wmt19/

held 18 translation tasks this year, between En-
glish and each of Chinese, Czech (into Czech
only), German, Finnish, Lithuanian, and Rus-
sian. New this year were Gujarati↔English and
Kazakh↔English. Both pose a lesser resourced
data condition on challenging language pairs. Sys-
tem outputs for each task were evaluated both au-
tomatically and manually.

This year the news translation task had two ad-
ditional sub-tracks: an unsupervised language pair
(German→Czech) and a language pair not involv-
ing English (German↔French). Both sub-tracks
were included into the general list of news transla-
tion submissions and are described in more detail
in the corresponding subsections of Section 2.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. In addition, we used Mechanical
Turk to collect further evaluations. This year, the
official manual evaluation metric is again based
on judgments of adequacy on a 100-point scale,
a method we explored in the previous years with
convincing results in terms of the trade-off be-
tween annotation effort and reliable distinctions
between systems.

The primary objectives of WMT are to evalu-
ate the state of the art in machine translation, to
disseminate common test sets and public train-
ing data with published performance numbers, and
to refine evaluation and estimation methodologies
for machine translation. As before, all of the
data, translations, and collected human judgments
are publicly available.2 We hope these datasets
serve as a valuable resource for research into data-

2http://statmt.org/wmt19/results.html
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driven machine translation, automatic evaluation,
or prediction of translation quality. News transla-
tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016).

In order to gain further insight into the perfor-
mance of individual MT systems, we organized
a call for dedicated “test suites”, each focussing
on some particular aspect of translation quality. A
brief overview of the test suites is provided in Sec-
tion 4.

2 News Translation Task

The recurring WMT task examines translation be-
tween English and other languages in the news do-
main. As in the previous year, we include Chinese,
Czech, German, Finnish and Russian (into and out
of English, except for Czech were only out of En-
glish was included). New language pairs for this
year were Gujarati, Lithuanian and Kazakh (to and
from English), and French-German. We also used
German-Czech (joining the corresponding parts of
the English-X test sets) for the unsupervised sub-
task.

2.1 Test Data

The test data for this year’s task (except for
the French-German set) was selected from online
news sources, as in previous years, with transla-
tion produced specifically for the task. For lan-
guage pairs that had appeared before at WMT (and
so had previous years’ data for development test-
ing) we selected approximately 2000 sentences in
each of the languages in the pair and translated
them into the other language. The source En-
glish sentences were common across all test sets.
For the new language pairs (i.e. English-Gujarati,
English-Kazakh and English-Lithuanian) we re-
leased development sets at the start of the cam-
paign, consisting of approximately 1000 sentences
in each language in the pair, translated into the
other language. For Gujarati-English the devel-
opment set was selected from online news in the
same way as the test set, whereas for Kazakh-
English the development set was selected (and re-
moved) from the news-commentary training set.
The test sets for these new language pairs was half
the size of the test sets of the existing language
pairs.

Different to previous years, all test sets (ex-

cept for French-German and German-Czech) only
included naturally occurring text on the source
side. In previous years, the way we produced an
English-X test set was to take 1500 sentences of
English text, translate these into language X, then
take 1500 sentences in language X, and translated
them into English. These 3000 translation pairs
were then used for the English-X task, and for the
X-English task, meaning that 50% of the sentences
in each test has “translationese” on the source side,
potentially leading to distortions in automatic and
human evaluation (Graham et al., 2019a). This
year, we did not include such “flipped” test data
in the test sets, meaning that the English-X and X-
English sets were non-overlapping.

The composition of the test documents is shown
in Table 1, the size of the test sets in terms of sen-
tence pairs and words is given in Figure 2.

The translation of the test sets was spon-
sored by the EU H2020 projects Bergamot and
GoURMET (English-Czech and Gujarati-English
respectively), by Yandex (Kazakh-English and
Russian-English), Microsoft (Chinese-English
and German-English), Tilde (Lithuanian-English),
the University of Helsinki (Finnish-English) and
Lingua Custodia3 (a part of French-German test
set).

The translations into Czech were carried out by
the agency Překlady textu, s.r.o.4 with the instruc-
tions for translators as given to all agencies:

• preserve line and document boundaries,

• translate from scratch, without post-editing,

• translate as literally as possible, but ensure
that the translation is still a fluent sentence
in the target language,

• do not add or remove information from the
translations, and do not add translator’s com-
ments.

• The point is to have a linguistically nice doc-
ument, but to be matching the original text as
closely as possible in terms of segmentation
into sentences (e.g. we don’t want 3 English
sentences combined into 1 long Czech com-
plex sentence).

3http://www.linguacustodia.finance/
4http://www.preklady-textu.cz/
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Europarl Parallel Corpus
Czech↔ English Finnish↔ English German↔ English Lithuanian↔ English French↔ German

Sentences 645,241 1,835,071 1,825,741 631,309 1,726,419
Words 14,948,882 17,380,337 35,766,351 50,233,589 48,125,049 50,506,042 13,448,546 17,070,302 46,014,903 41,000,331

Distinct words 172,450 63,287 677,673 112,751 371,743 113,958 237,740 62,885 388,613 616,702

News Commentary Parallel Corpus
Czech↔ English German↔ English Russian↔ English

Sentences 240,243 329,506 281,184
Words 5,372,690 5,938,908 8,363,213 8,295,418 7,132,754 7,447,684

Distinct words 172,215 68,966 197,056 80,623 194,808 76,953
Chinese↔ English Kazakh↔ English French↔ German

Sentences 311,922 7,475 256,226
Words – 7,926,131 157,171 193,101 8,049,218 6,607,025

Distinct words – 75,955 24,676 13,982 82,740 171,410

Common Crawl Parallel Corpus
German↔ English Czech↔ English Russian↔ English French↔ German

Sentences 2,399,123 161,838 878,386 622,288
Words 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122 13,991,973 12,217,457

Distinct words 1,640,835 823,480 210,170 128,212 764,203 432,062 676,725 932,137

ParaCrawl Parallel Corpus
German↔ English Czech↔ English Lithuanian↔ English

Sentences 31,358,551 5,862,521 1,368,691
Words 559,348,288 598,362,329 89,066,831 93,943,773 20,992,360 23,111,861

Distinct Words 8,081,990 4,888,665 1,477,399 1,108,068 723,940 495,311

Finnish↔ English Russian↔ English French↔ German
Sentences 3,944,929 12,061,155 7,222,574

Words 55,245,472 66,352,625 182,325,667 210,770,856 145,190,707 123,205,701
Distinct Words 1,787,403 944,140 2,958,831 2,385,075 1,534,068 2,368,682

EU Press Release Parallel Corpus
German↔ English Finnish↔ English Lithuanian↔ English

Sentences 1,480,789 583,223 213,173
Words 29,458,773 30,097,541 8,052,607 11,244,602 4,097,713 4,817,655

Distinct words 399,545 165,084 315,394 94,979 106,603 53,239

Chinese Parallel Corpora
casia2015 casict2011 casict2015 datum2011 datum2017 neu2017

Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000
Words (en) 20,571,578 34,866,598 22,802,353 24,632,984 25,182,185 29,696,442

Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct 701,809 387,646

CzEng v1.7 Parallel Corpus
Czech↔ English

Sentences 57,065,358
Words 667,091,440 751,312,654

Distinct 2,592,850 1,639,658

WikiTitles Parallel Corpus
Czech↔ English German↔ English Finnish↔ English Gujarati↔ English

Sentences 362,014 1,305,135 376,572 11,670
Words 862,719 924,948 2,817,660 3,271,223 761,213 912,044 23,780 24,098

Distinct 197,743 168,449 618,723 525,023 232,236 183,285 11,557 10,400

Kazakh↔ English Lithuanian↔ English Russian↔ English Chinese↔ English
Sentences 117,041 132,182 1,032,343 765,674

Words 189,565 231,166 286,837 304,043 2,786,728 2,793,609 – 2,031,512
Distinct 94,525 86,587 95,004 83,404 481,018 410,112 – 341,166

United Nations Parallel Corpus
Russian↔ English Chinese↔ English

Sentences 23,239,280 15,886,041
Words 482,966,738 524,719,646 – 372,612,596

Distinct 3,857,656 2,737,469 – 1,981,413

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the provided tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_
nlp_library) for Gujarati.
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Crawled Kazakh Parallel Data
Kazakh↔ English Russian↔ English

Sentences 97,654 5,063,666
Words 1,224,971 1,524,384 111,492,772 115,950,305

Distinct 89,500 39,704 1,022,853 774,991

Crawled Gujarati-English Parallel Data
The Bible Localisation Indian Govt. Wikipedia

Sentences 7,807 107,637 10,650 18,033
Words 228,113 206,440 763,521 750,659 154,364 177,141 370,972 373,491

Distinct 15,623 5,945 15,406 8,549 23,489 16,361 57,431 32,227

Monolingual Wikipedia Data

Gujarati Kazakh Lithuanian
Sentences 384,485 2,179,180 2,059,198

Words 6,779,645 28,130,741 31,006,475
Distinct words 373,840 1,115,320 970,696

News Language Model Data

English German Czech Russian Finnish
Sentences 199,900,557 275,690,481 72,157,988 80,148,714 16,834,066

Words 4,611,843,099 4,922,055,629 1,193,459,840 1,461,279,309 213,048,421
Distinct words 6,910,887 34,747,433 4,668,868 4,771,311 5,084,937

Gujarati Kazakh Lithuanian French Chinese
Sentences 244,919 772,892 375,206 76,848,192 1,749,968

Words 3,776,100 13,172,313 6,782,918 1,858,333,964 –
Distinct words 183,425 506,923 288,266 3,376,105 –

Document-Split News LM Data (not dedudped)

English German Czech
Sentences 419,796,579 533,619,919 92,388,432

Words 9,305,189,308 9,520,383,021 1,512,084,445
Distinct words 6,813,799 34,668,232 4,582,601

Common Crawl Language Model Data

English German Czech Russian Finnish
Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851 157,264,161

Words 65,128,419,540 65,154,042,103 6,694,811,063 23,313,060,950 2,935,402,545
Dist. 342,760,462 339,983,035 50,162,437 101,436,673 47,083,545

Chinese Lithuanian Kazakh Gujarati French
Sent. 1,672,324,647 103,103,449 10,862,371 3,729,406

Words – 2,907,519,260 261,518,626 80,120,267
Dist. – 25,343,195 4,381,617 2,068,064

Test Sets
Chinese→ EN EN→ Chinese EN→ Czech Finnish→ EN EN→ Finnish German→ EN

Sentences. 2000 1997 1997 1996 1997 2000
Words – 80,666 48,021 – 48,021 43,860 24,797 36,809 48,021 38,068 36,141 39,561

Distinct words – 7,939 7,372 – 7,372 11,537 10,454 5,763 7,372 12,789 8,763 6,764

EN→ German Gujarati→ EN EN→ Gujarati Kazakh→ EN EN→ Kazakh Lithuanian→ EN
Sentences. 1997 1016 998 1000 998 1000

Words 48,021 49,069 15,691 17,950 24,074 22,285 16,259 20,376 24,074 19,142 20,027 26,020
Distinct words 7,372 9,659 5,013 3,388 4,772 6,558 6,200 3,761 4,772 7,113 7,178 4,424

EN→ Lithuanian Russian→ EN EN→ Russian German→ Czech French↔ German
Sentences. 998 2000 1997 1997 1701

Words 24,074 20,603 35,821 43,158 48,021 48,298 49,779 43,860 46,216 36,563
Distinct words 4,772 7,046 10,564 6,311 7,372 12,385 9,502 11,537 5,942 7,042

Figure 2: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/
indic_nlp_library) for Gujarati.
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Language Sources (Number of Documents)
Chinese Chinanews (111), Macao Govt. (4), QQ (10), Reuters (31), RFI (2), Tsrus (5)
English I ABC News (3), BBC (12), CBS News (2), CNBC (3), CNN (3), Daily Mail (9), Euronews (3),

Guardian (3), Independent (3), News Week (6), NY Times (4), Reuters (3), Russia Today (1), The
Scotsman (3), The Telegraph (2), UPI (2)

English II ABC News (3), BBC (6), CBS News (4), CNBC (2), CNN (3), Daily Mail (2), Euronews (2), Fox
News (1), Guardian (2), Independent (1), News Week (5), NY Times (4), Reuters (9), Russia Today (4),
The Scotsman (6), The Telegraph (4), The Local (1), UPI (2)

Finnish ESS (8), Helsinginsanomat (12), Iltalehti (33), Iltasanomat (34), Kaleva (19), Kansanuutiset (1), Kar-
jalainen (26), Kotiseutu Uutiset (1)

German Abdendzeitung München (9), Abendzeitung Nürnberg (1), Aachener Nachrichten (7), Augsburger All-
gemine (2), Bergdorfer Zeitung (2), Braunschweiger Zeiting (2), Cuxhavener Nachrichten (1), Come
On (2), Der Standart (9), Deutsche Welle (1), Duelmener Zeitung (7), Euronews (2), Frankfurter
Neue Presse (2), Frankfurter Rundschau (4), Freipresse (1), Geinhaüser Tageblatt (1), Gmünder Tage-
spost (1), Göttinger Tageblatt (2), Handelsblatt (3), Hannoversche Allgemeine Zeitung (1), Hersfelder
Zeitung (2), HNA (2), Infranken (5), In Süd Thüringen (3), Kieler Nachrichten (6), Merkur Online (5),
Morgen Post (1), Nachrichten (4), N TV (3), NW News (1), NZZ (6), OE24 (5), PAZ Online (1),
Passauer Neue Presse (1), Rhein Zeitung (1), Rheinische Poste (1), Salzburg (3), Schwarzwälder
Bote (2), Söster Anzeiger (2), Südkurier (1), Usinger Anzeiger (1), Westfaelischer Anzeige (2), Welt (2),
Wienerzeitung (2), Westfaelische Nachrichten (18), Zeit (1), Zeitungsverlag Waiblingen (2)

Gujarati ABP Asmita (13), BBC (3), Divya Bhaskar (20), Global Gujarati News (13), Web Dunia (21)
Kazakh 7Kun (4), Aktobe Gazeti (3), Alkyn (4), Astana Akshamy (6), Atyray (1), Kazakh Adabieti (1), Ege-

men (5), Jaskazaq (11), Akorda/Kazinform (34), SN.kz (5), Zamedia (1)
Lithuanian Delfi (22), Diena (25), Lietuvos Zinios (7), TV3 (12), Voruta (2), VZ (8)
Russian AIF.ru (14), Altapress (4), Argumenti (3), Euronews (13), Fakty (9), Gazeta (7), Infox (3),

Izvestiya (38), Kommersant (12), Lenta (14), Nezavisimaya Gazeta (8), Moskovskij Komsomolets (19),
Parlamentskaya Gazeta (1), Rossiskaya Gazeta (1), ERR (1), Sovetskij Sport (31), Vedomosti (1), Nasha
Versiya (1), Vesti (14), Za Rulyom (2)

Table 1: Composition of the test sets. English I was used for all language pairs, whereas English II was used for all except
Gujarati, Kazakh and Lithuanian. For more details see the XML test files. The docid tag gives the source and the date for each
document in the test set, and the origlang tag indicates the original source language.

2.2 Training Data

As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters.

This year, we proposed document-level evalu-
ation for the English-German and English-Czech
tasks. We therefore attempted to provide training
corpora with document boundaries intact wher-
ever possible. We produced new versions of the
Europarl corpora with document boundaries, an
updated version of news-commentary with docu-
ment boundaries, and a release of the Rapid cor-
pus for German-English with document bound-
aries intact. The CzEng5 already included con-
text for each sentence, so we did not update it.
We also produced a WikiTitle corpus this year
for all language pairs, and allowed the use of a
new ParaCrawl corpus (v3). The UN, Common-
Crawl and Yandex corpora were unchanged since
last year.

For Gujarati-English, we allowed several extra
parallel corpora (the Bible, a localisation corpus
from Opus, the Emille corpus, a Wikipedia cor-
pus and a crawled corpus specifically for this task),

5http://ufal.mff.cuni.cz/czeng/czeng17

as well as encouraging participants to experiment
with the HindEnCorp6 for transfer learning.

For Kazakh-English, we released a crawled cor-
pus (from KazakhTV) prepared by Bagdat Myrza-
khmetov of Nazarbayev University as well as a
much larger Kazakh-Russian corpus for transfer
learning or pivoting.

We released new monolingual news crawls for
each of the languages used in the task. For German
and Czech, we released versions of these with the
document boundaries intact, for participants wish-
ing to experiment with document-level models.

Some statistics about the training materials are
given in Figures 1 and 2.

2.3 Unsupervised Sub-Task
Following up on the unsupervised learning chal-
lenge from last year, we again invited participants
to build unsupervised machine translation systems
without the use of any parallel training corpora.

While WMT has been (and is) providing con-
siderable amounts of bitext for most of the lan-
guage pairs covered in its shared tasks on ma-
chine translation of news, there is however still
a shortage of available parallel resources between

6http://ufallab.ms.mff.cuni.cz/~bojar/
hindencorp/
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lots of combinations of two human languages.
Bridging through a global hub language—such as
English—can be a solution in scenarios where no
bitext exists between two languages but parallel
corpora with the hub language are at hand for each
of the two. This “pivot translation” approach of
cascading source–English and English–target MT
is well-established. More recent research on un-
supervised translation, on the other hand, seeks to
altogether eliminate the need for parallel training
data. Unsupervised translation techniques should
be capable of learning translation correspondences
from only monolingual data in two different lan-
guages, thus potentially offering a solution to ma-
chine translation between each and every possible
pair of written human languages.

Previous year’s evaluation had indicated that,
unsurprisingly, unsupervised translation clearly
lags behind supervised translation. But we had
also seen promising early-stage research results
which seemed to suggest that the difficult task
of unsupervised learning in machine translation
may not be impossible to solve in the long run.
When acceptable quality can be reached with un-
supervised methods, these methods will likely not
directly compete with supervised translation, but
rather be deployed to cover language pairs where
supervised translation is inapplicable due to a lack
of parallel data.

The language pair for the WMT19 unsuper-
vised sub-task was German–Czech. Only the
German→Czech translation direction was eval-
uated, not the Czech→German direction. Ger-
man is a compounding language, and German and
Czech are both morphologically rich. Linguistic
peculiarities on both the source and the target side
impose difficulties other than for last year’s lan-
guages, where we paired Turkish, Estonian, and
German each with English for the unsupervised
sub-task. By choosing German–Czech, we hope
to simulate practical application scenarios for fully
unsupervised translation. However, note that there
actually is German–Czech parallel data, e.g. from
European parliamentary proceedings. German–
English and English–Czech bitexts likewise exist
in large amounts. We asked the participants to
avoid any of these corpora, as well as any mono-
lingual or parallel data for other languages and
language pairs. Permissible training data for the
unsupervised sub-task were only the monolingual
corpora from the constrained monolingual WMT

News Crawls of German and Czech. Last years’
parallel dev and test sets (from the development
tarball7) were allowed for bootstrapping purposes.
Since they contain a few thousand sentences of
high-quality German–Czech parallel text, we ad-
vised participants to make only very moderate use
of this data. Using it directly as a training cor-
pus was strongly discouraged, but we wanted to
provide system builders with a means to evalu-
ate and track progress internally during system de-
velopment. We also did not prohibit its use for
lightweight (hyper-)parameter optimization.

Seven German→Czech unsupervised machine
translation systems were submitted and marked as
primary submissions by the participating teams.
The unsupervised system submissions were eval-
uated along with four online systems for the
German→Czech language pairs, which we as-
sume are all supervised MT engines. The official
results of the human evaluation are presented in
Table 12 (Section 3).

2.4 EUElections German→French and
French→German Sub-Tasks

The second new sub-task this year included trans-
lating news data between French and German
(both directions) on the topic of the European
Elections. We collected a development and test
set from online news websites. Articles were orig-
inally in French or in German. Statistics of the
corpora a presented in the following table. In or-

#lines #token FR #token DE
dev2019 FULL 1512 33833 28733

- source FR 462 11081 10890
- source DE 1050 22752 17843

test2019 FULL 1701 38154 31560
- source FR 335 7678 7195
- source DE 1366 30476 24365

Table 2: Statistics of the French↔German dev and test sets
with breakdown statistics based on the source language.

der to analyse the impact of the original source
language of document on systems’ performance,
we computed the METEOR scores on the full cor-
pus (FULL), on the sentences from articles ini-
tially written in French (second column) or in Ger-
man (third column). Results are shown in the Ta-
bles 3 and 4. One can notice some differences
depending on the language direction. While the
performance of the systems when translating from
French to German seems to heavily depend on the

7http://data.statmt.org/wmt19/
translation-task/dev.tgz
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Systems FULL source FR source DE
MSRA.MADL 47.3 38.3 50.0
eTranslation 45.4 37.4 47.8
LIUM 43.7 37.5 45.5
MLLP-UPV 41.5 36.4 43.0
onlineA 40.8 35.4 42.3
TartuNLP 39.2 34.8 40.5
onlineB 39.1 35.3 40.2
onlineY 39.0 34.7 40.2
onlineG 38.5 34.6 39.7
onlineX 38.1 35.6 38.8

Table 3: French→German Meteor scores.

Systems FULL source FR source DE
MSRA.MADL 52.0 51.9 52.0
LinguaCustodia 51.3 52.5 51.0
MLLP_UPV 49.5 49.9 49.4
Kyoto_University_T2T 48.8 49.7 48.6
LIUM 48.3 46.5 48.7
onlineY 47.5 43.7 48.4
onlineB 46.4 43.7 47.0
TartuNLP 46.3 45.0 46.7
onlineA 45.3 43.7 45.8
onlineX 42.7 41.6 42.9
onlineG 41.7 40.9 41.9

Table 4: German→French Meteor scores. Green cells high-
light the systems performing equally when source text is in
either language. The gray cells show that the TartuNLP sys-
tem performs better with French source text relatively to its
overall score.

original language of the document, this is less the
case for the German to French direction. These
results suggest that the German text produced by
translating French documents is somewhat differ-
ent from the German text originally produced even
though native German translators were involved in
the process. This is of course not new and is re-
lated to translationese (Koppel and Ordan, 2011).
As shown in Table 2, only one fifth of the test cor-
pus originates from French documents. With this
in mind, Table 4 suggests that the translationese is
less obvious for French text.

For next year, we plan to produce additional
data with documents created during and after the
elections.

2.5 Submitted Systems

In 2019, we received a total of 153 submissions.
The participating institutions are listed in Table 5
and detailed in the rest of this section. Each sys-
tem did not necessarily appear in all translation
tasks. We also included online MT systems (orig-
inating from 5 services), which we anonymized as
ONLINE-A,B,G,X,Y.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, the online systems are treated
as unconstrained during the automatic and human

evaluations.
In the rest of this sub-section, we provide brief

details of the submitted systems, for those in cases
where the authors provided such details.

2.5.1 AFRL

AFRL-SYSCOMB19 (Gwinnup et al., 2019) is
a system combination of a Marian ensemble sys-
tem, two distinct OpenNMT systems, a Sockeye-
based Elastic Weight Consolidation system, and
one Moses phrase-based system.

AFRL-EWC (Gwinnup et al., 2019) is a Sock-
eye Transformer system trained with the default
network configuration as described in Vaswani
et al. (2017). The model is trained using the pre-
pared parallel corpus used in other AFRL systems.
A fine-tuning corpus is created from the 2014–
2017 WMT Russian–English test sets. EWC is ap-
plied as described in Thompson et al. (2019). The
final submission is an ensemble decode of the four
best-performing checkpoints from a single train-
ing run when scoring newstest2018.

2.5.2 APERTIUM-FIN-ENG (Pirinen, 2019)
APERTIUM-FIN-ENG is a standard shallow rule-
based machine translation using Apertium.

2.5.3 APPRENTICE-C (Li and Specia, 2019)
APPRENTICE-C is a RNN-based encoder-decoder
with pre-trained embedding enhanced by charac-
ter information. The system is trained on 10.38M
Chinese-English sentence pairs after tokenization,
filtering by alignment and BPE . Pre-trained em-
bedding is trained on monolingual data for 5 iter-
ations and used as an initialization for the RNN
model.

2.5.4 AYLIEN_MULTILINGUAL (Hokamp
et al., 2019)

The Aylien research team built a Multilingual
NMT system which is trained on all WMT2019
language pairs in all directions, then fine-tuned for
a small number of iterations on Gujarati-English
data only, including some self-backtranslated data.

2.5.5 BAIDU (Sun et al., 2019)
Baidu systems are based on the Transformer archi-
tecture with several improvements. Data selection,
back translation, data augmentation, knowledge
distillation, domain adaptation, model ensemble
and re-ranking are employed and proven effective
in our experiments.
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Team Institution
AFRL Air Force Research Laboratory (Gwinnup et al., 2019)
APERTIUM-FIN-ENG Apertium (Pirinen, 2019)
APPRENTICE-C Apprentice (Li and Specia, 2019)
AYLIEN_MULTILINGUAL Aylien Ltd. (Hokamp et al., 2019)
BAIDU Baidu (Sun et al., 2019)
BTRANS (no associated paper)
BASELINE-RE-RERANK (no associated paper)
CAIRE (Liu et al., 2019)

CUNI
Charles University (Popel et al., 2019; Kocmi and Bojar, 2019) and
(Kvapilíková et al., 2019)

DBMS-KU Kumamoto University, Telkom University, Indonesian Institute of Sciences
(Budiwati et al., 2019)

DFKI-NMT DFKI (Zhang and van Genabith, 2019)
ETRANSLATION eTranslation (Oravecz et al., 2019)
FACEBOOK FAIR Facebook AI Research (Ng et al., 2019)
GTCOM GTCOM (Bei et al., 2019)
HELSINKI NLP University of Helsinki (Talman et al., 2019)
IIITH-MT IIIT Hyderabad (Goyal and Sharma, 2019)
IITP IIT Patna (Sen et al., 2019)
JHU Johns Hopkins University (Marchisio et al., 2019)
JUMT (no associated paper)
JU_SAARLAND University of Saarland (Mondal et al., 2019)
KSAI Kingsoft AI (Guo et al., 2019)
KYOTO UNIVERSITY University of Kyoto (Cromieres and Kurohashi, 2019)
LINGUA CUSTODIA Lingua Custodia (Burlot, 2019)
LIUM LIUM (Bougares et al., 2019)
LMU-NMT LMU Munich (Stojanovski and Fraser, 2019; Stojanovski et al., 2019)
MLLP-UPV MLLP, Technical University of Valencia (Iranzo-Sánchez et al., 2019)
MS TRANSLATOR Microsoft Translator (Junczys-Dowmunt, 2019)
MSRA Microsoft Research Asia (Xia et al., 2019)
NIUTRANS Northeastern University / NiuTrans Co., Ltd. (Li et al., 2019a)

NICT
National Institute of Information and Communications Technology
(Dabre et al., 2019; Marie et al., 2019b)

NRC National Research Council of Canada (Littell et al., 2019)
PARFDA Boğaziçi University (Biçici, 2019)
PROMT-NMT PROMT LLC (Molchanov, 2019)
RUG University of Groningen (Toral et al., 2019)
RWTH AACHEN RWTH Aachen (Rosendahl et al., 2019)

TALP_UPC_2019
TALP Research Center,
Universitat Politècnica de Catalunya (Casas et al., 2019)

TARTUNLP-C University of Tartu (Tättar et al., 2019)
TILDE-NC-NMT Tilde (Pinnis et al., 2019)
UALACANT Universitat d’Alacant (Sánchez-Cartagena et al., 2019)
UCAM University of Cambridge (Stahlberg et al., 2019)
UDS-DFKI Saarland University, DFKI (España-Bonet and Ruiter, 2019)
UEDIN University of Edinburgh (Bawden et al., 2019a)
UMD University of Maryland (Briakou and Carpuat, 2019)
USTC-MCC (no associated paper)
USYD University of Sydney (Ding and Tao, 2019)
XZL-NMT (no associated paper)

Table 5: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
online systems were not submitted by their respective companies but were obtained by us, and are therefore anonymized in a
fashion consistent with previous years of the workshop.
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2.5.6 BTRANS
Unfortunately, no details are available for this sys-
tem.

2.5.7 BASELINE-RE-RERANK (no associated
paper)

BASELINE-RE-RERANK is a standard Trans-
former, with corpus filtering, pre-processing, post-
processing, averaging and ensembling as well as
n-best list reranking.

2.5.8 CAIRE (Liu et al., 2019)
CAIRE is a hybrid system that took part only
in the unsupervised track. The system builds
upon phrase-based MT and a pre-trained lan-
guage model, combining word-level and subword-
level NMT. A series of pre-processing and post-
processing steps improves the performance, e.g.
placeholders for numbers and dates, recasing and
quotes normalization.

2.5.9 Charles University (CUNI) Systems
CUNI-T2T-TRANSFER (Kocmi and Bojar,
2019) are Transformer neural machine transla-
tion systems (as implemented in Tensor2tensor)
for Kazakh↔English, Gujarati↔English. CUNI-
T2T-TRANSFER focused on transfer learning from
a high-resource language pair (Russian-English
and Czech-English, respectively) followed by
iterative back-translation.

CUNI-DOCTRANSFORMER-T2T2019 and
CUNI-TRANSFORMER-T2T2019 (Popel et al.,
2019) are trained in the T2T framework fol-
lowing the last year submission (Popel, 2018),
but training on WMT19 document-level parallel
and monoliongual data. During decoding, each
document is split into overlapping multi-sentence
segments, where only the “middle” sentences
in each segment are used for the final transla-
tion. CUNI-TRANSFORMER-T2T2019 is the
same system as CUNI-DOCTRANSFORMER-
T2T2019, just applied on separate sentences
during decoding.

CUNI-DOCTRANSFORMER-MARIAN (Popel
et al., 2019) is a Transformer model as imple-
mented in Marian and trained in a context-aware
(“document-level”) fashion. The training started
with the same technique as the last year’s sub-
mission but it was finetuned on document-level
parallel and monolingual data by translating
triples of adjacent sentences at once. If possible,

only the middle sentence was considered for the
final translation hypothesis, otherwise shorter
context of two sentences or just a single sentence
was used.

CUNI-TRANSFORMER-T2T2018 (Popel, 2018)
is the exact same system as used last year.

CUNI-TRANSFORMER-MARIAN (Popel et al.,
2019) is a “reimplementation” of the last
year’s system (Popel, 2018) in Marian (Junczys-
Dowmunt et al., 2018).

CUNI-UNSUPERVISED-NER-POST (Kva-
pilíková et al., 2019) follows the strategy of
Artetxe et al. (2018), creating a seed phrase-based
system where the phrase table is initialized from
cross-lingual embedding mappings trained on
monolingual data, followed by a neural machine
translation system trained on synthetic parallel
corpus. The synthetic corpus is produced by the
seed phrase-based MT system or by a such a
model refined through iterative back-translation.
CUNI-UNSUPERVISED-NER-POST further
focuses on the handling of named entities, i.e.
the part of vocabulary where the cross-lingual
embedding mapping suffer most.

2.5.10 DBMS-KU (Budiwati et al., 2019)
The system DBMS-KU INTERPOLATION uses
Linear Interpolation and Fillup Interpolation
method with different language models, i.e., 3-
gram and 5-gram. It combines a direct phrase ta-
ble with pivot phrase table, pivoting through the
Russian language.

2.5.11 DFKI-NMT (Zhang and van Genabith,
2019)

DFKI-NMT is a Transformer model trained using
various techniques including data selection (us-
ing custom Transformer-based language models),
back-translation and in-domain fine-tuning.

2.5.12 EN-DE-TASK

Unfortunately, no details are available for this sys-
tem.

2.5.13 ETRANSLATION (Oravecz et al., 2019)
ETRANSLATION En-De ETRANSLATION’s En-
De system is an ensemble of 3 base Transformers
and a Transformer-type language model, trained
from all available parallel data (cleaned up and fil-
tered with dual conditional cross-entropy filtering)
and with additional back-translated data generated
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from monolingual news. Each Transformer model
is fine tuned on previous years’ test sets.

ETRANSLATION Fr-De The Fr-De system is
an ensemble of 2 big Transformers (with size
8192 FFN layers). Back-translation data was se-
lected using topic modelling techniques to tune the
model towards the domain defined in the task.

ETRANSLATION En-Lt The En-Lt system is an
ensemble of 2 big Transformers (as for Fr-De) and
a Transformer type language model. The training
data contains the Rapid corpus and the news do-
main back-translated data sets 2 times oversam-
pled.

ETRANSLATION Ru-En The Ru-En system is a
single base Transformer trained only on true par-
allel data (including ParaCrawl but excluding the
UN corpus) filtered in the same way as in the other
submissions and fine tuned on previous test sets.

2.5.14 FACEBOOK FAIR (Ng et al., 2019)

Facebook FAIR system is a pure sentence level
system, it is an ensemble of 3 Big Transformer
models with FFN layers of size 8192. Trained on
the mix of bitext and back-translated newscrawl
data, oversampling was used to keep the effec-
tive ratio of bitext and back-translated data the
same. Sampling from an ensemble of 3 mod-
els trained on bitext only was used to generate
back-translations. The models were fine-tuned on
in-domain data and a final noisy channel rerank-
ing was applied. All the training data (bitext and
monolingual) was cleaned using langid filtering.

2.5.15 FRANK-S-MT

Unfortunately, no details are available for this sys-
tem.

2.5.16 GTCOM (Bei et al., 2019)

GTCOM’s systems (sysNameGTCOM-Primary)
mainly focus on backtranslation, knowledge distil-
lation and reranking to build a competitive model
with transformer architecture. Also, the language
model is applied to filter monolingual data, back-
translated data and parallel data. The techniques
for data filtering include filtering by rules, lan-
guage models. Furthermore, they apply knowl-
edge distillation techniques and right-to-left (R2L)
reranking.

2.5.17 HELSINKI NLP (Talman et al., 2019)
HELSINKI NLP is a Transformer (Vaswani et al.,
2017) style model implemented in OpenNMT-
py using a variety of corpus filtering techniques,
truecasing, BPE (Sennrich et al., 2016), back-
translation, ensembling and fine-tuning for do-
main adaptation.

2.5.18 IIITH-MT (Goyal and Sharma, 2019)
IIITH-MT for Gujarati-English first experi-
mented with attention-based LSTM encoder-
decoder architecture, but later found the results to
be more promising by using Transformer archi-
tecture. The paper documents that with Hindi-
English as an assisting language pair in a joint
training, the multilingual system obtains signifi-
cant BLEU improvements for a low resource lan-
guage pair like Gujarati-English.

2.5.19 IITP (Sen et al., 2019)
IITP-MT is a Transformer based NMT system
trained using original parallel corpus and synthetic
parallel corpus obtained through backtranslation
of monolingual data. All the experiments are
performed at subword-level using BPE with 10K
merge operations.

2.5.20 JHU (Marchisio et al., 2019)
JHU’s English-German system is an ensemble
of 2 Transformer base models, improved by
filtered backtranslation with restricted sampling
(like Edunov+ 2018), filtered ParaCrawl and Com-
monCrawl (Junczys-Dowmunt, 2018a), continued
training on newstest15-18 (like JHU’s submission
to WMT18, Koehn et al., 2018), reranking with
R2L models (like Sennrich et al., 2017 or Junczys-
Dowmunt, 2018b) and fixing quotation marks to
match the German style (as many other teams did).

English-German was the same, with a 3 Trans-
former base ensemble, no fixed quotation marks,
and reranking additionally included a language
model (inspired by Junczys-Dowmunt, 2018a).

2.5.21 JUMT (no associated paper)
For the training purpose, the preprocessed
Lithuanian-English sentence pairs were fed to
Moses toolkit (Koehn et al., 2007). This cre-
ated an SMT translation model with Lithuanian
as the source language and English as the target
language. After that, the Lithuanian side of a par-
allel corpus of 2,00,000 Lithuanian-English sen-
tence pairs was re-translated into English with the
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SMT model. These 2,00,000 machine translated
English sentences and the respective 2,00,000
gold standard Lithuanian sentences (from the
Lithuanian-English sentence pairs) were given as
input to a word embedding based NMT model.
This resulted in the hybrid model submitted for
manual evaluation.

2.5.22 JU_SAARLAND (Mondal et al., 2019)
The systems JU_SAARLAND and
JU_SAARLAND_CLEAN_NUM_135_BPE used
additional backtranslated data and were trained
using phrase-based and BPE-based attention
models.

2.5.23 KSAI (Guo et al., 2019)
Kingsoft’s submissions were based on various
NMT architectures with Transformer as the base-
line system. Several data filters and back-
translation were used for data cleaning and data
augmentation, respectively. Several advanced
techniques were added to the baseline system such
as Linear Combination and Layer Aggregation.
Fine-tuning methods were applied to improve the
in-domain translation quality. The final model
was a system combination through multi-model
ensembling and reranking, post-processed.

2.5.24 KYOTO UNIVERSITY (Cromieres and
Kurohashi, 2019)

KYOTO UNIVERSITY used the now standard
Transformer model (with 6 layers for each of en-
coder/decoder, hidden size of 1024, 16 attention
heads, dropout of 0.3). Training data was care-
fully cleaned and the 2018 monolingual data was
used through back-translation, as it turned out to
be necessary for correctly translating recent news
items. No ensemble translation was performed but
a small BLEU improvement was obtained by tak-
ing a “majority vote" on the final translations for
different checkpoints.

2.5.25 LINGUA CUSTODIA (Burlot, 2019)
The German-to-French system LINGUA-
CUSTODIA-PRIMARY is an ensemble of eight
Transformer base models, fine-tuned on monolin-
gual news data back-translated with constrained
decoding for specific terminology control.

2.5.26 LIUM (Bougares et al., 2019)
LIUM introduced two new translation directions
involving two European languages: French and

German. The training data was created by cross-
matching the training data from previous WMT
shared tasks. Development and test sets have
been manually created from news articles Focus-
ing on EU elections topics. LIUM participated in
both directions for German-French language pairs.
LIUM systems are based on the self-attentional
Transformer networks using “small” and “big” ar-
chitectures. We also used monolingual data selec-
tion and synthetic data through backtranslation.

2.5.27 LMU-NMT

LMU Munich provided two systems.

LMU-NMT (Stojanovski and Fraser, 2019)
The LMU Munich system for En-De translation
is based on a context-aware Transformer. We
first train a baseline big Transformer on filtered
ParaCrawl and an oversampled version of the re-
maining parallel data and then continue train-
ing with NewsCrawl backtranslations. We use
the baseline to initialize the context-aware Trans-
former which uses fine-grained modeling of local
and coarse-grained modeling of large context.

LMU-UNSUP (Stojanovski et al., 2019) The
LMU Munich system for German-Czech transla-
tion is based on BWEs, cross-lingual LM, SMT
and NMT, all trained in an unsupervised way. We
train a cross-lingual Masked LM (Lample et al.,
2019) and use it to initialize the NMT model. The
NMT model is trained with denoising autoencod-
ing and online backtranslation. We also include
backtranslations from an unsupervised SMT. Ger-
man data is compound-split and for NMT we fur-
ther apply BPE splitting.

2.5.28 MLLP-UPV (Iranzo-Sánchez et al.,
2019)

MLLP-UPV submitted systems for the
German↔English and German↔French lan-
guage pairs, participating in both directions of
each pair. The systems are based on the Trans-
former architecture and make ample use of data
filtering, synthetic data and domain adaptation
through fine-tuning.

2.5.29 MS TRANSLATOR (Junczys-Dowmunt,
2019)

MS Translator systems (MICROSOFT-WMT19-
SENT-DOC, MICROSOFT-WMT19-DOC-LEVEL

and MICROSOFT-WMT19-SENT-LEVEL) explore
the use of document-level context in large-scale
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settings. We build 12-layer Transformer-Big sys-
tems: a) on the sentence-level, b) with large
document-level context (training on full docu-
ments with up to 1024 subwords) and c) hybrid
models via 2nd-pass decoding and ensembling.
The models are trained on filtered parallel data,
large amounts of back-translated documents and
augmented fake and true parallel documents.

2.5.30 MSRA (Xia et al., 2019)
MSRA was submitted by Microsoft Research
Asia. This system covers also the following
sub-systems: MSRA.MADL, MSRA.MASS,
MSRA.NAO and MSRA.SCA.

MSRA.MADL is based on Transformer (i.e.,
the standard transformer_big setting with 6 lay-
ers, embedding dimension 1024 and hidden state
dimension 4096) and trained with multi-agent
dual learning (Wang et al., 2019) scheme (briefly,
MADL). The core idea of dual learning is to lever-
age the duality between the primal task (map-
ping from domain X to domain Y) and dual task
(mapping from domain Y to X ) to boost the
performances of both tasks. MADL extends the
dual learning framework by introducing multi-
ple primal and dual models. It was integrated
into the submitted system MSRA.MADL for
German↔English and German↔French transla-
tions.

MSRA.SCA is a combination of Transformer
network, back translation, knowledge distillation,
soft contextual data augmentation (Zhu et al.,
2019), and model ensembling. The Transformer
big architecture is trained using soft contextual
data augmentation to further enhance the perfor-
mance. Following the above procedures, 5 dif-
ferent models are trained and ensembled for final
submission.

MSRA.MASS is based on Transformer (i.e.,
the standard transformer_big setting with 6 lay-
ers, embedding dimension 1024 and hidden state
dimension 4096) and pre-trained with MASS:
masked sequence to sequence pre-training for lan-
guage generation (Song et al., 2019). MASS lever-
ages both monolingual and bilingual sentences for
pre-training, where a segment of the source sen-
tence is masked in the encoder side, and the de-
coder predicts this masked segment in the mono-
lingual setting and predicts the whole target sen-
tence in the bilingual setting. After pre-training,

back-translation and ensemble/reranking are fur-
ther leveraged to improve the accuracy of the sys-
tem. MSRA.MASS handles Chinese→English
and English↔Lithuanian translations in the sub-
mission

MSRA.NAO is a system whose architecture
is obtained by neural architecture optimization
(briefly, NAO; Luo et al., 2018). NAO leverages
the power of a gradient-based method to conduct
optimization and guide the creation of better neu-
ral architecture in a continuous and more compact
space given the historically observed architectures
and their performances. The search space includes
self attention, convolutional networks, LSTMs,
etc. It was applied in English↔Finnish transla-
tions in the submitted systems.

2.5.31 NIUTRANS providing the system NEU
(Li et al., 2019a)

The NIUTRANS submissions are based on Deep-
Transformer-DLCL and its variants, we used
back-translation with beam search and sampling
methods for data augmentation. Iterative ensem-
ble knowledge distillation was employed to en-
hance single systems by various teachers. En-
sembling and reranking facilitated further system
combination.

2.5.32 NICT

NICT (Dabre et al., 2019) submitted su-
pervised neural machine translation (NMT)
systems developed for the news translation
task for Kazakh↔English, Gujarati↔English,
Chinese↔English, and English→Finnish transla-
tion directions.

NICT focused on leveraging multilingual trans-
fer learning and back-translation for the extremely
low-resource language pairs: Kazakh↔English
and Gujarati↔English translation. For the
Chinese↔English translation, back-translation,
fine-tuning, and model ensembling were found to
work the best. For English→Finnish, NICT sub-
mission from WMT18 remains a strong baseline
despite the increase in parallel corpora for this
year’s task.

NICT (Marie et al., 2019b) submitted also
an unsupervised neural machine translation sys-
tem developed for the news translation task for
German→Czech translation direction, focussing
on language model pre-training, n-best list rerank-
ing, fine-tuning, and model ensembling technolo-
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gies. The final primary submission to this task
is the result of a simple combination of the unsu-
pervised neural and statistical machine translation
systems.

2.5.33 NRC (Littell et al., 2019)
The National Research Council Canada (NRC-
CNRC) Kazakh-English news translation system is
a multi-source, multi-encoder NMT system that
takes Russian as the additional source. The con-
strained Kazakh-Russian parallel corpora is used
to train NMT systems for “cross-translation” of
resources between the languages, and the final
Kazakh/Russian-to-English system is trained on
a combination of genuine, back-translated, and
cross-translated synthetic data. The submitted
model is a partially trained single run system.

2.5.34 PARFDA (Biçici, 2019)
Biçici (2019) reports on the use of parfda system,
Moses, KenLM, NPLM, and PRO, including the
coverage of the test sets and the upper bounds
on the translation results using the constrained re-
sources.

2.5.35 PROMT-NMT (Molchanov, 2019)
This is an unconstrained, transformer-based single
system, built using Marian and using BPE.

2.5.36 RUG

RUG_KKEN_MORFESSOR (Toral et al., 2019)
uses (i) unsupervised morphological segmentation
given the agglutinative nature of Kazakh, (ii) data
from an additional language (Russian), given the
scarcity of English–Kazakh data and (iii) syn-
thetic data for the source language filtered using
language-independent sentence similarity.

RUG_ENKK_BPE (Toral et al., 2019) uses data
from an additional language (Russian), given the
scarcity of English–Kazakh data and synthetic
data (for both source and target languages) filtered
using language-independent sentence similarity.

2.5.37 RWTH AACHEN (Rosendahl et al.,
2019)

The systems by RWTH AACHEN are all based on
Transformer architecture and aside from careful
corpus filtering and fine tuning, they experiment
with different types of subword units.

For English-German, no gains over the last
year setup are observed. Small improvements are
reached in Chinese-English. The highest gain of

11.1 BLEU is obtained for Kazakh-English, also
thanks to transfer learning techniques.

2.5.38 TALP_UPC_2019_KKEN and
TALP_UPC_2019_ENKK (Casas et al.,
2019)

The TALP-UPC system was trained on a combi-
nation of the original Kazakh-English data (over-
sampled 3x) together with synthetic corpora ob-
tained by translating with a BPE-based Moses the
Russian side of the Kazakh-Russian data to En-
glish for the en-kk direction, and the Russian side
of the English-Russian data to Kazakh for the kk-
en direction. For the final systems, a custom
model consisting in a self-attention Transformer
decoder that learns joint source-target representa-
tions (with BPE tokenization) was used, imple-
mented on the fairseq library.

2.5.39 TARTUNLP-C (Tättar et al., 2019)

TARTUNLP-C is a multilingual multi-domain
neural machine translation, achieved by specify-
ing the output language and domain via input word
features (factors). The system was trained using
all the parallel data for latin alphabet languages
and used self-attention (Transformer) as the base
architecture.

2.5.40 TILDE-NC-NMT and TILDE-NC-NMT

(Pinnis et al., 2019)

Tilde developed both constrained and uncon-
strained NMT systems for English-Lithuanian
and Lithuanian-English using the Marian toolkit.
All systems feature ensembles of four to five
transformer models that were trained using the
quasi-hyperbolic Adam optimiser (Ma and Yarats,
2018). Data for the systems were prepared us-
ing TildeMT filtering (Pinnis, 2018) and pre-
processing (Pinnis et al., 2018) methods. For un-
constrained systems, data were additionally fil-
tered using dual conditional cross-entropy filter-
ing (Junczys-Dowmunt, 2018a). All systems were
trained using iterative back-translation (Rikters,
2018) and feature synthetic data that allows train-
ing NMT systems to support handling of un-
known phenomena (Pinnis et al., 2017). Dur-
ing translation, automatic named entity and non-
translatable phrase post-editing were performed.
For constrained systems, named entities and non-
translatable phrase lists were extracted from the
parallel training data. For unconstrained systems,
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WikiData8 was used to acquire bilingual lists of
named entities.

2.5.41 Universitat d’Alacant
UALACANT-NMT (Sánchez-Cartagena et al.,
2019) is an ensemble of two RNN and two
transformer models. They were trained on a
combination of genuine parallel data, synthetic
data generated by means of pivot backtranslation
(from the available English-Russian and Kazakh-
Russian parallel data) and backtranslated monolin-
gual data. The Kazakh text was morphologically
segmented with Apertium.

UALACANT-NMT+RBMT (Sánchez-
Cartagena et al., 2019) is an ensemble of
two RNN and two Transformer models. They
were trained on a combination of genuine par-
allel data, synthetic data generated by means
of pivot backtranslation (from the available
English-Russian and Kazakh-Russian parallel
data) and backtranslated monolingual data. The
Kazakh text was morphologically segmented with
Apertium. The RNN models were multi-source
models with two inputs: the original SL text
and its translation with the Apertium RBMT
English-Kazakh system.

2.5.42 UCAM (Stahlberg et al., 2019)
The Cambridge University Engineering Depart-
ment’s entry to the WMT19 evaluation campaign
focuses on fine-tuning and language modelling.
Fine-tuning on former WMT test sets is regular-
ized with elastic weight consolidation (Kirkpatrick
et al., 2017). Language models are used on both
the sentence-level and the document-level, with a
modified Transformer architecture for document-
level language modelling. An SMT system is in-
tegrated via a minimum Bayes-risk formulation
(Stahlberg et al., 2017).

2.5.43 UDS-DFKI (España-Bonet and
Ruiter, 2019)

The UdS-DFKI English→German system uses a
standard Transformer architecture where data is
enriched with coreference information gathered at
document level. The training is still done at the
sentence level.

The English↔Gujarati systems are phrase-
based SMT systems enriched with parallel sen-
tences extracted from comparable corpora with a

8www.wikidata.org

self-supervised NMT system. In this case, also
back-translations are used.

2.5.44 UEDIN (Bawden et al., 2019a)

The UEDIN systems are supervised NMT sys-
tems based on the transformer architecture and
trained using Marian (Junczys-Dowmunt et al.,
2018). For English↔Gujarati, synthetic parallel
data from two sources, backtranslation and pivot-
ing through Hindi, is produced using unsupervised
and semi-supervised NMT models, pre-trained us-
ing a cross-lingual language objective (Lample
and Conneau, 2019) For German→English, the
impact of vast amounts of back-translated train-
ing data on translation quality is studied, and
some additional insights are gained over (Edunov
et al., 2018). Towards the end of training,
for German→English and Chinese↔English, the
mini-batch size was increased up to fifty-fold
by delaying gradient updates (Bogoychev et al.,
2018) as an alternative to learning rate cooldown
(Smith, 2018). For Chinese↔English, a compar-
ison of different segmentation strategies showed
that character-based decoding was superior to the
translation of subwords when translating into Chi-
nese. Pre-processing strategies were also inves-
tigated for English→Czech, showing that pre-
processing can be simplified without loss to MT
quality.

UEDIN’s main findings on the
Chinese↔English translation task are that
character-level model on the Chinese side can be
used when translating into Chinese to improve
the BLEU score. The same does not hold when
translating from Chinese.

2.5.45 UMD (Briakou and Carpuat, 2019)

UMD NMT models are Sequence-2-Sequence at-
tentional with Long-Short Term Memory units;
words are segmented using BPEs jointly learned
on the concatenation of Turkish and Kazakh data.
The submitted model is an ensemble obtained by
averaging the output distributions of 4 models
trained on Kazakh, Turkish and back-translated
data using different random seeds.

2.5.46 UNSUPERVISED-6929 and
UNSUPERVISED-6935

Unfortunately, no details are available for these
systems.
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2.5.47 USTC-MCC (no associated paper)

USTC-MCC is a Transformer model imple-
mented in Fairseq-py. Tokenization and BPE were
used and the training data were augmented with
back-translation.

2.5.48 USYD (Ding and Tao, 2019)

The University of Sydney’s system is based on the
self attentional Transformer networks, into which
they integrated the most recent effective strategies
from academic research (e.g., BPE, back transla-
tion, multi-features data selection, data augmen-
tation, greedy model ensemble, reranking, Con-
MBR system combination, and post-processing).
Furthermore, they proposed a novel augmentation
method Cycle Translation and a data mixture strat-
egy Big/Small parallel construction to entirely ex-
ploit the synthetic corpus.

2.5.49 XZL-NMT (no associated paper)

XZL-NMT is an ensembled Transformer model as
implemented in Marian, using Moses tokenizer
and subword units.

2.6 Submission Summary

An overview of techniques used in the submitted
systems was obtained in a poll. The full details
are available on-line.9 Including manually entered
data rows, we had more than 60 responses, some
of which describe more MT systems at once.

Overall, most of the submitted systems
were standard bilingual MT systems, opti-
mized to translate one language pair, even
in the case when data from other languages
are used to support this pair. Truly multi-
lingual systems were TARTUNLP-C covering 7
of the tested language pairs, DBMS-KU INTER-
POLATION (bidirectional Kazakh-English) and
AYLIEN_MT_MULTILINGUAL which was unfor-
tunately tested only on the very low-resource
Gujarati-English and not all the language pairs
it covers. In the highly competitive task of
news translation, these systems ended up on
lower ranks, so aiming at multi-linguality seems
rather as a distraction, except for supporting low-
resource languages.

As already in the previous year, the Trans-
former architecture (Vaswani et al., 2017) domi-

9https://tinyurl.com/
wmt19-systems-descr-summary

Feature # [%]
Dropout 42 69
Back-translation 39 64
Ensembling 37 61
Careful corpus filtering 35 57
Tied source and target word embeddings 24 39
Fine-tuning for domain adaptation 22 36
Back-translation more than once 20 33
Averaging 17 28
Oversampling 14 23
Extra languages used (e.g. some form of piv-
oting or multi-lingual training)

12 20

Pre-trained model parts (e.g. word embed-
dings)

10 16

Total 61 100

Table 6: Model and training features frequently reported for
submitted systems.

nates with more than 80% of submissions10 report-
ing to include it. Some diversity is seen at least
in the actual implementation of the model, with
Marian (Junczys-Dowmunt et al., 2018) being by
far the most popular (more than 30%), followed
by fairseq (18%), OpenNMT-py (16%) and Ten-
sor2tensor and Sockeye (14% each). Phrase-based
MT (primarily Moses, Koehn et al., 2007) is still
often in use, with 15–25% submissions using it in
some way.

Subword processing is very frequent: BPE
(Sennrich et al., 2016) taking the lead (two thirds)
and SentencePiece (Kudo and Richardson, 2018)
following (a quarter of submissions). More than
90% of submissions use tokenization (Moses to-
kenizer being used in 40% of cases) before sub-
word splitting while more language-specific tools
such as morphological segmenters are rare. Uni-
code characters were used only exceptionally (4
mentions) and with rather experimental systems,
except for UEDIN, see Section 2.5.44.

More than 40% of submissions used language
identification to clean the provided training data.
Truecasing or recasing was also quite popular.

Common NMT model and training features
are listed in Table 6, documenting that back-
translation, ensembling and corpus filtering are a
must.

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the final
ranking of systems taking part in the competition.

10The percentages are indicative only. They are based on
the total number of responses in the poll, with only an inexact
correspondence to the number of evaluated primary submis-
sions.
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Figure 3: Screen shot of segment-rating portion of document-level direct assessment in the Appraise interface for an example
English to German assessment from the human evaluation campaign. The annotator is presented with the machine translation
output segment randomly selected from competing systems (anonymized) and is asked to rate the translation on a sliding scale.

This section describes how preparation of evalu-
ation data, collection of human assessments, and
computation of the official results of the shared
task was carried out this year.

3.1 Direct Assessment

Work on evaluation over the past few years has
provided fresh insight into ways to collect direct
assessments (DA) of machine translation qual-
ity (Graham et al., 2013, 2014, 2016), and three
years ago the evaluation campaign included par-
allel assessment of a subset of News task lan-
guage pairs evaluated with relative ranking (RR)
and DA. DA has some clear advantages over RR,
namely the evaluation of absolute translation qual-
ity and the ability to carry out evaluations through
quality controlled crowd-sourcing. As established
in 2016 (Bojar et al., 2016), DA results (via
crowd-sourcing) and RR results (produced by re-
searchers) correlate strongly, with Pearson corre-
lation ranging from 0.920 to 0.997 across several
source languages into English and at 0.975 for
English-to-Russian (the only pair evaluated out-
of-English). Since 2017, we have thus employed
DA for evaluation of systems taking part in the
news task and do so again this year.

Human assessors are asked to rate a given trans-
lation by how adequately it expresses the mean-
ing of the corresponding reference translation or
source language input on an analogue scale, which
corresponds to an underlying absolute 0–100 rat-
ing scale. No sentence or document length restric-

tion is applied during manual evaluation.

3.2 Styles of Direct Assessment Tested in
WMT19

In previous year’s evaluation translated segments
for all language pairs were evaluated indepen-
dent of the wider document context. However,
since recent MT evaluations address the question
of comparison of system and human performance,
evaluation within document context has become
more relevant (Läubli et al., 2018; Toral et al.,
2018). Therefore, for a selection of language
pairs, human evaluation was carried out within
the document context. We denote the two op-
tions “+DC” (with document context) and “−DC”
(without document context) in the following.

Additionally in past years, test data included
text that was created in the opposite direction
to testing, in order to achieve a larger test set
with limited resources. Inclusion of test data has
been shown to introduce inaccuracies in evalua-
tions particularly in terms of BLEU scores how-
ever (Graham et al., 2019b) and for this reason,
this year we only test systems on data that was
originally written in the source language.

In previous years we have employed only
monolingual human evaluation (denoted “M” in
the following for official results. Last year we tri-
alled source-based evaluation for English to Czech
translation, i.e. a bilingual configuration (“B”)
in which the human assessor is shown the source
input and system output only (with no reference
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Figure 4: Screen shot of document-rating portion of document-level direct assessment in the Appraise interface for an example
English to German assessment from the human evaluation campaign. The annotator is presented with the machine translation
output document randomly selected from competing systems (anonymized) and is asked to rate the translation on a sliding
scale.

translation shown). This approach has the ad-
vantage of freeing up the human-generated refer-
ence translation so that it can be included in the
evaluation as another system and provide an es-
timate of human performance. Since we would
like to restrict human assessors to only evaluate
translation into their native language, we restricted
bilingual/source-based evaluation to evaluation of
translation for out-of-English language pairs. This
is especially relevant since we have a large group
of volunteer human assessors with native language
fluency in non-English languages and high flu-
ency in English, while we generally lack the re-
verse, native English speakers with high fluency in
non-English languages. A summary of the human
evaluation configurations run this year in the news
task is provided in Table 7, where configurations

that correspond to official results are highlighted
in bold.

The style of official evaluation used in the past
recent years of WMT corresponds to M SR−DC
(Segment Rating without Document Context) i.e.
evaluating individual segments against the refer-
ence translation and independently of each other.

For language pairs for which our original style
SR−DC evaluation was run this year, the SR−DC
configuration was kept as the source of the official
results with additional configurations provided for
the purpose of comparison. For the remaining
language pairs, official results are based on the
SR+DC evaluation, i.e. the assessment of indi-
vidual segments which are nevertheless provided
in their natural order as they appear in the docu-
ment. Fully document-level evaluation (DR+DC)
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Doc Rating + Seg Rating + Seg Rating −
Doc Context Doc Context Doc Context
(DR+DC) (SR+DC) (SR−DC)

de-cs M
de-fr M
fr-de M
de-en M M
en-cs B B B
en-de B B
en-fi B B
en-gu B B
en-kk B B
en-lt B B
en-ru B B
en-zh B B
fi-en M
gu-en M
kk-en M
lt-en M
ru-en M
zh-en M M M

Table 7: Summary of human evaluation configurations;
M denotes reference-based/monolingual human evaluation
in which the machine translation output was compared
to human-generated reference; B denotes bilingual/source-
based evaluation where the human annotators evaluated MT
output by reading the source language input only (no refer-
ence translation present); configurations comprising official
results highlighted in bold.

as trialled this year where we asked for a single
score given the whole document is problematic in
terms of statistical power and inconclusive ties, as
shown in Graham et al. (2019b).

In order to maximize the number of human an-
notations collected while minimizing the amount
of reading required by a given human assessor, we
combined two evaluation configurations, Docu-
ment Rating + Document Context (DR+DC) and
Segment Rating + Document Context (SR+DC),
shown in Table 7 and ran them as a single task. In
this configuration, human annotators were shown
each segment of a given document (produced by
a single MT system) in original sequential order
and the human assessor rated each segment in turn.
Figure 3 shows a screenshot of this part of the an-
notation process. This was followed by a screen
where the human assessor rated the entire doc-
ument as a whole comprising the most recently
rated segments. Figure 4 shows this later part of
the same evaluation set-up. Subsequently when
sufficient data is collected, SR+DC results are ar-
rived at by combining ratings attributed to seg-
ments, while DR+DC results are a combination
of document ratings.

For some language pairs the standard configura-
tion from past years in which segments are evalu-

ated in isolation from the wider document context,
which we call Segment Rating − Document Con-
text (SR−DC) and a screenshot of this configura-
tion is shown in Figure 5.

As in previous years, the standard SR−DC
annotation is organized into “HITs” (following
the Mechanical Turk’s term “human intelligence
task”), each containing 100 such screens and re-
quiring about half an hour to finish. For the ad-
ditional configuration that included both DR+DC
and SR+DC, HITs were simply made up of a ran-
dom sample of machine translated documents as
opposed to segments.

3.3 Evaluation Campaign Overview
In terms of the News translation task manual eval-
uation, a total of 263 individual researcher ac-
counts were involved, and 766 turker accounts.11

Researchers in the manual evaluation contributed
judgments of 242,424 translations, while 487,674
translation assessment scores were submitted in
total by the crowd, of which 224,046 were pro-
vided by workers who passed quality control.

Under ordinary circumstances, each assessed
translation would correspond to a single individual
scored segment. However, since distinct systems
can produce the same output for a particular input
sentence, in previous years we were often able to
take advantage of this and use a single assessment
for multiple systems. For example, last year we
combined human assessment of identical transla-
tions produced by multiple systems and were able
to get up to 17% saving in terms of evaluation re-
sources. However, since our evaluation now in-
cludes document context, deduplication of system
outputs was not possible for most of the configu-
rations run this year.

3.4 Data Collection
System rankings are produced from a large set of
human assessments of translations, each of which
indicates the absolute quality of the output of a
system. Annotations are collected in an evalua-
tion campaign that enlists the help of participants
in the shared task. Each team is asked to contribute
8 hours annotation time, which we estimated at
16 100-translation HITs per primary system sub-
mitted. We continue to use the open-source Ap-
praise12 (Federmann, 2012) tool and Turkle2 for

11Numbers do not include the 1,005 workers on Mechani-
cal Turk who did not pass quality control.

12https://github.com/cfedermann/Appraise
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Figure 5: Screen shot of Direct Assessment as carried out by workers for the standard Segment Rating − Document Context
(SR−DC) Human Evaluation Configuration.

our data collection, in addition to Amazon Me-
chanical Turk.13 Table 8 shows total numbers
of human assessments collected in WMT19 con-
tributing to final scores for systems.14

The effort that goes into the manual evalua-
tion campaign each year is impressive, and we
are grateful to all participating individuals and
teams. We believe that human annotation provides
the best decision basis for evaluation of machine
translation output and it is great to see continued
contributions on this large scale.

3.5 Crowd Quality Control
In order to trial document-level evaluation, in ad-
dition to our standard segment-level human eval-
uation, we ran two additional evaluations com-
bined into a single HIT structure. Firstly, we
collected segment ratings with document context
(SR+DC) and secondly document ratings with
document context (DR+DC). We refer to our orig-
inal segment-level evaluation where assessors are
shown segments in isolation from the wider docu-
ment context as segment rating − document con-
text (SR−DC). We describe all three methods of
ranking systems in detail below.

3.5.1 Standard DA HIT Structure (SR−DC)
In the standard DA HIT structure (Segment Rat-
ing − Document Context), three kinds of quality
control translation pairs are employed as described

13https://www.mturk.com
14Number of systems for WMT19 includes ten “human”

systems comprising human-generated reference translations
used to provide human performance estimates.

in Table 9: we repeat pairs (expecting a similar
judgment), damage MT outputs (expecting signif-
icantly worse scores) and use references instead of
MT outputs (expecting high scores).

In total, 60 items in a 100-translation HIT serve
in quality control checks but 40 of those are regu-
lar judgments of MT system outputs (we exclude
assessments of bad references and ordinary ref-
erence translations when calculating final scores).
The effort wasted for the sake of quality control is
thus 20%.

Also in the standard DA HIT structure, within
each 100-translation HIT, the same proportion of
translations are included from each participating
system for that language pair. This ensures the
final dataset for a given language pair contains
roughly equivalent numbers of assessments for
each participating system. This serves three pur-
poses for making the evaluation fair. Firstly, for
the point estimates used to rank systems to be re-
liable, a sufficient sample size is needed and the
most efficient way to reach a sufficient sample
size for all systems is to keep total numbers of
judgments roughly equal as more and more judg-
ments are collected. Secondly, it helps to make
the evaluation fair because each system will suf-
fer or benefit equally from an overly lenient/harsh
human judge. Thirdly, despite DA judgments be-
ing absolute, it is known that judges “calibrate”
the way they use the scale depending on the gen-
eral observed translation quality. With each HIT
including all participating systems, this effect is
averaged out. Furthermore apart from quality con-
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Language Pair Systems Comps Comps/Sys Assessments Assess/Sys

Chinese→English 15 − − 20,199 1,346.6
German→English 17 − − 39,556 2,326.8
Finnish→English 12 − − 23,301 1,941.8
Gujarati→English 11 − − 17,147 1,558.8
Kazakh→English 11 − − 18,339 1,667.2
Lithuanian→English 11 − − 18,807 1,709.7
Russian→English 14 − − 27,836 1,988.3

English→Chinese 13 − − 28,801 2,215.5
English→Czech 12 − − 29,207 2,433.9
English→German 23 − − 49,535 2,153.7
English→Finnish 13 − − 22,310 1,716.2
English→Gujarati 12 − − 11,223 935.2
English→Kazakh 13 − − 15,039 1,156.8
English→Lithuanian 13 − − 14,069 1,082.2
English→Russian 13 − − 24,441 1,880.1

German→Czech 11 − − 16,900 1,536.4
German→French 11 − − 6,700 609.1
French→German 10 − − 4,000 400.0

Total Appraise 112 − − 194,625 1,737.7
Total MTurk 76 − − 144,986 1,907.7
Total Turkle 47 − − 47,799 1,017.0

Total WMT19 243 − − 387,410 1,594.3

WMT18 150 − − 302,489 2,016.6
WMT17 153 − − 307,707 2,011.2
WMT16 138 569,287 4,125.2 284,644 2,062.6
WMT15 131 542,732 4,143.0 271,366 2,071.5
WMT14 110 328,830 2,989.3 164,415 1,494.7
WMT13 148 942,840 6,370.5 471,420 3,185.3
WMT12 103 101,969 999.6 50,985 495.0
WMT11 133 63,045 474.0 31,522 237.0

Table 8: Amount of data collected in the WMT19 manual evaluation campaign (after removal of quality control items). The
final eight rows report summary information from previous years of the workshop.

Repeat Pairs: Original System output (10) An exact repeat of it (10);
Bad Reference Pairs: Original System output (10) A degraded version of it (10);
Good Reference Pairs: Original System output (10) Its corresponding reference translation (10).

Table 9: Standard DA HIT structure quality control translation pairs hidden within 100-translation HITs, numbers of items
are provided in parentheses.

trol items, HITs are constructed using translations
sampled from the entire set of outputs for a given
language pair.

3.5.2 Document-Level DA HIT Structure
(SR+DC and DR+DC)

As mentioned previously, collection of segment-
level ratings with document context (Segment Rat-
ing + Document Context) and document ratings
with document context (Document Rating + Doc-
ument Context) assessments were combined into
a single evaluation set-up to save annotator time.
This involved constructing HITs so that each sen-
tence belonging to a given document (produced by
a single MT system) were displayed to and rated

by the human annotator before he/she was shown
the same entire document again and asked to rate
it.

Quality control items for this set-up was carried
out as follows with the aim of constructing a HIT
with as close to 100 segments in total:

1. All documents produced by all systems are
pooled;15

2. Documents are then sampled at random
(without replacement) and assigned to the
current HIT until the current HIT comprises

15If a “human” system is included to provide a human per-
formance estimate, it is also considered a system during qual-
ity control set-up.

20



no more than 70 segments in total;

3. Once documents amounting to close to 70
segments have been assigned to the current
HIT, we select a subset of these documents
to be paired with quality control documents;
this subset is selected by repeatedly checking
if the addition of the number of the segments
belonging to a given document (as quality
control items) will keep the total number of
segments in the HIT below 100; if this is the
case it is included; otherwise it is skipped
until the addition of all documents has been
checked. In doing this, the HIT is structured
to bring the total number of segments as close
as possible to 100 segments in total within a
HIT but without selecting documents in any
systematic way such as selecting them based
on fewest segments, for example.

4. Once we have selected a core set of origi-
nal system output documents and a subset of
them to be paired with quality control ver-
sions for each HIT, quality control documents
are automatically constructed by altering the
sentences of a given document into a mix-
ture of three kinds of quality control items
used in the original DA segment-level qual-
ity control: bad reference translations, refer-
ence translations and exact repeats, see Sec-
tion 3.5.3 for details of bad reference genera-
tion;

5. Finally, the documents belonging to a HIT
are shuffled.

3.5.3 Construction of Bad References
In all set-ups employed in the evaluation cam-
paign, and as in previous years, bad reference pairs
were created automatically by replacing a phrase
within a given translation with a phrase of the
same length, randomly selected from n-grams ex-
tracted from the full test set of reference transla-
tions belonging to that language pair. This means
that the replacement phrase will itself comprise a
fluent sequence of words (making it difficult to tell
that the sentence is low quality without reading the
entire sentence) while at the same time making its
presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the original translation, as follows:

Translation # Words Replaced
Length (N) in Translation

1 1
2–5 2
6–8 3
9–15 4
16–20 5
>20 b N/4 c

3.6 Annotator Agreement

When an analogue scale (or 0–100 point scale,
in practice) is employed, agreement cannot be
measured using the conventional Kappa coeffi-
cient, ordinarily applied to human assessment
when judgments are discrete categories or pref-
erences. Instead, to measure consistency we fil-
ter crowd-sourced human assessors by how con-
sistently they rate translations of known distinct
quality using the bad reference pairs described
previously. Quality filtering via bad reference
pairs is especially important for the crowd-sourced
portion of the manual evaluation. Due to the
anonymous nature of crowd-sourcing, when col-
lecting assessments of translations, it is likely to
encounter workers who attempt to game the ser-
vice, as well as submission of inconsistent eval-
uations and even robotic ones. We therefore em-
ploy DA’s quality control mechanism to filter out
low quality data, facilitated by the use of DA’s ana-
logue rating scale.16

Assessments belonging to a given crowd-
sourced worker who has not demonstrated that
he/she can reliably score bad reference transla-
tions significantly lower than corresponding gen-
uine system output translations are filtered out.
A paired significance test is applied to test if de-
graded translations are consistently scored lower
than their original counterparts and the p-value
produced by this test is used as an estimate of
human assessor reliability. Assessments of work-
ers whose p-value does not fall below the conven-
tional 0.05 threshold are omitted from the evalua-
tion of systems, since they do not reliably score
degraded translations lower than corresponding
MT output translations.

Table 10 shows the number of workers who
met our filtering requirement by showing a signif-

16As stated previously, this year we removed the require-
ment for volunteer researchers to annotate quality control
items and this also removes the possibility to report agree-
ment statistics for this group.
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icantly lower score for bad reference items com-
pared to corresponding MT outputs, and the pro-
portion of those who simultaneously showed no
significant difference in scores they gave to pairs
of identical translations.

Numbers in Table 10 of workers passing qual-
ity control criteria (A) varies across language pairs
and this is in-line with passed DA evaluations.
Language pairs were run in the following order
on Mechanical Turk: fi-en, gu-en, kk-en, lt-en ru-
en, zh-en, de-en. We observe that the amount of
low quality data we received (with one exception
at the beginning) steadily decreases as data collec-
tion proceeded from (100−31=) 69% low quality
data for fi-en to (100−71=) 29% for de-en, the last
language pair to be evaluated. This is likely due to
the active rejection of low quality HITs and word
spreading among unreliable workers to avoid our
HITs. The assessors were least reliable for gu-en,
with only 60 out of 301 workers passing the qual-
ity control. We removed the data from the non-
reliable workers in all language pairs.

In terms of numbers of workers who passed
quality control who also showed no significant dif-
ference in exact repeats of the same translation,
the two document-level runs, zh-en and de-en,
showed lower reliability than the original DA stan-
dard sentence-level set-up. Overall the reliability
is still relatively high however with the lowest lan-
guage pair being de-en still reaching 88% of work-
ers showing no significant difference in scores for
repeat assessment of the same translation. In sum,
we confirmed this year again that the check on bad
references is sufficient and not many more work-
ers would be ruled out if we also demanded similar
judgements for repeated inputs.

3.7 Producing the Human Ranking

The data belong to each individual human evalua-
tion run were compiled individually to produce ei-
ther one of our official system rankings or a rank-
ing that we would like to compare with official
rankings.

In all set-ups, similar to previous years, sys-
tem rankings were arrived at in the following way.
Firstly, in order to iron out differences in scor-
ing strategies of distinct human assessors, hu-
man assessment scores for translations were first
standardized according to each individual human
assessor’s overall mean and standard deviation
score. For rankings arrived at via segment ratings

(SR−DC as well as SR+DC), average standard-
ized scores for individual segments belonging to a
given system were then computed, before the fi-
nal overall DA score for a given system is com-
puted as the average of its segment scores (Ave z
in Table 11). For rankings arrived at via document
ratings (DR+DC), average standardized scores for
individual documents belonging to a given system
were then computed, before the final overall DA
score for a given system was computed as the av-
erage of its document scores (Ave z in Table 11).
Results are also reported for average scores for
systems, computed in the same way but without
any score standardization applied (Ave % in Table
11).

Tables 11, Tables 12 and 13 include the official
results of the news task and Tables 14 and 15 in-
clude results for alternate human evaluation con-
figurations.17 Human performance estimates ar-
rived at by evaluation of human-produced refer-
ence translations are denoted by “HUMAN” in all
tables. Clusters are identified by grouping systems
together according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test. Appendix
A shows the underlying head-to-head significance
test official results for all pairs of systems.

3.8 Human Parity
In terms of human parity, as pointed out by Gra-
ham et al. (2019b), fully document-level evalua-
tions incur the problem of low statistical power
due to the reduced sample size of documents. The
many ties in our DR+DC evaluation results can-
not be used to draw conclusions of human parity
with MT therefore. In addition, as highlighted by
Toral et al. (2018), Läubli et al. (2018) and also us
Bojar et al. (2018), a tie of human and machine
in an evaluation of isolated segments cannot be
used to draw conclusions of human parity. Given
a wider context, human evaluators may draw dif-
ferent conclusions.18

Our SR+DC human evaluation configuration is
an attempt to draw the right balance between mak-
ing it possible to assess a sufficient sample size
of translations but importantly keeping the docu-

17See Table 7 for human evaluation configuration details
of each language pair

18The only setting where segment-level evaluation could
serve in human-parity considerations would be when both
humans and machines were translating isolated segments but
this setting is not very interesting from the practical point of
view.
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(A) (B)
Sig. Diff. (A) & No Sig. Diff.

Order All Bad Ref. Exact Rep.

1 Finnish→English 443 137 (31%) 135 (99%)
2 Gujarati→English 301 60 (20%) 59 (98%)
3 Kazakh→English 217 73 (34%) 70 (96%)
4 Lithuanian→English 233 90 (39%) 85 (94%)
5 Russian→English 321 137 (43%) 136 (99%)
6 Chinese→English 440 208 (47%) 186 (89%)
7 German→English 380 268 (71%) 236 (88%)

Total 1,706 766 (45%) 711 (93%)
Table 10: Number of crowd-sourced workers taking part in the reference-based SR−DC campaign; (A) those whose scores
for bad reference items were significantly lower than corresponding MT outputs; (B) those of (A) whose scores also showed
no significant difference for exact repeats of the same translation. The language pairs were submitted for evaluation one after
another in the reported order.

ment context available to human assessors, a con-
figuration highlighted as suitable for human-parity
investigations by Graham et al. (2019b) and al-
ready employed by Toral et al. (2018) (although
our overall evaluation differs in other respects).
According to the power analysis provided in Gra-
ham et al. (2019b), the sample size of translations
evaluated in the set-up is large enough to safely
conclude statistical ties between pairs of systems
in our SR+DC configurations. In addition our
evaluation meets all requirements included on the
MT evaluation checklist of Graham et al. (2019b).

The results that can be relied upon for drawing
conclusions of human parity therefore include the
following from our SR+DC configurations:

X German to English: many systems are tied
with human performance;

× English to Chinese: all systems are outper-
formed by the human translator;

× English to Czech: all systems are outper-
formed by the human translator;

× English to Finnish: all systems are outper-
formed by the human translator;

X English to German: Facebook-FAIR achieves
super-human translation performance; sev-
eral systems are tied with human perfor-
mance;

× English to Gujarati: all systems are outper-
formed by the human translator;

× English to Kazakh: all systems are outper-
formed by the human translator;

× English to Lithuanian: all systems are outper-
formed by the human translator;

X English to Russian: Facebook-FAIR is tied
with human performance.

Even with all our precautions, the indications
of human parity should not be overvalued. For
instance, the super-human performance observed
with Facebook-FAIR on English to German is
based on standardized scores (Ave z.). Without the
standardization (Ave.), Facebook-FAIR is on par
with the reference and two systems by Microsoft
score higher. The same mismatch of Ave. and
Ave. z happens for English-Czech within the sec-
ond performance cluster and also a couple of times
in German-English and other language pairs. This
has happened in the past already but the English-
German case seems to be the first one where the
Wilcoxon test claims a significant difference.

3.9 Comparing the Different English-Czech
Results

Table 16 reproduces English-to-Czech official
SR+DC scores and the full-document DR+DC,
to compare them with two additional runs of
the bilingual SR−DC style, i.e. the exact same
context-less setting used in source-based evalua-
tion of en2cs in WMT18 where the quality of the
reference has been significantly surpassed.

The results “SR−DC WMT” are based on 6,225
judgements (518 per system) collected by the
same set of annotators as the official SR+DC
scores and the “SR−DC Microsoft” are based on
21,918 judgements (1,826 per system) sponsored
and carried out by Microsoft.
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English→German
Ave. Ave. z System
90.3 0.347 Facebook-FAIR
93.0 0.311 Microsoft-WMT19-sent-doc
92.6 0.296 Microsoft-WMT19-doc-level
90.3 0.240 HUMAN
87.6 0.214 MSRA-MADL
88.7 0.213 UCAM
89.6 0.208 NEU
87.5 0.189 MLLP-UPV
87.5 0.130 eTranslation
86.8 0.119 dfki-nmt
84.2 0.094 online-B
86.6 0.094 Microsoft-WMT19-sent-level
87.3 0.081 JHU
84.4 0.077 Helsinki-NLP
84.2 0.038 online-Y
83.7 0.010 lmu-ctx-tf-single
84.1 0.001 PROMT-NMT
82.8 −0.072 online-A
82.7 −0.119 online-G
80.3 −0.129 UdS-DFKI
82.4 −0.132 TartuNLP-c
76.3 −0.400 online-X
43.3 −1.769 en-de-task

Gujarati→English
Ave. Ave. z System
64.8 0.210 NEU
61.7 0.126 UEDIN
59.4 0.100 GTCOM-Primary
60.8 0.090 CUNI-T2T-transfer
59.4 0.066 aylien-mt-multilingual
59.3 0.044 NICT
51.3 −0.189 online-G
50.9 −0.192 IITP-MT
48.0 −0.277 UdS-DFKI
47.4 −0.296 IIITH-MT
41.1 −0.598 Ju-Saarland

English→Gujarati
Ave. Ave. z System
73.1 0.701 HUMAN
72.2 0.663 online-B
66.8 0.597 GTCOM-Primary
60.2 0.318 MSRA
58.3 0.305 UEDIN
55.9 0.254 CUNI-T2T-transfer
52.7 −0.079 Ju-Saarland-clean-num-135-bpe
35.2 −0.458 IITP-MT
38.8 −0.465 NICT
39.1 −0.490 online-G
33.1 −0.502 online-X
33.2 −0.718 UdS-DFKI

Kazakh→English
Ave. Ave. z System
72.2 0.270 online-B
70.1 0.218 NEU
69.7 0.189 rug-morfessor
68.1 0.133 online-G
67.1 0.113 talp-upc-2019
67.0 0.092 NRC-CNRC
65.8 0.066 Frank-s-MT
65.6 0.064 NICT
64.5 0.003 CUNI-T2T-transfer
48.9 −0.477 UMD
32.1 −1.058 DBMS-KU

Lithuanian→English
Ave. Ave. z System
77.4 0.234 GTCOM-Primary
77.5 0.216 tilde-nc-nmt
77.0 0.213 NEU
76.4 0.206 MSRA-MASS
76.4 0.202 tilde-c-nmt
73.8 0.107 online-B
69.4 −0.056 online-A
69.2 −0.059 TartuNLP-c
62.8 −0.284 online-G
62.4 −0.337 JUMT
59.1 −0.396 online-X

German→English
Ave. Ave. z System
81.6 0.146 Facebook-FAIR
81.5 0.136 RWTH-Aachen
79.0 0.136 MSRA-MADL
79.9 0.121 online-B
79.0 0.086 JHU
80.1 0.067 MLLP-UPV
79.0 0.066 dfki-nmt
78.0 0.066 UCAM
76.6 0.050 online-A
78.4 0.039 NEU
79.0 0.027 HUMAN
77.4 0.011 uedin
77.9 0.009 online-Y
74.8 0.006 TartuNLP-c
72.9 −0.051 online-G
71.8 −0.128 PROMT-NMT
69.7 −0.192 online-X

English→Czech
Ave. Ave. z System
91.2 0.642 HUMAN
86.0 0.402 CUNI-DocTransformer-T2T
86.9 0.401 CUNI-Transformer-T2T-2018
85.4 0.388 CUNI-Transformer-T2T-2019
81.3 0.223 CUNI-DocTransformer-Marian
80.5 0.206 uedin
70.8 −0.156 online-Y
71.4 −0.195 TartuNLP-c
67.8 −0.300 online-G
68.0 −0.336 online-B
60.9 −0.594 online-A
59.3 −0.651 online-X

Finnish→English
Ave. Ave. z System
78.2 0.285 MSRA-NAO
77.8 0.265 online-Y
77.6 0.261 GTCOM-Primary
76.4 0.245 USYD
72.5 0.107 online-B
73.3 0.105 Helsinki-NLP
69.2 0.012 online-A
68.4 −0.044 online-G
68.0 −0.053 TartuNLP-c
67.3 −0.071 online-X
61.9 −0.209 parfda
53.3 −0.516 apertium-uc

English→Finnish
Ave. Ave. z System
94.8 1.007 HUMAN
82.6 0.586 GTCOM-Primary
80.2 0.570 MSRA-NAO
70.9 0.275 online-Y
65.8 0.199 NICT
65.7 0.09 Helsinki-NLP
63.1 0.072 online-G
63.0 0.037 online-B
54.5 −0.125 TartuNLP-c
48.3 −0.384 online-A
47.1 −0.398 online-X
47.9 −0.522 Helsinki-NLP-rule-based
16.9 −1.260 apertium-uc

English→Kazakh
Ave. Ave. z System
81.5 0.746 HUMAN
67.6 0.262 UAlacant-NMT
63.8 0.243 online-B
63.8 0.222 UAlacant-NMT-RBMT
63.3 0.126 NEU
63.3 0.108 MSRA
60.4 0.097 CUNI-T2T-transfer
61.7 0.078 online-G
55.2 −0.049 rug-bpe
49.0 −0.328 talp-upc-2019
41.4 −0.493 NICT
11.6 −1.395 DBMS-KU

English→Lithuanian
Ave. Ave. z System
90.5 1.017 HUMAN
72.8 0.388 tilde-nc-nmt
69.1 0.387 MSRA-MASS-uc
68.0 0.262 tilde-c-nmt
68.2 0.259 MSRA-MASS-c
67.7 0.155 GTCOM-Primary
62.7 0.036 eTranslation
59.6 −0.054 NEU
57.4 −0.061 online-B
47.8 −0.383 TartuNLP-c
38.4 −0.620 online-A
39.2 −0.666 online-X
32.6 −0.805 online-G

English→Russian
Ave. Ave. z System
89.5 0.536 HUMAN
88.5 0.506 Facebook-FAIR
83.6 0.332 USTC-MCC
82.0 0.279 online-G
80.4 0.269 online-B
79.0 0.223 NEU
80.2 0.219 PROMT-NMT
78.5 0.156 online-Y
71.7 −0.188 rerank-er
67.9 −0.268 online-A
68.8 −0.310 TartuNLP-u
62.1 −0.363 online-X
35.7 −1.270 NICT

English→Chinese
Ave. Ave. z System
82.5 0.368 HUMAN
83.0 0.306 KSAI
83.3 0.280 Baidu
80.5 0.209 NEU
80.3 0.052 online-A
79.9 0.042 xzl-nmt
79.0 0.017 UEDIN
77.8 0.009 BTRANS
76.9 0.000 NICT
74.6 −0.125 online-B
75.6 −0.218 online-Y
72.6 −0.262 online-G
69.5 −0.553 online-X

Russian→English
Ave. Ave. z System
81.4 0.156 Facebook-FAIR
80.7 0.134 online-G
80.4 0.122 eTranslation
80.1 0.121 online-B
81.4 0.115 NEU
80.4 0.102 MSRA-SCA
79.8 0.084 rerank-re
79.2 0.076 online-Y
79.0 0.029 online-A
76.8 0.012 afrl-syscomb19
76.8 −0.039 afrl-ewc
76.2 −0.040 TartuNLP-u
74.5 −0.097 online-X
69.3 −0.303 NICT

Chinese→English
Ave. Ave. z System
83.6 0.295 Baidu
82.7 0.266 KSAI
81.7 0.203 MSRA-MASS
81.5 0.195 MSRA-MASS
81.5 0.193 NEU
80.6 0.186 BTRANS
80.7 0.161 online-B
79.2 0.103 BTRANS-ensemble
77.9 0.054 UEDIN
78.0 0.049 online-Y
77.4 0.001 NICT
75.3 −0.065 online-A
72.4 −0.202 online-G
66.9 −0.483 online-X
56.4 −0.957 Apprentice-c

Table 11: Official results of WMT19 News Translation Task. Systems ordered by DA score z-score; systems within a cluster
are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05; grayed entry indicates resources that
fall outside the constraints provided.

24



German→Czech
Ave. Ave. z System
63.9 0.426 online-Y
62.7 0.386 online-B
61.4 0.367 NICT
59.8 0.319 online-G
55.7 0.179 NEU-KingSoft
54.4 0.134 online-A
47.8 −0.099 lmu-unsup-nmt
46.6 −0.165 CUNI-Unsupervised-NER-post
41.7 −0.328 Unsupervised-6929
39.1 −0.405 Unsupervised-6935
28.4 −0.807 CAiRE

Table 12: Official results of WMT19 German to Czech Unsupervised News Translation Task. Systems ordered by DA score
z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
grayed entry indicates resources that fall outside the constraints provided (in particular the use of parallel training data).

German→French
Ave. Ave. z System
77.0 0.249 MSRA-MADL
76.8 0.230 MLLP-UPV
74.8 0.164 Kyoto-University-T2T
75.5 0.160 lingua-custodia-primary
74.4 0.129 LIUM
72.7 0.038 online-B
71.7 0.019 online-Y
68.8 −0.104 TartuNLP-c
66.0 −0.194 online-A
65.0 −0.240 online-G
58.9 −0.456 online-X

French→German
Ave. Ave. z System
82.4 0.267 MSRA-MADL
81.5 0.246 eTranslation
78.5 0.082 LIUM
76.8 0.037 MLLP-UPV
76.0 0.001 online-Y
76.6 −0.018 online-G
75.2 −0.034 online-B
74.8 −0.039 online-A
73.9 −0.098 TartuNLP-c
66.5 −0.410 online-X

Table 13: Official results of WMT19 German to French and French to German News Translation Task for which the topic was
restricted to EU Elections. Systems ordered by DA score z-score; systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05; grayed entry indicates resources that fall outside the constraints
provided.
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German→English
Ave. Ave. z System
75.4 0.283 MSRA-MADL
77.5 0.243 online-B
75.9 0.227 Facebook-FAIR
75.1 0.202 JHU
71.3 0.192 UCAM
77.3 0.171 RWTH-Aachen
76.8 0.166 HUMAN
73.8 0.164 dfki-nmt
77.9 0.162 MLLP-UPV
75.1 0.150 NEU
73.1 0.137 online-Y
72.1 0.103 online-A
71.2 0.009 TartuNLP-c
73.2 −0.052 uedin
67.0 −0.183 online-G
69.0 −0.194 PROMT-NMT
62.8 −0.299 online-X

English→Czech
Ave. Ave. z System
84.0 0.915 HUMAN
76.4 0.537 CUNI-Transformer-T2T-2019
76.7 0.528 CUNI-Transformer-T2T-2018
73.7 0.474 CUNI-DocTransformer-T2T
69.7 0.299 CUNI-DocTransformer-Marian
70.0 0.234 uedin
60.0 −0.098 TartuNLP-c
59.9 −0.169 online-Y
57.3 −0.314 online-B
54.7 −0.368 online-G
47.7 −0.619 online-A
47.4 −0.763 online-X

English→German
Ave. Ave. z System
82.6 0.530 Facebook-FAIR
81.0 0.335 HUMAN
78.6 0.334 MSRA-MADL
81.3 0.314 Microsoft-WMT19-sent-doc
78.6 0.313 NEU
81.4 0.312 Microsoft-WMT19-doc-level
79.0 0.282 UCAM
77.3 0.268 MLLP-UPV
76.4 0.250 online-Y
78.1 0.200 eTranslation
74.0 0.198 online-B
76.3 0.176 JHU
74.1 0.169 lmu-ctx-tf-single
73.4 0.169 Helsinki-NLP
76.9 0.158 dfki-nmt
76.0 0.156 Microsoft-WMT19-sent-level
73.3 0.101 online-A
73.2 0.058 PROMT-NMT
74.8 0.008 online-G
70.1 −0.027 UdS-DFKI
71.1 −0.087 TartuNLP-c
67.3 −0.285 online-X
40.1 −1.555 en-de-task

English→Finnish
Ave. Ave. z System
86.2 1.225 HUMAN
72.9 0.776 GTCOM-Primary
71.0 0.745 MSRA-NAO
57.1 0.293 NICT
57.3 0.237 online-Y
55.1 0.127 Helsinki-NLP
52.2 0.070 online-B
49.6 0.038 online-G
46.2 −0.006 TartuNLP-c
38.0 −0.405 online-A
37.9 −0.433 online-X
39.3 −0.462 Helsinki-NLP-rule-based
14.0 −1.156 apertium-uc

English→Gujarati
Ave. Ave. z System
67.1 1.119 HUMAN
57.5 0.759 GTCOM-Primary
63.7 0.737 online-B
54.0 0.561 UEDIN
54.1 0.431 MSRA
47.2 0.146 CUNI-T2T-transfer
44.5 −0.178 Ju-Saarland-clean-num-135-bpe
35.0 −0.481 online-G
33.1 −0.495 IITP-MT
33.0 −0.496 NICT
27.1 −0.724 online-X
29.7 −0.791 UdS-DFKI

English→Kazakh
Ave. Ave. z System
73.7 0.883 HUMAN
64.1 0.471 UAlacant-NMT
59.9 0.269 UAlacant-NMT-RBMT
57.9 0.228 MSRA
56.5 0.223 online-B
55.7 0.166 NEU
56.6 0.138 online-G
53.5 0.071 CUNI-T2T-transfer
51.0 −0.039 rug-bpe
45.9 −0.342 talp-upc-2019
37.3 −0.550 NICT
12.2 −1.472 DBMS-KU

English→Lithuanian
Ave. Ave. z System
81.2 1.176 HUMAN
63.0 0.548 tilde-nc-nmt
55.4 0.367 MSRA-MASS-uc
58.6 0.342 MSRA-MASS-c
56.9 0.331 tilde-c-nmt
54.6 0.157 GTCOM-Primary
54.3 0.121 eTranslation
51.1 0.040 NEU
48.4 0.017 online-B
39.5 −0.338 TartuNLP-c
28.5 −0.738 online-A
28.8 −0.768 online-X
23.8 −0.797 online-G

English→Russian
Ave. Ave. z System
78.9 0.699 HUMAN
78.3 0.645 Facebook-FAIR
72.8 0.449 USTC-MCC
70.8 0.362 online-B
70.8 0.335 online-G
69.4 0.314 NEU
68.0 0.248 PROMT-NMT
65.2 0.157 online-Y
62.7 −0.099 rerank-er
59.9 −0.142 TartuNLP-u
56.8 −0.262 online-A
48.6 −0.389 online-X
32.8 −1.156 NICT

English→Chinese
Ave. Ave. z System
70.3 0.486 HUMAN
71.0 0.421 KSAI
69.4 0.303 Baidu
65.6 0.245 NEU
64.7 0.156 BTRANS
65.4 0.146 UEDIN
62.4 0.116 NICT
65.4 0.094 online-A
64.6 0.057 xzl-nmt
59.6 −0.081 online-B
60.5 −0.09 online-Y
58.0 −0.141 online-G
55.3 −0.346 online-X

Chinese→English
Ave. Ave. z System
77.7 0.278 Baidu
76.5 0.220 NEU
78.0 0.217 online-B
77.8 0.181 BTRANS-ensemble
74.5 0.169 MSRA-MASS
73.8 0.141 BTRANS
75.6 0.138 KSAI
73.4 0.070 UEDIN
75.6 0.051 online-Y
74.6 0.050 NICT
74.9 0.015 MSRA-MASS
73.4 −0.043 online-A
71.4 −0.104 online-G
67.7 −0.333 online-X
57.8 −0.915 Apprentice-c

Table 14: Document Rating+Document Context (DR+DC) results of WMT19 News Translation Task for subset of language
pairs. Systems ordered by DA score z-score; systems within a cluster are considered tied; lines indicate clusters according to
Wilcoxon rank-sum test p < 0.05; grayed entry indicates resources that fall outside the constraints provided.
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Ave. Ave. z System
79.1 0.142 NEU
80.9 0.142 KSAI
79.0 0.139 MSRA-MASS
79.5 0.130 online-B
79.5 0.125 Baidu
77.9 0.076 MSRA-MASS
76.0 0.073 BTRANS
77.6 0.051 BTRANS-ensemble
78.0 0.047 online-Y
76.5 −0.015 online-A
75.1 −0.019 UEDIN
75.3 −0.033 NICT
73.3 −0.095 online-G
69.2 −0.276 online-X
58.4 −0.609 Apprentice-c

Table 15: Segment Rating+Document Context (SR+DC)
results of WMT19 News Translation Task for Chinese to En-
glish. Systems ordered by DA score z-score; systems within
a cluster are considered tied; lines indicate clusters according
to Wilcoxon rank-sum test p < 0.05; grayed entry indicates
resources that fall outside the constraints provided.

In contrast to the previous year, reference trans-
lations were scored significantly higher than MT
systems in all these settings. It is thus not clear
if the super-human quality observed last year was
due to lower quality of last year’s references, dif-
ferent set of documents or the segment-level style
of evaluation as thoroughly discussed by Bojar
et al. (2018).

The good news is that all the different types of
evaluation correlate very well, with Pearson cor-
relation coefficient ranging from .978 (Ave. of
DR+DC vs. SR−DC Microsoft) to .998 (Ave. vs.
Ave. z of SR+DC). The document-level ranking
(DR+DC) correlates with all variants of segment-
level ranking with Pearson of .981 to .996.

4 Test Suites

Following our practice since last year, we issued
a call for “test suites”, i.e. test sets focussed on
particular language phenomena, to complement
the standard manual and automatic evaluations of
WMT News Translation system.

Each team in the test suites track provides
source texts (and optionally references) for any
language pair that is being evaluated by WMT
News Task. We shuffle these additional texts into
the inputs of News Task and ship them jointly
with the regular news texts. MT system develop-
ers may decide to skip these documents based on
their ID but most of them process test suites along
with the main news texts. After collecting the out-
put translations from all WMT News Task Partic-

ipants, we extract translated test suites, unshuf-
fle them and send them back to the corresponding
test-suite team. It was up to the test-suite team to
evaluate MT outputs and some did this automati-
cally, some manually and some both.

When shuffling, test suites this year closely ob-
served document boundaries. If a test suite was
marked as sentence-level only by their authors, we
treated individual sentences as if they were one-
sentence documents. This lead to a very high num-
ber of input documents for some language pairs
but all News Task participants managed to handle
this additional burden.

As in the previous year, we have to note that test
suites go beyond the news domain. If News Task
systems are too heavily optimized for news, they
may underperform on these domains.

The primary motivation in 2018 was to cut
through the opacity of evaluations. We wanted to
know more details than just which systems per-
form better or worse on average. This motiva-
tion remains also this year but one more reason
for people providing test suites was to examine
the human parity question from additional view-
points beyond what Bojar et al. (2018) discuss
for English→Czech and Hassan et al. (2018) for
Chinese→English.

4.1 Test Suite Details

The following paragraphs briefly describe each of
the test suites. Please refer to the respective paper
for all the details of the evaluation.

4.1.1 Audits and Agreements (Vojtěchová
et al., 2019)

The test suite provided by the ELITR project (Vo-
jtěchová et al., 2019) focuses on document-level
qualities of two types of documents, audit reports
and agreements (represented with only one docu-
ment, in fact), for the top-performing English-to-
Czech systems and some English↔German sys-
tems.

The English-to-Czech systems were found as
matching or perhaps even surpassing the quality
of news reference translations in WMT18 (Bojar
et al., 2018) and they also perform very well this
year on news. The test suite wanted to validate
if this quality transfers (without any specific do-
main adaptation) also to the domain of reports of
supreme audit institutions, which is much more
sensitive to terminological choices, and the do-
main of agreements, where term consistence is
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Official SR+DC
Ave. Ave. z System
91.2 0.642 HUMAN
86.0 0.402 CUNI-DocTransformer-T2T
86.9 0.401 CUNI-Transformer-T2T-2018
85.4 0.388 CUNI-Transformer-T2T-2019
81.3 0.223 CUNI-DocTransformer-Marian
80.5 0.206 uedin
70.8 −0.156 online-Y
71.4 −0.195 TartuNLP-c
67.8 −0.300 online-G
68.0 −0.336 online-B
60.9 −0.594 online-A
59.3 −0.651 online-X

DR+DC
Ave. Ave. z System
84.0 0.915 HUMAN
76.4 0.537 CUNI-Transformer-T2T-2019
76.7 0.528 CUNI-Transformer-T2T-2018
73.7 0.474 CUNI-DocTransformer-T2T
69.7 0.299 CUNI-DocTransformer-Marian
70.0 0.234 uedin
60.0 −0.098 TartuNLP-c
59.9 −0.169 online-Y
57.3 −0.314 online-B
54.7 −0.368 online-G
47.7 −0.619 online-A
47.4 −0.763 online-X

SR−DC WMT
Ave. z System

0.62538 HUMAN
0.40505 CUNI-Transformer-T2T-2018
0.39463 CUNI-DocTransformer-T2T
0.35678 CUNI-Transformer-T2T-2019
0.31261 CUNI-DocTransformer-Marian
0.26538 uedin

-0.17006 TartuNLP-c
-0.18841 online-Y
-0.26188 online-B
-0.36871 online-G
-0.67123 online-A
-0.72614 online-X

SR−DC Microsoft
Ave. z System

0.39909 HUMAN
0.30170 CUNI-DocTransformer-T2T
0.28599 CUNI-Transformer-T2T-2018
0.27254 CUNI-Transformer-T2T-2019
0.21186 uedin
0.19160 CUNI-DocTransformer-Marian

-0.05716 TartuNLP-c
-0.09987 online-Y
-0.21633 online-B
-0.29386 online-G
-0.40917 online-A
-0.58836 online-X

Table 16: English-Czech translation: A comparison of SR+DC (official), DR+DC (doclevel) and two versions of segments-
evaluation (SR−DC): by WMT annotators and Microsoft annotators.

critical.

The main findings are that also for precise texts
(even if intended for the general public and written
in a relatively simple language), current NMT sys-
tems are close to matching human translation qual-
ity. Terminological choices are a little worse but
syntax and overall understandability was scored
on par or better than the human reference (mixed
among the system in an anonymous way). This
can be seen as an indication of human parity even
out of the original domain of the systems, although
the official evaluation on news this year ranks the
reference significantly higher.

A very important observation is that (single)
reference translations are insufficient because they
don’t reflect the truly possible term translations.
Manual non-expert evaluation would also not be
sufficiently reliable because non-experts do not re-
alize the subtle meaning differences among the
terms.

On the other hand, the micro-study on agree-
ments reveals that even these very good systems
produce practically useless translations of agree-
ments because none of them handles document-
specific terms and their consistent translations
whatsoever.

4.1.2 Linguistic Evaluation of
German-to-English (Avramidis et al.,
2019)

The test suite by DFKI covers 107 grammatical
phenomena organized into 14 categories. The test
suite is very closely related to the one used last
year (Macketanz et al., 2018), which allows an
evaluation over time.

The test suite is evaluated semi-automatically
on a large set of sentences (over 25k) illustrating
each of the examined phenomenon and equipped
with automatic checks for anticipated good and
bad translations. The outputs of these checks are
manually verified and refined.

The cross-year comparison is naturally affected
by the different set of systems participating in
each of the evaluations, but some trends are still
observed, namely the improvement in function
words, non-verbal agreement and punctuation.
The least improvement is seen in terminology and
named entities.

Overall, MT system still translate on average
about 25% of the tested sentences wrongly. The
worst performance is seen for idioms (88% wrong)
and complex German verbal grammar (72–77%
wrong). Specific terminology and some grammat-
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ical phenomena reach about 50%. The paper also
indicates phenomena with error rate below 10%,
e.g. negation or several cases of verb conjugation.

4.1.3 Document-Level Phenomena (Rysová
et al., 2019)

The English-to-Czech test suite by Rysová et al.
(2019) builds upon discourse linguistics and
manually evaluates three phenomena related to
document-level coherence, namely topic-focus ar-
ticulation (information structure), discourse con-
nectives and alternative lexicalizations of connec-
tives (essentially multi-word discourse connec-
tives). Co-reference is deliberately not included.

The 101 test suite documents (3.5k source sen-
tences in total) come from Penn Discourse Tree-
bank and are speficically the “essay” or “let-
ter” type. The manual evaluation by trained lin-
guists considered always the whole document:
the source English text and one of the MT out-
puts. Targetted phenomena were highlighted in
the source and the annotators marked whether
they agree with the source annotation and (if yes)
whether the respective source phenomenon is also
refleted in the target. The reference translation
comes from Prague Czech-English Dependency
Treebank (Hajič et al., 2012) and it was included
in the annotation in a blind way, as if it was one of
the MT systems.

The results indicate that the examined phenom-
ena are also handled by the MT systems exception-
ally well, matching human quality or even negligi-
bly outperforming humans, e.g. in the mutli-word
discourse connectives. Interestingly, the English-
Czech systems trained in some document-level
way this year do not seem any better than the
segment-level ones.

4.1.4 Producing German Conjuctions from
English and French (Popović, 2019)

The test suite by Popović (2019) contains ap-
proximately 1000 English and 1000 individ-
ual French sentences that were included in the
English→German and French→German tasks.
The sentences focus on the translation of the En-
glish “but” and French “mais” which should be
disambiguated into German “aber” or “sondern”.

Except for 1–2% of cases (when no conjunc-
tion or both possibilities are found in the target),
the outputs can be evaluated automatically. The
results indicate that the situation when “aber” is
needed is recognized almost perfectly by all the

system but the situation which requires “sondern”
is sometimes mishandled and the (generally more
frequent) “aber” is used. The error rate ranges
from 3% (TARTUNLP-C) to 14% (ONLINE-X) or
22% (the unclear system called EN-DE-TASK)

4.1.5 Out-of-Domain Check of Formal
Language for German→English (Biçici,
2019)

A small test suite by Biçici (2019) contains 38
sentences from texts by Prussian Cultural Heritage
Foundation, checking the performance of MT sys-
tems on the domain of cross-cultural international
relations.

The test suite is evaluated only with a few auto-
matic measures with no clear conclusion.

4.1.6 Word Sense Disambiguation (Raganato
et al., 2019)

Raganato et al. (2019) present the MuCoW (mul-
tilingual contrastive word sense disambiguation)
test suite which contains a relatively large set of
sentences (69–4268 depending on the language
pair) mined from parallel corpora to illustrate
words which are particularly ambiguous for the
given translation pair.

Originally, the test suite relies on MT systems
scoring candidate pairs of sentences. Raganato
et al. (2019) adapt it for the use case of WMT test
suites where the black-box MT systems only pro-
vide their translation output. Due care is taken in
sentence selection, in particular any overlap with
WMT constrained training data is avoided.

The test suite covers from German, Finnish,
Lithuanian and Russian into English and from En-
glish into these four langauges and Czech.

The ambiguous words were identified with the
help of BabelNet (Navigli and Ponzetto, 2012)
multilingual synsets and the granularity was re-
duced with the help of word embeddings to ensure
that the meaning distinctions are reliably big. For
the WMT use case, there are dozens or a few hun-
dreds of ambiguous source words (except Lithua-
nian with only very few words) with slightly more
than 2 distinct word senses per examined source
word on average.

The results show that overall, WMT sys-
tems perform quite well word-sense disambigua-
tion when evaluated in the “in-domain” setting
(word senses not too common in subtitle cor-
pora), with precision (examples with correct tar-
get words over examples with either correct or in-
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correct target words) in the ranges 64–80% (e.g.
Finnish→English or English→German) up to 95–
97% (English→Czech) depending on the language
pair. The recalls (examples with correct target
words over all examples) are similarly high, 65–
91 across the board.

The “out-of-domain” evaluation was directed at
word senses common in colloquial speech and in
general, research WMT news system perform a lit-
tle worse than online systems in these scores ex-
cept for English-Czech.

5 Similar Language Translation

Within the MT and NLP communities, English is
by far the most resource-rich language. MT sys-
tems are most often trained to translate texts from
and to English or they use English as a pivot lan-
guage to translate between resource-poorer lan-
guages. The interest in English is reflected, for ex-
ample, in the WMT translation tasks (e.g. News,
Biomedical) which have always included language
pairs in which texts are translated to and/or from
English.

With the widespread use of MT technology,
there is more and more interest in training sys-
tems to translate between languages other than En-
glish. One evidence of this is the need of directly
translating between pairs of similar languages, va-
rieties, and dialects (Zhang, 1998; Marujo et al.,
2011; Hassani, 2017; Costa-jussà et al., 2018).
The main challenge is to take advantage of the
similarity between languages to overcome the lim-
itation given the low amount of available parallel
data to produce an accurate output.

Given the interest of the community in this topic
we organize, for the first time at WMT, a shared
task on "Similar Language Translation" to evalu-
ate the performance of state-of-the-art translation
systems on translating between pairs of languages
from the same language family. We provide par-
ticipants with training and testing data from three
language pairs: Spanish - Portuguese (Romance
languages), Czech - Polish (Slavic languages), and
Hindi - Nepali (Indo-Aryan languages). Evalua-
tion will be carried out using automatic evaluation
metrics and human evaluation.

5.1 Data

Training We have made available a number of
data sources for the Similar Language Transla-
tion shared task. Some training datasets were

used in the previous editions of the WMT News
Translation shared task and were updated (Eu-
roparl v9, News Commentary v14), while some
corpora were newly introduced (Wiki Titles v1,
JRC Acquis). For the Hi–Ne language pair, paral-
lel corpora have been collected from Opus (Tiede-
mann and Nygaard, 2004)19. We used the Ubuntu,
KDE, and Gnome corpus available at OPUS for
this shared task.

Development and Test Data The creation of
development and test sets for Czech and Polish in-
volved random extraction of 30 TED talks for the
development and 30 TED talks for the test set in
each language. Then unique sentences were ex-
tracted and cleaning of lines containing meta-data
information was performed which resulted in 4.7k
sentences in the development sets and 4.8k sen-
tences in the test sets. Further cleaning of the cor-
pus to retain only sentences between 7 and 100
words limited the number of the sentences in the
dev and test sets to 3050 and 3412 sentences re-
spectively.

The development and test sets for Spanish and
Portuguese were created from a corpus provided
by AT Language Solutions 20. First, the extraction
of unique sentences and cleaning of lines contain-
ing meta-data information was performed which
narrowed the number of sentences to 11.7k sen-
tences. Then cleaning of the corpus to retain only
sentences between 7 and 100 words limited the
number of the sentences to 6.8k. Finally, 3k ran-
domly selected sentences were used for the devel-
opment set and other 3k random sentences were
extracted to form the test set. For HI–NE, all
data was initially combined and randomly shuf-
fled. From the combined corpus, we randomly ex-
tracted 65,505 sentences for the training set, 3,000
sentences for development set and 3,567 for the
test set. Finally, the test set was split into two dif-
ferent test sets: 2,000 sentences used for HI to NE
and 1,557 sentences were used for NE to HI.

5.2 Participants

The first edition of the WMT Similar Language
Translation task attracted more participants than
we anticipated. There were 35 teams who signed
up to participate in the competition and 14 of them
submitted their system outputs to one of the three
language pairs in any translation direction. In the

19http://opus.nlpl.eu/
20https://www.at-languagesolutions.com/en/
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Table 17: Europarl v9 Parallel Corpus
Czech↔ Polish Spanish↔ Portuguese

sentences 631372 1811977
words 12526659 12641841 47832025 46191472

Table 18: Wiki Titles v1 Parallel Corpus
Czech↔ Polish Spanish↔ Portuguese

sentences 248645 621296
words 551084 554335 1564668 1533764

Table 19: JRC-Acquis Parallel Corpus
Czech↔ Polish Spanish↔ Portuguese

sentences 1311362 1650126
words 21409363 21880482 35868080 33474269

Table 20: News Commentary v14 Parallel Corpus
Spanish↔ Portuguese

sentences 48168
words 1271324 1219031

Table 21: GNOME, Ubuntu, KDE Parallel Corpus
Hindi↔ Nepali

sentences 65505
words 253216 222823

Table 22: Europarl v9 Monolingual Corpus
Czech Polish Spanish Portuguese

sentences 665433 382726 2019336 2015290
words 13199347 7087267 52157546 50462045

Table 23: News Crawl Monolingual Corpus
Czech Polish Spanish Portuguese

sentences 72157988 814754 43814290 8301536
words 1019497060 12370354 1159300825 160477593

Table 24: News Commentary v14 Monolingual Corpus
Czech Spanish Portuguese

sentences 266705 424063 59502
words 4922572 10724738 1443204

end of the competition, 10 teams submitted system
description papers which are referred to in this re-
port. Table 25 summarizes the participation across
language pairs and translation directions and in-
cludes references to the 10 system description pa-
pers.

We observed that the majority of teams contain
only members which work in universities and re-
search centers (12 teams) whereas only two teams
contain members who work in the industry. The
participants were distributed across different con-
tinents with a higher participation of European
teams (7 European) with two teams based on the
Americas, and five Asian teams.

As follows we provide summaries for each of
the entries we received:

BSC: Team BSC (Barcelona SuperComputing

Center) participated with a Transfomer-based ap-
proach in the Spanish-Portuguese track. As pre-
processing, SentencePiece 21 was applied after
concatenating and shuffling the data. For the Por-
tuguese to Spanish language direction, BSC made
use of back-translation.

CFILT_IITB: The CFILT_IITB submission
(Khatri and Bhattacharyya, 2019) is based on un-
supervised neural machine translation described
in Artetxe et al. (2018) in the task Hindi ↔
Nepali, where encoder is shared and following
bidirectional recurrent neural network architec-
ture. They used 2 hidden layers for both encoder
and decoder.

CMUMEAN: The is system is based on standard
21https://github.com/google/sentencepiece
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transformer based NMT model for the Hindi ↔
Nepali shared task. To compensate the insufficient
released parallel data, they utilized 7M monolin-
gual data for both Hindi and Nepali taken from
CommonCrawl. They augmented the monolin-
gual data by constructing pseudo-parallel datasets.
The pseudo-parallel sentences were constructed
by word substitutions, based on a mapping of the
embedding spaces of the two languages. These
mapping were learned from all data and a seed dic-
tionary based on the alignment of the parallel data.

Incomslav: Team INCOMSLAV (Chen and Av-
gustinova, 2019) by Saarlad University partic-
ipated in the Czech to Polish translation task
only. The team’s primary submission builds on a
transformer-based NMT baseline with back trans-
lation which has been submitted one of their con-
trastive submission. Incomslav’s primary system
is a phoneme-based system re-scored using their
NMT baseline. A second contrastive submission
builds our phrase-based SMT system combined
with a joint BPE model.

JUMT: This submittion used phrase based statisti-
cal machine translation model for Hindi→ Nepali
task. They used 3-gram language model and
MGIZA++ for word alignment. However, their
system achieved poor performance in the shared
task.

MLLP-UPV: Team MLLP-UPV (Baquero-Arnal
et al., 2019) by Universitat Politècnica de Valèn-
cia (UPV) participated with a Transformer (imple-
mented with FairSeq (Ott et al., 2019)) and a fine-
tuning strategy for domain adaptaion in the task
of Spanish-Portuguese. Fine-tunning on the de-
velopment data provide improvements of almost
12 BLEU points, which may explain their clear
best performance in the task for this language pair.
As a contrastive system authors provided only for
the Portuguese-to-Spanish a novel 2D alternating
RNN model which did not respond so well when
fine-tunning.

KYOTOUNIVERSITY: Kyoto University’s sub-
mission, listed simply as KYOTO in Table 25
for PT → ES task is based on transformer NMT
system. They used difference word segmenta-
tion strategies during preprocessing. Additionally
they used optional reverse feature in their prepro-

cessing step. Their submission achieved average
scores in the shared task.

NICT: The NICT team (Marie et al., 2019a)
participated with the a system combination be-
tween the Transformer (implemented in Marian
(Junczys-Dowmunt et al., 2018) and Phrase-based
machine translation system (implemented with
Moses) and for the Spanish-Portuguese task. The
system combination included features formerly
presented in (Marie and Fujita, 2018), includ-
ing scores left-to-right and right-to-left, sentence
level translation probabilities and language model
scores. Also authors provide contrastive results
with an unsupervised phrase-based MT system
which achieves quite close results to their primary
system. Authors associate high performance of the
unsupervised system to the language similarity.

NITS-CNLP: The NITS-CNLP team (Laskar
et al., 2019) by the National Institute of Tech-
nology Silchar in India submitted results to the
HI-NE translation task in both directions. The
NITS-CNLP systems are based on Marian NMT
(Junczys-Dowmunt et al., 2018) and Open NMT
implementations of sequence-to-sequence RNNs
with attention mechanisms. Their contrastive sub-
missions were ranking first in both Hindi to Nepali
and Nepali to Hindi translation.

Panlingua-KMI: The Panlingua-KMI team (Ojha
et al., 2019) tested phrase-based SMT and NMT
methods for HI-NE translation in both directions.
The PBSMT systems have been trained using
Moses (Koehn et al., 2007) and KenLM. Their two
NMT systems were built using OpenNMT. The
first system was built with 2 layers using LSTM
model while the second system was built with 6
layers using the Transformer model.

UBC-NLP: Team UBC-NLP from the University
of British Columbia in Canada (Przystupa and
Abdul-Mageed, 2019) compared the performance
of the LSTM plus attention (Bahdanau et al.,
2015) and Transformer (Vaswani et al., 2017) (im-
plemented in OpenNMT toolkit22) perform for the
three tasks at hand. Authors use backtranslation
to introduce monolingual data in their systems.
LSTM plus attention outperformed Transformer
for Hindi-Nepali, and viceversa for the other two
tasks. As reported by the authors, Hindi-Nepali
task provides much more shorter sentences than

22http://opennmt.net/

32



the other two-tasks. Additionally, authors in their
system description report interesting insights on
how similar are languages in each of the 3 differ-
ent tasks.

UDS-DFKI: The UDS-DFKI team (Pal et al.,
2019) is formed by researchers from Saarland
University (UDS), the German Research Foun-
dation of Artificial Intelligence (DFKI), and the
University of Wolverhampton. They submitted a
transference model that extends the original trans-
former model to multi-encoder based transformer
architecture. The transference model contains two
encodes, the first encoder encodes word form in-
formation of the source (CS), and a second en-
coder to encode sub-word (byte-pair-encoding) in-
formation of the source (CS). The results obtained
by their system in translating from Czech→Polish
and comment on the impact of out-of-domain test
data in the performance of their system. UDS-
DFKI ranked second among ten teams in Czech–
Polish translation.

UHelsinki: The University of Helsinki team
(Scherrer et al., 2019) participated with the Trans-
former (Vaswani et al., 2017) implemented in the
OpenNMT toolkit. They focused on word seg-
mentation methods and compared a cognate-aware
segmentation method, Cognate Morfessor (Grön-
roos et al., 2018), with character segmentation and
unsupervised segmentation methods. As primary
submission they submitted this Cognate Morfes-
sor that optimizes subword segmentations con-
sistently for cognates. They participated for all
translation directions in Spanish-Portuguese and
Czech-Polish, and this Cognate Morfessor per-
formed better for Czech-Polish, while character-
based segmentations (Costa-jussà and Fonollosa,
2016), while much more inefficient, were superior
for Spanish-Portuguese.

UPC-TALP: The UPC-TALP team (Biesialska
et al., 2019) by the Universitat Politècnica de
Catalunya submitted a Transformer (implemented
with Fairseq (Ott et al., 2019)) for the Czech-
to-Polish task and a Phrase-based system (im-
plemented with Moses (Koehn et al., 2007)) for
Spanish-to-Portuguese. They tested adding mono-
lingual data to the NMT system by copying the
same data on the source and target sides, with
negative results. Also, their system combination
based on sentence-level BLEU in back-translation

did not succeed. Authors provide interesting in-
sights on language distance based on previous
work by (Gamallo et al., 2017) and their results
show that the Phrase-based compared to NMT
achieves better results when the language distance
between source and target language is lower.

5.3 Results
We present results for the three language pairs,
each of them in the two possible directions. For
this first edition of the Similar Translation Task
and differently from News task, evaluation was
only performed on automatic basis using BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006) measures. Each language direction is re-
ported in one different table which contain infor-
mation of the team; type of system, either con-
trastive (C) or primary (P), and the BLEU and
TER results. In general, primary systems tend to
be better than contrastive systems, as expected, but
there are some exceptions.

Even if we are presenting 3 pairs of languages
each pair belonging to the same family, transla-
tion quality in terms of BLEU varies signficantly.
While the best systems for Spanish-Portuguese are
above 64 BLEU and below 21 TER (see Tables
26 and 27), best systems for Czech-Polish do not
reach the 8 BLEU and the 79.6 TER for the direc-
tion with lowest TER (Polish-to-Czech). The case
of Hindi-Nepali is in between, with BLEU of 53.7
and TER of 36.3 for the better direcion Hindi-to-
Nepali. Also, we noticed that BLEU and TER do
not always correlate and while some systems per-
formed better in BLEU, the ranking is different if
ordered by TER. In any case, we chose BLEU as
the official metric for ranking.

The highest variance of system performance can
be found in Hindi-Nepali (both directions), where
the best performing system is around 50 BLEU
(53 for Hindi-to-Nepali and 49.1 for Nepali-to-
Hindi), and the lowest entry is 1.4 for Hindi-to-
Nepali and 0 for Nepali-to-Hindi. The lowest vari-
ance is for Polish-to-Czech and it may be because
only two teams participated.

5.4 Conclusion of Similar Language
Translation

In this section we presented the results of the
WMT Similar Language Translation shared task
2019. The competition featured data in three lan-
guage pairs: Czech-Polish, and Hindi-Nepali, and
Portuguese-Spanish.
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Team CS→PL PL→CS HI→NE NE→HI PT→ES ES→PT Paper
BSC X X
CFILT_IITB X X Khatri and Bhattacharyya (2019)
CMUMEAN X X
Incomslav X Chen and Avgustinova (2019)
JUMT X
KYOTO X
MLLP-UPV X X Baquero-Arnal et al. (2019)
NICT X Marie et al. (2019a)
NITS-CNLP X X Laskar et al. (2019)
Panlingua-KMI X X Ojha et al. (2019)
UBC-NLP X X X X X X Przystupa and Abdul-Mageed

(2019)
UDS-DFKI X Pal et al. (2019)
UHelsinki X X X X Scherrer et al. (2019)
UPC-TALP X X Biesialska et al. (2019)
Total 5 2 6 5 6 5 10

Table 25: The teams that participated in the Similar Translation Task.

Team Type BLEU TER
MLLPUPV P 66.6 19.7
NICT P 59.9 25.3
Uhelsinki C 59.1 25.5
Uhelsinki C 58.6 25.1
Uhelsinki P 58.4 25.3
KYOTOUNIVERSITY P 56.9 26.9
NICT C 54.9 28.4
BSC P 54.8 29.8
UBC-NLP P 52.3 32.9
UBC-NLP C 52.2 32.8
MLLPUPV C 51.9 30.5
MLLPUPV C 49.7 32.1
BSC C 48.5 35.1
Table 26: Results for Portuguese to Spanish Translation

Team Type BLEU TER
MLLPUPV P 64.7 20.8
UPC-TALP P 62.1 23.0
NICT P 53.3 29.1
Uhelsinki C 52.8 28.6
Uhelsinki P 52.0 29.4
Uhelsinki C 51.0 33.1
NICT C 47.9 33.4
UBC-NLP P 46.1 36.0
UBC-NLP C 46.1 35.9
MLLPUPV C 45.5 35.3
BSC P 44.0 37.5

Table 27: Results for Spanish to Portuguese Translation

For the future it is worth investigating why lan-
guages from the same family, like Czech-Polish
have extremely low performance. Authors in
(Biesialska et al., 2019), with the best perform-

Team Type BLEU TER
NITS-CNLP C 53.7 36.3
Panlingua-KMI P 11.5 79.1
CMUMEAN P 11.1 79.7
UBC-NLP P 08.2 77.1
UBC-NLP C 08.2 77.2
NITS-CNLP P 03.7 -
NITS-CNLP C 03.6 -
CFILT_IITB C 03.5 -
Panlingua-KMI C 03.1 -
CFILT_IITB P 02.8 -
CFILT_IITB C 02.7 -
Panlingua-KMI C 01.6 -
JUMT P 01.4 -
Table 28: Results for Hindi to Nepali Translation

Team Type BLEU TER
NITS-CNLP C 49.1 43.0
NITS-CNLP P 24.6 69.1
CMUMEAN P 12.1 76.2
Panlingua-KMI P 09.8 91.3
UBC-NLP P 09.1 88.3
UBC-NLP C 09.1 88.4
Panlingua-KMI C 04.2 -
Panlingua-KMI C 03.6 -
CFILT_IITB P 02.7 -
NITS-CNLP C 01.4 -
CFILT_IITB C 0 -
CFILT_IITB C 0 -
Table 29: Results for Nepali to Hindi Translation

ing system in Czech-to-Polish, hypothesize that
one of the reasons is the different in alphabets
from both languages. Additionally, they refer to
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Team Type BLEU TER
UPC-TALP P 7.9 85.9
UDS-DFKI P 7.6 87.0
Uhelsinki P 7.1 87.4
Uhelsinki C 7.0 87.3
Incomslav C 5.9 88.4
Uhelsinki C 5.9 88.4
Incomslav P 3.2 -
Incomslav C 3.1 -
UBC-NLP C 2.3 -
UBC-NLP P 2.2 -

Table 30: Results for Czech to Polish Translation

Team Type BLEU TER
Uhelsinki C 7.2 79.6
Uhelsinki P 7.0 79.4
UBC-NLP P 6.9 86.5
UBC-NLP C 6.9 86.2
Uhelsinki C 6.6 80.2

Table 31: Results for Polish to Czech Translation

Gamallo et al. (2017) and provide big language
distances for Czech-Polish compared to Spanish-
Portuguese.

6 Conclusion

We presented the results of the WMT18 News
Translation Shared Task. Our main findings rank
participating systems in their sentence-level trans-
lation quality, as assessed in a large-scale manual
evaluation using the method of Direct Assessment
(DA).

The novelties this year include (1) avoiding ef-
fects of translationese by creating reference trans-
lations always in the same directions as the MT
systems are run, (2) providing human assessors
with the context of the whole document when as-
sessing individual segments for a large portion of
language pairs, (3) extending the set of languages
which are evaluated given the source, not the ref-
erence translation, and (4) scoring also whole doc-
uments, not only individual segments.

Our results indicate which MT systems perform
best across the 18 examined translation pairs, as
well as what features are now commonly used
in the field. The test suites complement this
evaluation by focussing on particular language
phenomena such as word-sense disambiguation,
document-level coherence or terminological cor-
rectness.

As in the previous year, MT systems seem to

reach the quality of human translation in the news
domain for some language pairs. This result has to
be regarded with a great caution and considering
the technical details of the (document-aware) DA
evaluation method as well as the outcomes of com-
plementary evaluations, such as those included in
the test suites. Importantly, the language pairs
where the parity was reached last year were not
confirmed by the evaluation this year and a similar
situation can repeat. As one of the test suites (Vo-
jtěchová et al., 2019) suggests, there are aspects of
texts which are wrongly handled by even the best
translation systems.

The task on similar language translation indi-
cated that the performance in this area is extremely
varied across language pairs as well as across par-
ticipating teams.
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BAIDU-SYSTEM - 0.03 0.09? 0.10? 0.10† 0.11† 0.13‡ 0.19‡ 0.24‡ 0.25‡ 0.29‡ 0.36‡ 0.50‡ 0.78‡ 1.25‡
KSAI-SYSTEM -0.03 - 0.06 0.07 0.07 0.08? 0.10† 0.16‡ 0.21‡ 0.22‡ 0.27‡ 0.33‡ 0.47‡ 0.75‡ 1.22‡

MSRA -0.09 -0.06 - 0.01 0.01 0.02 0.04 0.10‡ 0.15‡ 0.15‡ 0.20‡ 0.27‡ 0.41‡ 0.69‡ 1.16‡
MSRA -0.10 -0.07 -0.01 - 0.00 0.01 0.03 0.09† 0.14‡ 0.15‡ 0.19‡ 0.26‡ 0.40‡ 0.68‡ 1.15‡

NEU -0.10 -0.07 -0.01 0.00 - 0.01 0.03 0.09† 0.14‡ 0.14‡ 0.19‡ 0.26‡ 0.39‡ 0.68‡ 1.15‡
BTRANS -0.11 -0.08 -0.02 -0.01 -0.01 - 0.02 0.08† 0.13‡ 0.14‡ 0.19‡ 0.25‡ 0.39‡ 0.67‡ 1.14‡
ONLINE-B -0.13 -0.10 -0.04 -0.03 -0.03 -0.02 - 0.06? 0.11‡ 0.11† 0.16‡ 0.23‡ 0.36‡ 0.64‡ 1.12‡

BTRANS-ENSEMBLE -0.19 -0.16 -0.10 -0.09 -0.09 -0.08 -0.06 - 0.05 0.05 0.10† 0.17‡ 0.30‡ 0.59‡ 1.06‡
UEDIN -0.24 -0.21 -0.15 -0.14 -0.14 -0.13 -0.11 -0.05 - 0.01 0.05? 0.12‡ 0.26‡ 0.54‡ 1.01‡

ONLINE-Y -0.25 -0.22 -0.15 -0.15 -0.14 -0.14 -0.11 -0.05 -0.01 - 0.05? 0.11‡ 0.25‡ 0.53‡ 1.01‡
NICT -0.29 -0.27 -0.20 -0.19 -0.19 -0.19 -0.16 -0.10 -0.05 -0.05 - 0.07? 0.20‡ 0.48‡ 0.96‡

ONLINE-A -0.36 -0.33 -0.27 -0.26 -0.26 -0.25 -0.23 -0.17 -0.12 -0.11 -0.07 - 0.14† 0.42‡ 0.89‡
ONLINE-G -0.50 -0.47 -0.41 -0.40 -0.39 -0.39 -0.36 -0.30 -0.26 -0.25 -0.20 -0.14 - 0.28‡ 0.76‡
ONLINE-X -0.78 -0.75 -0.69 -0.68 -0.68 -0.67 -0.64 -0.59 -0.54 -0.53 -0.48 -0.42 -0.28 - 0.47‡

APPRENTICE-C -1.25 -1.22 -1.16 -1.15 -1.15 -1.14 -1.12 -1.06 -1.01 -1.01 -0.96 -0.89 -0.76 -0.47 -

score 0.29 0.27 0.20 0.20 0.19 0.19 0.16 0.10 0.05 0.05 0.00 -0.07 -0.20 -0.48 -0.96
rank 1–7 1–7 1–7 1–7 1–7 1–7 1–7 8–10 8–10 8–10 11 12 13 14 15

Table 32: Head to head comparison for Chinese→English systems

A Differences in Human Scores

Tables 32–49 show differences in average standardized human scores for all pairs of competing sys-
tems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such
differences could occur simply by chance. In the following tables ? indicates statistical significance
at p < 0.05, † indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at
p < 0.001, according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-
overlapping rank ranges.
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KSAI-SYSTEM -0.06 - 0.03 0.10† 0.25‡ 0.26‡ 0.29‡ 0.30‡ 0.31‡ 0.43‡ 0.52‡ 0.57‡ 0.86‡

BAIDU-SYSTEM -0.09 -0.03 - 0.07 0.23‡ 0.24‡ 0.26‡ 0.27‡ 0.28‡ 0.40‡ 0.50‡ 0.54‡ 0.83‡
NEU -0.16 -0.10 -0.07 - 0.16‡ 0.17‡ 0.19‡ 0.20‡ 0.21‡ 0.33‡ 0.43‡ 0.47‡ 0.76‡

ONLINE-A -0.32 -0.25 -0.23 -0.16 - 0.01 0.04 0.04 0.05 0.18‡ 0.27‡ 0.31‡ 0.60‡
XZL-NMT -0.33 -0.26 -0.24 -0.17 -0.01 - 0.03 0.03 0.04 0.17‡ 0.26‡ 0.30‡ 0.60‡

UEDIN -0.35 -0.29 -0.26 -0.19 -0.04 -0.03 - 0.01 0.02? 0.14‡ 0.23‡ 0.28‡ 0.57‡
BTRANS -0.36 -0.30 -0.27 -0.20 -0.04 -0.03 -0.01 - 0.01 0.13‡ 0.23‡ 0.27‡ 0.56‡

NICT -0.37 -0.31 -0.28 -0.21 -0.05 -0.04 -0.02 -0.01 - 0.12‡ 0.22‡ 0.26‡ 0.55‡
ONLINE-B -0.49 -0.43 -0.40 -0.33 -0.18 -0.17 -0.14 -0.13 -0.12 - 0.09? 0.14‡ 0.43‡
ONLINE-Y -0.59 -0.52 -0.50 -0.43 -0.27 -0.26 -0.23 -0.23 -0.22 -0.09 - 0.04 0.34‡
ONLINE-G -0.63 -0.57 -0.54 -0.47 -0.31 -0.30 -0.28 -0.27 -0.26 -0.14 -0.04 - 0.29‡
ONLINE-X -0.92 -0.86 -0.83 -0.76 -0.60 -0.60 -0.57 -0.56 -0.55 -0.43 -0.34 -0.29 -

score 0.37 0.31 0.28 0.21 0.05 0.04 0.02 0.01 0.00 -0.13 -0.22 -0.26 -0.55
rank 1 2–4 2–4 2–4 5–9 5–9 5–9 5–9 5–9 10 11–12 11–12 13

Table 33: Head to head comparison for English→Chinese systems
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HUMAN - 0.24‡ 0.24‡ 0.25‡ 0.42‡ 0.44‡ 0.80‡ 0.84‡ 0.94‡ 0.98‡ 1.24‡ 1.29‡
CUNI-DOCTRANSFORMER-T2T -0.24 - 0.00 0.01 0.18‡ 0.20‡ 0.56‡ 0.60‡ 0.70‡ 0.74‡ 1.00‡ 1.05‡

CUNI-TRANSFORMER-T2T-2018 -0.24 0.00 - 0.01 0.18‡ 0.20‡ 0.56‡ 0.60‡ 0.70‡ 0.74‡ 1.00‡ 1.05‡
CUNI-TRANSFORMER-T2T-2019 -0.25 -0.01 -0.01 - 0.17‡ 0.18‡ 0.54‡ 0.58‡ 0.69‡ 0.72‡ 0.98‡ 1.04‡

CUNI-DOCTRANSFORMER-MARIAN -0.42 -0.18 -0.18 -0.17 - 0.02 0.38‡ 0.42‡ 0.52‡ 0.56‡ 0.82‡ 0.87‡
UEDIN -0.44 -0.20 -0.20 -0.18 -0.02 - 0.36‡ 0.40‡ 0.51‡ 0.54‡ 0.80‡ 0.86‡

ONLINE-Y -0.80 -0.56 -0.56 -0.54 -0.38 -0.36 - 0.04 0.14† 0.18‡ 0.44‡ 0.49‡
TARTUNLP-C -0.84 -0.60 -0.60 -0.58 -0.42 -0.40 -0.04 - 0.10? 0.14‡ 0.40‡ 0.46‡

ONLINE-G -0.94 -0.70 -0.70 -0.69 -0.52 -0.51 -0.14 -0.10 - 0.04? 0.29‡ 0.35‡
ONLINE-B -0.98 -0.74 -0.74 -0.72 -0.56 -0.54 -0.18 -0.14 -0.04 - 0.26‡ 0.31‡
ONLINE-A -1.24 -1.00 -1.00 -0.98 -0.82 -0.80 -0.44 -0.40 -0.29 -0.26 - 0.06?
ONLINE-X -1.29 -1.05 -1.05 -1.04 -0.87 -0.86 -0.49 -0.46 -0.35 -0.31 -0.06 -

score 0.64 0.40 0.40 0.39 0.22 0.21 -0.16 -0.20 -0.30 -0.34 -0.59 -0.65
rank 1 2–4 2–4 2–4 5–6 5–6 7–8 7–8 9 10 11 12

Table 34: Head to head comparison for English→Czech systems
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FACEBOOK-FAIR - 0.01† 0.01 0.03 0.06† 0.08‡ 0.08‡ 0.08† 0.10‡ 0.11‡ 0.12‡ 0.13‡ 0.14‡ 0.14‡ 0.20‡ 0.27‡ 0.34‡
RWTH-AACHEN-SYSTEM -0.01 - 0.00 0.02 0.05 0.07† 0.07 0.07 0.09 0.10 0.11? 0.12‡ 0.13‡ 0.13‡ 0.19‡ 0.26‡ 0.33‡

MSRA -0.01 0.00? - 0.02 0.05? 0.07‡ 0.07† 0.07† 0.09‡ 0.10‡ 0.11‡ 0.12‡ 0.13‡ 0.13‡ 0.19‡ 0.26‡ 0.33‡
ONLINE-B -0.03 -0.02 -0.02 - 0.03 0.05‡ 0.05? 0.05 0.07† 0.08† 0.09† 0.11‡ 0.11‡ 0.11‡ 0.17‡ 0.25‡ 0.31‡

JHU -0.06 -0.05 -0.05 -0.03 - 0.02? 0.02 0.02 0.04 0.05 0.06 0.08† 0.08‡ 0.08‡ 0.14‡ 0.21‡ 0.28‡
MLLP-UPV -0.08 -0.07 -0.07 -0.05 -0.02 - 0.00 0.00 0.02 0.03 0.04 0.06 0.06 0.06 0.12† 0.20‡ 0.26‡

DFKI-NMT -0.08 -0.07 -0.07 -0.05 -0.02 0.00 - 0.00 0.02 0.03 0.04 0.06? 0.06? 0.06† 0.12‡ 0.19‡ 0.26‡
UCAM -0.08 -0.07 -0.07 -0.05 -0.02 0.00 0.00 - 0.02 0.03 0.04 0.05? 0.06† 0.06† 0.12‡ 0.19‡ 0.26‡

ONLINE-A -0.10 -0.09 -0.09 -0.07 -0.04 -0.02 -0.02 -0.02 - 0.01 0.02 0.04 0.04? 0.04? 0.10‡ 0.18‡ 0.24‡
NEU -0.11 -0.10 -0.10 -0.08 -0.05 -0.03 -0.03 -0.03 -0.01 - 0.01 0.03 0.03? 0.03? 0.09‡ 0.17‡ 0.23‡

HUMAN -0.12 -0.11 -0.11 -0.09 -0.06 -0.04 -0.04 -0.04 -0.02 -0.01 - 0.02 0.02? 0.02? 0.08‡ 0.16‡ 0.22‡
UEDIN -0.13 -0.12 -0.12 -0.11 -0.08 -0.06 -0.06 -0.05 -0.04 -0.03 -0.02 - 0.00 0.00 0.06? 0.14‡ 0.20‡

ONLINE-Y -0.14 -0.13 -0.13 -0.11 -0.08 -0.06 -0.06 -0.06 -0.04 -0.03 -0.02 0.00 - 0.00 0.06 0.14‡ 0.20‡
TARTUNLP-C -0.14 -0.13 -0.13 -0.11 -0.08 -0.06 -0.06 -0.06 -0.04 -0.03 -0.02 0.00 0.00 - 0.06 0.13‡ 0.20‡

ONLINE-G -0.20 -0.19 -0.19 -0.17 -0.14 -0.12 -0.12 -0.12 -0.10 -0.09 -0.08 -0.06 -0.06 -0.06 - 0.08‡ 0.14‡
PROMT-NMT-DE-EN -0.27 -0.26 -0.26 -0.25 -0.21 -0.20 -0.19 -0.19 -0.18 -0.17 -0.16 -0.14 -0.14 -0.13 -0.08 - 0.06?

ONLINE-X -0.34 -0.33 -0.33 -0.31 -0.28 -0.26 -0.26 -0.26 -0.24 -0.23 -0.22 -0.20 -0.20 -0.20 -0.14 -0.06 -

score 0.15 0.14 0.14 0.12 0.09 0.07 0.07 0.07 0.05 0.04 0.03 0.01 0.01 0.01 -0.05 -0.13 -0.19
rank 1–3 1–3 1–3 4–15 4–15 4–15 4–15 4–15 4–15 4–15 4–15 4–15 4–15 4–15 4–15 16 17

Table 35: Head to head comparison for German→English systems
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N

E
U

-0.14
-0.10

-0.09
-0.03

-0.01
0.00

-
0.02

0.08?
0.09‡

0.11†
0.11?

0.13‡
0.13‡

0.17‡
0.20‡

0.21‡
0.28‡

0.33‡
0.34‡

0.34‡
0.61‡

1.98‡
M

L
L

P
-U

P
V

-0.16
-0.12

-0.11
-0.05

-0.03
-0.02

-0.02
-

0.06
0.07‡

0.09?
0.09

0.11‡
0.11?

0.15‡
0.18‡

0.19‡
0.26‡

0.31‡
0.32‡

0.32‡
0.59‡

1.96‡
ET

R
A

N
S

L
A

T
IO

N
-0.22

-0.18
-0.17

-0.11
-0.08

-0.08
-0.08

-0.06
-

0.01?
0.04

0.04
0.05

?
0.05

0.09‡
0.12†

0.13‡
0.20‡

0.25‡
0.26‡

0.26‡
0.53‡

1.90‡
D

F
K

I-N
M

T
-0.23

-0.19
-0.18

-0.12
-0.10

-0.09
-0.09

-0.07
-0.01

-
0.02

0.02
0.04

0.04
0.08†

0.11
0.12†

0.19‡
0.24‡

0.25‡
0.25‡

0.52‡
1.89‡

O
N

L
IN

E-B
-0.25

-0.22
-0.20

-0.15
-0.12

-0.12
-0.11

-0.09
-0.04

-0.02
-

0.00
0.01

0.02
0.06‡

0.08?
0.09‡

0.17‡
0.21‡

0.22‡
0.23‡

0.49‡
1.86‡

M
IC

R
O

S
O

F
T-S

E
N

T
-0.25

-0.22
-0.20

-0.15
-0.12

-0.12
-0.11

-0.09
-0.04

-0.02
0.00

-
0.01

?
0.02

0.06‡
0.08†

0.09‡
0.17‡

0.21‡
0.22‡

0.23‡
0.49‡

1.86‡
JH

U
-0.27

-0.23
-0.21

-0.16
-0.13

-0.13
-0.13

-0.11
-0.05

-0.04
-0.01

-0.01
-

0.00
0.04

?
0.07

0.08?
0.15‡

0.20‡
0.21‡

0.21‡
0.48‡

1.85‡
H

E
L

S
IN

K
I-N

L
P

-0.27
-0.23

-0.22
-0.16

-0.14
-0.14

-0.13
-0.11

-0.05
-0.04

-0.02
-0.02

0.00
-

0.04†
0.07

0.08†
0.15‡

0.20‡
0.21‡

0.21‡
0.48‡

1.85‡
O

N
L

IN
E-Y

-0.31
-0.27

-0.26
-0.20

-0.18
-0.17

-0.17
-0.15

-0.09
-0.08

-0.06
-0.06

-0.04
-0.04

-
0.03

0.04
0.11

0.16‡
0.17†

0.17‡
0.44‡

1.81‡
L

M
U

-C
T

X
-T

F-S
IN

G
L

E-E
N

-D
E

-0.34
-0.30

-0.29
-0.23

-0.20
-0.20

-0.20
-0.18

-0.12
-0.11

-0.08
-0.08

-0.07
-0.07

-0.03
-

0.01
0.08†

0.13‡
0.14‡

0.14‡
0.41‡

1.78‡
P

R
O

M
T-N

M
T-E

N
-D

E
-0.35

-0.31
-0.29

-0.24
-0.21

-0.21
-0.21

-0.19
-0.13

-0.12
-0.09

-0.09
-0.08

-0.08
-0.04

-0.01
-

0.07
0.12‡

0.13†
0.13‡

0.40‡
1.77‡

O
N

L
IN

E-A
-0.42

-0.38
-0.37

-0.31
-0.29

-0.29
-0.28

-0.26
-0.20

-0.19
-0.17

-0.17
-0.15

-0.15
-0.11

-0.08
-0.07

-
0.05‡

0.06
0.06†

0.33‡
1.70‡

O
N

L
IN

E-G
-0.47

-0.43
-0.41

-0.36
-0.33

-0.33
-0.33

-0.31
-0.25

-0.24
-0.21

-0.21
-0.20

-0.20
-0.16

-0.13
-0.12

-0.05
-

0.01
0.01

0.28‡
1.65‡

U
D

S
-D

F
K

I
-0.48

-0.44
-0.42

-0.37
-0.34

-0.34
-0.34

-0.32
-0.26

-0.25
-0.22

-0.22
-0.21

-0.21
-0.17

-0.14
-0.13

-0.06
-0.01

?
-

0.00
0.27‡

1.64‡
T

A
R

T
U

N
L

P
-C

-0.48
-0.44

-0.43
-0.37

-0.35
-0.34

-0.34
-0.32

-0.26
-0.25

-0.23
-0.23

-0.21
-0.21

-0.17
-0.14

-0.13
-0.06

-0.01
0.00

-
0.27‡

1.64‡
O

N
L

IN
E-X

-0.75
-0.71

-0.70
-0.64

-0.61
-0.61

-0.61
-0.59

-0.53
-0.52

-0.49
-0.49

-0.48
-0.48

-0.44
-0.41

-0.40
-0.33

-0.28
-0.27

-0.27
-

1.37‡
E

N
-D

E-TA
S

K
-2.12

-2.08
-2.06

-2.01
-1.98

-1.98
-1.98

-1.96
-1.90

-1.89
-1.86

-1.86
-1.85

-1.85
-1.81

-1.78
-1.77

-1.70
-1.65

-1.64
-1.64

-1.37
-

score
0.35

0.31
0.30

0.24
0.21

0.21
0.21

0.19
0.13

0.12
0.09

0.09
0.08

0.08
0.04

0.01
0.00

-0.07
-0.12

-0.13
-0.13

-0.40
-1.77

rank
1

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
2–20

2–20
21

22
23

Table 36: Head to head comparison for English→German systems
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R

T
IU

M
-F

IN
-E

N
G

-U
N

C
O

N
S

T
R

A
IN

E
D

-F
IE

N

MSRA - 0.02? 0.02? 0.04? 0.18‡ 0.18‡ 0.27‡ 0.33‡ 0.34‡ 0.36‡ 0.49‡ 0.80‡
ONLINE-Y -0.02 - 0.00 0.02 0.16‡ 0.16‡ 0.25‡ 0.31‡ 0.32‡ 0.34‡ 0.47‡ 0.78‡

GTCOM-PRIMARY -0.02 0.00 - 0.02 0.15‡ 0.16‡ 0.25‡ 0.31‡ 0.31‡ 0.33‡ 0.47‡ 0.78‡
USYD -0.04 -0.02 -0.02 - 0.14‡ 0.14‡ 0.23‡ 0.29‡ 0.30‡ 0.32‡ 0.45‡ 0.76‡

ONLINE-B -0.18 -0.16 -0.15 -0.14 - 0.00 0.09‡ 0.15‡ 0.16‡ 0.18‡ 0.32‡ 0.62‡
HELSINKI-NLP -0.18 -0.16 -0.16 -0.14 0.00 - 0.09‡ 0.15‡ 0.16‡ 0.18‡ 0.31‡ 0.62‡

ONLINE-A -0.27 -0.25 -0.25 -0.23 -0.09 -0.09 - 0.06 0.06? 0.08† 0.22‡ 0.53‡
ONLINE-G -0.33 -0.31 -0.31 -0.29 -0.15 -0.15 -0.06 - 0.01 0.03 0.17‡ 0.47‡

TARTUNLP-C -0.34 -0.32 -0.31 -0.30 -0.16 -0.16 -0.06 -0.01 - 0.02 0.16‡ 0.46‡
ONLINE-X -0.36 -0.34 -0.33 -0.32 -0.18 -0.18 -0.08 -0.03 -0.02 - 0.14‡ 0.45‡

PARFDA -0.49 -0.47 -0.47 -0.45 -0.32 -0.31 -0.22 -0.17 -0.16 -0.14 - 0.31‡
APERTIUM-FIN-ENG-UNCONSTRAINED-FIEN -0.80 -0.78 -0.78 -0.76 -0.62 -0.62 -0.53 -0.47 -0.46 -0.45 -0.31 -

score 0.28 0.27 0.26 0.24 0.11 0.10 0.01 -0.04 -0.05 -0.07 -0.21 -0.52
rank 1 2–4 2–4 2–4 5–6 5–6 7–10 7–10 7–10 7–10 11 12

Table 37: Head to head comparison for Finnish→English systems
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IN

E
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H
E

L
S

IN
K
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L
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U

L
E

-B
A

S
E
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A
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E
R

T
IU

M
-F

IN
-E

N
G

-U
N

C
O

N
S

T
R

A
IN

E
D

-E
N

-F
I

HUMAN - 0.42‡ 0.44‡ 0.73‡ 0.81‡ 0.92‡ 0.93‡ 0.97‡ 1.13‡ 1.39‡ 1.40‡ 1.53‡ 2.27‡
GTCOM-PRIMARY -0.42 - 0.02 0.31‡ 0.39‡ 0.50‡ 0.51‡ 0.55‡ 0.71‡ 0.97‡ 0.98‡ 1.11‡ 1.85‡

MSRA -0.44 -0.02 - 0.29‡ 0.37‡ 0.48‡ 0.50‡ 0.53‡ 0.69‡ 0.95‡ 0.97‡ 1.09‡ 1.83‡
ONLINE-Y -0.73 -0.31 -0.29 - 0.08? 0.19‡ 0.20‡ 0.24‡ 0.40‡ 0.66‡ 0.67‡ 0.80‡ 1.54‡

NICT -0.81 -0.39 -0.37 -0.08 - 0.11‡ 0.13‡ 0.16‡ 0.32‡ 0.58‡ 0.60‡ 0.72‡ 1.46‡
HELSINKI-NLP -0.92 -0.50 -0.48 -0.19 -0.11 - 0.02 0.05? 0.21‡ 0.47‡ 0.49‡ 0.61‡ 1.35‡

ONLINE-G -0.93 -0.51 -0.50 -0.20 -0.13 -0.02 - 0.04 0.20‡ 0.46‡ 0.47‡ 0.59‡ 1.33‡
ONLINE-B -0.97 -0.55 -0.53 -0.24 -0.16 -0.05 -0.04 - 0.16‡ 0.42‡ 0.43‡ 0.56‡ 1.30‡

TARTUNLP-C -1.13 -0.71 -0.69 -0.40 -0.32 -0.21 -0.20 -0.16 - 0.26‡ 0.27‡ 0.40‡ 1.14‡
ONLINE-A -1.39 -0.97 -0.95 -0.66 -0.58 -0.47 -0.46 -0.42 -0.26 - 0.01 0.14‡ 0.88‡
ONLINE-X -1.40 -0.98 -0.97 -0.67 -0.60 -0.49 -0.47 -0.43 -0.27 -0.01 - 0.12‡ 0.86‡

HELSINKI-NLP–RULE-BASED- -1.53 -1.11 -1.09 -0.80 -0.72 -0.61 -0.59 -0.56 -0.40 -0.14 -0.12 - 0.74‡
APERTIUM-FIN-ENG-UNCONSTRAINED-EN-FI -2.27 -1.85 -1.83 -1.54 -1.46 -1.35 -1.33 -1.30 -1.14 -0.88 -0.86 -0.74 -

score 1.01 0.59 0.57 0.28 0.20 0.09 0.07 0.04 -0.13 -0.38 -0.40 -0.52 -1.26
rank 1 2–3 2–3 4 5 6–8 6–8 6–8 9 10–11 10–11 12 13

Table 38: Head to head comparison for English→Finnish systems
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U
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A

R
L

A
N

D

NEU - 0.08† 0.11‡ 0.12‡ 0.14‡ 0.17‡ 0.40‡ 0.40‡ 0.49‡ 0.51‡ 0.81‡
UEDIN -0.08 - 0.03 0.04 0.06 0.08? 0.31‡ 0.32‡ 0.40‡ 0.42‡ 0.72‡

GTCOM-PRIMARY -0.11 -0.03 - 0.01 0.03 0.06 0.29‡ 0.29‡ 0.38‡ 0.40‡ 0.70‡
CUNI-T2T-TRANSFER-GUEN -0.12 -0.04 -0.01 - 0.02 0.05 0.28‡ 0.28‡ 0.37‡ 0.39‡ 0.69‡

AYLIEN-MT-GU-EN-MULTILINGUAL -0.14 -0.06 -0.03 -0.02 - 0.02 0.25‡ 0.26‡ 0.34‡ 0.36‡ 0.66‡
NICT -0.17 -0.08 -0.06 -0.05 -0.02 - 0.23‡ 0.24‡ 0.32‡ 0.34‡ 0.64‡

ONLINE-G -0.40 -0.31 -0.29 -0.28 -0.25 -0.23 - 0.00 0.09† 0.11† 0.41‡
IITP-MT -0.40 -0.32 -0.29 -0.28 -0.26 -0.24 0.00 - 0.08† 0.10† 0.41‡

UDS-DFKI -0.49 -0.40 -0.38 -0.37 -0.34 -0.32 -0.09 -0.08 - 0.02 0.32‡
IIITH-MT -0.51 -0.42 -0.40 -0.39 -0.36 -0.34 -0.11 -0.10 -0.02 - 0.30‡

JU-SAARLAND -0.81 -0.72 -0.70 -0.69 -0.66 -0.64 -0.41 -0.41 -0.32 -0.30 -

score 0.21 0.13 0.10 0.09 0.07 0.04 -0.19 -0.19 -0.28 -0.30 -0.60
rank 1 2–6 2–6 2–6 2–6 2–6 7–8 7–8 9–10 9–10 11

Table 39: Head to head comparison for Gujarati→English systems
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HUMAN - 0.04? 0.10‡ 0.38‡ 0.40‡ 0.45‡ 0.78‡ 1.16‡ 1.17‡ 1.19‡ 1.20‡ 1.42‡
ONLINE-B -0.04 - 0.07? 0.34‡ 0.36‡ 0.41‡ 0.74‡ 1.12‡ 1.13‡ 1.15‡ 1.16‡ 1.38‡

GTCOM-PRIMARY -0.10 -0.07 - 0.28‡ 0.29‡ 0.34‡ 0.68‡ 1.06‡ 1.06‡ 1.09‡ 1.10‡ 1.31‡
MSRA -0.38 -0.34 -0.28 - 0.01 0.06 0.40‡ 0.78‡ 0.78‡ 0.81‡ 0.82‡ 1.04‡

UEDIN -0.40 -0.36 -0.29 -0.01 - 0.05 0.38‡ 0.76‡ 0.77‡ 0.79‡ 0.81‡ 1.02‡
CUNI-T2T-TRANSFER-ENGU -0.45 -0.41 -0.34 -0.06 -0.05 - 0.33‡ 0.71‡ 0.72‡ 0.74‡ 0.76‡ 0.97‡

JU-SAARLAND-CLEAN-NUM-135-BPE -0.78 -0.74 -0.68 -0.40 -0.38 -0.33 - 0.38‡ 0.39‡ 0.41‡ 0.42‡ 0.64‡
IITP-MT -1.16 -1.12 -1.06 -0.78 -0.76 -0.71 -0.38 - 0.01 0.03 0.04† 0.26‡

NICT -1.17 -1.13 -1.06 -0.78 -0.77 -0.72 -0.39 -0.01 - 0.02 0.04† 0.25‡
ONLINE-G -1.19 -1.15 -1.09 -0.81 -0.79 -0.74 -0.41 -0.03 -0.02 - 0.01? 0.23‡
ONLINE-X -1.20 -1.16 -1.10 -0.82 -0.81 -0.76 -0.42 -0.04 -0.04 -0.01 - 0.22‡

UDS-DFKI -1.42 -1.38 -1.31 -1.04 -1.02 -0.97 -0.64 -0.26 -0.25 -0.23 -0.22 -

score 0.70 0.66 0.60 0.32 0.30 0.25 -0.08 -0.46 -0.47 -0.49 -0.50 -0.72
rank 1 2 3 4–6 4–6 4–6 7 8–10 8–10 8–10 11 12

Table 40: Head to head comparison for English→Gujarati systems
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GTCOM-PRIMARY - 0.02 0.02 0.03 0.03? 0.13‡ 0.29‡ 0.29‡ 0.52‡ 0.57‡ 0.63‡
TILDE-NC-NMT -0.02 - 0.00 0.01 0.01 0.11‡ 0.27‡ 0.28‡ 0.50‡ 0.55‡ 0.61‡

NEU -0.02 0.00 - 0.01 0.01 0.11‡ 0.27‡ 0.27‡ 0.50‡ 0.55‡ 0.61‡
MSRA -0.03 -0.01 -0.01 - 0.00 0.10† 0.26‡ 0.27‡ 0.49‡ 0.54‡ 0.60‡

TILDE-C-NMT -0.03 -0.01 -0.01 0.00 - 0.09† 0.26‡ 0.26‡ 0.49‡ 0.54‡ 0.60‡
ONLINE-B -0.13 -0.11 -0.11 -0.10 -0.09 - 0.16‡ 0.17‡ 0.39‡ 0.44‡ 0.50‡
ONLINE-A -0.29 -0.27 -0.27 -0.26 -0.26 -0.16 - 0.00 0.23‡ 0.28‡ 0.34‡

TARTUNLP-C -0.29 -0.28 -0.27 -0.27 -0.26 -0.17 0.00 - 0.22‡ 0.28‡ 0.34‡
ONLINE-G -0.52 -0.50 -0.50 -0.49 -0.49 -0.39 -0.23 -0.22 - 0.05 0.11†

JUMT -0.57 -0.55 -0.55 -0.54 -0.54 -0.44 -0.28 -0.28 -0.05 - 0.06†
ONLINE-X -0.63 -0.61 -0.61 -0.60 -0.60 -0.50 -0.34 -0.34 -0.11 -0.06 -

score 0.23 0.22 0.21 0.21 0.20 0.11 -0.06 -0.06 -0.28 -0.34 -0.40
rank 1–5 1–5 1–5 1–5 1–5 6 7–8 7–8 9–10 9–10 11

Table 41: Head to head comparison for Lithuanian→English systems
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HUMAN - 0.63‡ 0.63‡ 0.75‡ 0.76‡ 0.86‡ 0.98‡ 1.07‡ 1.08‡ 1.40‡ 1.64‡ 1.68‡ 1.82‡
TILDE-NC-NMT -0.63 - 0.00 0.13? 0.13† 0.23‡ 0.35‡ 0.44‡ 0.45‡ 0.77‡ 1.01‡ 1.05‡ 1.19‡

MSRA -0.63 0.00 - 0.13† 0.13† 0.23‡ 0.35‡ 0.44‡ 0.45‡ 0.77‡ 1.01‡ 1.05‡ 1.19‡
TILDE-C-NMT -0.75 -0.13 -0.13 - 0.00 0.11† 0.23‡ 0.32‡ 0.32‡ 0.65‡ 0.88‡ 0.93‡ 1.07‡

MSRA -0.76 -0.13 -0.13 0.00 - 0.10† 0.22‡ 0.31‡ 0.32‡ 0.64‡ 0.88‡ 0.92‡ 1.06‡
GTCOM-PRIMARY -0.86 -0.23 -0.23 -0.11 -0.10 - 0.12† 0.21‡ 0.22‡ 0.54‡ 0.77‡ 0.82‡ 0.96‡

ETRANSLATION -0.98 -0.35 -0.35 -0.23 -0.22 -0.12 - 0.09† 0.10† 0.42‡ 0.66‡ 0.70‡ 0.84‡
NEU -1.07 -0.44 -0.44 -0.32 -0.31 -0.21 -0.09 - 0.01 0.33‡ 0.57‡ 0.61‡ 0.75‡

ONLINE-B -1.08 -0.45 -0.45 -0.32 -0.32 -0.22 -0.10 -0.01 - 0.32‡ 0.56‡ 0.60‡ 0.74‡
TARTUNLP-C -1.40 -0.77 -0.77 -0.65 -0.64 -0.54 -0.42 -0.33 -0.32 - 0.24‡ 0.28‡ 0.42‡

ONLINE-A -1.64 -1.01 -1.01 -0.88 -0.88 -0.77 -0.66 -0.57 -0.56 -0.24 - 0.05 0.19‡
ONLINE-X -1.68 -1.05 -1.05 -0.93 -0.92 -0.82 -0.70 -0.61 -0.60 -0.28 -0.05 - 0.14†
ONLINE-G -1.82 -1.19 -1.19 -1.07 -1.06 -0.96 -0.84 -0.75 -0.74 -0.42 -0.19 -0.14 -

score 1.02 0.39 0.39 0.26 0.26 0.15 0.04 -0.05 -0.06 -0.38 -0.62 -0.67 -0.81
rank 1 2–3 2–3 4–5 4–5 6 7 8–9 8–9 10 11–12 11–12 13

Table 42: Head to head comparison for English→Lithuanian systems
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ONLINE-B - 0.05 0.08? 0.14‡ 0.16‡ 0.18‡ 0.20‡ 0.21‡ 0.27‡ 0.75‡ 1.33‡
NEU -0.05 - 0.03 0.08† 0.10‡ 0.13‡ 0.15‡ 0.15‡ 0.21‡ 0.69‡ 1.28‡

RUG-KKEN-MORFESSOR -0.08 -0.03 - 0.06? 0.08? 0.10‡ 0.12† 0.12‡ 0.19‡ 0.67‡ 1.25‡
ONLINE-G -0.14 -0.08 -0.06 - 0.02 0.04 0.07 0.07? 0.13‡ 0.61‡ 1.19‡

TALP-UPC-2019-KKEN -0.16 -0.10 -0.08 -0.02 - 0.02 0.05 0.05 0.11† 0.59‡ 1.17‡
NRC-CNRC -0.18 -0.13 -0.10 -0.04 -0.02 - 0.03 0.03 0.09? 0.57‡ 1.15‡

FRANK-S-MT -0.20 -0.15 -0.12 -0.07 -0.05 -0.03 - 0.00 0.06? 0.54‡ 1.12‡
NICT -0.21 -0.15 -0.12 -0.07 -0.05 -0.03 0.00 - 0.06 0.54‡ 1.12‡

CUNI-T2T-TRANSFER-KKEN -0.27 -0.21 -0.19 -0.13 -0.11 -0.09 -0.06 -0.06 - 0.48‡ 1.06‡
UMD -0.75 -0.69 -0.67 -0.61 -0.59 -0.57 -0.54 -0.54 -0.48 - 0.58‡

DBMS-KU-KKEN -1.33 -1.28 -1.25 -1.19 -1.17 -1.15 -1.12 -1.12 -1.06 -0.58 -

score 0.27 0.22 0.19 0.13 0.11 0.09 0.07 0.06 0.00 -0.48 -1.06
rank 1–3 1–3 1–3 4–9 4–9 4–9 4–9 4–9 4–9 10 11

Table 43: Head to head comparison for Kazakh→English systems
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HUMAN - 0.48‡ 0.50‡ 0.52‡ 0.52‡ 0.62‡ 0.64‡ 0.65‡ 0.67‡ 0.79‡ 1.07‡ 1.24‡ 2.14‡
UALACANT—NMT -0.48 - 0.02 0.04 0.04 0.14‡ 0.15‡ 0.16‡ 0.18‡ 0.31‡ 0.59‡ 0.75‡ 1.66‡

ONLINE-B -0.50 -0.02 - 0.02 0.02 0.12† 0.14† 0.15† 0.17‡ 0.29‡ 0.57‡ 0.74‡ 1.64‡
UALACANT—N -0.52 -0.04 -0.02 - 0.00 0.10† 0.11† 0.13? 0.14‡ 0.27‡ 0.55‡ 0.72‡ 1.62‡

RBMT -0.52 -0.04 -0.02 0.00 - 0.10† 0.11† 0.13? 0.14‡ 0.27‡ 0.55‡ 0.72‡ 1.62‡
NEU -0.62 -0.14 -0.12 -0.10 -0.10 - 0.02 0.03 0.05 0.18‡ 0.45‡ 0.62‡ 1.52‡

MSRA -0.64 -0.15 -0.14 -0.11 -0.11 -0.02 - 0.01 0.03 0.16‡ 0.44‡ 0.60‡ 1.50‡
CUNI-T2T-TRANSFER-ENKK -0.65 -0.16 -0.15 -0.13 -0.13 -0.03 -0.01 - 0.02 0.15‡ 0.42‡ 0.59‡ 1.49‡

ONLINE-G -0.67 -0.18 -0.17 -0.14 -0.14 -0.05 -0.03 -0.02 - 0.13† 0.41‡ 0.57‡ 1.47‡
RUG-ENKK-BPE -0.79 -0.31 -0.29 -0.27 -0.27 -0.18 -0.16 -0.15 -0.13 - 0.28‡ 0.44‡ 1.35‡

TALP-UPC-2019-ENKK -1.07 -0.59 -0.57 -0.55 -0.55 -0.45 -0.44 -0.42 -0.41 -0.28 - 0.17‡ 1.07‡
NICT -1.24 -0.75 -0.74 -0.72 -0.72 -0.62 -0.60 -0.59 -0.57 -0.44 -0.17 - 0.90‡

DBMS-KU-ENKK -2.14 -1.66 -1.64 -1.62 -1.62 -1.52 -1.50 -1.49 -1.47 -1.35 -1.07 -0.90 -

score 0.75 0.26 0.24 0.22 0.22 0.13 0.11 0.10 0.08 -0.05 -0.33 -0.49 -1.40
rank 1 2–5 2–5 2–5 2–5 6–9 6–9 6–9 6–9 10 11 12 13

Table 44: Head to head comparison for English→Kazakh systems
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FACEBOOK-FAIR - 0.02? 0.03? 0.04 0.04 0.05? 0.07‡ 0.08‡ 0.13‡ 0.14‡ 0.20‡ 0.20‡ 0.25‡ 0.46‡
ONLINE-G -0.02 - 0.01 0.01 0.02 0.03 0.05? 0.06 0.11† 0.12‡ 0.17‡ 0.17‡ 0.23‡ 0.44‡

ETRANSLATION -0.03 -0.01 - 0.00 0.01 0.02 0.04 0.05 0.09? 0.11‡ 0.16‡ 0.16‡ 0.22‡ 0.43‡
ONLINE-B -0.04 -0.01 0.00 - 0.01 0.02 0.04? 0.04? 0.09† 0.11‡ 0.16‡ 0.16‡ 0.22‡ 0.42‡

NEU -0.04 -0.02 -0.01 -0.01 - 0.01 0.03? 0.04? 0.09† 0.10‡ 0.15‡ 0.15‡ 0.21‡ 0.42‡
MSRA -0.05 -0.03 -0.02 -0.02 -0.01 - 0.02 0.03 0.07? 0.09† 0.14‡ 0.14‡ 0.20‡ 0.41‡

RERANK-RE -0.07 -0.05 -0.04 -0.04 -0.03 -0.02 - 0.01 0.05 0.07? 0.12‡ 0.12‡ 0.18‡ 0.39‡
ONLINE-Y -0.08 -0.06 -0.05 -0.04 -0.04 -0.03 -0.01 - 0.05 0.06? 0.12‡ 0.12‡ 0.17‡ 0.38‡
ONLINE-A -0.13 -0.11 -0.09 -0.09 -0.09 -0.07 -0.05 -0.05 - 0.02 0.07† 0.07† 0.13‡ 0.33‡

AFRL-SYSCOMB19 -0.14 -0.12 -0.11 -0.11 -0.10 -0.09 -0.07 -0.06 -0.02 - 0.05? 0.05 0.11‡ 0.32‡
AFRL-EWC -0.20 -0.17 -0.16 -0.16 -0.15 -0.14 -0.12 -0.12 -0.07 -0.05 - 0.00 0.06† 0.26‡

TARTUNLP-U -0.20 -0.17 -0.16 -0.16 -0.15 -0.14 -0.12 -0.12 -0.07 -0.05 0.00 - 0.06† 0.26‡
ONLINE-X -0.25 -0.23 -0.22 -0.22 -0.21 -0.20 -0.18 -0.17 -0.13 -0.11 -0.06 -0.06 - 0.21‡

NICT -0.46 -0.44 -0.43 -0.42 -0.42 -0.41 -0.39 -0.38 -0.33 -0.32 -0.26 -0.26 -0.21 -

score 0.16 0.13 0.12 0.12 0.12 0.10 0.08 0.08 0.03 0.01 -0.04 -0.04 -0.10 -0.30
rank 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 1–12 13 14

Table 45: Head to head comparison for Russian→English systems
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HUMAN - 0.03 0.20‡ 0.26‡ 0.27‡ 0.31‡ 0.32‡ 0.38‡ 0.72‡ 0.80‡ 0.85‡ 0.90‡ 1.81‡
FACEBOOK-FAIR -0.03 - 0.17‡ 0.23‡ 0.24‡ 0.28‡ 0.29‡ 0.35‡ 0.69‡ 0.77‡ 0.82‡ 0.87‡ 1.78‡

USTC-MCC -0.20 -0.17 - 0.05† 0.06‡ 0.11‡ 0.11‡ 0.18‡ 0.52‡ 0.60‡ 0.64‡ 0.69‡ 1.60‡
ONLINE-G -0.26 -0.23 -0.05 - 0.01 0.06? 0.06† 0.12‡ 0.47‡ 0.55‡ 0.59‡ 0.64‡ 1.55‡
ONLINE-B -0.27 -0.24 -0.06 -0.01 - 0.05 0.05? 0.11‡ 0.46‡ 0.54‡ 0.58‡ 0.63‡ 1.54‡

NEU -0.31 -0.28 -0.11 -0.06 -0.05 - 0.00 0.07† 0.41‡ 0.49‡ 0.53‡ 0.59‡ 1.49‡
PROMT-NMT-EN-RU -0.32 -0.29 -0.11 -0.06 -0.05 0.00 - 0.06? 0.41‡ 0.49‡ 0.53‡ 0.58‡ 1.49‡

ONLINE-Y -0.38 -0.35 -0.18 -0.12 -0.11 -0.07 -0.06 - 0.34‡ 0.42‡ 0.47‡ 0.52‡ 1.43‡
RERANK-ER -0.72 -0.69 -0.52 -0.47 -0.46 -0.41 -0.41 -0.34 - 0.08‡ 0.12‡ 0.17‡ 1.08‡

ONLINE-A -0.80 -0.77 -0.60 -0.55 -0.54 -0.49 -0.49 -0.42 -0.08 - 0.04 0.09‡ 1.00‡
TARTUNLP-U -0.85 -0.82 -0.64 -0.59 -0.58 -0.53 -0.53 -0.47 -0.12 -0.04 - 0.05‡ 0.96‡

ONLINE-X -0.90 -0.87 -0.69 -0.64 -0.63 -0.59 -0.58 -0.52 -0.17 -0.09 -0.05 - 0.91‡
NICT -1.81 -1.78 -1.60 -1.55 -1.54 -1.49 -1.49 -1.43 -1.08 -1.00 -0.96 -0.91 -

score 0.54 0.51 0.33 0.28 0.27 0.22 0.22 0.16 -0.19 -0.27 -0.31 -0.36 -1.27
rank 1–2 1–2 3 4–7 4–7 4–7 4–7 8 9 10–11 10–11 12 13

Table 46: Head to head comparison for English→Russian systems
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ONLINE-Y - 0.04 0.06? 0.11‡ 0.25‡ 0.29‡ 0.53‡ 0.59‡ 0.75‡ 0.83‡ 1.23‡
ONLINE-B -0.04 - 0.02 0.07? 0.21‡ 0.25‡ 0.49‡ 0.55‡ 0.71‡ 0.79‡ 1.19‡

NICT -0.06 -0.02 - 0.05 0.19‡ 0.23‡ 0.47‡ 0.53‡ 0.69‡ 0.77‡ 1.17‡
ONLINE-G -0.11 -0.07 -0.05 - 0.14‡ 0.19‡ 0.42‡ 0.48‡ 0.65‡ 0.72‡ 1.13‡

NEU-KINGSOFT -0.25 -0.21 -0.19 -0.14 - 0.05 0.28‡ 0.34‡ 0.51‡ 0.58‡ 0.99‡
ONLINE-A -0.29 -0.25 -0.23 -0.19 -0.05 - 0.23‡ 0.30‡ 0.46‡ 0.54‡ 0.94‡

LMU-UNSUP-NMT-DE-CS -0.53 -0.49 -0.47 -0.42 -0.28 -0.23 - 0.07? 0.23‡ 0.31‡ 0.71‡
CUNI-UNSUPERVISED-NER-POST -0.59 -0.55 -0.53 -0.48 -0.34 -0.30 -0.07 - 0.16‡ 0.24‡ 0.64‡

UNSUPERVISED -0.75 -0.71 -0.69 -0.65 -0.51 -0.46 -0.23 -0.16 - 0.08? 0.48‡
UNSUPERVISED -0.83 -0.79 -0.77 -0.72 -0.58 -0.54 -0.31 -0.24 -0.08 - 0.40‡

CAIRE -1.23 -1.19 -1.17 -1.13 -0.99 -0.94 -0.71 -0.64 -0.48 -0.40 -

score 0.43 0.39 0.37 0.32 0.18 0.13 -0.10 -0.17 -0.33 -0.41 -0.81
rank 1–4 1–4 1–4 1–4 5–6 5–6 7 8 9 10 11

Table 47: Head to head comparison for German→Czech systems
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MSRA - 0.02 0.09 0.09? 0.12? 0.21‡ 0.23‡ 0.35‡ 0.44‡ 0.49‡ 0.71‡
MLLP-UPV -0.02 - 0.07 0.07 0.10? 0.19‡ 0.21‡ 0.33‡ 0.42‡ 0.47‡ 0.69‡

KYOTO-UNIVERSITY-T2T -0.09 -0.07 - 0.00 0.04 0.13† 0.15† 0.27‡ 0.36‡ 0.40‡ 0.62‡
LINGUA-CUSTODIA-PRIMARY -0.09 -0.07 0.00 - 0.03 0.12† 0.14† 0.26‡ 0.35‡ 0.40‡ 0.62‡

LIUM -0.12 -0.10 -0.04 -0.03 - 0.09† 0.11† 0.23‡ 0.32‡ 0.37‡ 0.58‡
ONLINE-B -0.21 -0.19 -0.13 -0.12 -0.09 - 0.02 0.14? 0.23‡ 0.28‡ 0.49‡
ONLINE-Y -0.23 -0.21 -0.15 -0.14 -0.11 -0.02 - 0.12? 0.21‡ 0.26‡ 0.47‡

TARTUNLP-C -0.35 -0.33 -0.27 -0.26 -0.23 -0.14 -0.12 - 0.09 0.14 0.35‡
ONLINE-A -0.44 -0.42 -0.36 -0.35 -0.32 -0.23 -0.21 -0.09 - 0.05 0.26‡
ONLINE-G -0.49 -0.47 -0.40 -0.40 -0.37 -0.28 -0.26 -0.14 -0.05 - 0.22‡
ONLINE-X -0.71 -0.69 -0.62 -0.62 -0.58 -0.49 -0.47 -0.35 -0.26 -0.22 -

score 0.25 0.23 0.16 0.16 0.13 0.04 0.02 -0.10 -0.19 -0.24 -0.46
rank 1–5 1–5 1–5 1–5 1–5 6–7 6–7 8–10 8–10 8–10 11

Table 48: Head to head comparison for German→French systems
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MSRA - 0.02 0.19† 0.23‡ 0.27‡ 0.29‡ 0.30‡ 0.31‡ 0.37‡ 0.68‡
ETRANSLATION -0.02 - 0.16? 0.21? 0.24‡ 0.26‡ 0.28‡ 0.29‡ 0.34‡ 0.66‡

LIUM -0.19 -0.16 - 0.04 0.08? 0.10 0.12? 0.12? 0.18‡ 0.49‡
MLLP-UPV -0.23 -0.21 -0.04 - 0.04 0.06 0.07 0.08? 0.14† 0.45‡

ONLINE-Y -0.27 -0.24 -0.08 -0.04 - 0.02 0.03 0.04 0.10 0.41‡
ONLINE-G -0.29 -0.26 -0.10 -0.06 -0.02 - 0.02 0.02 0.08? 0.39‡
ONLINE-B -0.30 -0.28 -0.12 -0.07 -0.03 -0.02 - 0.01 0.06 0.38‡
ONLINE-A -0.31 -0.29 -0.12 -0.08 -0.04 -0.02 -0.01 - 0.06 0.37‡

TARTUNLP-C -0.37 -0.34 -0.18 -0.14 -0.10 -0.08 -0.06 -0.06 - 0.31‡
ONLINE-X -0.68 -0.66 -0.49 -0.45 -0.41 -0.39 -0.38 -0.37 -0.31 -

score 0.27 0.25 0.08 0.04 0.00 -0.02 -0.03 -0.04 -0.10 -0.41
rank 1–2 1–2 3–9 3–9 3–9 3–9 3–9 3–9 3–9 10

Table 49: Head to head comparison for French→German systems
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Abstract

This paper presents the results of the
WMT19 Metrics Shared Task. Par-
ticipants were asked to score the out-
puts of the translations systems compet-
ing in the WMT19 News Translation
Task with automatic metrics. 13 research
groups submitted 24 metrics, 10 of which
are reference-less “metrics” and constitute
submissions to the joint task with WMT19
Quality Estimation Task, “QE as a Met-
ric”. In addition, we computed 11 baseline
metrics, with 8 commonly applied base-
lines (BLEU, SentBLEU, NIST, WER,
PER, TER, CDER, and chrF) and 3 reim-
plementations (chrF+, sacreBLEU-BLEU,
and sacreBLEU-chrF). Metrics were evalu-
ated on the system level, how well a given
metric correlates with the WMT19 offi-
cial manual ranking, and segment level,
how well the metric correlates with human
judgements of segment quality. This year,
we use direct assessment (DA) as our only
form of manual evaluation.

1 Introduction

To determine system performance in machine
translation (MT), it is often more practical
to use an automatic evaluation, rather than
a manual one. Manual/human evaluation can
be costly and time consuming, and so an au-
tomatic evaluation metric, given that it suffi-
ciently correlates with manual evaluation, can
be useful in developmental cycles. In studies
involving hyperparameter tuning or architec-
ture search, automatic metrics are necessary
as the amount of human effort implicated in
manual evaluation is generally prohibitively
large. As objective, reproducible quantities,
metrics can also facilitate cross-paper compar-

isons. The WMT Metrics Shared Task1 annu-
ally serves as a venue to validate the use of
existing metrics (including baselines such as
BLEU), and to develop new ones; see Koehn
and Monz (2006) through Ma et al. (2018).

In the setup of our Metrics Shared Task,
an automatic metric compares an MT sys-
tem’s output translations with manual ref-
erence translations to produce: either (a)
system-level score, i.e. a single overall score
for the given MT system, or (b) segment-level
scores for each of the output translations, or
both.

This year we teamed up with the organizers
of the QE Task and hosted “QE as a Metric” as
a joint task. In the setup of the Quality Esti-
mation Task (Fonseca et al., 2019), no human-
produced translations are provided to estimate
the quality of output translations. Quality es-
timation (QE) methods are built to assess MT
output based on the source or based on the
translation itself. In this task, QE developers
were invited to perform the same scoring as
standard metrics participants, with the excep-
tion that they refrain from using a reference
translation in production of their scores. We
then evaluate the QE submissions in exactly
the same way as regular metrics are evalu-
ated, see below. From the point of view of
correlation with manual judgements, there is
no difference in metrics using or not using ref-
erences.

The source, reference texts, and MT sys-
tem outputs for the Metrics task come from
the News Translation Task (Barrault et al.,
2019, which we denote as Findings 2019). The
texts were drawn from the news domain and
involve translations of English (en) to/from

1http://www.statmt.org/wmt19/metrics-task.
html
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Czech (cs), German (de), Finnish (fi), Gu-
jarati (gu), Kazakh (kk), Lithuanian (lt), Rus-
sian (ru), and Chinese (zh), but excluding cs-
en (15 language pairs). Three other language
pairs not including English were also manu-
ally evaluated as part of the News Translation
Task: German→Czech and German↔French.
In total, metrics could participate in 18 lan-
guage pairs, with 10 target languages.

In the following, we first give an overview of
the task (Section 2) and summarize the base-
line (Section 3) and submitted (Section 4) met-
rics. The results for system- and segment-level
evaluation are provided in Sections 5.1 and
5.2, respectively, followed by a joint discussion
Section 6.

2 Task Setup

This year, we provided task participants with
one test set for each examined language pair,
i.e. a set of source texts (which are commonly
ignored by MT metrics), corresponding MT
outputs (these are the key inputs to be scored)
and a reference translation (held out for the
participants of “QE as a Metric” track).

In the system-level, metrics aim to corre-
late with a system’s score which is an aver-
age over many human judgments of segment
translation quality produced by the given sys-
tem. In the segment-level, metrics aim to
produce scores that correlate best with a hu-
man ranking judgment of two output trans-
lations for a given source segment (more on
the manual quality assessment in Section 2.3).
Participants were free to choose which lan-
guage pairs and tracks (system/segment and
reference-based/reference-free) they wanted to
take part in.

2.1 Source and Reference Texts
The source and reference texts we use are
newstest2019 from this year’s WMT News
Translation Task (see Findings 2019). This
set contains approximately 2,000 sentences for
each translation direction (except Gujarati,
Kazakh and Lithuanian which have approx-
imately 1,000 sentences each, and German
to/from French which has 1701 sentences).

The reference translations provided in new-
stest2019 were created in the same direc-
tion as the MT systems were translating.

The exceptions are German→Czech where
both sides are translations from English and
German↔French which followed last years’
practice. Last year and the years before, the
dataset consisted of two halves, one originat-
ing in the source language and one in the tar-
get language. This however lead to adverse
artifacts in MT evaluation.

2.2 System Outputs
The results of the Metrics Task are affected
by the actual set of MT systems participating
in a given translation direction. On one hand,
if all systems are very close in their transla-
tion quality, then even humans will struggle
to rank them. This in turn will make the task
for MT metrics very hard. On the other hand,
if the task includes a wide range of systems
of varying quality, correlating with humans
should be generally easier, see Section 6.1 for
a discussion on this. One can also expect that
if the evaluated systems are of different types,
they will exhibit different error patterns and
various MT metrics can be differently sensi-
tive to these patterns.

This year, all MT systems included in the
Metrics Task come from the News Translation
Task (see Findings 2019). There are however
still noticeable differences among the various
language pairs.

• Unsupervised MT Systems. The
German→Czech research systems were
trained in an unsupervised fashion, i.e.
without the access to parallel Czech-
German texts (except for a couple of
thousand sentences used primarily for val-
idation). We thus expect the research
German-Czech systems to be “more cre-
ative” and depart further away from the
references. The online systems in this
language directions are however standard
MT systems so the German-Czech evalu-
ation could be to some extent bimodal.

• EU Election. The French↔German
translation was focused on a sub-domain
of news, namely texts related EU Elec-
tion. Various MT system developers may
have invested more or less time to the do-
main adaptation.

• Regular News Tasks Systems. These
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are all the other MT systems in the
evaluation; differing in whether they are
trained only on WMT provided data
(“Constrained”, or “Unconstrained”) as
in the previous years. All the freely avail-
able web services (online MT systems) are
deemed unconstrained.

Overall, the results are based on 233 systems
across 18 language pairs.2

2.3 Manual Quality Assessment
Direct Assessment (DA, Graham et al., 2013,
2014a, 2016) was employed as the source of the
“golden truth” to evaluate metrics again this
year. The details of this method of human
evaluation are provided in Findings 2019.

The basis of DA is to collect a large number
of quality assessments (a number on a scale of
1–100, i.e. effectively a continuous scale) for
the outputs of all MT systems. These scores
are then standardized per annotator.

In the past years, the underlying man-
ual scores were reference-based (human judges
had access to the same reference translation
as the MT quality metric). This year, the of-
ficial WMT19 scores are reference-based (or
“monolingual”) for some language pairs and
reference-free (or “bilingual”) for others.3

Due to these different types of golden truth
collection, reference-based language pairs are
in a closer match with the standard reference-
based metrics, while the reference-free lan-
guage pairs are better fit for the “QE as a
metric” subtask.

Note that system-level manual scores are
different than those of the segment-level. Since
for segment-level evaluation, collecting enough
DA judgements for each segment is infeasible,
so we resort to converting DA judgements to

2This year, we do not use the artificially constructed
“hybrid systems” (Graham and Liu, 2016) because the
confidence on the ranking of system-level metrics is suf-
ficient even without hybrids.

3Specifically, the reference-based language pairs
were those where the anticipated translation quality
was lower or where the manual judgements were ob-
tained with the help of anonymous crowdsourcing.
Most of these cases were translations into English (fi-
en, gu-en, kk-en, lt-en, ru-en and zh-en) and then the
language pairs not involving English (de-cs, de-fr and
fr-de). The reference-less (bilingual) evaluations were
those where mainly MT researchers themselves were
involved in the annotations: en-cs, en-de, en-fi, en-gu,
en-kk, en-lt, en-ru, en-zh.

golden truth expressed as relative rankings, see
Section 2.3.2.

The exact methods used to calculate corre-
lations of participating metrics with the golden
truth are described below, in the two sections
for system-level evaluation (Section 5.1) and
segment-level evaluation (Section 5.2).

2.3.1 System-level Golden Truth: DA
For the system-level evaluation, the collected
continuous DA scores, standardized for each
annotator, are averaged across all assessed seg-
ments for each MT system to produce a scalar
rating for the system’s performance.

The underlying set of assessed segments is
different for each system. Thanks to the fact
that the system-level DA score is an average
over many judgments, mean scores are consis-
tent and have been found to be reproducible
(Graham et al., 2013). For more details see
Findings 2019.

2.3.2 Segment-level Golden Truth:
daRR

Starting from Bojar et al. (2017), when WMT
fully switched to DA, we had to come up with a
solid golden standard for segment-level judge-
ments. Standard DA scores are reliable only
when averaged over sufficient number of judg-
ments.4

Fortunately, when we have at least two DA
scores for translations of the same source in-
put, it is possible to convert those DA scores
into a relative ranking judgement, if the dif-
ference in DA scores allows conclusion that
one translation is better than the other. In
the following, we denote these re-interpreted
DA judgements as “daRR”, to distinguish
it clearly from the relative ranking (“RR”)
golden truth used in the past years.5

4For segment-level evaluation, one would need to
collect many manual evaluations of the exact same seg-
ment as produced by each MT system. Such a sampling
would be however wasteful for the evaluation needed by
WMT, so only some MT systems happen to be evalu-
ated for a given input sentence. In principle, we would
like to return to DA’s standard segment-level evalua-
tion in future, where a minimum of 15 human judge-
ments of translation quality are collected per transla-
tion and combined to get highly accurate scores for
translations, but this would increase annotation costs.

5Since the analogue rating scale employed by DA is
marked at the 0-25-50-75-100 points, we use 25 points
as the minimum required difference between two sys-
tem scores to produce daRR judgements. Note that we
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DA>1 Ave DA pairs daRR

de-en 2,000 16.0 239,220 85,365
fi-en 1,996 9.5 83,168 38,307

gu-en 1,016 11.0 55,880 31,139
kk-en 1,000 11.0 55,000 27,094
lt-en 1,000 11.0 55,000 21,862

ru-en 1,999 11.9 131,766 46,172
zh-en 2,000 10.1 95,174 31,070
en-cs 1,997 9.1 75,560 27,178
en-de 1,997 19.1 347,109 99,840
en-fi 1,997 8.1 59,129 31,820
en-gu 998 6.9 21,854 11,355
en-kk 998 9.0 37,032 18,172
en-lt 998 9.0 36,435 17,401
en-ru 1,997 8.7 69,503 24,334
en-zh 1,997 9.8 87,501 18,658
de-cs 1,997 8.5 65,039 35,793
de-fr 1,605 4.1 12,055 4,862
fr-de 1,224 3.0 4,258 1,369

newstest2019

Table 1: Number of judgements for DA converted
to daRR data; “DA>1” is the number of source
input sentences in the manual evaluation where at
least two translations of that same source input
segment received a DA judgement; “Ave” is the
average number of translations with at least one
DA judgement available for the same source input
sentence; “DA pairs” is the number of all possi-
ble pairs of translations of the same source input
resulting from “DA>1”; and “daRR” is the num-
ber of DA pairs with an absolute difference in DA
scores greater than the 25 percentage point mar-
gin.

From the complete set of human assess-
ments collected for the News Translation Task,
all possible pairs of DA judgements attributed
to distinct translations of the same source were
converted into daRR better/worse judge-
ments. Distinct translations of the same
source input whose DA scores fell within 25
percentage points (which could have been
deemed equal quality) were omitted from the
evaluation of segment-level metrics. Conver-
sion of scores in this way produced a large set
of daRR judgements for all language pairs,
rely on judgements collected from known-reliable vol-
unteers and crowd-sourced workers who passed DA’s
quality control mechanism. Any inconsistency that
could arise from reliance on DA judgements collected
from low quality crowd-sourcing is thus prevented.

shown in Table 1 due to combinatorial ad-
vantage of extracting daRR judgements from
all possible pairs of translations of the same
source input. We see that only German-French
and esp. French-German can suffer from in-
sufficient number of these simulated pairwise
comparisons.

The daRR judgements serve as the golden
standard for segment-level evaluation in
WMT19.

3 Baseline Metrics
In addition to validating popular metrics, in-
cluding baselines metrics serves as comparison
and prevents “loss of knowledge” as mentioned
by Bojar et al. (2016).

Moses scorer6 is one of the MT evaluation
tools that aggregated several useful metrics
over the time. Since Macháček and Bojar
(2013), we have been using Moses scorer to
provide most of the baseline metrics and kept
encouraging authors of well-performing MT
metrics to include them in Moses scorer.7

The baselines we report are:

BLEU and NIST The metrics BLEU
(Papineni et al., 2002) and NIST
(Doddington, 2002) were computed
using mteval-v13a.pl8 from the
OpenMT Evaluation Campaign.
The tool includes its own tokeniza-
tion. We run mteval with the flag
--international-tokenization.9

TER, WER, PER and CDER. The met-
rics TER (Snover et al., 2006), WER,
PER and CDER (Leusch et al., 2006)
were produced by the Moses scorer, which
is used in Moses model optimization.
We used the standard tokenizer script as
available in Moses toolkit for tokeniza-
tion.

sentBLEU. The metric sentBLEU is com-
puted using the script sentence-bleu,
a part of the Moses toolkit. It is a

6https://github.com/moses-smt/mosesdecoder/
blob/master/mert/evaluator.cpp

7If you prefer standard BLEU, we recommend sacre-
BLEU (Post, 2018a), found at https://github.com/
mjpost/sacreBLEU.

8http://www.itl.nist.gov/iad/mig/tools/
9International tokenization is found to perform

slightly better (Macháček and Bojar, 2013).
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smoothed version of BLEU for scoring
at the segment-level. We used the stan-
dard tokenizer script as available in Moses
toolkit for tokenization.

chrF and chrF+. The metrics chrF and
chrF+ (Popović, 2015, 2017) are com-
puted using their original Python im-
plementation, see Table 2. We ran
chrF++.py with the parameters -nw 0 -b
3 to obtain the chrF score and with
-nw 1 -b 3 to obtain the chrF+ score.
Note that chrF intentionally removes all
spaces before matching the n-grams, deto-
kenizing the segments but also concate-
nating words.10

sacreBLEU-BLEU and sacreBLEU-
chrF. The metrics sacreBLEU-BLEU
and sacreBLEU-chrF (Post, 2018a)
are re-implementation of BLEU and chrF
respectively. We ran sacreBLEU-chrF
with the same parameters as chrF, but
their scores are slightly different. The sig-
nature strings produced by sacreBLEU
for BLEU and chrF respectively are
BLEU+case.lc+lang.de-en+numrefs.1+
smooth.exp+tok.intl+version.1.3.6
and chrF3+case.mixed+lang.de-en
+numchars.6+numrefs.1+space.False+
tok.13a+version.1.3.6.

The baselines serve in system and segment-
level evaluations as customary: BLEU, TER,
WER, PER, CDER, sacreBLEU-BLEU
and sacreBLEU-chrF for system-level only;
sentBLEU for segment-level only and chrF
for both.

Chinese word segmentation is unfortunately
not supported by the tokenization scripts men-
tioned above. For scoring Chinese with base-
line metrics, we thus pre-processed MT out-
puts and reference translations with the script
tokenizeChinese.py11 by Shujian Huang,
which separates Chinese characters from each
other and also from non-Chinese parts.

10We originally planned to use the chrF implemen-
tation which was recently made available in Moses
Scorer but it mishandles Unicode characters for now.

11http://hdl.handle.net/11346/WMT17-TVXH

4 Submitted Metrics

Table 2 lists the participants of the WMT19
Shared Metrics Task, along with their metrics
and links to the source code where available.
We have collected 24 metrics from a total of 13
research groups, with 10 reference-less “met-
rics” submitted to the joint task “QE as a Met-
rich” with WMT19 Quality Estimation Task.

The rest of this section provides a brief sum-
mary of all the metrics that participated.

4.1 BEER
BEER (Stanojević and Sima’an, 2015) is a
trained evaluation metric with a linear model
that combines sub-word feature indicators
(character n-grams) and global word order fea-
tures (skip bigrams) to achieve a language ag-
nostic and fast to compute evaluation metric.
BEER has participated in previous years of
the evaluation task.

4.2 BERTr
BERTr (Mathur et al., 2019) uses contextual
word embeddings to compare the MT output
with the reference translation.

The BERTr score of a translation is the
average recall score over all tokens, us-
ing a relaxed version of token matching
based on BERT embeddings: namely, com-
puting the maximum cosine similarity be-
tween the embedding of a reference to-
ken against any token in the MT out-
put. BERTr uses bert_base_uncased em-
beddings for the to-English language pairs,
and bert_base_multilingual_cased embed-
dings for all other language pairs.

4.3 CharacTER
CharacTER (Wang et al., 2016b,a), identi-
cal to the 2016 setup, is a character-level met-
ric inspired by the commonly applied transla-
tion edit rate (TER). It is defined as the mini-
mum number of character edits required to ad-
just a hypothesis, until it completely matches
the reference, normalized by the length of the
hypothesis sentence. CharacTER calculates
the character-level edit distance while per-
forming the shift edit on word level. Unlike
the strict matching criterion in TER, a hy-
pothesis word is considered to match a refer-
ence word and could be shifted, if the edit dis-
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tance between them is below a threshold value.
The Levenshtein distance between the refer-
ence and the shifted hypothesis sequence is
computed on the character level. In addition,
the lengths of hypothesis sequences instead of
reference sequences are used for normalizing
the edit distance, which effectively counters
the issue that shorter translations normally
achieve lower TER.

Similarly to other character-level metrics,
CharacTER is generally applied to non-
tokenized outputs and references, which also
holds for this year’s submission with one ex-
ception. This year tokenization was carried
out for en-ru hypotheses and references be-
fore calculating the scores, since this results in
large improvements in terms of correlations.
For other language pairs, no tokenizer was
used for pre-processing.

4.4 EED

EED (Stanchev et al., 2019) is a character-
based metric, which builds upon CDER. It
is defined as the minimum number of opera-
tions of an extension to the conventional edit
distance containing a “jump” operation. The
edit distance operations (insertions, deletions
and substitutions) are performed at the char-
acter level and jumps are performed when a
blank space is reached. Furthermore, the cov-
erage of multiple characters in the hypothesis
is penalised by the introduction of a coverage
penalty. The sum of the length of the refer-
ence and the coverage penalty is used as the
normalisation term.

4.5 ESIM

Enhanced Sequential Inference Model (ESIM;
Chen et al., 2017; Mathur et al., 2019) is a
neural model proposed for Natural Language
Inference that has been adapted for MT evalu-
ation. It uses cross-sentence attention and sen-
tence matching heuristics to generate a repre-
sentation of the translation and the reference,
which is fed to a feedforward regressor. The
metric is trained on singly-annotated Direct
Assessment data that has been collected for
evaluating WMT systems: all WMT 2018 to-
English data for the to-English language pairs,
and all WMT 2018 data for all other language
pairs.

4.6 hLEPORb_baseline,
hLEPORa_baseline

The submitted metric hLEPOR_baseline is
a metric based on the factor combination of
length penalty, precision, recall, and position
difference penalty. The weighted harmonic
mean is applied to group the factors together
with tunable weight parameters. The system-
level score is calculated with the same formula
but with each factor weighted using weight es-
timated at system-level and not at segment-
level.

In this submitted baseline version, hLE-
POR_baseline was not tuned for each lan-
guage pair separately but the default weights
were applied across all submitted language
pairs. Further improvements can be achieved
by tuning the weights according to the devel-
opment data, adding morphological informa-
tion and applying n-gram factor scores into
it (e.g. part-of-speech, n-gram precision and
n-gram recall that were added into LEPOR
in WMT13.). The basic model factors and
further development with parameters setting
were described in the paper (Han et al., 2012)
and (Han et al., 2013).

For sentence-level score, only hLE-
PORa_baseline was submitted with scores
calculated as the weighted harmonic mean
of all the designed factors using default
parameters.

For system-level score, both
hLEPORa_baseline and hLE-
PORb_baseline were submitted, where
hLEPORa_baseline is the the average
score of all sentence-level scores, and hLE-
PORb_baseline is calculated via the same
sentence-level hLEPOR equation but replac-
ing each factor value with its system-level
counterpart.

4.7 Meteor++_2.0 (syntax),
Meteor++_2.0 (syntax+copy)

Meteor++ 2.0 (Guo and Hu, 2019) is
a metric based on Meteor (Denkowski and
Lavie, 2014) that takes syntactic-level para-
phrase knowledge into consideration, where
paraphrases may sometimes be skip-grams.
i.e. (protect...from, protect...against). As
the original Meteor-based metrics only pay
attention to consecutive string matching,
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they perform badly when reference-hypothesis
pairs contain skip n-gram paraphrases. Me-
teor++ 2.0 extracts the knowledge from the
Paraphrase Database (PPDB; Bannard and
Callison-Burch, 2005) and integrates it into
Meteor-based metrics.

4.8 PReP
PReP (Yoshimura et al., 2019) is a method for
filtering pseudo-references to achieve a good
match with a gold reference.

At the beginning, the source sentence is
translated with some off-the-shelf MT sys-
tems to create a set of pseudo-references.
(Here the MT systems were Google Translate
and Microsoft Bing Translator.) The pseudo-
references are then filtered using BERT (De-
vlin et al., 2019) fine-tuned on the MPRC
corpus (Dolan and Brockett, 2005), estimat-
ing the probability of the paraphrase between
gold reference and pseudo-references. Thanks
to the high quality of the underlying MT sys-
tems, a large portion of their outputs is indeed
considered as a valid paraphrase.

The final metric score is calculated sim-
ply with SentBLEU with these multiple ref-
erences.

4.9 WMDO
WMDO (Chow et al., 2019b) is a metric based
on distance between distributions in the se-
mantic vector space. Matching in the seman-
tic space has been investigated for translation
evaluation, but the constraints of a transla-
tion’s word order have not been fully explored.
Building on the Word Mover’s Distance metric
and various word embeddings, WMDO intro-
duces a fragmentation penalty to account for
fluency of a translation. This word order ex-
tension is shown to perform better than stan-
dard WMD, with promising results against
other types of metrics.

4.10 YiSi-0, YiSi-1, YiSi-1_srl, YiSi-2,
YiSi-2_srl

YiSi (Lo, 2019) is a unified semantic MT qual-
ity evaluation and estimation metric for lan-
guages with different levels of available re-
sources.

YiSi-1 is a MT evaluation metric that mea-
sures the semantic similarity between a ma-
chine translation and human references by

aggregating the idf-weighted lexical semantic
similarities based on the contextual embed-
dings extracted from BERT and optionally in-
corporating shallow semantic structures (de-
noted as YiSi-1_srl).

YiSi-0 is the degenerate version of YiSi-1
that is ready-to-deploy to any language. It
uses longest common character substring to
measure the lexical similarity.

YiSi-2 is the bilingual, reference-less version
for MT quality estimation, which uses the con-
textual embeddings extracted from BERT to
evaluate the crosslingual lexical semantic simi-
larity between the input and MT output. Like
YiSi-1, YiSi-2 can exploit shallow semantic
structures as well (denoted as YiSi-2_srl).

4.11 QE Systems
In addition to the submitted standard metrics,
10 quality estimation systems were submitted
to the “QE as a Metric” track. The submitted
QE systems are evaluated in the same settings
as metrics to facilitate comparison. Their de-
scriptions can be found in the Findings of the
WMT 2019 Shared Task on Quality Estima-
tion (Fonseca et al., 2019).

5 Results
We discuss system-level results for news task
systems in Section 5.1. The segment-level re-
sults are in Section 5.2.

5.1 System-Level Evaluation
As in previous years, we employ the Pearson
correlation (r) as the main evaluation measure
for system-level metrics. The Pearson correla-
tion is as follows:

r =

∑n
i=1(Hi − H)(Mi − M)√∑n

i=1(Hi − H)2
√∑n

i=1(Mi − M)2
(1)

where Hi are human assessment scores of all
systems in a given translation direction, Mi

are the corresponding scores as predicted by
a given metric. H and M are their means,
respectively.

Since some metrics, such as BLEU, aim to
achieve a strong positive correlation with hu-
man assessment, while error metrics, such as
TER, aim for a strong negative correlation we
compare metrics via the absolute value |r| of a
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de-en fi-en gu-en kk-en lt-en ru-en zh-en
n 16 12 11 11 11 14 15
Correlation |r| |r| |r| |r| |r| |r| |r|

BEER 0.906 0.993 0.952 0.986 0.947 0.915 0.942
BERTr 0.926 0.984 0.938 0.990 0.948 0.971 0.974
BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899
CDER 0.890 0.988 0.876 0.967 0.975 0.892 0.917
CharacTER 0.898 0.990 0.922 0.953 0.955 0.923 0.943
chrF 0.917 0.992 0.955 0.978 0.940 0.945 0.956
chrF+ 0.916 0.992 0.947 0.976 0.940 0.945 0.956
EED 0.903 0.994 0.976 0.980 0.929 0.950 0.949
ESIM 0.941 0.971 0.885 0.986 0.989 0.968 0.988
hLEPORa_baseline − − − 0.975 − − 0.947
hLEPORb_baseline − − − 0.975 0.906 − 0.947
Meteor++_2.0(syntax) 0.887 0.995 0.909 0.974 0.928 0.950 0.948
Meteor++_2.0(syntax+copy) 0.896 0.995 0.900 0.971 0.927 0.952 0.952
NIST 0.813 0.986 0.930 0.942 0.944 0.925 0.921
PER 0.883 0.991 0.910 0.737 0.947 0.922 0.952
PReP 0.575 0.614 0.773 0.776 0.494 0.782 0.592
sacreBLEU.BLEU 0.813 0.985 0.834 0.946 0.955 0.873 0.903
sacreBLEU.chrF 0.910 0.990 0.952 0.969 0.935 0.919 0.955
TER 0.874 0.984 0.890 0.799 0.960 0.917 0.840
WER 0.863 0.983 0.861 0.793 0.961 0.911 0.820
WMDO 0.872 0.987 0.983 0.998 0.900 0.942 0.943
YiSi-0 0.902 0.993 0.993 0.991 0.927 0.958 0.937
YiSi-1 0.949 0.989 0.924 0.994 0.981 0.979 0.979
YiSi-1_srl 0.950 0.989 0.918 0.994 0.983 0.978 0.977
QE as a Metric:
ibm1-morpheme 0.345 0.740 − − 0.487 − −
ibm1-pos4gram 0.339 − − − − − −
LASIM 0.247 − − − − 0.310 −
LP 0.474 − − − − 0.488 −
UNI 0.846 0.930 − − − 0.805 −
UNI+ 0.850 0.924 − − − 0.808 −
YiSi-2 0.796 0.642 0.566 0.324 0.442 0.339 0.940
YiSi-2_srl 0.804 − − − − − 0.947

newstest2019

Table 3: Absolute Pearson correlation of to-English system-level metrics with DA human assessment in
newstest2019; correlations of metrics not significantly outperformed by any other for that language pair
are highlighted in bold.
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en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh
n 11 22 12 11 11 12 12 12
Correlation |r| |r| |r| |r| |r| |r| |r| |r|

BEER 0.990 0.983 0.989 0.829 0.971 0.982 0.977 0.803
BLEU 0.897 0.921 0.969 0.737 0.852 0.989 0.986 0.901
CDER 0.985 0.973 0.978 0.840 0.927 0.985 0.993 0.905
CharacTER 0.994 0.986 0.968 0.910 0.936 0.954 0.985 0.862
chrF 0.990 0.979 0.986 0.841 0.972 0.981 0.943 0.880
chrF+ 0.991 0.981 0.986 0.848 0.974 0.982 0.950 0.879
EED 0.993 0.985 0.987 0.897 0.979 0.975 0.967 0.856
ESIM − 0.991 0.957 − 0.980 0.989 0.989 0.931
hLEPORa_baseline − − − 0.841 0.968 − − −
hLEPORb_baseline − − − 0.841 0.968 0.980 − −
NIST 0.896 0.321 0.971 0.786 0.930 0.993 0.988 0.884
PER 0.976 0.970 0.982 0.839 0.921 0.985 0.981 0.895
sacreBLEU.BLEU 0.994 0.969 0.966 0.736 0.852 0.986 0.977 0.801
sacreBLEU.chrF 0.983 0.976 0.980 0.841 0.967 0.966 0.985 0.796
TER 0.980 0.969 0.981 0.865 0.940 0.994 0.995 0.856
WER 0.982 0.966 0.980 0.861 0.939 0.991 0.994 0.875
YiSi-0 0.992 0.985 0.987 0.863 0.974 0.974 0.953 0.861
YiSi-1 0.962 0.991 0.971 0.909 0.985 0.963 0.992 0.951
YiSi-1_srl − 0.991 − − − − − 0.948
QE as a Metric:
ibm1-morpheme 0.871 0.870 0.084 − − 0.810 − −
ibm1-pos4gram − 0.393 − − − − − −
LASIM − 0.871 − − − − 0.823 −
LP − 0.569 − − − − 0.661 −
UNI 0.028 0.841 0.907 − − − 0.919 −
UNI+ − − − − − − 0.918 −
USFD − 0.224 − − − − 0.857 −
USFD-TL − 0.091 − − − − 0.771 −
YiSi-2 0.324 0.924 0.696 0.314 0.339 0.055 0.766 0.097
YiSi-2_srl − 0.936 − − − − − 0.118

newstest2019

Table 4: Absolute Pearson correlation of out-of-English system-level metrics with DA human assessment
in newstest2019; correlations of metrics not significantly outperformed by any other for that language
pair are highlighted in bold.
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Figure 1: System-level metric significance test results for DA human assessment for into English and
out-of English language pairs (newstest2019): Green cells denote a statistically significant increase in
correlation with human assessment for the metric in a given row over the metric in a given column
according to Williams test.
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given metric’s correlation with human assess-
ment.

5.1.1 System-Level Results
Tables 3, 4 and 5 provide the system-level cor-
relations of metrics evaluating translation of
newstest2019. The underlying texts are part
of the WMT19 News Translation test set (new-
stest2019) and the underlying MT systems are
all MT systems participating in the WMT19
News Translation Task.

As recommended by Graham and Bald-
win (2014), we employ Williams significance
test (Williams, 1959) to identify differences
in correlation that are statistically significant.
Williams test is a test of significance of a dif-
ference in dependent correlations and there-
fore suitable for evaluation of metrics. Corre-
lations not significantly outperformed by any
other metric for the given language pair are
highlighted in bold in Tables 3, 4 and 5.

Since pairwise comparisons of metrics may
be also of interest, e.g. to learn which metrics
significantly outperform the most widely em-
ployed metric BLEU, we include significance
test results for every competing pair of metrics
including our baseline metrics in Figure 1 and
Figure 2.

This year, the increased number of systems
participating in the news tasks has provided a
larger sample of system scores for testing met-
rics. Since we already have sufficiently con-
clusive results on genuine MT systems, we do
not need to generate hybrid system results as
in Graham and Liu (2016) and past metrics
tasks.

5.2 Segment-Level Evaluation
Segment-level evaluation relies on the man-
ual judgements collected in the News Trans-
lation Task evaluation. This year, again we
were unable to follow the methodology out-
lined in Graham et al. (2015) for evaluation of
segment-level metrics because the sampling of
sentences did not provide sufficient number of
assessments of the same segment. We there-
fore convert pairs of DA scores for compet-
ing translations to daRR better/worse prefer-
ences as described in Section 2.3.2.

We measure the quality of metrics’ segment-
level scores against the daRR golden truth us-
ing a Kendall’s Tau-like formulation, which is

an adaptation of the conventional Kendall’s
Tau coefficient. Since we do not have a to-
tal order ranking of all translations, it is not
possible to apply conventional Kendall’s Tau
(Graham et al., 2015).

Our Kendall’s Tau-like formulation, τ , is as
follows:

τ =
|Concordant| − |Discordant|
|Concordant| + |Discordant| (2)

where Concordant is the set of all human com-
parisons for which a given metric suggests the
same order and Discordant is the set of all
human comparisons for which a given metric
disagrees. The formula is not specific with re-
spect to ties, i.e. cases where the annotation
says that the two outputs are equally good.

The way in which ties (both in human and
metric judgement) were incorporated in com-
puting Kendall τ has changed across the years
of WMT Metrics Tasks. Here we adopt the
version used in WMT17 daRR evaluation.
For a detailed discussion on other options, see
also Macháček and Bojar (2014).

Whether or not a given comparison of a pair
of distinct translations of the same source in-
put, s1 and s2, is counted as a concordant
(Conc) or disconcordant (Disc) pair is defined
by the following matrix:

Metric
s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 − − −
s1 > s2 Disc Disc Conc

In the notation of Macháček and Bojar
(2014), this corresponds to the setup used in
WMT12 (with a different underlying method
of manual judgements, RR):

Metric
WMT12 < = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

The key differences between the evaluation
used in WMT14–WMT16 and evaluation used
in WMT17–WMT19 were (1) the move from
RR to daRR and (2) the treatment of ties. In
the years 2014-2016, ties in metrics scores were
not penalized. With the move to daRR, where
the quality of the two candidate translations
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de-cs de-fr fr-de
n 11 11 10
Correlation |r| |r| |r|

BEER 0.978 0.941 0.848
BLEU 0.941 0.891 0.864
CDER 0.864 0.949 0.852
CharacTER 0.965 0.928 0.849
chrF 0.974 0.931 0.864
chrF+ 0.972 0.936 0.848
EED 0.982 0.940 0.851
ESIM 0.980 0.950 0.942
hLEPORa_baseline 0.941 0.814 −
hLEPORb_baseline 0.959 0.814 −
NIST 0.954 0.916 0.862
PER 0.875 0.857 0.899
sacreBLEU-BLEU 0.869 0.891 0.869
sacreBLEU-chrF 0.975 0.952 0.882
TER 0.890 0.956 0.895
WER 0.872 0.956 0.894
YiSi-0 0.978 0.952 0.820
YiSi-1 0.973 0.969 0.908
YiSi-1_srl − − 0.912
QE as a Metric:
ibm1-morpheme 0.355 0.509 0.625
ibm1-pos4gram − 0.085 0.478
YiSi-2 0.606 0.721 0.530

newstest2019

Table 5: Absolute Pearson correlation of system-level metrics for language pairs not involving English
with DA human assessment in newstest2019; correlations of metrics not significantly outperformed by
any other for that language pair are highlighted in bold.
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Figure 2: System-level metric significance test results for DA human assessment in newstest2019 for
German to Czech, German to French and French to German; green cells denote a statistically significant
increase in correlation with human assessment for the metric in a given row over the metric in a given
column according to Williams test.
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de-en fi-en gu-en kk-en lt-en ru-en zh-en
Human Evaluation daRR daRR daRR daRR daRR daRR daRR
n 85,365 38,307 31,139 27,094 21,862 46,172 31,070
BEER 0.128 0.283 0.260 0.421 0.315 0.189 0.371
BERTr 0.142 0.331 0.291 0.421 0.353 0.195 0.399
CharacTER 0.101 0.253 0.190 0.340 0.254 0.155 0.337
chrF 0.122 0.286 0.256 0.389 0.301 0.180 0.371
chrF+ 0.125 0.289 0.257 0.394 0.303 0.182 0.374
EED 0.120 0.281 0.264 0.392 0.298 0.176 0.376
ESIM 0.167 0.337 0.303 0.435 0.359 0.201 0.396
hLEPORa_baseline − − − 0.372 − − 0.339
Meteor++_2.0(syntax) 0.084 0.274 0.237 0.395 0.291 0.156 0.370
Meteor++_2.0(syntax+copy) 0.094 0.273 0.244 0.402 0.287 0.163 0.367
PReP 0.030 0.197 0.192 0.386 0.193 0.124 0.267
sentBLEU 0.056 0.233 0.188 0.377 0.262 0.125 0.323
WMDO 0.096 0.281 0.260 0.420 0.300 0.162 0.362
YiSi-0 0.117 0.271 0.263 0.402 0.289 0.178 0.355
YiSi-1 0.164 0.347 0.312 0.440 0.376 0.217 0.426
YiSi-1_srl 0.199 0.346 0.306 0.442 0.380 0.222 0.431
QE as a Metric:
ibm1-morpheme −0.074 0.009 − − 0.069 − −
ibm1-pos4gram −0.153 − − − − − −
LASIM −0.024 − − − − 0.022 −
LP −0.096 − − − − −0.035 −
UNI 0.022 0.202 − − − 0.084 −
UNI+ 0.015 0.211 − − − 0.089 −
YiSi-2 0.068 0.126 −0.001 0.096 0.075 0.053 0.253
YiSi-2_srl 0.068 − − − − − 0.246

newstest2019

Table 6: Segment-level metric results for to-English language pairs in newstest2019: absolute Kendall’s
Tau formulation of segment-level metric scores with DA scores; correlations of metrics not significantly
outperformed by any other for that language pair are highlighted in bold.
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en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh
Human Evaluation daRR daRR daRR daRR daRR daRR daRR daRR
n 27,178 99,840 31,820 11,355 18,172 17,401 24,334 18,658

BEER 0.443 0.316 0.514 0.537 0.516 0.441 0.542 0.232
CharacTER 0.349 0.264 0.404 0.500 0.351 0.311 0.432 0.094
chrF 0.455 0.326 0.514 0.534 0.479 0.446 0.539 0.301
chrF+ 0.458 0.327 0.514 0.538 0.491 0.448 0.543 0.296
EED 0.431 0.315 0.508 0.568 0.518 0.425 0.546 0.257
ESIM − 0.329 0.511 − 0.510 0.428 0.572 0.339
hLEPORa_baseline − − − 0.463 0.390 − − −
sentBLEU 0.367 0.248 0.396 0.465 0.392 0.334 0.469 0.270
YiSi-0 0.406 0.304 0.483 0.539 0.494 0.402 0.535 0.266
YiSi-1 0.475 0.351 0.537 0.551 0.546 0.470 0.585 0.355
YiSi-1_srl − 0.368 − − − − − 0.361
QE as a Metric:
ibm1-morpheme −0.135 −0.003 −0.005 − − −0.165 − −
ibm1-pos4gram − −0.123 − − − − − −
LASIM − 0.147 − − − − −0.24 −
LP − −0.119 − − − − −0.158 −
UNI 0.060 0.129 0.351 − − − 0.226 −
UNI+ − − − − − − 0.222 −
USFD − −0.029 − − − − 0.136 −
USFD-TL − −0.037 − − − − 0.191 −
YiSi-2 0.069 0.212 0.239 0.147 0.187 0.003 −0.155 0.044
YiSi-2_srl − 0.236 − − − − − 0.034

newstest2019

Table 7: Segment-level metric results for out-of-English language pairs in newstest2019: absolute
Kendall’s Tau formulation of segment-level metric scores with DA scores; correlations of metrics not
significantly outperformed by any other for that language pair are highlighted in bold.

de-cs de-fr fr-de
Human Evaluation daRR daRR daRR
n 35,793 4,862 1,369

BEER 0.337 0.293 0.265
CharacTER 0.232 0.251 0.224
chrF 0.326 0.284 0.275
chrF+ 0.326 0.284 0.278
EED 0.345 0.301 0.267
ESIM 0.331 0.290 0.289
hLEPORa_baseline 0.207 0.239 −
sentBLEU 0.203 0.235 0.179
YiSi-0 0.331 0.296 0.277
YiSi-1 0.376 0.349 0.310
YiSi-1_srl − − 0.299
QE as a Metric:
ibm1-morpheme 0.048 −0.013 −0.053
ibm1-pos4gram − −0.074 −0.097
YiSi-2 0.199 0.186 0.066

newstest2019

Table 8: Segment-level metric results for language
pairs not involving English in newstest2019: ab-
solute Kendall’s Tau formulation of segment-level
metric scores with DA scores; correlations of met-
rics not significantly outperformed by any other for
that language pair are highlighted in bold.

is deemed substantially different and no ties
in human judgements arise, it makes sense to
penalize ties in metrics’ predictions in order to
promote discerning metrics.

Note that the penalization of ties makes our
evaluation asymmetric, dependent on whether
the metric predicted the tie for a pair where
humans predicted <, or >. It is now impor-
tant to interpret the meaning of the compar-
ison identically for humans and metrics. For
error metrics, we thus reverse the sign of the
metric score prior to the comparison with hu-
man scores: higher scores have to indicate bet-
ter translation quality. In WMT19, the origi-
nal authors did this for CharacTER.

To summarize, the WMT19 Metrics Task
for segment-level evaluation:

• ensures that error metrics are first con-
verted to the same orientation as the hu-
man judgements, i.e. higher score indi-
cating higher translation quality,

• excludes all human ties (this is already
implied by the construction of daRR
from DA judgements),
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Figure 3: daRR segment-level metric significance test results for into English and out-of English language
pairs (newstest2019): Green cells denote a significant win for the metric in a given row over the metric
in a given column according bootstrap resampling.
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Figure 4: daRR segment-level metric significance test results for German to Czech, German to French
and French to German (newstest2019): Green cells denote a significant win for the metric in a given row
over the metric in a given column according bootstrap resampling.

• counts metric’s ties as a Discordant pairs.

We employ bootstrap resampling (Koehn,
2004; Graham et al., 2014b) to estimate con-
fidence intervals for our Kendall’s Tau for-
mulation, and metrics with non-overlapping
95% confidence intervals are identified as hav-
ing statistically significant difference in perfor-
mance.

5.2.1 Segment-Level Results
Results of the segment-level human evaluation
for translations sampled from the News Trans-
lation Task are shown in Tables 6, 7 and 8,
where metric correlations not significantly out-
performed by any other metric are highlighted
in bold. Head-to-head significance test results
for differences in metric performance are in-
cluded in Figures 3 and 4.

6 Discussion
This year, human data was collected from
reference-based evaluations (or “monolin-
gual”) and reference-free evaluations (or
“bilingual”). The reference-based (mono-
lingual) evaluations were obtained with the
help of anonymous crowdsourcing, while
the reference-less (bilingual) evaluations were
mainly from MT researchers who committed
their time contribution to the manual evalua-
tion for each submitted system.

6.1 Stability across MT Systems
The observed performance of metrics depends
on the underlying texts and systems that par-
ticipate in the News Translation Task (see Sec-
tion 2). For the strongest MT systems, distin-
guishing which system outputs are better is

468101214161820

sacreBLEU-BLEU

Figure 5: Pearson correlations of sacreBLEU-
BLEU for English-German system-level evalua-
tion for all systems (left) down to only top 4 sys-
tems (right). The y-axis spans from -1 to +1, base-
line metrics for the language pair in grey.

hard, even for human assessors. On the other
hand, if the systems are spread across a wide
performance range, it will be easier for metrics
to correlate with human judgements.

To provide a more reliable view, we created
plots of Pearson correlation when the under-
lying set of MT systems is reduced to top n
ones. One sample such plot is in Figure 5, all
language pairs and most of the metrics are in
Appendix A.

As the plot documents, the official correla-
tions reported in Tables 3 to 5 can lead to
wrong conclusions. sacreBLEU-BLEU cor-
relates at .969 when all systems are considered,
but as we start considering only the top n sys-
tems, the correlation falls relatively quickly.
With 10 systems, we are below .5 and when
only the top 6 or 4 systems are considered,
the correlation falls even to the negave val-
ues. Note that correlations point estimates
(the value in the y-axis) become noiser with
the decreasing number of the underlying MT
systems.

Figure 6 explains the situation and illus-
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trates the sensitivity of the observed correla-
tions to the exact set of systems. On the full
set of systems, the single outlier (the worst-
performing system called en_de_task) helps
to achieve a great positive correlation. The
majority of MT systems however form a cloud
with Pearson correlation around .5 and the top
4 systems actually exhibit a negative corre-
lation of the human score and sacreBLEU-
BLEU.

In Appendix A, baseline metrics are plotted
in grey in all the plots, so that their trends can
be observed jointly. In general, most baselines
have similar correlations, as most baselines use
similar features (n-gram or word-level features,
with the exception of chrF). In a number of
language pairs (de-en, de-fr, en-de, en-kk, lt-
en, ru-en, zh-en), baseline correlations tend to-
wards 0 (no correlation) or even negative Pear-
son correlation. For a widely applied metric
such as sacreBLEU-BLEU, our analysis re-
veals weak correlation in comparing top state-
of-the-art systems in these language pairs, es-
pecially in en-de, de-en, ru-en, and zh-en.

We will restrict our analysis to those lan-
guage pairs where the baseline metrics have an
obvious downward trend (de-en, de-fr, en-de,
en-kk, lt-en, ru-en, zh-en). Examining the top-
n correlation in the submitted metrics (not in-
cluding QE systems), most metrics show the
same degredation in correlation as the base-
lines. We note BERTr as the one exception
consistently degrading less and retaining pos-
itive correlation compared to other submitted
metrics and baselines, in the language pairs
where it participated.

For QE systems, we noticed that in some in-
stances, QE systems have upward correlation
trends when other metrics and baselines have
downward trends. For instance, LP, UNI, and
UNI+ in the de-en language pair, YiSi-2 in
en-kk, and UNI and UNI+ in ru-en. These
results suggest that QE systems such as UNI
and UNI+ perform worse on judging systems
of wide ranging quality, but better for top per-
forming systems, or perhaps for systems closer
in quality.

If our method of human assessment is sound,
we should believe that BLEU, a widely ap-
plied metric, is no longer a reliable metric for
judging our best systems. Future investiga-
tions are needed to understand when BLEU
applies well, and why BLEU is not effective
for output from our state of the art models.

Metrics and QE systems such as BERTr,
ESIM, YiSi that perform well at judging
our best systems often use more semantic
features compared to our n-gram/char-gram
based baselines. Future metrics may want to
explore a) whether semantic features such as
contextual word embeddings are achieving se-
mantic understanding and b) whether seman-
tic understanding is the true source of a met-
ric’s performance gains.

It should be noted that some language pairs
do not show the strong degrading pattern with
top-n systems this year, for instance en-cs, en-
gu, en-ru, or kk-en. English-Chinese is partic-
ularly interesting because we see a clear trend
towards better correlations as we reduce the
set of underlying systems to the top scoring
ones.

6.2 Overall Metric Performance
6.2.1 System-Level Evaluation
In system-level evaluation, the series of YiSi
metrics achieve the highest correlations in sev-
eral language pairs and it is not significantly
outperformed by any other metrics (denoted
as a “win” in the following) for almost all lan-
guage pairs.

The new metric ESIM performs best on 5
language languages (18 language pairs) and
obtains 11 “wins” out of 16 language pairs in
which ESIM participated.

The metric EED performs better for lan-
guage pairs out-of English and excluding En-
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glish compared to into-English language pairs,
achieving 7 out of 11 “wins” there.

6.2.2 Segment-Level Evaluation

For segment-level evaluation, most language
pairs are quite discerning, with only one or
two metrics taking the “winner” position (of
not being significantly surpassed by others).
Only French-German differs, with all metrics
performing similarly except the significantly
worse sentBLEU.

YiSi-1_srl stands out as the “winner” for
all language pairs in which it participated.
The excluded language pairs were probably
due to the lack of semantic information re-
quired by YiSi-1_srl. YiSi-1 participated
all language pairs and its correlations are com-
parable with those of YiSi-1_srl.

ESIM obtain 6 “winners” out of all 18 lan-
guages pairs.

Both YiSi and ESIM are based on neu-
ral networks (YiSi via word and phrase em-
beddings, as well as other types of available
resources, ESIM via sentence embeddings).
This is a confirmation of a trend observed last
year.

6.2.3 QE Systems as Metrics

Generally, correlations for the standard
reference-based metrics are obviously better
than those in “QE as a Metric” track, both
when using monolingual and bilingual golden
truth.

In system-level evaluation, correlations for
“QE as a Metric” range from 0.028 to 0.947
across all language pairs and all metrics but
they are very unstable. Even for a single
metric, take UNI for example, the correla-
tions range from 0.028 to 0.930 across language
pairs.

In segment-level evaluation, correlations for
QE metrics range from -0.153 to 0.351 across
all language pairs and show the same instabil-
ity across language pairs for a given metric.

In either case, we do not see any pattern
that could explain the behaviour, e.g. whether
the manual evaluation was monolingual or
bilingual, or the characteristics of the given
language pair.

6.3 Dependence on Implementation
As it already happened in the past, we had
multiple implementations for some metrics,
BLEU and chrF in particular.

The detailed configuration of BLEU and
sacreBLEU-BLEU differ and hence their
scores and correlation results are different.

chrF and sacreBLEU-chrF use the same
parameters and should thus deliver the same
scores but we still observe some differences,
leading to different correlations. For instance
for German-French Pearson correlation, chrF
obtains 0.931 (no win) but sacreBLEU-
chrF reaches 0.952, tying for a win with other
metrics.

We thus fully support the call for clarity by
Post (2018b) and invite authors of metrics to
include their implementations either in Moses
scorer or sacreBLEU to achieve a long-term
assessment of their metric.

7 Conclusion

This paper summarizes the results of WMT19
shared task in machine translation evaluation,
the Metrics Shared Task. Participating met-
rics were evaluated in terms of their correla-
tion with human judgement at the level of
the whole test set (system-level evaluation),
as well as at the level of individual sentences
(segment-level evaluation).

We reported scores for standard metrics re-
quiring the reference as well as quality estima-
tion systems which took part in the track “QE
as a metric”, joint with the Quality Estimation
task.

For system-level, best metrics reach over
0.95 Pearson correlation or better across sev-
eral language pairs. As expected, QE sys-
tems are visibly in all language pairs but they
can also reach high system-level correlations,
up to .947 (Chinese-English) or .936 (English-
German) by YiSi-1_srl or over .9 for multi-
ple language pairs by UNI.

An important caveat is that the correlations
are heavily affected by the underlying set of
MT systems. We explored this by reducing
the set of systems to top-n ones for various ns
and found out that for many language pairs,
system-level correlations are much worse when
based on only the better performing systems.
With both good and bad MT systems partic-
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ipating in the news task, the metrics results
can be overly optimistic compared to what we
get when evaluating state-of-the-art systems.

In terms of segment-level Kendall’s τ re-
sults, the standard metrics correlations varied
between 0.03 and 0.59, and QE systems ob-
tained even negative correlations.

The results confirm the observation from the
last year, namely metrics based on word or
sentence-level embeddings (YiSi and ESIM),
achieve the highest performance.
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Abstract

We share the findings of the first shared task on
improving robustness of Machine Translation
(MT). The task provides a testbed representing
challenges facing MT models deployed in the
real world, and facilitates new approaches to
improve models’ robustness to noisy input and
domain mismatch. We focus on two language
pairs (English-French and English-Japanese),
and the submitted systems are evaluated on
a blind test set consisting of noisy comments
on Reddit1 and professionally sourced transla-
tions. As a new task, we received 23 submis-
sions by 11 participating teams from universi-
ties, companies, national labs, etc. All submit-
ted systems achieved large improvements over
baselines, with the best improvement having
+22.33 BLEU. We evaluated submissions by
both human judgment and automatic evalua-
tion (BLEU), which shows high correlations
(Pearson’s r = 0.94 and 0.95). Furthermore,
we conducted a qualitative analysis of the sub-
mitted systems using compare-mt2, which
revealed their salient differences in handling
challenges in this task. Such analysis pro-
vides additional insights when there is occa-
sional disagreement between human judgment
and BLEU, e.g. systems better at producing
colloquial expressions received higher score
from human judgment.

1 Introduction

In recent years, Machine Translation (MT) sys-
tems have seen great progress, with neural mod-
els becoming the de-facto methods and even ap-
proaching human quality in news domain (Hassan
et al., 2018). However, like other deep learning
models, neural machine translation (NMT) models
are found to be sensitive to synthetic and natural
noise in input, distributional shift, and adversarial

1www.reddit.com
2https://github.com/neulab/compare-mt

examples (Koehn and Knowles, 2017; Belinkov
and Bisk, 2018; Durrani et al., 2019; Anastasopou-
los et al., 2019; Michel et al., 2019). From an
application perspective, MT systems need to deal
with non-standard, noisy text of the kind which is
ubiquitous on social media and the internet, yet
has different distributional signatures from cor-
pora in common benchmark datasets.

The goal of this shared task is to provide a
testbed for improving MT models’ robustness
to orthographic variations, grammatical errors,
and other linguistic phenomena common in user-
generated content, via better modelling, training,
adaptation techniques, or leveraging monolingual
training data. Specifically, the shared task aims to
bring improvements on the following challenges:

• To improve NMT’s robustness to ortho-
graphic variations, grammatical errors, infor-
mal language, and other linguistic phenom-
ena or noise common on social media.

• To explore effective approaches to leverage
abundant out-of-domain parallel data.

• To explore novel approaches to leverage
abundant monolingual data on the Web (e.g.,
tweets, Reddit comments, commoncrawl,
etc.).

• To thoroughly investigate and understand the
overall challenges in translating social me-
dia text and identify major themes of efforts
which needs more research from the commu-
nity.

In this first iteration, the shared-task used the
MTNT dataset (Michel and Neubig, 2018) that
contains noisy social media texts and their trans-
lations between English (Eng) and French (Fra)
and English and Japanese (Jpn), in four translation
directions: Eng→Fra, Fra→Eng, Eng→Jpn, and
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Jpn→Eng. We describe the dataset and the task
setup in Section 3. The shared-task attracted a to-
tal of 23 submissions from 11 teams. The teams
employed a variety of methods to improve robust-
ness. A specific challenge was the small size of
the in-domain noisy parallel dataset. We summa-
rize the participating systems in Section 4 and the
notable methods in Section 5. The contributions
were evaluated both automatically and via a hu-
man evaluation. The results demonstrate a signifi-
cant progress of the state-of-the-art in MT robust-
ness, with multiple teams surpassing the shared-
task baseline by a large margin. These results are
discussed in Section 6.

We hope that this task leads to more efforts from
the community in building robust MT models.

2 Related Work

The fragility of neural networks (Szegedy et al.,
2013) has been shown to extend to neural machine
translation models (Belinkov and Bisk, 2018;
Heigold et al., 2017) and recent work focused on
various aspects of the problem. From the identi-
fication of the causes of this brittleness, to the in-
duction of (adversarial) inputs that trigger the un-
wanted behavior (attacks) and making such mod-
els robust against various types of noisy inputs
(defenses); improving robustness has been receiv-
ing increasing attention in NMT.

While Koehn and Knowles (2017) mentioned
domain mismatch as a challenge for neural ma-
chine translation, Khayrallah and Koehn (2018)
addressed noisy training data and focus on the
types of noise occurring in web-crawled corpora.
Michel and Neubig (2018) proposed a new dataset
(MTNT) to test MT models for robustness to the
types of noise encountered in the Internet and
demonstrated that these challenges cannot be over-
come by simple domain adaptation techniques
alone.

Belinkov and Bisk (2018) and Heigold et al.
(2017) showed that NMT systems are very sensi-
tive to slightly perturbed input forms, and hinted at
the importance of injecting noisy examples during
training, also known as adversarial examples. Fur-
ther research proposed several methods of generat-
ing and using noisy examples as NMT input to ad-
vance the understanding and improve the transla-
tion quality. Following machine vision, two major
branches being explored when generating noisy
examples, i) white box methods, where adversarial

examples are generated with access to the model
parameters (Ebrahimi et al., 2018; Cheng et al.,
2018a,b, 2019) and ii) black-box attacks, where
examples are generated without accessing model
internals (Zhao et al., 2018; Lee et al., 2018; ?;
Anastasopoulos et al., 2019; Vaibhav et al., 2019);
see Belinkov and Glass (2019) for a categoriza-
tion of such work. In particular, some have fo-
cused on specific variations of naturally-occurring
noise, such as grammatical errors produced by
non-native speakers (Anastasopoulos et al., 2019)
or errors extracted from Wikipedia edits (Belinkov
and Bisk, 2018). It has also been shown that
adding synthetic noise does not trivially increase
robustness to natural noise (Belinkov and Bisk,
2018) and may require specific recipes (Karpukhin
et al., 2019).

Michel et al. (2019) recently emphasized the
importance of meaning-preserving perturbations
and along with Cheng et al. (2019) demonstrated
the utility of adversarial training without sig-
nificantly impairing performance on clean data
and domain. Durrani et al. (2019) showed that
character-based representations are more robust
towards noise compared to such learned using
BPE-based sub-word units in the task of machine
translation.

3 Task

This is the first year we introduce the robustness
task. The goal of the task setup is to exam-
ine MT systems’ performance on non-standard,
noisy, user-generated text, which often resemble
mixed challenges around orthographic variations,
grammar errors, domain shift and stylistic lexical
choice, etc. We use the MTNT dataset (Michel
and Neubig, 2018) as a testbed for the above-
mentioned robustness challenges. To give readers
an idea of the natural “noise” present in the MTNT
dataset, and the challenges for MT systems to ro-
bustly understand and translate them, we provide
some examples of input variations:

• Spelling/typographical errors: accross
(across), recieve (receive), tant (temps)

• Grammatical errors: a tons of, there are
less people

• Spoken language and internet slang:
wanna, chais pas, tbh, smh, mdr
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• Code switching: This is so kawaii, C’est trop
mainstream

• Profanity/slurs: f*ck, m*rde

Readers are encouraged to refer to Michel and
Neubig (2018) for more details. This year’s task
probes MT robustness for two language pairs,
French to/from English and Japanese to/from En-
glish.

3.1 Task Setup
The task includes two tracks, constrained and un-
constrained depending on whether the system is
trained on a predefined training datasets or not.
The two tracks are evaluated by the same auto-
matic and human evaluation protocol, however,
they are compared separately.

For the constrained system track, the task speci-
fies two types of training data in addition to MTNT
train set:

• “Out-of-domain” parallel data: This facil-
itates MT model’s capability to perform su-
pervised learning from examples with differ-
ent distribution such as lexical choice, lan-
guage style, genre etc. For example, paral-
lel corpora from WMT news translation task,
subtitles and TED talks are specified.

• Monolingual data: We encourage partic-
ipants to develop novel solutions to learn
from unlabelled data, improve existing semi-
supervised approach such as backtranslation.
We provide both in-domain (MTNT) and out-
of-domain (News Commentary, News Crawl,
etc) monolingual data.

3.2 Training Data
In the constrained setting, participants were al-
lowed to use the WMT15 training data3 for
Eng↔Fra and any of the KFTT (Neubig, 2011),
JESC (Pryzant et al.) and TED talks (Cettolo et al.,
2012) corpora for Jpn↔Eng. Additionally, the use
of the MTNT corpus (Michel and Neubig, 2018)
was allowed in order to adapt models on limited
in-domain data.

3.3 Test Data
The test sets were collected following the same
protocol as the MTNT dataset, i.e. collected from

3http://www.statmt.org/wmt15/
translation-task.html

Reddit, filtered out for noisy comments using a
sub-word language modeling criterion and trans-
lated by professional translators. The statistics of
the test sets are reported in Table 1.

3.4 Evaluation protocol

The system outputs were evaluated by profes-
sional translators. The translators were presented
the original source sentence, the reference and the
system output side by side. The order between the
reference and the system output was randomized
by the user interface. The translators rated both
the reference and the translation on a scale from
1 to 100. For both the original source sentence
and the reference, the original text was presented
except for Eng-Jpn where the Japanese reference
tokenized with KyTea was presented in order to
be consistent with the systems’ outputs. The user
interface for annotation is illustrated in Figure 1.

We also evaluated BLEU (Papineni et al., 2002)
for each system using SacreBLEU (Post, 2018).
For all language pairs except Eng-Jpn, we used
the original reference and SacreBLEU with the
default options. In the case of Eng-Jpn, we used
the reference tokenized with KyTea and the option
--tokenize none.

4 Participants and System Descriptions

We received 23 submissions from 11 teams. Ex-
cept two submissions on the Eng-Fra language
pair, all systems used the constrained setup. Be-
low we briefly describe the systems from the 8
teams which submitted corresponding system de-
scription papers:

Baidu & Oregon State University’s submission
(Zheng et al., 2019): Their system is based on
the Transformer implementation in OpenNMT-
py (Klein et al., 2017). The main methods ap-
plied in their submission are: domain-sensitive
data mixing and data augmentation with back-
translation. For data mixing, they used a special
symbol on the source side to indicate the data do-
main. For data augmentation, they back-translate
from a target language to its noisy source. The
intuition, also observed by Michel and Neubig
(2018), is that the source sentences are noisier
than their target translations. They include out-of-
domain clean data during this step and differenti-
ate data types with a special symbol on the target
side. In addition, they also run a model ensemble.
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Figure 1: Annotation interface for human evaluations.
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Eng-Fra Fra-Eng Eng-Jpn Jpn-Eng

# samples 1,401 1,233 1,392 1,111

# source tokens 20.0k 19.8k 20.0k 18.7k
# target tokens 22.8k 19.2k 33.6k 13.4k

Table 1: Statistics of the test sets.

The team experimented with the Fra→Eng and
Eng→Fra translation directions, obtaining 43.6
and 36.4 BLEU-cased, respectively (3rd place in
both). Their ablations show significant benefit
from domain-sensitive training (+3 BLEU), with
additional improvements from back-translation
and ensembling.

CMU’s submission (Zhou et al., 2019): This
submission only participated in the Fra→Eng di-
rection. They proposed the use of tied multitask
learning, where the noisy source sentences are
first decoded by a same-language denoising de-
coder, and both information is passed on to the
translation decoder. This approach requires data
triples of noisy source, clean source, translation,
which they created by data augmentation over the
provided data, using tag-informed translation sys-
tems trained on either noisy (MTNT) or clean (Eu-
roparl) data. As the participants point out though,
their performance improvements seems to be at-
tributed to data augmentation and not to the inter-
mediate denoising decoder.

CUNI’s submission (Helcl et al., 2019): They
participated in Eng→Fra and Fra→Eng direc-
tions, following a classical two stage approach, i)
training of a base model using a mix of parallel
(WMT15 Eng-Fra News Translation) and back-
translated monolingual data (from News Crawl
and Europarl - excluding News Discussions), ii)
fine-tuning of the base model using the training
portion of the MTNT dataset. All models follow
the Transformer-Big architecture, with the hyper-
parameters and optimization recipe from the 2018
WMT News Translation shared task submission of
CUNI, without ensembles. For both Eng-Fra and
Fra-Eng directions, fine-tuning brought about 2+
BLEU points on top of the base models with the
Transformer-Big architecture, whereas improve-
ments were substantially larger when the base
models were RNN-Based MTNT baselines, about
8+ BLEU points. Participants emphasized the
importance of their strong Transformer-Big base

model which was already 10+ BLEU points better
than the MTNT baseline provided by the shared
task. The effect of individual partitions of the base
model training set (parallel and backtranslated-
mono) on final system quality is not experi-
mented. Finally, participants point out one pecu-
liarity they’ve noticed in the train/validation par-
titioning of the original MTNT dataset; validation
source sentences being started with the letter “Y”
followed by alphabetically sorted sentences (test
partition not effected).

FOKUS’ submission (Grozea, 2019): This
team participated in three directions: Eng→Fra,
Fra→Eng and Jpn→Eng. For the Eng→Fra and
Fra→Eng language pairs, the submissions are un-
constrained systems, where the model was trained
on the medical domain corpus provided by the
WMT biomedical shared task 4. Despite the train-
ing data being out-of-domain, removing “low-
quality” parallel data such as “Subtitles” as the au-
thor hypothesized helped to bring 2 to 4 BLEU
points improvement over the baseline models.
Their Jpn→Eng submission is a constrained sys-
tem, using the same model architecture as the
Eng→Fra language pair. To improve robustness,
they introduced synthetic noise (omitting and du-
plicating letters) in the training data to both source
and target sentences.

JHU’s submission (Post and Duh, 2019): This
submission participated in the Fra→Eng and
Jpn↔Eng tasks. The participants used data dual
cross-entropy filtering for reducing the monolin-
gual data, then back-translate these, and train their
Transformer models (Vaswani et al., 2017). They
compared Moses tokenization+Byte Pair Encod-
ing (BPE) (Sennrich et al., 2016), and sentence-
piece (Kudo and Richardson, 2018) (without any
pre-processing) and found the two comparable,
and that using larger sentence-piece models im-
proved over smaller ones. For Jpn↔Eng (both di-

4http://www.statmt.org/wmt19/biomedical-translation-
task.html

95



rections) they first used both in-domain (MTNT)
and out-of-domain data (other constrained), and
then continued training (fine-tune) using MTNT
only. They also reported many results from their
hyper-parameter search (albeit without a clear rec-
ommendation). The final submission is an ensem-
ble of 4 models.

NaverLabsEurope(NLE)’ submission (Bérard
et al., 2019): The participants carried substan-
tial effort to clean the CommonCrawl data, ap-
plying length filtering (length ratio threshold),
language identification-based filtering, and atten-
tion based filtering. They used the Transformer-
Big architecture for Fra→Eng and Jpn→Eng, and
Transformer-Base for the Eng→Jpn direction.

The participants incorporated several methods
to encourage robustness (detailed ablations on the
effect of each method were not provided). They
lowercase all data. However in order to preserve
casing information in the input, they propose a
technique called inline casing which adds addi-
tional casing tags (one per non-lowercased sub-
word) in the sequence. Emojis were replaced with
a special symbol. Natural noise based on manually
defined noise rules was added on the source side of
the training data. Lastly, MTNT monolingual data
was back-translated to be used during training of
the final system. They trained their system on all
available data with special tags for each domain
and for each data type e.g. real, back-translated, or
noisy data. They found that adding tags is as good
as fine-tuning the system, allowing for more flex-
ibility at test time. Their final submission with an
ensemble of 6 systems for Eng→Jpn and ensem-
bles of 4 systems for the other language directions
performed the best in the evaluation campaign.

NICT’s submission (Dabre and Sumita, 2019):
The authors used Transformer models to train their
systems and employed two strategies namely: i)
mixed fine-tuning and ii) multilingual models for
making the systems robust. The former helps as
the in-domain data is available in a very small
quantity. Using a mix of in-domain and out-
domain data for fine-tuning helps overcome the
problem of adjusting learning rate, applying better
regularization and other complicated strategies. It
is not clear how these two methods contributed to-
wards making the models more robust. According
to the authors, mixed fine-tuning and multilingual
training (bidirectional) helped. In the error analy-

sis, they found that their system performs poorly in
translating emojis. The segmentation errors gen-
erated by KyTea resulted in further errors in the
translation.

NTT’s submission (Murakami et al., 2019):
The participants submitted systems for the
Eng→Jpn and Jpn→Eng directions in the con-
strained setting. Their techniques include the
placeholder mechanism for copying non-standard
tokens (emojis, emoticons, etc), back-translation,
fine-tuning on in-domain corpus, and ensem-
ble. Especially, the placeholder mechanism pro-
vides +1.4 BLEU and +0.7 BLEU points for
Jpn→Eng and Eng→Jpn respectively. Finetun-
ing provides a larger improvement for Eng→Jpn
(+1.2 BLEU) than Jpn→Eng (-0.3 BLEU). Their
model is Transformer-Base configuration, where
they demonstrated its capacity to noise-robustness
can be further improved by the above-mentioned
techniques.

5 Summary of Methods

In this section, we give a common theme and sum-
mary of methods applied by the various partici-
pants.

Data Cleaning Data cleaning played an impor-
tant part in training successful MT systems in this
campaign. Unlike other participants, the win-
ning team Naver Labs Bérard et al. (2019) and
NTT (Murakami et al., 2019) applied data clean-
ing techniques in order to filter noisy parallel sen-
tences. They filtered i) identical sentences on
source and target side, ii) sentences that belonged
to a language other than the source and target lan-
guage, iii) sentences with length mismatch, and iv)
also applied attention-based filtering. Data clean-
ing gave an improvement of more than 5 BLEU
points with substantial reduction in the hallucina-
tion of the model for the winning team.

Placeholders Training and test data contained
tokens (such as emoticons) which do not require
translation. Murakami et al. (2019) and Bérard
et al. (2019) preserved these in a preprocessing
step using special placeholders and copied them
in the translation output. Murakami et al. (2019)
reported a gain of up to 1.4 BLEU points by using
placeholders.

Data Augmentation Other than handling noisy
data, one of the challenges related to this task was
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data sparsity. All the participants back-translated
in-domain monolingual data and used synthetic
data as part of their training pipeline. In addition,
Bérard et al. (2019) created a noisy version of all
the available in-domain and out-of-domain data by
randomly replacing words with their noisy vari-
ants. For training, they appended source sentences
with a tag <noisy> to distinguish them from the
original data. Zhou et al. (2019) used translation
systems using placeholders in order to create both
clean versions of the noisy in-domain datasets, as
well as noisy versions of the clean out-of-domain
dataset. To get additional data, other than back-
translation, the JHU team (Post and Duh, 2019)
used cross-entropy based filtering to select top 1
million sentences from Gigaword, CommonCrawl
and the UN corpus. Adding large filtered data gave
then an improvement of +5.8 BLEU points.

Domain-aware Training In order to differenti-
ate different data, real from synthetic, in-domain
from out-domain, several participants used addi-
tional tags. Zheng et al. (2019); Bérard et al.
(2019) used domain tags during training to in-
dicate data domain. Bérard et al. (2019) addi-
tionally included data type tags (real or back-
translated) for further categorization of the train-
ing data. Compared to fine-tuning, adding tags
provides them additional flexibility, resulting in a
generalized system, robust towards a variety of in-
put data.

Fine-tuning Along with the noisy in-domain
MTNT data, general domain data typically made
available for WMT campaign was also allowed
for this task. Most participants (Murakami et al.,
2019; Dabre and Sumita, 2019; Helcl et al., 2019)
trained on general domain data and fine-tuned the
models towards the task. Murakami et al. (2019)
did not see a consistent improvement with fine-
tuning. Due to the small size of the in-domain
data, Dabre and Sumita (2019) fine-tuned on a mix
of in-domain and a subset of the out-of-domain
data.

Ensembles To benefit from the different trained
models and to make the performance more stable,
many participants performed ensemble over
their models. Murakami et al. (2019), Bérard et al.
(2019), Zheng et al. (2019), and Post and Duh
(2019) ensembled between 4 and 6 checkpoints
of their model for the final submission. They
observed a consistent performance improvement

over using a single model.

6 Results

In this section we describe quantitative results, and
also perform a qualitative analysis of the results.

6.1 Quantitative Results

The quantitative analysis of the submitted systems
yields fairly consistent results. On automatic eval-
uation (BLEU) the best system across all transla-
tion directions is the NaverLabsEurope(NLE) one.
The same system received also the highest hu-
man judgment scores, with the exception of the
Eng→Jpn task, where the NTT system was ranked
higher. Overall, the correlation between human
judgments and BLEU is very high. For Eng→Fra,
the Pearson’s correlation coefficient is 0.94, while
for the other three tasks it is over 0.97.

Human Evaluation The results of human eval-
uation following the evaluation protocol described
in Section 3.4 are outlined in Table 2.

Automatic Evaluation The automatic evalua-
tion (BLEU) results of the Shared Task are sum-
marized in Table 3.

6.2 Qualitative Analysis

In order to discover salient differences be-
tween the methods, we performed analysis using
compare-mt (Neubig et al., 2019), and present
a few of the salient findings below.

Stronger Submissions were Stronger at Every-
thing: The submissions to the track achieved
a wide range of BLEU and human evaluation
scores. In our analysis we found that the systems
at the higher end of the spectrum with regards to
BLEU also tended to be the best by most other
measures (human evaluation, word F-measure by
various frequency buckets, sentence-level scores,
etc.). Because of this, we limit our remaining anal-
ysis to the top three systems in the Fra→Eng and
Eng→Fra tracks, and the top two systems in the
Eng→Jpn and Jpn→Eng tracks.

Generalization to Words not in Adaptation
Data is Essential: The MTNT corpus provides
a small amount of training data that can be used
to adapt systems to the task of translating social
media. One large distinguishing factor between
the best-performing system by Naver Labs Europe
(NLE) and the second- or third-place systems was
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System
Human judgment scores (RANK)

Eng→Fra Fra→Eng Eng→Jpn Jpn→Eng

Constrained
Baidu+OSU 71.5 (2) 80.6 (3) – –
CMU – 58.2 (6) – –
CUNI 66.3 (3) 82.0 (2) – –
FOKUS – – – 48.5 (5)
JHU – 76.3 (4) 58.5 (3) 65.4 (3)
NaverLabs 75.5 (1) 85.3 (1) 63.9 (2) 74.1 (1)
NTT – – 66.5 (1) 71.3 (2)
NICT – – 44.7 (4) 49.1 (4)

Unconstrained
FOKUS 52.5 (4) 62.6 (5) – –

Table 2: Average human judgments over all submitted systems (the higher the better). The systems’ rank for each
translation direction is shown in parentheses. The best system is highlighted.
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Figure 2: Word F-measure by frequency in the MTNT
training data for Fra-Eng.

performance on words that were not included in
this training data that nonetheless appeared in the
test set. We show the example of word-level F-
measure bucketed by frequency of the words in
the MTNT test set for Fra→Eng in Figure 2. From
this figure we can see that the NLE system does a
bit better in all frequency categories, but the dif-
ference is particularly stark for words that appear
only once or not at all in the MTNT training set.

Proper Handling of Casing is Important: One
other innovation performed by the NLE team was
lowercasing of words and separate prediction of
casing information. This modeling decision appar-
ently resulted in significantly better results partic-
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Figure 3: Word F-measure by casing of the words in
the target: all lower-case, title case, all upper-case, or
other.

ularly on words that were written in all upper-case,
as demonstrated in the results of word F-measure
by casing in the target language, demonstrated for
Eng→Fra in Figure 3. In addition, we show an
example for Fra→Eng in Table 4, where the NLE
system translates upper-case characters perfectly,
but the CUNI system struggles.

Special Handling of Special Characters is Bene-
ficial: Special characters such as Emojis or sym-
bols were difficult for some systems. Interest-
ingly, even among the top systems, some sys-
tems were better at handling different varieties of
these characters than others. As an example, in
Jpn→Eng, the NTT system performed better on
Japanese-style smileys written with standard char-
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System
BLEU (RANK)

Eng→Fra Fra→Eng Eng→Jpn Jpn→Eng

Baseline 22.1 25.6 8.4 5.8

Constrained
Baidu+OSU 36.39 (3) 43.59 (3) – –
CMU – 32.25 (5) – –
CUNI 38.49 (2) 44.83 (2) – –
FOKUS – – – 6.42 (5)
JHU – 40.24 (4) 14.67 (3) 12.01 (3)
NaverLabs 41.39 (1) 47.93 (1) 17.73 (1) 16.41 (1)
NTT – – 16.86 (2) 14.82 (2)
NICT – – 11.09 (4) 7.56 (4)

Unconstrained
FOKUS 24.22 (4) 29.94 (6) – –

Table 3: Automatic evaluation (BLEU, cased) over all submitted systems, with the system’s rank in parentheses.
The best system is highlighted.

Output BLEU+1

Ref From Sri Lanka , to Russia , to the United States , to Japan I mean
it ’s a market THAT GOES EVERYWHERE .

CUNI from sri lanka , to russia , to the united states , to japon I mean it
’s a market QUI VA PARTOUT .

33.0

NLE From Sri Lanka , to Russia , to the United States , to Japan I mean
it ’s a market THAT GOES EVERYWHERE .

100

Table 4: An example of handling of casing in two Fra→Eng systems

Output BLEU+1

Ref Kawaii (*・ω・人)
NTT Cute (*・ω・人) 76.0
NLE It ’s cute . 0.0

Ref
NTT 0.0
NLE 100

Table 5: Examples of translation results on special
characters.

acters, while the NLE system performed better on
Unicode-standard Emojis, as shown in Table 5.

Non-standard Sentence Structure can be Diffi-
cult: Some systems also found sentences with
unusual structures, including brackets or other
types of punctuation interspersed with actual text,
particularly difficult. For example, Table 6 shows
an example of Jpn→Eng sentences where the

NTT system had trouble generating the appropri-
ate number of symbols in the appropriate places,
while the NLE system was more robust in this re-
gard.

Colloquial Expressions are Key: There was
also a marked difference among the top systems in
their ability to produce the more informal register
reflected in the MTNT test data. We show an ex-
ample in Table 7 of n-grams that the NTT system
was better at producing than the NLE system. All
of these are relatively colloquial ways of express-
ing common function word phrases (1. “is not do-
ing”, 2. “but”, 3. “lots”, 4. “right?”, 5. “but,”)
that can also be expressed with more formal ex-
pressions. Clearly the NTT system is producing
a slightly less formal register than the NLE sys-
tem, although a manual examination of the outputs
found that even the NTT system was still com-
monly producing register that was more formal
than is commonly found on social media. This
may be attributed to the fact that the NTT system
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Output BLEU+1

Ref * * ] ( # mm-e9 ) [ * * Because there ’s now protection * * ] ( #
mm-e4 )

NTT * * * * ) ( # m-e9 ) [ * * * * * * * * * * * * * * * * * -e4 because
there is more protection . )

14.3

NLE * * * ( # mm-e9 ) [ * * Because there is already protection * * ] (
# mm-e4 )

72.0

Table 6: An example of translation results on as sentence with an unusual number of special symbols.

n-gram NTT NLE

1. ていない 5 0
2. だけど 4 0
3. 多くの 4 0
4. ね 3 0
5. だけど、 3 0

Table 7: Examples of n-grams where one the NTT
Eng→Jpn system was more accurate than the NLE sys-
tem

performed fine-tuning on the MTNT data, moving
it towards a more appropriately colloquial register.

7 Conclusions

As a new WMT shared task, this year we focused
on building MT systems which are robust to in-
put variations commonly observed in informal lan-
guage, social media text etc.

From a methodological perspective, the “con-
strained” setup of the task encouraged participants
to leverage both out-of-domain parallel data and
in-domain monolingual data to improve perfor-
mance. Some techniques were utilized by multi-
ple participants and proved their effectiveness in
boosting MT models’ robustness to noisy input
and domain mismatch, including data cleaning,
domain-aware training, data augmentation (in-
cluding backtranslation and copying place-holder
tags), finetuning, etc.

In terms of evaluation, we found an automatic
metric (BLEU) to be roughly consistent with hu-
man judgment. Qualitative analysis found that
strong baseline systems were important, but on
top of this additional methods specifically aimed
at trying to handle various types of noise found in
social media text were effective and necessary to
further improve within the upper echelons of sys-
tems submitted to the shared task.

There are several directions to be explored in
the future editions of the task. First, it can exhibit a
separate track for “probing” models’ robustness so
as to understand current models’ weaknesses. Sec-
ond, it could further disentangle improvements for
different challenges, e.g., due to noise in training
data or due to distribution shift at test time. Con-
trolling the kind of noise introduced, e.g. natural
vs. artificial, may be useful in this regard.
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Abstract
The University of Edinburgh participated in
the WMT19 Shared Task on News Translation
in six language directions: English↔Gujarati,
English↔Chinese, German→English, and
English→Czech. For all translation direc-
tions, we created or used back-translations
of monolingual data in the target language
as additional synthetic training data. For
English↔Gujarati, we also explored semi-
supervised MT with cross-lingual language
model pre-training, and translation pivoting
through Hindi. For translation to and from Chi-
nese, we investigated character-based tokeni-
sation vs. sub-word segmentation of Chinese
text. For German→English, we studied the im-
pact of vast amounts of back-translated train-
ing data on translation quality, gaining a few
additional insights over Edunov et al. (2018).
For English→Czech, we compared different
pre-processing and tokenisation regimes.

1 Introduction

The University of Edinburgh participated in
the WMT19 Shared Task on News Transla-
tion in six language directions: English-Gujarati
(EN↔GU), English-Chinese (EN↔ZH), German-
English (DE→EN) and English-Czech (EN→CS).
All our systems are neural machine translation
(NMT) systems trained in constrained data condi-
tions with the Marian1 toolkit (Junczys-Dowmunt
et al., 2018). The different language pairs pose very
different challenges, due to the characteristics of
the languages involved and arguably more impor-
tantly, due to the amount of training data available.

Pre-processing For EN↔ZH, we investigate
character-level pre-processing for Chinese com-
pared with subword segmentation. For EN→CS,
we show that it is possible in high resource settings
to simplify pre-processing by removing steps.

1https://marian-nmt.github.io

Exploiting non-parallel resources For all lan-
guage directions, we create additional, synthetic
parallel training data.

For the high resource language pairs, we look
at ways of effectively using large quantities of
backtranslated data. For example, for DE→EN,
we investigated the most effective way of com-
bining genuine parallel data with larger quantities
of synthetic parallel data and for CS→EN, we fil-
ter backtranslated data by re-scoring translations
using the MT model for the opposite direction.
The challenge for our low resource pair, EN↔GU,
is producing sufficiently good models for back-
translation, which we achieve by training semi-
supervised MT models with cross-lingual language
model pre-training (Lample and Conneau, 2019).
We use the same technique to translate additional
data from a related language, Hindi.

NMT Training settings In all experiments, we
test state-of-the-art training techniques, including
using ultra-large mini-batches for DE→EN and
EN↔ZH, implemented as optimiser delay.

Results summary Automatic evaluation results
for all final systems on the WMT19 test set are sum-
marised in Table 1. Throughout the paper, BLEU
is calculated using SACREBLEU2 (Post, 2018) un-
less otherwise indicated. A selection of our final
models are available to download.3

2 Gujarati↔ English

One of the main challenges for translation between
English↔Gujarati is that it is a low-resource lan-
guage pair; there is little openly available paral-
lel data and much of this data is domain-specific
and/or noisy (cf. Section 2.1). Our aim was there-
fore to experiment how additional available data

2https://github.com/mjpost/sacreBLEU
3See data.statmt.org/wmt19_systems/ for our

released models and running scripts.
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Lang. direction BLEU Ranking

EN→GU 16.4 1
GU→EN 21.4 2
EN→ZH 34.4 7
ZH→EN 27.7 6
DE→EN 35.0 9
EN→CS 27.9 3

Table 1: Final BLEU score results and system rank-
ings amongst constrained systems according to auto-
matic evaluation metrics.

can help us to improve translation quality: large
quantities of monolingual text for both English and
Gujarati, and resources from Hindi (a language re-
lated to Gujarati) in the form of monolingual Hindi
data and a parallel Hindi-English corpus. We ap-
plied semi-supervised translation, backtranslation
and pivoting techniques to create a large synthetic
parallel corpus from these resources (Section 2.2),
which we used to augment the small available par-
allel training corpus, enabling us to train our final
supervised MT models (Section 2.3).

2.1 Data and pre-processing
We trained our models using only data listed for
the task (cf. Table 2). Note that we did not have
access to the corpora provided by the Technology
Development for Indian Languages Programme, as
they were only available to Indian citizens.

Lang(s) Corpus #sents Ave. len.

Parallel data

EN-GU Software data 107,637 7.0
Wikipedia 18,033 21.1
Wiki titles v1 11,671 2.1
Govin 10,650 17.0
Bilingual dictionary 9,979 1.5
Bible 7,807 26.4
Emille 5,083 19.1

GU-HI Emille 7,993 19.1
EN-HI Bombay IIT 1.4M 13.4

Monolingual data

EN News 200M 23.6
GU Common crawl 3.7M 21.9

Emille 0.9M 16.6
Wiki-dump 0.4M 17.7
News 0.2M 15.4

HI Bombay IIT 45.1M 18.7
News 23.6M 17.0

Table 2: EN-GU Parallel training data used. Average
length is calculated in number of tokens per sentence.
For the parallel corpora, this is calculated for the first
language indicated (i.e. EN, GU, then EN)

We pre-processed all data using standard scripts

from the Moses toolkit (Koehn et al., 2007): nor-
malisation, tokenisation, cleaning (of training data
only, with a maximum sentence length of 80 to-
kens) and true-casing for English data, using a
model trained on all available news data. The
Gujarati data was additionally pre-tokenised using
the IndicNLP tokeniser4 before Moses tokenisation
was applied. We also applied subword segmenta-
tion using BPE (Sennrich et al., 2016b), with joint
subword vocabularies. We experimented with dif-
ferent numbers of BPE operations during training.

2.2 Creation of synthetic parallel data

Data augmentation techniques such as backtransla-
tion (Sennrich et al., 2016a; Edunov et al., 2018),
which can be used to produce additional synthetic
parallel data from monolingual data, are standard
in MT. However they require a sufficiently good
intermediate MT model to produce translations that
are of reasonable quality to be useful for training
(Hoang et al., 2018). This is extremely hard to
achieve for this language pair. Our preliminary
attempt at parallel-only training yielded a very
low BLEU score of 7.8 on the GU→EN devel-
opment set using a Nematus-trained shallow RNN
with heavy regularisation,5 and similar scores were
found for a Moses phrase-based translation system.

Our solution was to train models for the creation
of synthetic data that exploit both monolingual and
parallel data during training.

2.2.1 Semi-supervised MT with cross-lingual
language model pre-training

We followed the unsupervised training approach in
(Lample and Conneau, 2019) to train two MT sys-
tems, one for EN↔GU and a second for HI→GU.6

This involves training unsupervised NMT models
with an additional supervised MT training step. Ini-
tialisation of the models is done by pre-training
parameters using a masked language modelling
objective as in Bert (Devlin et al., 2019), individ-
ually for each language (MLM, which stands for
masked language modelling) and/or cross-lingually
(TLM, which stands for translation language mod-
elling). The TLM objective is the MLM objective

4 anoopkunchukuttan.github.io/indic_
nlp_library/

5Learning rate: 5× 10−4, word dropout (Gal and Ghahra-
mani, 2016): 0.3, hidden state and embedding dropout: 0.5,
batch tokens: 1000, BPE vocabulary threshold 50, label
smoothing: 0.2.

6We used the code available at https://github.
com/facebookresearch/XLM
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applied to the concatenation of parallel sentences.
See (Lample and Conneau, 2019) for more details.

2.2.2 EN and GU backtranslation
We trained a single MT model for both language
directions EN→GU and GU→EN using this ap-
proach. For pre-training we used all available
data in Table 2 (both the parallel and monolin-
gual datasets) with MLM and TLM objectives.
The same data was then used to train the semi-
supervised MT model, which achieved a BLEU
score of 22.1 for GU→EN and 12.6 for EN→GU
on the dev set (See the first row in Table 5). This
model was used to backtranslate 7.3M of mono-
lingual English news data into Gujarati and 5.1M
monolingual Gujarati sentences into English.7

System and training details We use default ar-
chitectures for both pre-training and translation: 6
layers with 8 transformer heads, embedding dimen-
sions of 1024. Training parameters are also as per
the default: batch size of 32, dropout and attention
dropout of 0.1, Adam optimisation (Kingma and
Ba, 2015) with a learning rate of 0.0001.

Degree of subword segmentation We tested the
impact of varying degrees of subword segmenta-
tion on translation quality (See Figure 1). Contrary
to our expectation that a higher degree of segmen-
tation (i.e. with a very small number of merge oper-
ations) would produce better results, as is often the
case with very low resource pairs, the best tested
value was 20k joint BPE operations. The reason for
this could be the extremely limited shared vocabu-
lary between the two languages8 or that training on
large quantities of monolingual data turns the low
resource task into a higher one.

2.2.3 HI→GU translation
Transliteration of Hindi to Gujarati script We
first transliterated all of the Hindi characters into
Gujarati characters to encourage vocabulary shar-
ing. As there are slightly more Hindi unicode char-
acters than Gujarati, Hindi characters with no cor-
responding Gujarati characters and all non-Hindi
characters were simply copied across.

Once transliterated, there is a high degree of
overlap between the transliterated Hindi (HG) and
the corresponding Gujarati sentence, which is
demonstrated by the example in Figure 2.

7We were unable to translate all available monolingual
data due to time constraints and limits to GPU resources.

8Except for occasional Arabic numbers and romanised
proper names in Gujarati texts.
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Figure 1: The effect of the number of subword op-
erations on BLEU score during training for EN→GU
(calculated on the newsdev2019 dataset).

Our parallel Gujarati-Hindi data consisted of ap-
proximately 8,000 sentences from the Emille cor-
pus. After transliterating the Hindi, we found that
9% of Hindi tokens (excluding punctuation and
English words) were an exact match to the corre-
sponding Gujarati tokens. However, we did have
access to large quantities of monolingual data in
both Gujarati and Hindi (see Table 2), which we
pre-processed in the same way.

The semi-supervised HI↔GU system was
trained using the MLM pre-training objective de-
scribed in Section 2.1 and the same model architec-
ture as the EN↔GU model in Section 2.2.2. For
the MT step, we trained on 6.5k parallel sentences,
reserving the remaining 1.5k as a development set.
As with the EN↔GU model, we investigated the
effect of different BPE settings (5k, 10k, 20k and
40k merge operations) on the translation quality.
Surprisingly, just as with EN↔GU, 20k BPE op-
erations performed best (cf. Table 3), and so we
used the model trained in this setting to translate
the Hindi side of the IIT Bombay English-Hindi
Corpus, which we refer to as HI2GU-EN.

BPE 5k 10k 20k 40k

BLEU 15.4 16.0 16.3 14.6

Table 3: The influence of number of BPE merge opera-
tions on HI→GU BLEU score measured using BLEU
scores on the development set

2.2.4 Finalisation of training data
The final training data for each model was the con-
catenation of this parallel data, the HI2GU-EN
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GU: એમને સાવધાની*ૂવ,ક સાફ કરો અને દ3ત iચiક8સક ની જોડે iનયiમત <વો .
HI: उनको सावधानीपूवर्क साफ करें और दन्त िचिकत्सक के पास िनयिमत जायें । 
HG: ઉનકો સાવધાની*ૂવ,ક સાફ કરe  ઔર દ3ત iચiક8સક કે પાસ iનયiમત <યe .
Gloss:   THEM       CAREFULLY     CLEAN  DO   AND   TEETH   DOCTOR   POSS   TO   REGULARLY   GO  .

‘Carefully clean them and go to the dentist regularly.’

Figure 2: Illustration of Hindi-to-Gujarati transliteration (we refer to the result as HG), with exact matches indi-
cated in red and partial matches in blue.

translated data and the back-translated data for that
particular translation direction (See Table 4).

All synthetic data was cleaned by filtering out
noisy sentences with consecutively repeated char-
acters or tokens. As for the genuine parallel data,
we choose only to use the following corpora, which
contain an average sentence length of 10 tokens or
more: Emille, Govin, Wikipedia and the Bible (a
total of approximately 40k sentences). All data
was pre-processed using FastBPE9 with 30k BPE
merge operations.

#sents
Training data source EN→GU GU→EN

Genuine parallel data 42k 42k
HI2GU-EN parallel data 1.1M 1.1M
Backtranslated monolingual 4.5M 7.1M

Total 5.6M 8.2M

Table 4: Summary of EN→GU and GU→EN training
data, once filtering has been applied to synthetic data.

2.3 Supervised MT training

We trained supervised RNN (Miceli Barone et al.,
2017) and transformer models (Vaswani et al.,
2017) using the augmented parallel data augmented
described in Section 2.2.4. For both model types,
we train until convergence and then fine-tuned them
on the 40k sentences of genuine parallel data, since
synthetic parallel data accounted for more than
99% of total training data in both translation direc-
tions. Results are shown in Table 5, our final model
results being shown in bold.

2.3.1 RNN
Our RNN submission was a BiDeep GRU
sequence-to-sequence model (Miceli Barone et al.,
2017) with multi-head attention. The implemen-
tation and configuration are the same as in our
submission to WMT 2018 (Haddow et al., 2018),
except that we use 1 attention hop with 4 attention

9github.com/glample/fastBPE.git

heads, with a linear projection to dimension 256
followed by layer normalisation. Other model hy-
perparameters are encoder and decoder stacking
depth: 2, encoder transition depth: 2, decoder base
level transition depth: 4, decoder second level tran-
sition depth: 2, embedding dimension: 512, hidden
state dimension: 1024. Training is performed with
Adam in synchronous SGD mode with initial learn-
ing rate: 3× 10−4, label smoothing 0.1, attention
dropout 0.1 and hidden state dropout 0.1. For the
final fine-tuning on parallel data we increase the
learning rate to 9× 10−4 and hidden state dropout
to 0.4 in order to reduce over-fitting.

2.3.2 Transformer

We trained transformer base models as defined
in (Vaswani et al., 2017), consisting of 6 en-
coder layers, 6 decoder layers, 8 heads, with
a model/embedding dimension of 512 and feed-
forward network dimension of 2048.

We used synchronous SGD, a learning rate of
3 × 10−4 and a learning rate warm-up of 16,000.
We used a transformer dropout of 0.1.

Our final primary systems are ensembles of four
transformers, trained using different random seed
initialisations. We also experimented with adjust-
ing the weighting of the models,10 providing gains
for EN→GU but not for GU→EN, for which equal
weighting provided the best results. Our final
translations are produced using a beam of 12 for
EN→GU and 60 for GU→EN.

2.4 Experiments and results

We report results in Table 5 on the official devel-
opment set (1998 sentences) and on the official
test sets (998 sentences for EN→GU and 1016 sen-
tences for GU→EN). Our results indicate that both
the additional synthetic data as well as fine-tuning
provide a significant boost in BLEU.

10The weights for EN→GU the were manually chosen
guided by the individual BLEU scores of the models.
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EN→GU GU→EN
System Dev Test Dev Test

Semi-sup. 12.6 11.8 22.1 15.5

RNN
+ synth. data 14.2 11.4 23.4 14.7
+ fine-tuning 15.2 11.7 24.3 15.7

Transformer
+ synth. data 15.0 14.3 23.8 18.6
+ fine-tuning 16.9 15.1 25.9 20.6
+ Ensemble-4 17.9 16.5 27.2 21.4
+ Weighted Ensemble 18.1 16.4 - -

Table 5: BLEU scores on the development and test sets
for EN→GU. Our final submissions are marked in bold.
Synthetic data is the HI2GU-EN corpus plus backtrans-
lated data for that translation direction and fine-tuning
is performed on 40k sentences of genuine parallel data.

3 Chinese↔ English

Chinese↔English is a high resource language pair
with 23.5M sentences of parallel data. The lan-
guage pair also benefits from a large amount of
monolingual data, although compared to English,
there is relatively little in-domain (i.e. news) data
for Chinese. Our aim for this year’s submission
was to test the use of character-based segmenta-
tion of Chinese compared to standard subword seg-
mentation, exploiting the properties of the Chinese
writing system.

3.1 Data and pre-processing

For ZH↔EN we pre-processed the parallel data,
which consists of NewsCommentary v13, UN data
and CWMT, as follows. The Chinese side of the
original parallel data is inconsistently segmented
across different corpora so in order to get a consis-
tent segmentation, we desegmented all the Chinese
data and resegmented it using the Jieba tokeniser
with the default dictionary.11 We then removed
any sentences that did not contain Chinese charac-
ters on the Chinese side or contained only Chinese
characters on the English side. We also cleaned
up all sentences containing links, sentences longer
than 50 words, as well as sentences in which the
number of tokens on either side was > 1.3 times
the number of tokens on the other side, following
Haddow et al. (2018). After pre-processing, the
corpus size was 23.6M sentences. We applied BPE
with 32,000 merge operations to the English side
of the corpora and then removed any tokens appear-
ing fewer than 10 times (which were mostly noise),

11https://github.com/fxsjy/jieba

ending up with a vocabulary size of 32,626. For the
Chinese side we attempted two different strategies:
A character-level BPE model and a word-level BPE
model.

Character-level Chinese A Chinese character-
level model is not the same as an English char-
acter level model, as it is relatively common for
Chinese characters to represent whole words by
themselves (in the PKU corpus used for the 2005
Chinese segmentation bakeoff (Emerson, 2005), a
Chinese word contains on average 1.6 characters).
As such, a Chinese character-level model is much
more similar to using a BPE model with very few
merge operations on English. We hypothesised
that using raw Chinese characters in tokenised text
makes sense as they form natural subword units.

We segmented all Chinese sentences into charac-
ters, but kept non-Chinese characters unsegmented
in order to allow for English words and numbers
to be kept together as individual units. We then
applied BPE with 1,000 merges, which splits the
English words in the corpora into mostly trigrams
and numbers as bigrams. From the resulting vocab-
ulary we dropped characters occurring fewer than
10 times, resulting in a vocabulary of size 8,535.

We found that this segmentation strategy was
successful for translating into Chinese, however
produces significantly worse results when translat-
ing from Chinese into English.

Word-level Chinese For word-level Chinese, we
took the traditional approach to Chinese pre-
processing, where we applied BPE on top of the
tokenised dataset. We used 33,000 merge opera-
tions and removed tokens occurring fewer than 10
times, resulting in a vocabulary size of 44,529.

3.2 Iterative backtranslation
We augmented our parallel data with the same
backtranslated ZH↔EN as used in Sennrich et al.
(2017), which consists of 8.6M sentences for
EN→ZH from LDC and 9.7M sentences taken
from Newscrawl for ZH→EN. After training the
initial systems, we added more backtranslations
for both language pairs. For the Chinese side, we
used Newscrawl (2.1M sentences) as well as a re-
translation of a section of LDC, ending up with
9.5M sentences. For the English side we trans-
lated an additional section of Newscrawl, ending
up 38M sentences in total. Much to our disappoint-
ment, we found that the extra backtranslation is not
very effective at increasing the BLEU score, likely
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because we did not perform any specific domain
adaptation for the news domain.

3.3 Architecture

We used the transformer architecture and three sep-
arate configurations.

Transformer-base This is the same architecture
as described in Section 2.3.2.

Transformer-big 6 encoder layers, 6 decoder
layers decoder, 16 heads, a model/embedding di-
mension of 1024, a feedforward network dimension
of 4096 and a dropout of 0.1. For character-level
Chinese, the number of layers was increased to 8
on the Chinese side. We found transformer-big to
be quite fiddly to train and requires significant hy-
perparameter exploration. Unfortunately we were
unable to find hyperparameters that work effec-
tively for the ZH-EN direction.

Transfomer-base with larger feed-forward net-
work We test Wang et al.’s (2018) recommenda-
tion to use the base transformer architecture and
increase the feed-forward network (FFNN) size to
4096 instead of using a transformer-big model.

Ultra-large mini-batches We follow Smith
et al.’s (2018) recommendation to dramatically in-
crease the mini-batch size towards the end of train-
ing in order to improve convergence.12 Once our
model stopped improving on the development set,
we increased the mini-batch size 50-fold by delay-
ing the gradient update (Bogoychev et al., 2018) to
avoid running into memory issues. This increases
the average mini-batch size to 13,500 words.

3.4 Results

We identified the best single system for each lan-
guage direction (Tables 6 and 7) and ensembled
four models trained separately using different ran-
dom seeds. We also trained right-to-left models,
but they got lower scores on the development set
and also did not seem to help with ensembling. Our
final submission to the competition achieved 28.9
for ZH→EN and 34.4 for EN→ZH.

4 German→ English

Following the success of Edunov et al. (2018) in
WMT18, we decided to focus on the use of large
amounts of monolingual data in the target language.

12We thank Elena Voita for alerting us to this work.

System BLEU

Word-level segmentation for ZH

Transformer-base 34.8

Character-level segmentation for ZH

Transformer-base 35.1
+ Larger FFNN 35.6

Transformer-big 35.7
+ Ultra-large mini-batches 36.1

Table 6: EN→ZH results on the development set.

System BLEU

Word-level segmentation for ZH

Transformer-base 24.1
+ Larger FFNN 23.7

+ Ultra-large mini-batches 24.4
+ Ultra-large mini-batches 24.2

Transformer-big 11.3

Character-level segmentation for ZH

Transformer-base 20.4

Table 7: ZH→EN results on the development set.

In addition, we performed fine tuning on data se-
lected specifically for the test set prior to transla-
tion, similar to the method suggested by Farajian
et al. (2017), but with data selection for the entire
test set instead of individual sentences.

4.1 Approach
Our approach this year is summarised as follows.

1. Back-translate all available mono-lingual En-
glish NewsCrawl data (after filtering out very
long sentences). As can be seen in Table 8, the
amount of monolingual data vastly outweighs
the amount of parallel data available.

2. Train multiple systems with different blends
of genuine parallel, out-of-domain data and
back-translated in-domain data. We did
not use any data from CommonCrawl or
Paracrawl to train these base models.

3. For a given test set, select suitable training
data from the pool of all available training data
(including CommonCrawl and Paracrawl) for
fine-tuning, based on n-gram overlap with the
source side of the test set, focusing on rare
n-grams that occur fewer than 50 times in the
respective sub-corpus13 of training data.

13For practical reasons, we sharded the training data based
on provenance. In addition, each year of the backtranslated
news data was treated as a separate sub-corpus.
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Corpus Type # of sent. pairs # of tokens1 (DE) # of tokens (EN)

Europarl v9 parallel 1.82 M 48.66 M 51.15 M
Rapid 2019 parallel 1.48 M 30.56 M 30.95 M
News Commentary parallel 0.33 M 8.51 M 8.51 M
CommonCrawl1

as distributed parallel 2.40 M 56.87 M 60.83 M
filtered parallel 0.87 M 19.54 M 20.23 M

ParaCrawl v32

as distributed parallel 31.36 M 596.66 M 630.50 M
filtered parallel 16.66 M 328.14 M 343.68 M

News Crawl 2007–2018 English3 199.74 M 4,764.26 M 4,805.45 M
1 continuous sequences of letters, digits, or repetitions of the same symbol; otherwise, a single symbol.
2 used for fine-tuning but not for training the base models, filtered as described in Section 4.4.
3 German side obtained by back-translation with a model from our participation in WMT18.

Table 8: Training data used for German→English translation.

4. Finally, we translate with an ensemble over
several check-points of the same training run
(best BLEU prior to fine-tuning, fine-tuned,
best mean cross-entropy per word if different
from best BLEU, etc.).

4.2 Data Preparation

4.2.1 Tokenisation Scheme

For tokenisation and sub-word segmentation, we
used SentencePiece14 (Kudo and Richardson,
2018) with the BPE segmentation scheme and a
joint vocabulary of 32,000 items.

4.3 Back-translation

We back-translated all of the available English
NewsCrawl data using one of the models from our
participation in the WMT18 shared task.

4.4 Data Filtering

The CommonCrawl and ParaCrawl datasets con-
sist of parallel data automatically extracted from
web pages from systematic internet crawls. These
datasets contain considerable amounts of noise and
poor quality data. We used dual conditional cross-
entropy filtering (Junczys-Dowmunt, 2018) to rank
the data in terms of estimated translation quality,
and only retained data that scored higher than a
threshold determined by cursory inspection of the
data by a competent bilingual at various threshold
levels. Table 8 shows the amounts of raw and fil-
tered data. For training, we limited the training
data to sentence pairs of at most 120 SentencePiece
tokens on either side (source or target).

4.5 Model Training

4.5.1 Initial Training

To investigate the effect of the blend of genuine
parallel and back-translated news data on transla-
tion quality, we trained five transformer-big mod-
els (cf. Section 3.3) with different blends of back-
translated and genuine parallel data.

We used a dropout value of 0.1 between trans-
former layers and no dropout for attention and
transformer filters. We used the Adam optimiser
with a learning rate of 0.0002 and linear warm-
up for the first 8K updates, followed by inverted
squared decay.

Figure 3 shows the learning curves for these
five initial training runs as validated against the
WMT18 test set. Note that the BLEU scores are in-
flated, as they were computed on the sub-word units
rather than on de-tokenised output. The curves sug-
gest that adding large amounts of training data does
improve translation quality in direct comparison
between the different training runs. However, com-
pared to last year’s top system submissions, these
systems were still lagging behind.

4.5.2 Continued training with increased
batch size

Similar to our EN↔ZH experiments, we exper-
iment with drastically increasing the mini-batch
size by increasing optimiser delay (cf. Section 3.3).
Figure 4 shows the effect of increased mini-batch
sizes of ca. 9K, 13K, and 22K sentence pairs, re-
spectively. The plot shows drastic improvements
in the validation scores achieved.

14https://github.com/google/
sentencepiece
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4.5.3 Fine-tuning on selected data
As a last step, we selected data specifically for the
test set and continued training on this data for one
epoch of this data. For the WMT18 test set, this
gives a significant boost over the starting point, as
the black line in Figure 4 shows.

4.6 Results and Analysis

Due to resource congestion, we were not able to
train our models to convergence in time for submis-
sion. The point where the black line in Figure 4
branches off shows the state of our models prior to
tuning for a specific test set.

For our submission to the shared task, we ensem-
bled four models:

• an untuned model trained on a blend of 75%
back-translated data and 25% genuine parallel
data

• checkpoint models after 500, 2000, and 3000
updates with batches of ca. 13K sentences on
data selected specifically for the WMT19 test
set. This data included data from Common-
Crawl and Paracrawl.

With a BLEU score of 36.7 (35.0 cased) — as
opposed to 44.3 (42.8 cased) for the top-performing
system — our results were disappointing. Apart
from a probably suboptimal choice of training hy-
perparameters, what else went wrong?

Post-submission analysis In order to understand
the effect of back-translations better, we evalu-
ated our systems on a split of test sets from past
years into “forward” (German is the original source
language) and “reverse” (the source side of the
test set are German translations of texts originally
written in English). The results are shown in Ta-
ble 9. As we can see, most of the gains from using
back-translations are concentrated in the “reverse”
section of the test sets. The same also holds for
Edunov et al.’s (2018) results on the WMT18 test
sets for en→de. Notice how it outperforms the
top-performing system (Microsoft Marian) on the
reverse translation direction but lags behind in the
forward translation.15

We see two possible reasons for this phe-
nomenon. The first is that back-translations pro-
duce synthetic data that is closer to the reverse

15We thank Barry Haddow for pointing this out to us and
for providing us with the split test sets and the split numbers
for the Microsoft and Facebook systems.

scenario: translating back from the translation into
the source. The second reason is that the reverse
scenario offers a better domain match: newspapers
tend to report relatively more on events and issues
relating to their local audience. A newspaper in
Munich will report on matters relating to Munich;
the Los Angeles time will focus on matters of in-
terest to people living in Southern California.

This became evident when we investigated some
strange translation errors that we observed in our
submission to the shared task. For example, our sys-
tem often translates “Münchnerin” (woman from
Munich) as ‘miner’, ‘minder’, or ‘mint’ and “Schre-
bergarten” (allotment garden) as ‘shrine’ (Ger-
man: Schrein). When we checked our back-
translated training data for evidence, we noticed
that these are systematic translation errors in our
back-translations. While the word “Münchnerin” is
frequent in our German data, women from Munich
are rarely mentioned as such in English newspa-
pers. With BPE breaking up rare words into smaller
units, the system learned to translate “min” (possi-
bly from “min|t” (as in the production facility for
coins), which is “Mün|ze” or “Mün|zprägeanstalt”
in German) into “Mün”. Once “Mün” was chosen
in the decoder of the MT system, the German lan-
guage model favored the sequence Mün|ch|nerin
over Mün|ze or the even rarer Münzprägeanstalt.

These findings suggest that back-translated data
as well needs curation for domain match and sys-
tematic translation errors.

Since this year’s test sets consist only of the
(more realistic) “forward” scenario, we were not
able to replicate the gains we observed for previous
test sets when adding more back-translated data.

5 English→ Czech

English-Czech is a high-resource language pair in
the WMT News Translation shared task. For our
submission to the EN→CS track, we investigated
the effects of simplifying the data pre-processing
and training data filtering, and experimented with
larger architectures of the Transformer model.

5.1 Data and pre-processing

For English→Czech experiments we use all paral-
lel corpora available to build a constrained system
except CommonCrawl, which is noisy and rela-
tively small compared to the CzEng 1.7 corpus16

16https://ufal.mff.cuni.cz/czeng/
czeng17
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WMT15 WMT16 WMT17 WMT18
System batch1 fwd rev fwd rev fwd rev fwd rev

10% back-translated, 90% parallel 1.2K 20.4 34.9 27.7 44.4 25.1 37.8 28.5 46.7
25% back-translated, 75% parallel 1.2K 20.0 37.7 27.5 47.5 24.9 39.8 27.5 49.4
50% back-translated, 50% parallel 1.2K 20.2 38.3 28.2 48.8 25.9 40.8 28.3 51.3
75% back-translated, 25% parallel 1.2K 20.9 39.0 29.4 49.7 26.6 41.7 29.6 52.4
90% back-translated, 10% parallel 1.2K 21.2 38.6 29.0 49.6 26.8 41.5 29.7 52.8

75% back-translated, 25% parallel 1.2K 20.9 39.0 29.4 49.7 26.6 41.7 29.6 52.4
75% back-translated, 25% parallel 9K 23.2 41.2 31.8 51.8 28.7 44.2 32.6 56.3
75% back-translated, 25% parallel 13K 23.2 40.9 31.8 51.3 28.6 44.1 32.4 56.2
75% back-translated, 25% parallel 22K 23.2 41.2 31.8 51.3 28.7 44.2 32.4 56.2

75/25, with tuning for WMT18 22K 23.6 41.3 32.5 51.6 28.9 44.0 33.2 56.7
Microsoft Marian 2018 (en→de) 52.5 41.6

Edunov et al. (2018) (en→de) 45.8 46.1
1 batch size in sentence pairs

Table 9: Contrastive evaluation (BLEU scores) of performance on genuine German→ English (fwd) translation
vs. English source restoration from text originally translated from English into German (rev).

(Bojar et al., 2016). We clean the data following
Popel (2018) by removing sentence pairs that do
not contain at least one Czech diacritic letter. Dupli-
cated sentences, sentences with <3 or >200 tokens,
and sentences with the ratio of alphabetic to non-
alphabetic characters <0.5 are also removed. The
final parallel training data contains 44.93M sen-
tences. For back-translation we use approximately
80M English and Czech monolingual sentences
from NewsCrawl (Bojar et al., 2018), which we
cleaned in a similar manner.

Preprocessing Dev 2017 2018

Tc + Tok + BPE 26.8 23.0 22.2
Tc + Tok + ULM 26.7 22.9 22.3
ULM (raw text) 26.7 22.9 22.9
+ Resampling 26.7 22.2 21.8

Table 10: Comparison of different pre-processing
pipelines for EN→CS according to BLEU. Tc stands
for truecasing, Tok for tokenisation.

We aimed to explore whether, in a high-resource
setting, the common pre- and post-processing
pipelines that usually include truecasing, tokeni-
sation and subword segmentation using byte pair
encoding (BPE) (Sennrich et al., 2016b) can be
simplified with no loss to performance. We replace
BPE with the segmentation algorithm based on a
Unigram Language Model (ULM) from Sentence-
Piece, which is built into Marian. In both cases
we learn 32k subword units jointly on 10M sam-
pled English and Czech sentences. We gradually
remove the elements of the pipeline and find no
significant difference between the two segmenta-
tion algorithms (Table 10). We do observe a per-

formance drop when subword resampling is used,
but this has been shown to be more effective par-
ticularly for Asian languages (Kudo, 2018). For
the following English-Czech experiments, we use
ULM segmentation on raw text.

5.2 Experiment settings

We use the transformer-base and transformer-big
architectures described in Section 3.3. Models are
regularised with dropout between transformer lay-
ers of 0.2 and in attention of 0.1 and feed-forward
layers of 0.1, label smoothing and exponential
smoothing: 0.1 and 0.0001 respectively. We op-
timise with Adam with a learning rate of 0.0003
and linear warm-up for first 16k updates, followed
by inverted squared decay. For Transformer Big
models we decrease the learning rate to 0.0002.
We use mini-batches dynamically fitted into 48GB
of GPU memory on 4 GPUs and delay gradient
updates to every second iteration, which results in
mini-batches of 1-1.2k sentences. We use early
stopping with a patience of 5 based on the word-
level cross-entropy on the newsdev2016 data set.
Each model is validated every 5k updates, and we
use the best model checkpoint according to uncased
BLEU score.

Decoding is performed with beam search with a
beam size of 6 with length normalisation. Addition-
ally, we reconstruct Czech quotation marks using
regular expressions as the only post-processing step
(Popel, 2018).

5.3 Experiments and Results

Results of our models are shown in Table 11.
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Lang. System Dev 2017 2018

EN-CS Transformer-base 26.7 22.9 22.9
+ Data filtering 27.1 23.4 22.6

CS-EN Transformer-base 32.6 28.8 30.3
+ Back-translation 37.3 31.9 32.4

EN-CS
Base + Back-transl. 28.4 25.1 25.1
→ Transformer-big 29.6 26.3 26.2
+ Ensemble x2 29.6 26.5 26.3

Table 11: BLEU score results for EN-CS experiments.

We first trained single transformer-base models
for each language direction to serve as our base-
lines. We then re-score the EN→CS training data
using the CS→EN model and filter out the 5% of
data with the worst cross-entropy scores, which is
a one-directional version of the dual conditional
cross-entropy filtering, which we also used for our
EN→DE experiments. This improves the BLEU
scores on the development set and newstest2017.
Next, we back-translate English monolingual data
and train a CS→EN model, which in turn is used
to generate back-translations for our final systems.
The addition of back-translated data improves the
Transformer Base model by 1.7-2.5 BLEU, which
is less than the improvement from iterative back-
translations reported by (Popel, 2018). A Trans-
former Big model trained on the same data is ca.
1.1 BLEU better.

Due to time and resource constraints we train and
submit a EN→CS system (this was the only lan-
guage direction for English-Czech this year) con-
sisting of just two transformer-big models trained
with back-translated data. Our system achieves
28.3 BLEU on newstest2019, 2.1 BLEU less then
the top system, which ranks it in third position.

6 Summary

This paper reports the experiments run in develop-
ing the six systems submitted by the University Ed-
inburgh to the 2019 WMT news translation shared
task. Our main contributions have been in different
exploitation of additional non-parallel resources,
in investigating different pre-processing strategies
and in the testing of a variety of NMT training
techniques. We have shown the value of using addi-
tional monolingual resources through pre-training
and semi-supervised MT for our low-resource lan-
guage pair EN-GU. For the higher resource lan-
guage pairs, we also exploit monolingual resources
in the form of backtranslation. For GU→EN in
particular we study the effect on translation quality

of varying the ratio between between genuine and
synthetic parallel training data. For EN→ZH, we
showed that character-based decoding into Chinese
produces better results than the standard subword
segmentation approach. In EN→CS, we also stud-
ied the effects of pre-processing, by showing that
in such a high resource setting, a simplified pre-
processing pipeline can be highly successful.

Our low resource language pairs, EN→GU and
GU→EN systems were ranked 1st and 2nd respec-
tively out of the constrained systems according to
the automatic evaluation. For the high resource
pairs, our EN→CS system ranked 3rd, EN→ZH
and ZH→EN ranked 7th and 6th respectively and
DE→EN ranked 9th.
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Sennrich, Barry Haddow, and Alexandra Birch.
2017. Deep Architectures for Neural Machine
Translation. In Proceedings of the 2nd Conference
on Machine Translation, Volume 1: Research Pa-
pers, Copenhagen, Denmark. Association for Com-
putational Linguistics.

114



Martin Popel. 2018. CUNI transformer neural mt sys-
tem for WMT18. In Proceedings of the Third Con-
ference on Machine Translation, Volume 2: Shared
Task Papers, pages 486–491, Belgium, Brussels. As-
sociation for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the 3rd Conference on Ma-
chine Translation: Research Papers, pages 186–191,
Belgium, Brussels.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s Neural MT
Systems for WMT17. In Proceedings of the
2nd Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 389–399, Copenhagen,
Denmark.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving Neural Machine Translation
Models with Monolingual Data. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL’16, pages 86–96,
Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL’16, pages 1715–1725, Berlin, Ger-
many.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V. Le. 2018. Don’t decay the learning
rate, increase the batch size. In Proceedings of the
6th International Conference on Learning Represen-
tations, ICLR’18, Vancouver, Canada.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Qiang Wang, Bei Li, Jiqiang Liu, Bojian Jiang,
Zheyang Zhang, Yinqiao Li, Ye Lin, Tong Xiao, and
Jingbo Zhu. 2018. The NiuTrans Machine Transla-
tion System for WMT18. In Proceedings of the 3rd
Conference on Machine Translation: Shared Task
Papers, WMT’18, pages 528–534, Belgium, Brus-
sels.

115



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 116–121
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

GTCOM Neural Machine Translation Systems for WMT19

Chao Bei, Hao Zong, Conghu Yuan, Qingming Liu, Baoyong Fan
Global Tone Communication Technology Co., Ltd.

{beichao, zonghao, yuanconghu, liuqingming, fanbaoyong}@gtcom.com.cn

Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT19
shared news translation task. We participate in
six directions: English to (Gujarati, Lithuanian
and Finnish) and (Gujarati, Lithuanian and
Finnish) to English. Further, we get the best
BLEU scores in the directions of English to
Gujarati and Lithuanian to English (28.2 and
36.3 respectively) among all the participants.
The submitted systems mainly focus on back-
translation, knowledge distillation and rerank-
ing to build a competitive model for this task.
Also, we apply language model to filter mono-
lingual data, back-translated data and parallel
data. The techniques we apply for data filter-
ing include filtering by rules, language models.
Besides, We conduct several experiments to
validate different knowledge distillation tech-
niques and right-to-left (R2L) reranking.

1 Introduction

We participated in the WMT shared news trans-
lation task and focus on the bidirections: English
and Gujarati, English and Lithuanian, as well as
English and Finnish. Our neural machine transla-
tion system is developed as transformer (Vaswani
et al., 2017a) architecture and the toolkit we used
is Marian (Junczys-Dowmunt et al., 2018). Since
BLEU (Papineni et al., 2002) is the main ranking
index for all submitted systems, we apply BLEU
as the evaluation matrix for our translation system.
In addition to data filtering, which is basically the
same as the techniques we applied in WMT 2018
last year, we verify different knowledge distilla-
tion and reranking techniques to improve the per-
formance of all our systems.

For data preprocessing, the basic methods in-
clude punctuation normalization, tokenization,
truecase and byte pair encoding(BPE) (Sennrich
et al., 2015b). Besides, human rules and language

model are also involved to clean English parallel
data, monolingual data and synthetic data. Re-
gard to the techniques on model training, back-
translation (Sennrich et al., 2015a), knowledge
distillation and R2L reranking (Sennrich et al.,
2016) are applied to verify whether these tech-
niques could improve the performance of our sys-
tems.

In order to explore the application of knowledge
distillation technology in the field of neural ma-
chine translation, we conduct a number of exper-
iments for sequence-level knowledge distillation
and sequence-level interpolation (Kim and Rush,
2016). Another, R2L reranking didn’t get the bet-
ter performance in last year experiment. In order
to improve the performance of R2L reranking, we
increase the beam size step by step, and explore
the effect of any combination for R2L models with
every step.

This paper is arranged as follows. We firstly
describe the task and provided data information,
then introduce the method of data filtering, mainly
in the application of language model. After that,
we describe the techniques on transformer archi-
tecture and show the conducted experiments in de-
tail of all directions, including data preprocessing,
model architecture, back-translation and knowl-
edge distillation. At last, we analyze the results
of experiments and draw the conclusion.

2 Task Description

The task focuses on bilingual text translation in
news domain and the provided data is show in
Table 1, including parallel data and monolin-
gual data. For the direction between English
and Lithuanian, the parallel data is mainly from
Europarl v9, ParaCrawl v3, Wiki Titles v1 and
Rapid corpus of EU press releases (Rozis and
Skadiņš, 2017). For the direction between English
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direction number of sentence
en-lt parallel data 4.21M
en-gu parallel data 155K
en-fi parallel data 9.17M
en monolingual data 18M
lt monolingual data 3.09M
gu monolingual data 4.35M
fi monolingual data 18M
en-gu unconstrained data 4.63M

Table 1: Task Description.

and Gujarati the parallel data is from Wiki Titles
v1, Bible Corpus, OPUS (Tiedemann, 2012) and
govin crawled corpus, as well as our own parallel
data. Thus, this direction is unconstrained. The
Corpus, from Europarl v9, ParaCrawl v3, Wiki
Titles v1 and Rapid corpus of EU press releases,
are used to the directions between English and
Finnish. Another, monolingual data we used are
News crawl, Europarl and Europarl v9. All direc-
tions we participated are new for this year, we use
newsdev2019 as our development set.

3 Data Filtering

The methods of data filtering by human rules are
mainly the same as we did in English to Chi-
nese(Bei et al., 2018) last year, but language mod-
els are used to clean all data, including monolin-
gual data, parallel data and synthetic data. We use
Marian to train the transformer language model for
each language (i.e. English, Gujarati, Lithuanian
and Finnish). We introduce this section in two
condition:

• For monolingual data and synthetic data
(i.e. back-translate data from target side and
knowledge distillation from source side), Ev-
ery sentence are scored by language model,
and the score for sentence is calculated as fol-
lows:

Scoresentence =
Scorelm√
Lsentence

Here Scorelm is score of language model for
sentence, and Lsentence is length of sentence
in token level.

• For parallel data, considering scores of two
sides, we combine the two side score of par-
allel data with liner:

Scorecombine = λ∗Scoresrc+(1−λ)Scoretgt

direction number of cleaned data
en-lt parallel data 4.08M
en-gu parallel data 77K
en-fi parallel data 9M
en monolingual data 17.6M
lt monolingual data 2.92M
gu monolingual data 4.28M
fi monolingual data 15M
en-gu unconstrained data 4.55M

Table 2: Number of cleaned data.

.

Here, λ is 0.5. According the sorted score for each
sentence or sentence pair, we clean the sentences
that is obviously not influence. Table 2 shows the
number of cleaned data.

4 Back-translation

It has been proved that back translation (Sennrich
et al., 2015a) is an effective way to improve the
translation quality, especially in low-resource con-
dition. Same as we did in last year, we firstly train
models from target to source, then we use these
model to translate the provided monolingual data
in target side onto source side. Besides, the tar-
get parallel data is also translated to source side. It
should be noticed that the ratio of parallel data and
synthetic data is 1:1.

Joint-training (Zhang et al., 2018) is another
method which has been proved that it can im-
prove the performance of back-translation. In an-
other perspective, back-translation is the first step
of joint-training. When getting the best model
from back-translation, we consecutively translate
the monolingual data from the target side of par-
allel data and mix parallel data and synthetic data
with the ratio of 1:1. Then the new training set
is used to train a new model until there is no im-
provement. We only repeated this procedure twice
due to the time limitation.

5 Knowledge Distillation

5.1 Sequence-level Knowledge Distillation

Sequence-level Knowledge distillation describes
the method of training a smaller student network
to perform better by learning from a teacher net-
work. Knowledge distillation suggests training by
matching the student’s predictions to the teacher’s
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predictions. We consider two different kinds of
methods to improve the performance for NMT:

• Ensemble Teacher As according (Freitag
et al., 2017), we translate the source side sen-
tences of parallel data with ensemble mod-
els and get the synthetic target side sentences.
The synthetic data is applied to training.

• R2L Teacher Inspired by (Wang et al., 2018)
(Hassan et al., 2018), we translate the source
side sentences of parallel data to target side
with R2L model to improve L2R model.

To avoid bad translation, we filter the synthetic
data with BLEU score lower than 30.

5.2 Sequence-level Interpolation

After sequence-level Knowledge distillation, the
trained models are fine-tuned with n-best knowl-
edge distillation data. The n-best knowledge dis-
tillation data is from the n-best translation from
sequence-level knowledge distillation with differ-
ent kinds of teachers. For every translation with
the same source side sentence in an n-best trans-
lation, we extract the highest BLEU score and get
the n-best knowledge distillation data.

6 R2L Reranking

Last year we didn’t get better result with applying
R2L reranking technique from English to Chinese.
And we found out that the reason is we didn’t in-
crease the beam size step by step and didn’t use
all combination of R2L models. Therefore, to in-
crease search space and get better translation, we
applied the above procedure this time.

7 Experiment

This section describes the all experiments we con-
ducted and illustrates how we get the evaluation
result step by step.

7.1 Model Architecture

We use transformer big model to train our model
with Marian according (Vaswani et al., 2017b).
The model configuration and the training param-
eters are show in Table 3 and Table 4 respectively.

7.2 Date preprocessing

Both of parallel data and monolingual data
are fully filtered. After that, we normalize

configuration value
architecture transformer
word embedding 1024
Encoder depth 6
Decoder depth 6
transformer heads 16
size of FFN 4096
transformer dropout attention 0.1
transformer dropout FFN 0.1

Table 3: The main model configuration.

parameters value
maximum sentence length 100
learning rate 0.0003
label-smoothing 0.1
optimizer Adam
learning rate warmup 16000
clip gradient 5

Table 4: The main training parameters.

the punctuation of all sentences by normalize-
punctuation.perl in Moses toolkit (Koehn et al.,
2007). We apply tokenizer and truecaser in Moses
toolkit for English, Lithuanian and Finnish sen-
tences and use polyglot 1 to tokenize Gujarati sen-
tences. Finally, BPE is applied on tokenized En-
glish, Lithuanian, Finnish and Gujarati sentences
respectively. Here, the BPE merge operation is set
to 30000, and the vocabulary size is 30500.

7.3 Training Step
Here we introduce the training step in detail.

• Baseline model We use transformer big
model to train our baseline model with only
parallel data cleaned by human rules and
language model. Besides, R2L models are
trained with the same data with 4 different
seeds.

• Back-translation When getting the baseline
model, we decode monolingual data in tar-
get side to source side with ensemble mod-
els trained from source side to target side.
For example, if we want to train an English
to Gujarati model with synthetic data, using
Gujarati-to-English baseline model to trans-
late Gujarati sentences to English. Then, the
translated English sentences are filtered by

1https://github.com/aboSamoor/polyglot
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language model. The synthetic data and par-
allel data, which are mixed with ratio of 1:1,
are applied to train back-translation model.

• Joint Training When getting the back-
translation model, repeat back-translation
step until there is no improvement. We re-
peated this step twice.

• Sequence-level Knowledge Distillation Dif-
ferent from back-translation, we use different
teachers of source-to-target model to trans-
late the source sentence of parallel data to
target side. For example, we use English-to-
Gujarati model to translate English sentences
to Gujarati. Compared with golden reference,
each translation with the BLEU score lower
than 30 will be removed. Considering the
low-resource condition, we mix parallel data,
synthetic data and knowledge distillation data
with ratio of 1:1:1 to train the new model.

• Sequence-level Interpolation After
sequence-level knowledge distillation,
the best models are fine-tuned with the n-best
knowledge distillation data.

• Ensemble Decoding To get the best perfor-
mance over all models efficiently, we use
GMSE Algorithm (Deng et al., 2018) to se-
lect models.

• R2L Reranking To enlarge search space,
we increase the beam size step by step and
rescore it with all combination of R2L mod-
els for each step. Here, the step size is 10 and
maximum beam size is 200.

8 Result and analysis

Table 5, Table 6, Table 7, Table 8, Table 9 and Ta-
ble 10 show the BLEU score we evaluated on de-
velopment set for English to Lithuanian, Lithua-
nian to English, English to Gujarati, Gujarati to
English, English to Finnish and Finnish to English
respectively.

For back-translation, we observe that it is the
most effective method with an improvement from
1.54 to 4.87 BLEU score, especially in low-
resource condition. And joint training can im-
prove the BLEU score slightly from 0.12 to 0.29.
For knowledge distillation, sequence-level knowl-
edge distillation gets an improvement of BLEU

model BLEU score
baseline 22.56
back-translation 27.43
joint training 27.72
sequence-level KD 27. 83
sequence-level interpolation 27.97
ensemble decoding 28.22
R2L reranking 28.37

Table 5: The case-insensitive BLEU score of English
to Lithuanian.

score ranging from 0.09 to 1.03, and sequence-
level interpolation has 0.12 to 0.21 BLEU score
improvement. When ensemble decoding, GMSE
algorithm gets the improvement ranging from 0.22
to 0.55. After increasing search space and combin-
ing the R2L models, reranking can still improve
the result by 0.1 to 0.17 BLEU score.

9 Summary

This paper describes GTCOM’s neural machine
translation systems for the WMT19 shared news
translation task. For all translation directions, we
build systems mainly from data aspect, including
acquiring more quantities and higher quality data.
Besides, decoding strategies such as GSME algo-
rithm and R2L reranking give us more robust and
high quality translation. Finally, the directions of
English to Gujarati (unconstrained) and Lithua-
nian to English get the best case-sensitive BLEU
score of all systems.
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Abstract

We build parfda Moses statistical machine
translation (SMT) models for most language
pairs in the news translation task. We experi-
ment with a hybrid approach using neural lan-
guage models integrated into Moses. We ob-
tain the constrained data statistics on the ma-
chine translation task, the coverage of the test
sets, and the upper bounds on the translation
results. We also contribute a new testsuite for
the German-English language pair and a new
automated key phrase extraction technique for
the evaluation of the testsuite translations.

1 Introduction

Parallel feature weight decay algorithms
(parfda) (Biçici, 2018) is an instance se-
lection tool we use to select training and language
model instances to build Moses (Koehn et al.,
2007) phrase-based machine translation (MT)
systems to translate the test sets in the news
translation task at WMT19 (Bojar et al., 2019).
The importance of parfda increase with the
increasing size of the parallel and monolingual
data available for building SMT systems. In
the light of last year’s evidence that shows that
parfda phrase-based SMT can obtain the 2nd
best results on a testsuite in the English-Turkish
language pair (Biçici, 2018) when generating the
translations of key phrases that are important for
conveying the meaning, we obtain phrase-based
Moses results and its extension with a neural
LM in addition to the n-gram based LM that we
use. We experiment with neural probabilistic LM
(NPLM) (Vaswani et al., 2013). We record the
statistics of the data and the resources used.

Our contributions are:

• a test suite for machine translation that is out
of the domain of news task to take the chance
of taking a closer look at the current status of

Figure 1: parfda Moses SMT workflow.

SMT technology used by the task participants
when translating 38 sentences about interna-
tional relations concerning cultural artifacts,

• parfdaMoses phrase-based MT results and
data statistics for the following translation di-
rections:

– English-Czech (en-cs)
– English-Finnish (en-fi), Finnish-English

(fi-en),
– English-German (en-de), German-

English (de-en),
– English-Kazakh (en-kk), Kazakh-

English (kk-en),
– English-Lithuanian (en-lt), Lithuanian-

English (lt-en),
– English-Russian (en-ru), Russian-

English (ru-en),

• upperbounds on the translation performance
using lowercased coverage to identify which
models used data in addition to the parallel
corpus.

The sections that follow discuss the instance se-
lection model (Section 2), the machine translation
model (Section 3), the testsuite used for evaluating
MT in en-de and de-en, and the results.
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S → T
Training Data LM Data

Data #word S (M) #word T (M) #sent (K) tcov #word (M) tcov
en-cs C 587.2 659.8 44436 0.758 1439.6 0.835
en-cs parfda 111.4 98.4 2474 0.693 371.3 0.779
en-de C 832.6 879.0 39959 0.792 4252.0 0.864
en-de parfda 139.0 130.7 2467 0.736 450.8 0.795
de-en C 879.0 832.6 39959 0.865 12382.8 0.92
de-en parfda 132.6 141.3 2441 0.827 487.8 0.871
en-fi C 96.2 125.3 5657 0.528 1598.9 0.746
en-fi parfda 73.9 56.1 2168 0.512 419.1 0.676
fi-en C 130.1 100.4 6254 0.783 12382.8 0.926
fi-en parfda 51.1 66.4 2021 0.771 416.8 0.869
en-kk C 1.6 1.9 204 0.262 173.5 0.576
en-kk parfda 1.9 1.5 202 0.242 175.0 0.576
kk-en C 1.9 1.6 204 0.591 12382.8 0.907
kk-en parfda 1.5 1.9 202 0.584 337.7 0.835
en-lt C 38.2 45.0 2191 0.532 1523.4 0.539
en-lt parfda 45.0 38.2 2191 0.532 310.7 0.539
lt-en C 45.0 38.2 2191 0.794 12382.8 0.933
lt-en parfda 34.1 40.5 1877 0.754 383.5 0.89
en-ru C 212.0 181.9 9296 0.738 11459.4 0.888
en-ru parfda 92.3 80.0 2260 0.713 469.0 0.803
ru-en C 181.7 211.8 9287 0.857 12382.8 0.937
ru-en parfda 78.2 90.5 2212 0.839 437.0 0.894

Table 1: Statistics for the training and LM corpora in the constrained (C) setting compared with the parfda
selected data. #words is in millions (M) and #sents in thousands (K). tcov is target 2-gram coverage.

scov tcov
1 2 3 4 5 1 2 3 4 5

en-cs 0.9762 0.8399 0.5686 0.2809 0.1085 0.9792 0.7557 0.3985 0.1646 0.0618
en-de 0.9673 0.8683 0.6288 0.3301 0.1296 0.96 0.7916 0.5102 0.2438 0.0898
en-fi 0.9535 0.779 0.4829 0.2122 0.0745 0.9009 0.5283 0.2337 0.0849 0.0229
en-kk 0.8399 0.4643 0.1623 0.0363 0.0075 0.7404 0.262 0.0648 0.0104 0.0017
en-lt 0.9519 0.7214 0.3896 0.1374 0.0355 0.909 0.5324 0.2125 0.0663 0.0156
en-ru 0.9743 0.8251 0.5362 0.2434 0.0813 0.9606 0.7384 0.4102 0.1794 0.0673

Table 2: Constrained training data lowercased source feature coverage (scov) and target feature coverage (tcov) of
the test set for n-grams.

2 Instance Selection with parfda

parfda parallelize feature decay algorithms
(FDA) (Biçici and Yuret, 2015), a class of instance
selection algorithms that decay feature weights,
for fast deployment of accurate SMT systems.
Figure 1 depicts parfda Moses SMT workflow.

We use the test set source sentences to select
the training data and the target side of the selected
training data to select the LM data. We decay the
weights for both the source features of the test set
and the target features that we already select to in-
crease the diversity. We select about 2.2 million
instances for training data and about 12 million
sentences for each LM data not including the se-
lected training set, which is added later. Table 1
shows size differences with the constrained dataset
(C).1 We use 3-grams to select training data and 2-
grams for LM data and split the hyphenated words

1Available at https://github.com/bicici/
parfdaWMT2019

using the “-a” option of the tokenizer used in
Moses (Sennrich et al., 2017). tcov lists the tar-
get coverage in terms of the 2-grams of the test
set. The maximum sentence length is set to 126.
Table 2 lists the lowercased coverage of the test set
by the constrained training data of WMT19.

3 Machine Translation with Moses,
kenlm and nplm, and PRO

We train 6-gram LM using kenlm (Heafield et al.,
2013). For word alignment, we use mgiza (Gao
and Vogel, 2008) where GIZA++ (Och and Ney,
2003) parameters set max-fertility to 10, the num-
ber of iterations to 7,5,5,5,7 for IBM models
1,2,3,4, and the HMM model, and learn 50 word
classes in three iterations with the mkcls tool dur-
ing training. We use “-mbr” option when de-
coding the test set.3 The development set con-

3As practiced in the parallel corpus filter-
ing task http://www.statmt.org/wmt19/
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BLEU de-en fi-en kk-en lt-en en-cs en-de en-fi en-kk en-lt
kenlm 0.309 0.202 0.105 0.225 0.152 0.235 0.127 0.029
nplm 0.292 0.18 0.215 0.142 0.119 0.029 0.073
bilingual nplm 0.102 0.03
kenlm + nplm 0.307 0.226 0.156 0.238 0.03 0.078
kenlm with hyphen splitting 0.3074 0.2024 0.0999 0.2245 0.1522 0.2395 0.1294 0.03 0.0828

Table 3: parfda BLEU cased results with different LM on text that is not hyphen splitted compared with after
hyphen splitting.

BLEU de-en fi-en kk-en lt-en ru-en en-cs en-de en-fi en-kk en-lt en-ru
parfda 0.3074 0.2024 0.0999 0.2245 0.3179 0.1522 0.2395 0.1294 0.03 0.0828 0.1846
topC 0.428 0.33 0.305 0.365 0.401 0.299 0.449 0.274 0.111 0.191 0.363

- parfda
avg diff 0.1405

Table 4: parfda results compared with the top results in WMT19 and their difference.2

tains up to 5000 sentences randomly sampled from
previous years’ development sets (2013-2018) and
remaining come from the development set for
WMT19. We obtain robust optimization results
using monotonically increasing n-best list size in
the beginning of tuning with pairwise ranking op-
timization (PRO) (Hopkins and May, 2011; Biçici,
2018). This allows us to find parameters whose
tuning score reach 1% close to the best tuning pa-
rameter set score in only 4 iterations but we still
run tuning for 21 iterations. Truecasing updates
the casing of words according to the most com-
mon form. We truecase the text before building
the SMT model as well as after decoding and then
detruecase before preparing the translation, which
provided better results than simply detruecasing
after decoding (Biçici, 2018).

We trained nplm LM in 10 epochs. We also ex-
perimented with bilingual nplm, which uses nplm
in a bilingual setting to use both the source and
the target context and builds a LM on the training
set (Devlin et al., 2014). Both nplm and bilingual
nplm can be used with Moses as a feature within
its configuration file.4 On average, results in Ta-
ble 3 shows that using only nplm decrease the
scores and improvements are obtained when both
nplm and kenlm are used. However, the gain
from splitting hyphenated words is more and it is
a less computationally demanding option. kenlm
takes about 20 minutes whereas building a single
nplm model took us 11.5 to 14.25 days or 1000
times longer and it takes about 56 GB space on
the disk.

parallel-corpus-filtering.html
4http://www.statmt.org/moses/?n=

FactoredTraining.BuildingLanguageModel#
ntoc32

parfda results at WMT19 are in Table 4 us-
ing BLEU over tokenized text where we compare
with the top constrained submissions (topC). All
top models use NMT in 2019 and most use back-
translations, which means that their tcov is upper
bounded by LM tcov. topC is 14.05 BLEU points
on average better than parfda in 2019 and the
difference was 12.88 in 2018.

4 Translation Upper Bounds with tcov

We obtain upper bounds on the translation perfor-
mance based on the target coverage (tcov) of n-
grams of the test set found in the selected parfda
training data using lowercased text. For a given
sentence T ′, the number of OOV tokens are iden-
tified:

OOV r = round((1− tcov) ∗ |T ′|) (1)

where |T ′| is the number of tokens in the sen-
tence. We obtain each bound using 500 such in-
stances and repeat for 10 times. tcov BLEU bound
is optimistic since it does not consider reorder-
ings in the translation or differences in sentence
length. Each plot in Figure 2 locates tcov BLEU
bound obtained from each n-gram and from n-
gram tcovs combined up to and including n and
� locates the parfda result and F locates the
top constrained result. Based on the distance be-
tween the top BLEU result and the bound, we can
obtain a sorting of the difficulty of the translation
directions in Table 5.

5 German-English Testsuite

We prepared a MT test suite that is out of the
domain of news translation task to take a closer

4We use the results from matrix.statmt.org.
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Figure 2: parfda results (�) and OOV r tcov BLEU upper bounds for kk and lt.

BLEU distance translation direction
0.0041 en-de
0.0092 en-kk
0.0277 en-ru
0.0296 en-fi
0.0372 de-en
0.0407 kk-en
0.0594 lt-en
0.0722 en-lt
0.0849 ru-en
0.0943 fi-en
0.1365 en-cs

Table 5: Difficulty of translation directions based on
the distance of the top result to the upper bound.

look at the current status of SMT technology used
by the task participants to translate 38 sentences
about international relations concerning cultural
artifacts in German and English. The sentences
and their translations are available at https:
//github.com/bicici/SMTData sourced
from the press releases of the Prussian Cultural
Heritage Foundation.5 The scores of participants
are in Table 10 in terms of BLEU (Papineni et al.,
2002) and F1 (Biçici, 2011) scores. However, such
automatic evaluation metrics treat the features or
n-grams equivalently or group them based on their
length, without knowledge about their frequency
in use or significance in conveying the meaning.

Word order in a sentence does not contain the
majority of information (Landauer, 2002) for vo-
cabulary size |V | ≥ n where n is the average
sentence length. For n = 25 words with |V | =
105 with equivalent representation using n = 10
phrases with |V | = 107 or using n = 50 BPE
tokens with |V | = 104 or using n = 125 chars

5http://www.preussischer-kulturbesitz.
de

bits % info.

w
or

d order log2 25! 83.7 16.8%
choice log2 10

125 415.2 83.2%
total log2 25!× 10125 498.9 100.0%

ph
ra

se order log2 10! 21.8 8.6%
choice log2 10

70 232.5 91.4%
total log2 10!× 1070 254.3 100.0%

B
PE

order log2 50! 214.2 24.4%
choice log2 10

200 664.4 75.6%
total log2 50!× 10200 878.6 100.0%

ch
ar

order log2 125! 695.2 80.7%
choice log2 10

50 166.1 19.3%
total log2 125!× 1050 861.3 100.0%

Table 6: Information contribution from granular parts
of a sentence.

with |V | = 102 have differring contribution to
the information of the sentence in bits from to-
ken order or choice (Table 6). If we use keyword
subsequences for F1 based evaluation, we would
cover about 91% of the information in a sentence
whereas if we include punctuation characters, they
will contribute at most 19.3%.

Key phrase identification is important since
when scores are averaged, important phrases that
are missing only decrease the score by 1

|p|N|p|
for BLEU calculation for a phrase of length |p|
over N|p| phrases with length |p|. We extend our
evaluation of the testsuite translations using key-
words (Biçici, 2018).

We automate key phrase identification within a
reference set of N sentences by selecting among
NX candidate n-grams that:

• are representative and few
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min XT (αXp · Xl ·
1

−βXc
+111NX

)

s.t. Xd(X · L) ≥ 0.5 LN min. coverage
0 ≤ X ≤ 1
α = 1, β = 2

Variables:
X ∈ RNX phrase selection vector
Xp ∈ RNX phrase probability vector
Xc ∈ RNX phrase count vector
L ∈ RNX phrase length vector
LN ∈ RN sentence length vector
Xd ∈ RN×NX phrase distribution matrix

Table 7: Optimization constraints.

system F1 # match # in reference
online-B 0.869 63 82
Facebook FAIR 0.8531 61 82
NEU 0.8286 58 82
MLLP-UPV 0.8286 58 82
online-Y 0.8286 58 82
MSRA 0.8201 57 82
RWTH Aachen 0.8201 57 82
UCAM 0.8201 57 82
online-A 0.8029 55 82
online-G 0.7941 54 82
parfda 0.7761 52 82
PROMT NMT 0.7761 52 82
TartuNLP-c 0.7761 52 82
uedin 0.7761 52 82
dfki-nmt 0.7481 49 82
JHU 0.6557 40 82
online-X 0.4381 23 82

Table 8: de-en testsuite F1 scores with key phrases.

• cover significant portion of the text

• are frequent (Xc for counts of phrases)

• are less likely to be found (Xp for the proba-
bility of phrases)

and formulate the task as a linear program in Ta-
ble 7. We use up to 6-grams and set minimum cov-
erage of each sentence to 0.5. We removed some
stop words from the phrases: ’of’, ’the’, ’and’, ’of
the’, ’a’, ’an’ and replaced those parts with ’.*?’
and obtained regular expressions. The key phrases
we obtain are listed in Table 9. The key phrases
are used to evaluate using the F1 score (Table 10).
We plan to extend this work towards more objec-
tive key phrase evaluation methods.

6 Conclusion

We use parfda for building task specific MT
systems that use less computation overall and re-
lease our engineered data for training MT systems.

We also contribute a new testsuite for the German-
English language pair and a new automated key
phrase extraction technique for evaluation.
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Ergun Biçici. 2018. Robust parfda statistical machine
translation results. In Third Conf. on Statistical Ma-
chine Translation (WMT18), Brussels, Belgium.
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A de-en Testsuite Sentences

They live in seven communities
been granted by .*? community
Southwestern Alaska has been inhabited
Hermann Parzinger
speaking groups .*? Indians immigrated
Ethnological Museum
aim .*? building up
Chugach Alaska Corporation
objects
Chugach
exhibition module in
northwest coast
ethnographic observations than by tales
goods from Chenega Island
to protect people from danger
were therefore removed unlawfully from
indications are that
graves were opened solely for
Ethnological
are two broken masks
cultural heritage
Indians immigrated
items concerned are grave goods
origin .*? history
contacts with Europe existed since
Prince William Sound
grave goods identified in
color on these ones indicates
live in seven communities
Chugach people exist today
journey is .*? impressive
consent had been granted by
virtual presentation .*? all
proposal to this effect from
President
museum at
nineteenth century for
diplomatic note in support
it was decided to return
Corporation asked .*? Ethnological Museum
indigenous peoples
Memorandum .*? Understanding with
has been inhabited for thousands
American northwest coast
now be returning them to

Table 9: Key phrases for the de-en testsuite.
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Table 10: Testsuite BLEU and F1 results.
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loic.barrault@univ-lemans.fr

Abstract

This paper describes the neural machine trans-
lation (NMT) systems of the LIUM Labora-
tory developed for the French↔German news
translation task of the Fourth Conference on
Machine Translation (WMT 2019). The cho-
sen language pair is included for the first time
in the WMT news translation task. We de-
scribe how the training and the evaluation data
was created. We also present our participa-
tion in the French↔German translation direc-
tions using self-attentional Transformer net-
works with small and big architectures.

1 Introduction

Since the start of the WMT translation shared
tasks in 2006, English has been involved in the
majority of translation directions. Few exceptions
have been seen in 2012 and 2013 where Czech was
also proposed as source and target for several lan-
guage pairs. This overwhelming disparity is due to
the fact that English is available in large quantity,
in both monolingual and bilingual corpora.

We think that this may be problematic for re-
search purposes since considering English (either
as source or target language) may hide many lin-
guistic problems. For example, considering gen-
der agreement, which does not exist in English,
translating from English is harder because of the
lack of source side information, and translating
towards English is simpler since the agreement
should be ignored. Generally speaking, English is
a rather morphologically impoverished language,
for instance having few gender agreement cases
or conjugated verb forms. This contrasts with
French and German where number and gender
agreements are very frequent. That is why we in-
troduced two new translation directions involving
two European languages, namely French and Ger-
man.

2 DE↔FR language pair

Training data

The training data for this language pair was cre-
ated by cross-matching the training data from the
previous WMT shared tasks for the EN-FR and
EN-DE language pairs. The details of the corpora
are provided in Table 1 in which we provide the
original sizes of EN-FR and EN-DE corpora and
the extracted parallel corpora in DE-FR. Overall,
we were able to create a German-French parallel
corpus with 153.2M and 171.1M words respec-
tively.

Development and test data

The data collected for the FR↔DE language pair
has been created from several online news web-
sites. The development and test sets have been
created from news articles in both French and Ger-
man. The development set is the fruit of a col-
laboration with the Faculty of Literature and Hu-
manities of the University of Le Mans during sev-
eral Digital Humanities (DH) lab sessions. The
purpose of these quality sessions is twofold: on
the first hand, students would learn and compre-
hend the inherent concepts of using a computer
assisted translation (CAT) tool in the context of
DH classes (Baillot et al., 2019). On the other
hand, the translated data is intended to be used
for Machine Translation research purposes. This
process led to a 1512 sentences1 development cor-
pus distributed during the WMT2019 shared task.
While creating the development data we intention-
ally mixed (to some degree) the translation di-
rections, therefore 462 sentences were translated
from French to German and the reverse for the re-
maining 1050 sentences. The same process has

1The translations have been revised by professors from
the Faculty of Literature and Humanities in order to reach the
desired quality
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FR-EN DE-EN FR-DE

europarl-v7
2M 1.9M 1.7M

(52.5M/50.3M) (44.6M/47.9M) (46M / 41M)

Common Crawl
3.2M 2.4M 622k

(76.6M/70.7M) (47M/51.3M) (14M/12.2M)

ParaCrawl
40.4M 31.8M 7.2M

(663M/640M) (467M/502M) (110.6M/99.6M)

dev08-14
18k

– – (417.1k/369.5k)

Table 1: Training corpora statistics (number of sentences) for FR↔DE News translation shared task. The second
line of each cell corresponds to the number of tokens in French followed by the number of tokens in German.

been followed for the test set creation: 335 of
the 1701 test sentences have been produced from
French documents and the 1366 remaining pairs
from German documents. We note that 756 out of
the German 1366 German sentences in the test set
have been translated into French by professional
translators2. The dev and test sets are freely dis-
tributed and available for download3.

#lines #token FR #token DE
dev2019 1512 33833 28733
test2019 1701 38138 31560

Table 2: FR-DE dev and test set statistics.

3 LIUM Submissions

All our systems are constrained as we only used
the supplied parallel data (described in table 1)
with additional back-translations created from a
subset of the monolingual news data made avail-
able by the shared task organizers.

3.1 Model Description
For our submissions we used the Transformer
(Vaswani et al., 2017) sequence-to-sequence
model as implemented in fairseq (Ott et al., 2019).
Transformer is the state of the art NMT model
which rely on a multi-headed attention applied as
self-attention to source and target sentences. Our
models are based on both small and big Trans-
former configurations. All experiments with the
big transformer are models with 6 blocks in the
encoder and decoder networks following the con-
figuration described in (Ott et al., 2018). With re-
spect to the small transformer model, we also used

2This was carried out by LinguaCustodia
3dev and test sets can be downloaded from https://

github.com/lium-lst/euelections

a 6 blocks encoder and decoder network with an
embedding layer of size 512, a feed-forward layer
with an inner dimension of 1024, and a multi-
headed attention with 4 attention heads.

We use a vocabulary of 35K units based on a
joint source and target byte pair encoding (Sen-
nrich et al., 2016). We set the batch size to 2048
tokens and maximum sentence length to 150 BPE
units, in order to fit the big Transformer configu-
ration to our GPUs (NVIDIA GeForce GTX 1080
Ti with 11 GB RAM).

3.2 Data Preparation

Our preparation pipeline consists of a pre-
processing step performed using scripts from
Moses (Koehn et al., 2007). We replace the uni-
code punctuation, normalize the punctuation and
remove the non-printing characters before the tok-
enization. After the tokenization step, we perform
a cleaning stage where all source and target sen-
tences with an overlapping rate higher than 65%
are deleted. Statistics of the training corpora af-
ter the cleaning process are presented in table 2.
These values should be contrasted with those of
table 1 to assess the effect of the cleaning process.
As it can be seen from tables 1 and 2, the effect
of the cleaning step is more pronounced for the
noisy parallel corpora (i.e. ParaCrawl and Com-
mon Crawl). For the europarl-v7 corpus, more
than a thousand lines are removed after cleaning
which mainly corresponds to English sentences in
both languages: FR and DE as well as sentences
with long lists of numbers.

In addition to the available parallel data, we
have used monolingual News Crawl articles as
additional synthetic bilingual data. We used
only news 2018 from which we selected a sub-
part based on cross-entropy data selection method
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#lines #token FR #token DE
europarl-v7 1.7M 45.9M 40.9
Common Crawl 585k 13M 11M
ParaCrawl 6.7M 107M 95M
dev08-14 18k 417.1k 369.5k

Table 3: Training corpora statistics for FR↔DE sys-
tems after the cleaning process.

(Moore and Lewis, 2010). Data selection was per-
formed with the europarl corpus as in-domain data
and using the XenC Toolkit (Rousseau, 2013). By
doing this, we were able to extract 3.4M German
sentences out of the 38.6M sentences of the mono-
lingual German 2018 News Crawl corpus. Sim-
ilarly, 3.3M sentences were extracted out of the
8.2M monolingual French 2018 News Crawl.

4 Experiments and Results

In this section, we first present the results for Ger-
man to French translation direction followed by
the French to German direction. We use BLEU
as evaluation metric (Papineni et al., 2002) and all
reported scores are calculated using case-sensitive
detokenized BLEU with multi-bleu.pl. All results
use beam search with a beam width of 12 and
length penalty of 1.

4.1 German to French
In this section we present the results for German
to French direction. We have tried three different
configurations differentiated by the training data
used to create the NMT system. For each of these
configurations, we trained a small and a big trans-
former model.

Given the prior knowledge about the noisy qual-
ity of the ParaCrawl corpus, we first tried to train
some NMT systems with all available parallel data
from table 3 except ParaCrawl. Table 4 contains
the results for this setting. We report the re-
sults with the best checkpoint and an ensemble-
decoding with 2 and 5 checkpoints for small and
big Transformer versions. As expected, the big
transformer outperforms the small version and we
obtain an improvement of 1.69 BLEU point for the
ensemble-decoding of 5 checkpoints.

Table 5 shows the BLEU scores when the
ParaCrawl corpus is used. We obtain almost the
same results for small transformer version while
there is a small improvement of 0.46 BLEU point

de→ fr dev (BLEU)
1. Small Transformer (x1) 25.39
+Ensemble (x2) 25.81
+Ensemble (x5) 25.92
2. Big Transformer (x1) 26.27
+Ensemble (x2) 27.04
+Ensemble (x5)* 27.61

Table 4: BLEU results for DE→FR NMT systems us-
ing all training data but ParaCrawl corpus.

for the big model compared to the results reported
in table 4 (without ParaCrawl).

de→ fr dev (BLEU)
1. Small Transformer (x1) 25.18
+Ensemble (x2) 25.59
+Ensemble (x5) 25.93
2. Big Transformer (x1) 26.83
+Ensemble (x2) 27.80
+Ensemble (x5) 28.07

Table 5: BLEU results for DE→FR NMT systems with
all training data including ParaCrawl.

Table 6 contains our results for WMT2019
training data with back-translation4. As ex-
pected, adding back-translations improves the re-
sults for both configurations: an increase of about
1% BLEU point is observed for small and big
transformer models compared to the same sys-
tems without back-translation (see systems labeled
”+Ensemble (x5)” in Table 4).

de→ fr dev (BLEU)
1. Small Transformer (x1) 26.64
+Ensemble (x2) 26.95
+Ensemble (x5) 26.99
2. Big Transformer (x1) 27.65
+Ensemble (x2) 28.40
+Ensemble (x5) 28.63

Table 6: BLEU results for DE→FR NMT systems with
back-translation training data and without ParaCrawl
parallel data.

4The FR→DE back-translations have been created using
the small transformer (x1) system from table 7

131



Asterisk (*) in Table 4 marks our submitted
model for German to French official evaluation.
This model obtains a BLEU score of 33.4. Our
best system with back-translation was also sub-
mitted after the evaluation deadline and obtain a
BLEU score of 34.6.

4.2 French to German
We performed the same set of experiments as
German to French. Table 7 shows the BLEU
scores when NMT systems are trained without the
ParaCrawl corpus. Unlike the German to French
direction, only a small improvement is observed
by using the big transformer architecture com-
pared to the small one (21.18 with big model and
21.08 for small model).

fr→ de dev (BLEU)
1. Small Transformer (x1) 20.28
+Ensemble (x2) 20.73
+Ensemble (x5) 21.09
2. Big Transformer (x1) 20.42
+Ensemble (x2) 21.03
+Ensemble (x5) 21.18

Table 7: Results in terms of BLEU for FR→DE NMT
systems using all the available training data except the
ParaCrawl corpus.

As for the DE→Fr direction, we also trained sys-
tems by adding ParaCrawl data and results are pre-
sented in Table 9. As was formerly the case with
DE→Fr, no improvement is observed by adding
the Paracrawl corpus to the small transformer
model. The model works less well than without
Paracrawl and a drop of 0.4% BLEU points is ob-
served when we compare the ”+Ensemble (x5)” of
small transformer models from tables 7 and 8. For
the big transformer model there is an improvement
of 0.76 BLEU point when the Paracrawl corpus is
included in the training data.

Table 9 presents the results when the training
set is extended with back-translated data5. Re-
sults shows a consistent improvement with back-
translated data. We note an improvement of
0.4 BLEU points in comparison with the best
small and big transformer models without back-
translation. Asterisk (*) in Table 9 marks our sub-
mitted model for French to German official evalu-
ation.

5The DE→FR back-translations have been created using
the small transformer (x1) system from Table 4

fr→ de dev (BLEU)
1. Small Transformer (x1) 20.15
+Ensemble (x2) 20.29
+Ensemble (x5) 20.65
2. Big Transformer (x1) 21.37
+Ensemble (x2) 21.80
+Ensemble (x5) 21.94

Table 8: Results in terms of BLEU for FR→DE NMT
systems using all the available training data including
ParaCrawl corpus.

fr→ de dev (BLEU)
1. Small Transformer (x1) 21.15
+Ensemble (x2) 21.45
+Ensemble (x5) 21.50
2. Big Transformer (x1) 21.82
+Ensemble (x2)* 22.03
+Ensemble (x5) 22.34

Table 9: Results in terms of BLEU for the FR→DE
NMT systems with back-translation training data but
without ParaCrawl parallel data.

5 Conclusion

In this paper, we presented the LIUM partici-
pation to the WMT2019 news translation shared
task. This year we have added for the first time
the French-German language pair to the WMT
news translation task. The parallel training data
were created by cross-matching the EN-FR and
EN-DE training data from previous WMT shared
tasks. The LIUM has participated in the Ger-
man ↔ French translation task with an ensem-
ble of neural machine translation models based on
the Transformer architecture. Our models were
trained using a cleaned subset of the provided
training dataset, and synthetic parallel data gen-
erated from the provided monolingual corpora.
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Abstract

This paper describes the University of Mary-
land’s submission to the WMT 2019 Kazakh
to English news translation task. We study the
impact of transfer learning from another low-
resource but related language. We experiment
with different ways of encoding lexical units
to maximize lexical overlap between the two
language pairs, as well as back-translation and
ensembling. The submitted system improves
over a Kazakh–only baseline by +5.45 BLEU
on newstest2019.

1 Introduction

Neural Machine Translation (NMT) outperforms
traditional phrase-based statistical machine trans-
lation provided that large amounts of parallel data
are available (Bahdanau et al., 2014; Sennrich
et al., 2017; Vaswani et al., 2017). However,
it performs poorly under low-resource conditions
(Koehn and Knowles, 2017).

While much work addresses this problem via
semi-supervised learning from monolingual text
(Sennrich et al., 2016; He et al., 2016), we fo-
cus on transfer learning from another language
pair (Zoph et al., 2016; Nguyen and Chiang, 2017;
Lakew et al., 2018). In this setting, an NMT sys-
tem is firstly trained using auxiliary parallel data
from a so-called “parent” language pair and then
the trained model is used to initialize a “child”
model which is further trained on a low-resource
language pair. Similar approaches that support
cross-lingual transfer learning for Multi-lingual
NMT train a model on the concatenation of all data
instead of employing sequential training (Gu et al.,
2018; Zhou et al., 2018; Wang et al., 2019).

Transfer learning has been found effective in
submissions to WMT in previous years: Kocmi
et al. (2018) reported improvements of +2.4
BLEU on the low-resource Estonian→English

translation task by transfer learning from
Finnish→English. Interestingly, Kocmi and
Bojar (2018) observed that the transfer learn-
ing approach is still effective when there is no
relatedness between the “child” and “parent”
language-pairs and also hypothesize that the size
of the parent training set is the most important fac-
tor leading to translation quality improvements.
However, previous work has also empirically
validated that transfer learning benefits most
when “child”-“parent” languages belong to the
same or linguistically similar language family
(Dabre et al., 2017). Specifically, Nguyen and
Chiang (2017) showed consistent improvements
in two Turkic languages via transfering from
another related, low-resource language.

Taking those recent results into consideration,
our main focus at WMT19 is to examine transfer
learning for the Kazakh–English language pair us-
ing additional parallel data from Turkish–English.
While using distinct writing systems, both source
languages belong to the Turkic language family
and preserve many morphological and syntactic
features common for that group (Kessikbayeva
and Cicekli, 2014). As a result, they constitute a
suitable “child”-“parent” language-pair choice for
exploring transfer learning between related low-
resource languages. In this direction, we conduct
experiments to address the following questions:

• How can we represent lexical units to exploit
vocabulary overlap between languages? We
compare bilingual and monolingual byte-pair
encoding models with the recently proposed
soft decoupled encoding model.

• How can we leverage both “child” and “par-
ent” parallel data to obtain synthetic back-
translated data from monolingual resources?
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2 Approach

Our method follows a simple strategy used in
Wang et al. (2019) for multilingual training: we
directly train NMT models on the concatenation
of parallel data covering both the “child” and “par-
ent” languages with no metadata to distinguish be-
tween them.1

Within this framework, we study the impact of
(a) different lexical representations that attempt
to maximize parameter sharing across related lan-
guages, (b) romanization to increase overlap be-
tween Turkish and Kazakh which are originally
written in distinct scripts, (c) synthetic training
data obtained by back-translation.

2.1 Lexical Units

How can we define lexical units to maximize
information sharing across related source lan-
guages? We compare different configurations of
sub-word segmentations using different variants
of the standard Byte-Pair Encoding (BPE) frame-
work (Sennrich et al., 2016), and compare them
with the Soft Decoupled Encoding framework
that exploits character n-gram representations of
words instead of sub-words (Wang et al., 2019).

Joint BPEs (JBPEs) BPEs are learned jointly
from the concatenation of “child” and “parent”
parallel data. The advantage of this strategy
is that the sub-word segmentations of related
words in the two languages are encouraged to
be more aligned; thus enabling the sharing of
their representations on the source side due
to a larger vocabulary overlap. Although, the
“child” language might be “overwhelmed” by
the “parent” language when there is a significant
difference in the amount of their data (Neubig and
Hu, 2018). This could lead to over-segmentation
of the “child” language and subsequently limit the
expressive power of the NMT system.

Separate BPEs (SBPEs) BPEs are learned
separately for each language. This framework
was found to be effective in the multilingual
setting, especially for translation from extremely
low-resource languages (Neubig and Hu, 2018).
However, learning the merging operations sepa-
rately might lead to unaligned sub-units between

1We did not experiment with sequential training of the
“parent” and “child” language pairs to establish a fair com-
parison between our BPE-based models and the SDE model
that opts for joint training.

the two languages that fail to exploit relationships
between their lexical representations.

Soft Decoupled Encoding (SDE) Small dis-
crepancies in the spelling of words that share
the same semantics across the two languages
could lead to different segmented sub-units and
hinder the lexical-level sharing between them.
To take into account those spelling differences,
we further experiment with the SDE encoding
framework that is not based on any pre-processing
segmentation. Specifically, SDE represents a
word as a decomposition of two components:
a character encoding that models the language-
specific spelling of the word and a latent semantic
embedding that captures its language-agnostic
semantics. Following, we briefly summarize the
main SDE components as proposed in Wang et al.
(2019):

Lexical embedding Each word w is first decom-
posed to its bag of character n-grams (BoN(w)).
Let C be the number number of character n-grams
in the vocabulary and D be the dimension of the
corresponding character n-gram embeddings. To
acquire a lexical representation c(w), the word is
looked up to an embedding matrix Wc ∈ RC×D

as shown below:

c(w) = tanh(BoN(w) ·Wc) (1)

Language Specific Transformation Next each
word is passed through a language dependent
transformation. For each language Li a matrix
WLi ∈ RD×D is learned and the transformed em-
beddings ci(w) is computed:

ci(w) = tanh(c(w) ·WLi) (2)

Latent Semantic Embedding The shared semantic
concepts among languages are represented by a
matrix Ws ∈ RS×D, where S corresponds to the
number of semantic concepts a language can ex-
press. The latent embeddings of a word w is then
given as:

elatent(w) = Softmax(ci(w) ·W T
s ) ·Ws (3)

Finally, the SDE embedding of word w is
extracted as a combination of the language-
dependent lexical encoding and the latent embed-
ding:

eSDE(w) = elatent(w) + ci(w) (4)

135



Encoding Original Romanized

Word molekül molekula molekuel molekula
SBPEs m_ol_ek_ül mol_ek_ul_a m_ol_ek_uel mol_ek_ul_a
JBPEs mol_ek_ül mol_ek_ ul_a mol_ek_uel mol_ek_ula

Word fosfor fosfor fosfor fosfor
SBPEs f_os_for f_os_for f_os_for f_os_for
JBPEs fos_for f_os_for fos_for fos_for

Word kalamar kal~mar kalamar kalmar
SBPEs kal_am_ar k_al~_ mar kal_am_ar kalm_ar
JBPEs kal_am_ar k_al~_ mar kalam_ar kal_mar

Table 1: Examples of words sharing significant lexical overlap in Kazakh and Turkish among with their corre-
sponding sub-words segmentations.

2.2 Romanization

Given that the provided Kazakh and Turkish data
are written in the Cyrillic and Latin scripts respec-
tively, we investigate the impact of mapping text
in the two languages into a common orthography.
We transliterate both the “child” and the “parent”
data using a transliteration tool2 that applies the
same romanization rules to encourage more over-
lap between child and parent data. Table 1 illus-
trates how romanization makes shared vocabulary
and similarity between the two languages more ex-
plicit than using the original scripts.

Table 2 summarizes the statistical overlap on
the source side vocabularies between the two lan-
guages for different lexical encodings with and
without romanization. This analysis indicates that
using the original script can be seen as an attempt
to explore transfer learning when the lexical-level
sharing between the two languages is limited. On
the other hand, the vocabulary overlap between
them is significantly increased once we romanize
the data.

2.3 Synthetic Data

We further explore different ways to incorporate
target-side English monolingual data provided
by the competition into low-resource NMT.
Following the widely used back-translation ap-
proach (Sennrich et al., 2016), we create synthetic
parallel data and then train new NMT models on
the mixture of real and synthetic parallel data.

Empty source baseline The source side of each
monolingual example sentence is linked to an

2https://www.isi.edu/~ulf/uroman.html

Method Romanization # Merge op. Overlap

JBPEs

3
32K

0.44
7 0.13
3

64K
0.33

7 0.11

SBPEs

3
32K

0.18
7 0.04
3

64K
0.13

7 0.04

n-gram Overlap

SDE
3 4 0.67
3 5 0.62

Table 2: Statistical overlap results between the vocab-
ularies of the “child” and “parent” languages on the
source sides for different encoding schemes. # Merge
op. refers to the number of merge operations when
BPEs are explored. For the SDE method we compute
the overlap between the n-gram character vocabularies
(e.g., n-gram=4 corresponds to n={1,2,3,4}).

empty sentence (denoted by an artificial <null>
token).

Back-translation We create synthetic source
sentences from automatically back-translating
each target (English) sentence into the source
language (Kazakh). Within this setting, we only
use the original English-Kazakh parallel data
to train a model that translates in the opposite
direction.

Back-translation+transfer Given the data
scarcity of the Kazakh parallel data we also
attempt to incorporate both Kazakh and Turkish
data to train a model that translates in the opposite
direction. In order to produce output that is
more similar to our main language of interest, we
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introduce two artificial tokens (<2kk>, <2tr>)
at the beginning of the input sentence to indicate
the target language the model should translate to
(Johnson et al., 2017). After the reversed system
is trained we back-translate each target sentence
to a Kazakh synthetic sentence.3

3 Model Configuration

Our NMT systems are built upon the publicly
available code4 of Wang et al. (2019) and are
sequence-to-sequence 1-layer attentional long-
short term memory units (LSTMs) with a hidden
dimension of 512 for both the encoder and the de-
coder. The word embedding dimension is kept at
128, and all other layer dimensions are set to 512.
We use a dropout rate of 0.3 for the word embed-
ding and the output vector before the decoder Soft-
max layer. The batch size is set to be 1500 words.
We evaluate by development set BLEU score (Pa-
pineni et al., 2002) for every 2500 training batches.
For training, we use the Adam optimizer with a
learning rate of 0.001. We use learning rate de-
cay of 0.8, and stop training if the model perfor-
mance on development set doesn’t improve for 5
evaluation steps. We run each experiment with 3
different random seeds.

4 Data and Pre-processing

Parallel Data We use all the parallel data avail-
able for the Kazakh–English shared task except for
the Wikipedia Titles as they consist of very short
sentences (approximately 3 words each). Specif-
ically, the “child” training data consist of about
7.5K sentence pairs from the News Commentary
Corpus, and 98K sentence pairs from the English-
Kazakh crawled corpus5. Additionally, we used
approximately 200K Turkish–English sentence-
pairs from the Setimes2 Corpus that are provided
by the WMT18 competition.

Monolingual For the Empty source and Back-
translation methods of creating synthetic data we
used the target-side of the Turkish–English par-
allel corpus as monolingual data. For the Back-
Translation+transfer experiment we used 100K
randomly selected sentences from the News Com-
mentary corpus, excluding sentences with less
than 5 words and more than 50 words.

3Each English sentence of the monolingual corpus is aug-
mented with a <2kk> token at the beginning.

4https://github.com/cindyxinyiwang/SDE
5We didn’t filter out any sentence pairs from this corpus.

Pre-processing We process all corpora consis-
tently. We tokenize the sentences and perform
truecasing with the Moses scripts (Koehn et al.,
2007). For all the experiments we consistenly use
8K BPEs on the English target side. We exper-
iment with {32, 64}K merge operations for the
models using BPE encoding and {4, 5} n-grams
for the SDE framework. To establish a fair com-
parison between the source language representa-
tions, we consistently use the same encoding for
English words (target side) using BPEs learned on
the concatenation of all the English data.

Tuning and Testing Data The official news-
dev2019 is used as the validation set, and news-
test2019 is used as the test set.

5 Experiments

Starting from Baseline BPE-based NMT systems
trained using only the Kazakh data provided by
the competition, we conduct the following experi-
ments.

5.1 Byte Pair Encoding

Table 3 presents our results of 3 runs using
{32, 64}K merge operations in total for each ex-
periment. Generally, both Joint and Separate BPE
segmentation strategies, with and without roman-
ization improve BLEU over the Baseline. Pre-
vious empirical results on transfer learning for
extremely low-resource languages indicated that
training the BPE operations separately for the
“child” and “parent” languages has a large posi-
tive effect on the performance of the model (Wang
et al., 2019). By contrast, JBPEs and SBPEs per-
form comparably well in almost all configurations
here. This could be attributed to our less imbal-
anced setting where the ratio of “child”-“parent”
data is 1 : 2, and the child language therefore con-
tributes more to sub-word segmentation rules.

The best BLEU score is achieved using 32K
JBPEs on the romanized data which is consistent
with the configuration with the largest vocabulary
overlap, according to Table 2. However, using
{32, 64}K SBPEs on the original data only hurts
BLEU by 0.5 and 1.24, despite the lack of lexical
overlap. This suggests that most of the improve-
ment does not come from the shared encoder vo-
cabulary.
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32K BPEs 64K BPEs

Method Original Romanized Original Romanized
Baseline 4.33± 0.16 4.49± 0.02 4.35± 0.13 4.21± 0.28

JBPEs 9.35± 0.10 9.89± 0.14 8.65± 0.27 8.77± 0.09

SBPEs 7.10± 0.26 9.70± 0.28 8.41± 0.08 8.85± 0.34

Table 3: Kazakh→ English BLEU score results on news-test2019 for different BPE configurations and versions
of data.

N-gram Lexical Latent Specific BLEU

4
3 9.12± 0.27
3 3 8.76± 0.29
3 3 3 6.57± 0.20

5
3 9.17± 0.21
3 3 8.69± 0.21
3 3 3 6.21± 0.18

Baseline-BPE 8.65± 0.27

Table 4: SDE Experiments using 64K n-grams of the
concatenated corpora. The last line refers to the best
BLEU score using 64K BPEs for comparison.

5.2 Soft-Decoupled Encoding

We compare the BPE results with different con-
figurations of the SDE model. Table 4 presents
average results of 3 runs with different random
seeds, where we use 64K character n-grams as our
vocabulary. The Language Specific Transforma-
tion consistently harms the BLEU score for both
n = 4, 5. This result validates the empirical obser-
vations of Wang et al. (2019); the separate projec-
tion does not help when the “child”-“parent” lan-
guages have a significant surface lexical overlap.
We also observe comparable BLEU results when
we use SDE embeddings or lexical embeddings
(where the latent embedding is not taken into ac-
count) to encode the semantics of words. The best
BLEU scores are achieved for the lexical encoding
using either 4-grams or 5-grams of words.

In both cases we observe that the n-gram mod-
els perform sligthly better than the best BPE
model that uses the same number of merge oper-
ations as the n-gram vocabulary size (we refer to
that model as Baseline-BPE on Table 4). However,
we do not adopt SDE in our submitted system as
the small BLEU score improvement comes with
higher computational cost when compared to the
BPE models.

5.3 Synthetic Data

Finally we experiment with back-translation of
monolingual English corpora. All experiments
used romanized text segmented with 32K BPE
merge operations. Table 5 compares 3 different
ways of using the same English data extracted
from the target side of the Turkish–English paral-
lel corpus. Each target sentence is coupled with a
synthetic Kazakh sentence (Back-translation), an
empty source sentence as a control (Empty) or a
real Turkish sentence (Transfer). The ratio of real
to additional data is kept to 1 : 2 in all cases.

NMT training does not benefit from the back-
translated data as it achieves nearly the same
BLEU as the baseline model. Suprisingly empty
source sentences yield better results than back-
translation, suggesting that the synthetic back-
translations are of low quality. Translating into
Kazakh is challenging given the small amount of
data available, especially for translating from a
morphologically poor to a morphologically rich
language. Finally, using real Turkish data on the
source side achieves the best improvement over
the baseline system (+4.4 BLEU).

Method Synthetic BLEU
Baseline 4.49

Empty 3 5.26

Back-Translation 3 4.64

Transfer 9.89

Table 5: Experiments using 200K monolingual data ex-
tracted from the target side of Turkish–English parallel
corpus. The Baseline system is trained only on Kazakh
data.

Given that in all these 3 experiments the de-
coder model was trained on the exact same English
data, these results suggest that the transfer learning
benefits both the encoder and decoder models.
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Method Synthetic BLEU
Baseline-Transfer 9.89

Empty 3 9.17

Back-Translation 3 9.38

+ ensemble(4)? 3 9.94

Table 6: Experiments using additional 100K News
Commentary monolingual data. The Baseline system is
trained on the concatenation of Kazakh–Turkish paral-
lel data. The ? symbol denotes our primary submission
for human evaluation.

Finally, we attempt to combine Kazakh and Turk-
ish parallel data to back-translate 100K additional
monolingual data to Kazakh via training a NMT
model that has control over the output language,
as can be seen in Table 6. In this experiment our
Baseline-Transfer system refers to the best model
trained on the concatenation of “child” and “par-
ent” data. In contrast to the previous experiment
we now combine Kazakh, Turkish and synthetic
data with a ratio 1 : 2 : 1. We observe that in both
cases (Back-translation, Empty) the BLEU score
of the system trained on the augmented data fails
to outperform the Baseline-Transfer performance,
possibly due to the fact that the real Kazakh data
have been “overwhelmed” by the auxiliary ones
(Poncelas et al., 2018). However, we could as-
sume that the quality of the back-translated data
is slightly better once we utilized the Turkish data
(given that it performs better than the Empty ex-
periment).

Finally, the last row of Table 6 reports the
BLEU score of our primary submission.6 Specif-
ically, the submitted model is an ensemble ob-
tained by averaging the output distributions of
4 models trained on Kazakh, Turkish and Back-
Translated using different random seeds.

6 Conclusion

This paper presents the University of Maryland’s
NMT system for WMT 2019 Kazakh → English
news translation task. Specifically, we explored
how to improve neural machine translation of a
low-resource language by incorporating parallel
data from a related, also low-resource language.

6The Baseline-Transfer model slightly under-performed
the Baseline-Transfer+Back-Translation model on the devel-
opment set. Given that we did not have access to test data
during evaluation time, our primary submission was based on
evaluation on the development set.

Our empirical results validate that transfer learn-
ing benefits BLEU even when transfering from a
low-resource language pair. Furthermore, our re-
sults suggest that translation quality (in terms of
BLEU score) of the language-pair of focus is most
benefited when the surface-level parameter shar-
ing between the lexical representations of the two
related languages is maximized. Finally, we ob-
served that NMT training with synthetic data is
sensitive to the quality of the back-translation.
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Abstract

This paper presents the participation of
DBMS-KU Interpolation system in WMT19
shared task, namely, Kazakh-English language
pair. We examine the use of interpolation
method using a different language model or-
der. Our Interpolation system combines a di-
rect translation with Russian as a pivot lan-
guage. We use 3-gram and 5-gram language
model orders to perform the language trans-
lation in this work. To reduce noise in the
pivot translation process, we prune the phrase
table of source-pivot and pivot-target. Our ex-
perimental results show that our Interpolation
system outperforms the Baseline in terms of
BLEU-cased score by +0.5 and +0.1 points in
Kazakh-English and English-Kazakh, respec-
tively. In particular, using the 5-gram language
model order in our system could obtain better
BLEU-cased score than utilizing the 3-gram
one. Interestingly, we found that by employ-
ing the Interpolation system could reduce the
perplexity score of English-Kazakh when us-
ing 3-gram language model order.

1 Introduction

This paper describes our participation in the
WMT19 shared task. We call our system DBMS-
KU (Database Management System - Kumamoto
University) Interpolation as we use our labora-
tory and university name, as well as we utilize
Interpolation method in our experiments. We
choose news translation task and focus on Kazakh-
English (and vice versa) language pair.

Kazakh-English is a new shared task for this
year, that is, no experience system description
from previous WMT. Kazakh-English could be
considered as low resource language pair due to
the limitation of parallel corpora and morpholog-
ical tools. Another challenge is the difference in
the writing system between Kazakh and English
languages. Kazakh uses Cyrillic letters, while En-
glish uses the alphabet. Different writing system

between language pair needs specific attention in
the tokenization step because of its segmentation
results that affect the BLEU-cased score. Thus,
we are motivated to solve this intriguing and chal-
lenging task.

Kazakh to English machine translation has
been explored in Statistical Machine Transla-
tion (SMT) (Assylbekov and Nurkas, 2014;
Kuandykova et al., 2014; Kartbayev, 2015a,b) and
Neural Machine Translation (NMT) (Myrzakhme-
tov and Kozhirbayev, 2018). Assylbekov and
Nurkas (2014) have shown an interesting result
that different n-gram and neural LSTM-based lan-
guage models were able to reduce the perplexity
score, i.e., giving better translation result. For this
reason, we consider investigating different n-gram
language model order in this work.

Interpolation has been used in Language Model
(LM) (Allauzen and Riley, 2011; Liu et al., 2013;
Heafield et al., 2016) and in Translation Model
(TM) (Bisazza et al., 2011; Sennrich, 2012; Rosa
et al., 2015). Also, the interpolation has been
used in pivot language as a strategy to over-
come the limitation of parallel corpora (Dabre
et al., 2015; Hoang and Bojar, 2016; Kunchukut-
tan et al., 2017). Pivot strategy arises as a pre-
liminary assumption that there are enough paral-
lel corpora between source-pivot (SRC-PVT) and
pivot-target (PVT-TRG) languages. Currently, En-
glish as lingua franca has more datasets compared
to other languages. Thus, pivot researchers com-
monly use English as a bridge between source to
target (Paul et al., 2013; El Kholy et al., 2013;
Ahmadnia et al., 2017; Dabre et al., 2015; Trieu,
2017). However, Paul et al., (2013) and Dabre et
al., (2015) have shown that using non-English as
pivot language could be a better option to improve
the translation results for particular language pair.
Since Kazakh-English is categorized as low re-
source language pair, we adopt the pivot and in-
terpolation strategies in our translation model.
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In this work, we consider examining two sys-
tems, namely, Baseline and Interpolation. The
Baseline system is a direct translation between
each language pair, while Interpolation one is a
combination of pivot and direct translation mod-
els. We use Russian as our pivot language with
3-gram and 5-gram language model orders in each
system. Our experimental results are encouraging
and indicate that using Interpolation system could
obtain better BLEU-cased score than employing
Baseline one when translating both Kazakh to En-
glish (KK-EN) and English to Kazakh (EN-KK).

This paper is organized as follows. Section 2
explains the data preprocessing and experiment
setup for each system. Section 3 shows and dis-
cusses the obtained results. Section 4 provides the
conclusion and future direction of this work.

2 Case Study and Experiment Setup

In this section, we describe the case study, dataset,
and experiment of this study.

2.1 Kazakh to English Machine Translation

Kazakh language is an agglutinative and highly in-
flected language that belongs to the Turkic group
(Makhambetov et al., 2013). This rich morphol-
ogy leads to a different length of phrases when
translating from English to Kazakh (Assylbekov
and Nurkas, 2014). Therefore, the translation
of KK-EN and vice versa is a challenging task.
Moreover, the KK-EN is considered as low re-
source language pair due to the limitation of par-
allel corpora and morphological tools.

2.2 Data and preprocessing

We used a dataset provided by WMT19 organizer.
Thus, our system was considered as a constrained
system. To prepare parallel datasets, we cleaned
the dataset by using our script because the original
dataset had blank lines and unsynchronized sen-
tences between source and target parallel corpora.
In the Interpolation system, we used Russian-
English dataset from WMT18. The dataset statis-
tics of training (train) and development (dev) for
Baseline and Interpolation systems are given in
Table 1.

After cleaning the dataset, we followed dataset
preprocessing as in (Myrzakhmetov and Kozhir-
bayev, 2018), namely, tokenizing, normalizing
punctuation, recasing, and filtering the sentences.
Tokenizing was used to separate the token and

punctuation by inserting spaces. Our tokenization
results were based on words. Thus, the obtained
sentences of the tokenization results were longer
than the original sentences. Since long sentences
could cause problems in the training process, we
removed the sentences with a length of more than
80 words. This process was called filtering the
sentences. Normalizing punctuation was to con-
vert the punctuation for being recognized by the
decoder system. Recasing was to change the ini-
tial words into their most probable casing in order
to reduce the data sparsity. All preprocessing steps
were done by using scripts from Moses (Koehn
et al., 2007).

2.3 Experiment setup

We used open source Moses decoder (Koehn et al.,
2007) and Giza++ for word alignment, Ken-LM
(Heafield, 2011) for language model, and MERT
(Och, 2003) for tuning the weight. The transla-
tion results were measured by five automatic eval-
uations provided by the organizer, namely BLEU,
BLEU-cased, TER, BEER 2.0, and CharacTER.
However, in this paper, we used the BLEU-cased
because it is the main comparison metric in the
evaluation system1.

We built two systems, namely, Baseline and In-
terpolation. The Baseline system is a direct trans-
lation between KK-EN and vice versa. Mean-
while, the Interpolation system is the combination
of direct translation with pivot phrase table. Pivot
phrase table was produced by merging the source
to pivot (SRC-PVT) and pivot to target (PVT-
TRG) by using Triangulation method (Hoang and
Bojar, 2015). We built the Interpolation phrase ta-
ble as follows:

• Constructing a phrase table from SRC-PVT
and PVT-TRG systems and pruning the
phrase table with filter-pt (Johnson et al.,
2007). The pruning activity was intended to
minimize the noise of SRC-PVT and PVT-
TRG phrase tables.

• Merging two pruned phrase tables by us-
ing the Triangulation method (Hoang and
Bojar, 2015). The result was called
TmTriangulate phrase table.

• Combining TmTriangulate and direct
translation model with dev phrase table as

1http://matrix.statmt.org/
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Dataset Sentences Average Sentence Length Vocab
Baseline system

Train
news-commentary-v14.en-kk.kk 9,619 18.0857 29,142
news-commentary-v14.en-kk.en 9,619 22.1487 16,742
Dev
newsdev2019-enkk.kk 2,068 18.0164 11,389
newsdev2019-enkk.en 2,068 22.2316 7,726
Language Model
news-commentary-v14.kk 12,707 17.2109 -
news-commentary-v14.en 532,560 21.5762 -

Interpolation system
Train
news-commentary-v14.kk-ru.ru 7,230 23.6836 27,819
news-commentary-v14.kk-ru.kk 7,230 20.1187 24,627
news-commentary-v14.en-ru.en 97,652 23.0416 51,566
news-commentary-v14.en-ru.ru 97,652 21.3508 126,476
Dev
news-commentary-v14.kk-ru.ru 2,000 20.8755 11,841
news-commentary-v14.kk-ru.kk 2,000 18.048 10,561
newstest2018-ruen.dev.en 3,000 20.975 10,108
newstest2018-ruen.dev.ru 3,000 17.3293 17,091
Language Model
news-commentary-v14.kk 12,707 17.2109
news-commentary-v14.en-ru.ru 114,375 21.2678
news-commentary-v14.en-ru.en 114,375 22.9811

Table 1: Dataset statistic for Baseline and Interpolation systems

Language Pair 3-gram LM 5-gram LM
KK-EN
1. Baseline system 2.6 2.9
2. Interpolation system 2.7 3.4
EN-KK
1. Baseline system 0.8 0.8
2. Interpolation system 0.9 0.9

Table 2: BLEU-cased score results

references. We used linear interpolation with
backoff mode and exploited combine-ptables
tools (Bisazza et al., 2011). The result was
called Interpolation phrase table.

3 Results and Discussions

In this section, we show the obtained automatic
evaluation results using BLEU-cased score. We
also discuss the effect of the different language
model order with the BLEU-cased score. Further-
more, we analyze the perplexity score on Interpo-
lation system.

3.1 Language model effects on BLEU-cased
score

In this paper, we conducted experiments for two
language model orders, i.e., 3-gram and 5-gram,
and two systems, viz., Baseline, and Interpolation.
As shown in Table 2, the 5-gram language model
order had more significant influence than the 3-

gram one on the BLEU-cased score for KK-EN
translation in both Baseline and Interpolation sys-
tems. The improvement in KK-EN was obtained
by +0.3 and +0.7 points for Baseline and Interpo-
lation systems, respectively. However, the BLEU-
cased score for EN-KK could not be improved in
terms of the language model order. These results
might indicate that the language model order in-
fluenced the BLEU-cased score.

In terms of the translation system, the Interpo-
lation system obtained higher BLEU-cased score
than the Baseline one for all language model
and translation directions. The improvement of
BLEU-cased score from Baseline to Interpolation
system for KK-EN using 3-gram and 5-gram was
+0.1 and +0.5 points, respectively. Meanwhile, the
improvement from Baseline to Interpolation Sys-
tem for EN-KK was +0.1 for both 3-gram and 5-
gram orders. These results indicated that the use
of pivot language in the Interpolation system com-
bined with longer language model also had a sig-
nificant influence on the BLEU-cased score.

Also, we found that the KK-EN obtained higher
BLEU-cased score than the EN-KK in terms of
the translation direction. This result might be
influenced by the number of target LM datasets
in each translation direction. As shown in Ta-
ble1, KK-EN had 532,560 sentences, while EN-
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KK had 12,707 sentences. The translation direc-
tion of KK-EN, that is, having almost 42 times
larger number of sentences than EN-KK, could ob-
tain a higher BLEU-cased score than that of EN-
KK. This result indicated that the number of the
target LM dataset in the experiments might be able
to improve the BLEU-cased score.

Although our obtained BLEU-cased score was
relatively low, we showed that by combining Base-
line and pivot parallel corpora with different LM
order was a valuable effort compared with using
direct parallel corpora only. Moreover, the im-
provement of BLEU-cased score could be influ-
enced by the language model order, the translation
system, and the target monolingual LM dataset.

3.2 Perplexity effects on Interpolation system

Language model (LM) is one of the SMT com-
ponents to ensure how good is the model by us-
ing perplexity as measurement. Lower perplex-
ity score indicates better language models, while
high perplexity score represents that the language
model has poor quality. We show the perplexity
score of the target language test dataset according
to each n-gram language model trained on the re-
spective training dataset in Table 3.

As shown in Table 3, the lowest perplexity score
for KK-EN was obtained by the 5-gram Base-
line system, i.e., 45.51. Thus, the best model for
KK-EN was 5-gram Baseline system. However,
we found that the difference of perplexity score
for 5-gram model between Baseline and Interpo-
lation systems was not quite significant, i.e., 5.42.
Specifically, the perplexity of 5-gram of Baseline
was 45.51, while the perplexity of 5-gram of In-
terpolation was 50.93. This finding might indi-
cate that pivot language with interpolation system
could be a beneficial approach in the translation
process.

In EN-KK, the lowest perplexity score was ob-
tained by 5-gram Baseline system, i.e., 77.18.
Thus, the best model for EN-KK was 5-gram
Baseline system. However, we found that the dif-
ference of perplexity score between 5-gram Base-
line and 3-gram Interpolation systems was not
quite significant, i.e., 2.16. Specifically, the per-
plexity of 5-gram of Baseline was 77.18, while the
perplexity of 3-gram of Interpolation was 79.34.
This finding might indicate that using the interpo-
lation system with 3-gram model only could re-
duce the perplexity score of EN-KK that using the

longer n-gram language model, i.e., 5-gram. Nev-
ertheless, it would be better to study further the
cause of this finding in the future.

4 Conclusion and future work

We examined the effect of different LM order
with linear interpolation method for participating
in WMT19 shared task, namely, Kazakh-English
language pair. Our Interpolation system utilized
the combination of direct translation, i.e., Base-
line, with Russian as our pivot language. We
used 3-gram and 5-gram language model orders
in our Baseline and Interpolation systems. The
BLEU-cased score of using Interpolation system
could outperform that of utilizing Baseline one.
This good performance of Interpolation system
was obtained by using 3-gram and 5-gram lan-
guage model orders for both Kazakh to English
(KK-EN) and English to Kazakh (EN-KK) trans-
lations. We found that the Interpolation system in-
dicated a different effect on each of KK-EN and
EN-KK in terms of the perplexity score. In KK-
EN, the pivot language with interpolation system
could be an option in the translation process be-
cause the difference of perplexity score between
Baseline and Interpolation was not quite signifi-
cant. Interestingly, we found that the Interpolation
system using 3-gram language model order could
reduce the perplexity score compared with utiliz-
ing longer n-gram one in EN-KK.

In this shared task, we used standardized to-
kenizer from Moses. In the future, it must be
worthwhile to use specific Kazakh and Russian
tokenizers as their results will affect the BLEU-
case scored. Another pivot language that has the
same language family or has the same word order
with the Kazakh language could also be a valu-
able effort. In addition, the use of different n-
gram can also be taken into account for the next
future research. Furthermore, the utilization of
morph-based language modeling can also be ap-
plied to the system. Finally, the different interpo-
lation scheme in another MT model, i.e., NMT,
with out-domain dataset should be investigated to
overcome the sparse of Kazakh resources.
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Language pair 3-gram LM 5-gram LM
KK-EN

1. Baseline system
- Incl OOVs: 829.59
- Excl OOVs: 77.79

- Incl OOVs: 617.36
- Excl OOVs: 45.51

2. Interpolation system
- Incl OOVs: 1034.50
- Excl OOVs: 94.72

- Incl OOVs: 762.79
- Excl OOVs: 50.93

EN-KK

1. Baseline system
- Incl OOVs: 328.940
- Excl OOVs: 103.27

- Incl OOVs: 256.138
- Excl OOVs: 77.185

2. Interpolation system
- Incl OOVs: 256.13
- Excl OOVs: 79.34

- Incl OOVs: 276.85
- Excl OOVs: 85.40

Table 3: Perplexity results

Research, Technology and Higher Education of
the Republic of Indonesia).
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Abstract
This paper describes Lingua Custodia’s sub-
mission to the WMT’19 news shared task for
German-to-French on the topic of the EU elec-
tions. We report experiments on the adapta-
tion of the terminology of a machine trans-
lation system to a specific topic, aimed at
providing more accurate translations of spe-
cific entities like political parties and person
names, given that the shared task provided no
in-domain training parallel data dealing with
the restricted topic. Our primary submission to
the shared task uses backtranslation generated
with a type of decoding allowing the insertion
of constraints in the output in order to guaran-
tee the correct translation of specific terms that
are not necessarily observed in the data.

1 Introduction

A sub-task of the WMT’19 News Translation
shared task has been jointly organized by the Uni-
versity of Le Mans and Lingua Custodia: the
translation of news articles dealing with the topic
of the 2019 European Parliament elections for the
French-German language pair. This brings back
French, a language absent from the News Transla-
tion task since 2015, and pairs it with German, a
morphologically richer language than English. Fi-
nally, the EU election topic brings new challenges
to the task.

Such a restriction of the domain to a single topic
makes the task very different from the translation
of any news data. We propose to roughly define a
domain according to two majors dimensions:

• Syntactic structure. The European election
topic probably has no or few syntactic and
stylistic differences with the general news do-
main, since we are in both cases dealing with
news articles with the same characteristics.
On the other hand, sentences in newspapers
are generally longer than in casual discourse.

• Terminology. A specific topic implies a spe-
cific terminology. For instance, the system
should not attempt a literal translation of the
German politician’s name Wagenknecht. It
should also be aware of the specific transla-
tions of political party names in the press of
the target language: the French party France
Insoumise should not be translated into Ger-
man. Furthermore, the French movement
gilets jaunes (yellow vests) is refered to in
the German press as Gelbwesten, and a lit-
eral translation, such as gelbe Westen, is in-
accurate.

There exist efficient methods for domain adap-
tation in neural MT (Luong and Manning, 2015;
Chu and Wang, 2018). The experiments intro-
duced in this paper attempt to explore techniques
that help to specifically adapt the terminology of
a system to a restricted topic. However, a seri-
ous difficulty stands in the way: among the paral-
lel data provided for the task, only 1,701 sentence
pairs deal with the EU elections (development set).
Recent monolingual data in German and French is
available and contains several sentences using the
required terminology, but we then lack the correct
translations of the terms of interest.

This paper describes Lingua Custodia’s at-
tempts to specifically control the terminology gen-
erated by a Machine Translation (MT) system, us-
ing only the data provided at the Conference. The
resulting German-to-French system was submitted
at WMT’19.

In the first section, we provide an overview of
our baselines and point out several terminology
issues. We then describe our experiments with
constrained decoding to control terminology. The
last section introduces an attempt to relax the hard
constraints applied to the decoder.
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2 Baseline

The training parallel data provided for the task
consisted of nearly 10M sentences, including
Europarl (Koehn, 2005), Common-crawl, News-
commentary and Bicleaner07. The former was the
biggest (over 7M sentences) and also the noisiest
corpus, containing bad characters, short phrases
with only numbers, lists of products, sentences in
the wrong language, obviously machine translated
sentences, etc.

2.1 Data selection
We have performed a filtering of the Bicleaner07
corpus in order to reduce the impact of noisy sam-
ples on the MT system, using LC Pruner, a in-
house system that was submitted at the First Auto-
matic Translation Memory Cleaning Shared Task
(Barbu et al., 2016). The system extracts several
monolingual and bilingual features that are fed to
a random forest classifier aimed at predicting if
a sentence pair is a good translation and whether
each sentence is well formed. It is based on the
following features:

• Total sentence pair length

• Source/target length ratio

• Average token length

• Uppercase token count comparison

• Source/target punctuation comparison

• Source/target number comparison

• Language identification using langid.py (Lui
and Baldwin, 2012)

• Cognates

• Source and target language model scores

• Hunalign scores (Varga et al., 2007)

• Zipporah adequacy scores (Xu and Koehn,
2017), using a probabilistic bilingual dictio-
nary computed on Europarl.

Random forest parameters are optimized using
expert feedback on a set of parallel sentences au-
tomatically selected by the model across several
iterations. We have run 3 iterations, assessing the
quality of 20 sentence pairs each time. The re-
sult is a binary classification of each sentence pair

based on a score between 0 and 1. We have exper-
imented with two selection criteria, keeping sen-
tence pairs scoring above 0.5 and above 0.8, which
led to respectively nearly 4M and 2M finally ac-
cepted sentences. The results are introduced in
Section 2.3.

2.2 System setup
German and French pre-processing was performed
using in-house normalization and tokenization
tools. Truecasing models were learnt, using Moses
scripts (Koehn et al., 2007), on the monolingual
news data provided at the Conference, on all 2017-
2018 data for French and 10M sentences from
2018 for German. A shared French-German BPE
vocabulary (Sennrich et al., 2016b) was built with
30k merge operations on all the parallel data avail-
able for the task, except Bicleaner07.

We have trained baseline systems for French-
German in both directions. Transformer base
(Vaswani et al., 2017) models were trained using
the Sockeye toolkit (Hieber et al., 2017) on two
Nvidia 1080Ti GPU cards. Most of the standard
hyper-parameters have been used. The model di-
mension included 512 units. The initial learning
rate was set to 0.0003 with a warmup on for 30k
updates. Due to the small quantity of training data
available, we decided to slightly increase dropout
between layers (0.2) and label smoothing (0.2).
Validations were performed every 20k updates and
patience was set to 15. Since this setup contained
no training data relevant to the EU election topic,
we decided to hold out the provided development
set for another purpose, and used a general news
domain test set: Newstest-2012. We finally wished
to sample more sentence pairs from news-related
corpora during training. Since no such method is
implemented in the Sockeye toolkit for minibatch
generation, we simply trained the baselines on a
single copy of Bicleaner07 and Common-crawl,
and took two copies of Europarl and 6 of News-
commentary.

2.3 Results and terminology issues
The systems were tested on the official devel-
opment set, Euelections-dev-2019, as well as
Newstest-2013 and the official test set Newstest-
2019. BLEU scores were computed with Sacre-
BLEU (Post, 2018) and are shown in Table 1.

Experiments with different data filtering crite-
ria for the Bicleaner07 corpus were introduced in
subsection 2.1. We observe that keeping a bigger
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French-to-German
Euelections-dev-2019 Newstest-2013 Newstest-2019

Baseline 25.98 23.48 26.94
German-to-French

Euelections-dev-2019 Newstest-2013 Newstest-2019
LC Pruner 2M 31.07 27.49 33.04
LC Pruner 4M 30.96 27.29 33.16

Table 1: BLEU scores for French-German baselines

set of data does not lead to any clear improve-
ments, at least in terms of BLEU. Thus we have
kept LC Pruner 2M as the main baseline for fur-
ther training in Section 4.1.

The translation from English into German of
Euelections-dev-2019 by our baseline shows con-
sistent terminology issues. The systems has diffi-
culties translating the name of the movement gilets
jaunes (yellow vests). Out of the 19 occurrences
of the expression in the French source, only 4 are
correctly translated as the compound Gelbwesten.
We noted several translations as gelbe Westen, the
translation of the adjective jaunes only, as well
as full omissions. We also noted that the French
party France Insoumise was translated litterally as
unbeugsame Frankreich, instead of simply being
copied, the name of the politician Nicolas Dupont-
Aignan was translated as Nicolas Dumont-Aignan,
etc. Our best baseline translates the German side
of this test into French with the same kind of dif-
ficulties: Gelbwesten is sometimes translated as la
veste jaune, etc.

3 Terminology control

We argue that a system specialized in a specific
topic should be able to provide the right transla-
tions for terms that are relevant to this topic. The
baselines we have just introduced fail to trans-
late important terminology. We now seek to adapt
these baselines to the EU election terminology.

3.1 Constrained decoding

One way to integrate such knowledge of a specific
terminology into the MT system is by using con-
strained decoding (Hokamp and Liu, 2017). The
Grid Beam Search algorithm guarantees the pres-
ence of one or several given phrases in the MT
output. This method does not require any change
in the model or its parameters, thus the algorithm
does not model any sort of token-level source-to-
target relation, but simply forces the beam search
to go through the target constraint. The challenge

for the decoder is then to correctly insert the con-
strained phrase in the rest of the sentence.

Post and Vilar (2018) proposed a variant of this
algorithm with a significant lower computational
complexity. We used their implementation avail-
able in the Sockeye toolkit.

3.2 Lexicon extraction

We have extracted bilingual lexicons from two
sources: the official development set provided for
the task (Euelections-dev-2019), and the monolin-
gual French and German data made available at
WMT.

3.2.1 Parallel EU election data
We have decided to use the official development
set (Euelections-dev-2019) as the main source of
terminology, for the simple reason that it is the
only parallel data available containing the specific
terminology of the EU elections with reliable hu-
man translations.

Alignments were learnt using Fastalign (Dyer
et al., 2013) on a concatenation of News-
commentary and Euelections-dev-2019, and we
used them to extract a phrase table from the for-
mer with the Moses toolkit. We removed a phrase
pair whenever the probability of the German side,
given the French side, was below 0.5. This en-
sured that we never keep more than one translation
for a French phrase1.

The resulting phrases were furthermore filtered
according to their domain. We computed Moore-
Lewis (Moore and Lewis, 2010) scores of the
source French phrases. The out-of-domain lan-
guage model was computed on the French side
of the parallel data (section 2), and the in-domain
model on the French monolingual news data 2018
available at WMT. Although this corpus does not
contain exclusively articles about the EU elec-
tions, we believe its terminology distribution may

1Since there can be several French translations for one
German phrase, the current terminology can only be used for
translation into German.
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be closer to what is observed in Euelections-
dev-2019, because the corpus relates more recent
news. We kept the best 2000 phrase pairs accord-
ing to their Moore-Lewis score.

Finally, we kept the phrase pairs for which the
German side appeared at least once in the Ger-
man monolingual news 2018 corpus, in order to
filter out obviously bad expressions that remained.
We ended up with 773 phrase pairs, among which
could be found the correct translation of gilets
jaunes (yellow vests).

3.2.2 Monolingual news data
As an attempt to address the issue of person name
mistranslations, we extracted named entities from
the French monolingual news 2018 corpus. First,
we tagged the corpus with an in-house French
named entity recognizer. We then computed the
tagged named entity occurrence counts over the
same corpus and removed the ones occurring less
than 9 times. The translations of the extracted ex-
pressions into German are unknown, so we looked
for the named entities that are not translated, but
copied into German. We therefore kept the en-
tries that had an occurrence count higher than 9
in the German news monolingual 2018 corpus. As
a result, the name Poutine in French would be re-
moved because it translates into a different word in
German (Putin), whereas Dupont-Aignan would
be kept, as it stays the same in both languages.
This procedure produced nearly 20k phrase pairs.

Prior to inference, constraints extracted from
the development set are applied every time a
source-side constraint is found in the source sen-
tence to be translated. Named Entity constraints
extracted from monolingual data are applied in a
different way. The same named entity classifier as
above is used to tag the source sentence and a con-
straint is applied when: 1. the source constraint
matches a part of the sentence ; 2. the matched
sentence part has been tagged as a named entity.

We are well aware that bilingual terminology
extraction is a complex task and that more so-
phisticated models need to be investigated. We
chose to employ these simple heuristics only be-
cause we lacked time. We did run experiments
with tools, allowing us to extract bilingual lexi-
cons from monolingual data, namely Muse (Con-
neau et al., 2017) and BiLex (Zhang et al., 2017).
However, we found them not suited for our re-
quirements, because 1. the global quality of the
lexicons was too low to be inserted in a MT de-

coder as hard constraints, and 2. only single-
word phrases were extracted and we wished to ex-
tract multi-word expressions as well. Future work
should include methods for phrase pair extraction
from monolingual data (Marie and Fujita, 2018;
Artetxe et al., 2019).

3.3 Constrained French-to-German baseline

The scores of the French-to-German baseline with
and without constraints are shown in Table 2. We
used a beam size of 20 for constrained decoding,
as recommended in the Sockeye documentation 2,
and a default beam size of 5 for the unconstrained
decoding. The final models are averages of the 4
best checkpoints in terms of BLEU on the valida-
tion set. Applying constraints to Euelections-dev-
2019 adds 2 BLEU points to the baseline, but this
should not be considered as an improvement, since
parts of the reference translations were inserted as
constraints. We observe that constrained decod-
ing has nearly no impact on the BLEU score for
Newstest-2013, and that it even slightly degrades
the score for Newstest-2019.

The low impact of the constraints on Newstest-
2013 may be explained by the fact that this set
is irrelevant with regard to the EU election topic,
leading to the insertion of few constraints: 465
constraints were inserted in 3000 sentences. As
a comparison, 751 constraints were inserted in the
1701 sentences of Newstest-2019. Looking more
closely at the outputs of the different systems,
we observed several cases where : 1. the con-
straint was erroneously inserted in the sentence;
2. the insertion of a constraint seemed to dis-
turb the decoder, which resulted in broken sen-
tences. Table 3 illustrates a case where the con-
straint helped to correct a mistranslation, but both
issues occurred. The French party France In-
soumise was translated litterally by the baseline
into Ununterwürfiges Frankreich, and one of our
constraints successfully forced the right transla-
tion of this expression. First, the subject of the
first clause (les populistes de gauche) has been re-
placed by the constraints, which should have been
inserted in the end of the sentence, like in the base-
line. Second, the constrained output ignores the
whole section about the raise of classical populist
parties.

Although several constraints may potentially

2https://awslabs.github.io/sockeye/
inference.html
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Euelections-dev-2019 Newstest-2013 Newstest-2019
Baseline 25.98 23.48 26.94
+ Constraints 27.87 23.42 26.66

Table 2: BLEU scores for French-to-German with constrained decoding

Source Même si les populistes de gauche ont bien moins de succès en Europe que les acteurs d’extrême-droite, ils peuvent encore s’imposer,
comme le montre l’ascension de partis classiques d’opposition tels que Podemos en Espagne et La France Insoumise en France.

Constraints Podemos, France Insoumise

English Even if left-wing populists have far less success in Europe than right-wing actors, they can still prevail, as evidenced by the rise of
classic opposition parties such as Podemos in Spain and France Insoumise in France.

Baseline Obwohl die Linkspopulisten in Europa deutlich weniger erfolgreich sind als die Rechtsextremen, können sie sich immer noch durchsetzen,
wie der Aufstieg klassischer Oppositionsparteien wie Podemos in Spanien und Frankreichs Ununterwürfiges Frankreich zeigt.

+ Constraints Podemos in Spanien und France Insoumise in Frankreich haben zwar deutlich weniger Erfolg als rechtsextreme Populisten,
aber sie können sich noch immer durchsetzen.

Reference Auch wenn die Linkspopulisten in Europa weitaus weniger erfolgreich sind als die Rechts-außen-Player, können sie sich durchaus Geltung
verschaffen, wie der Aufstieg klassischer Herausforderer-Parteien wie Podemos in Spanien und La France Insoumise in Frankreich zeigt.

Table 3: Example of French-to-German translation with and without constrained decoding (Newstest-2019)

help the adaptation of a MT system to the spe-
cific terminology of the EU elections, it may be
possible that the positive impact it could have on
BLEU is mitigated by the broken translations the
constraints tend to produce.

4 Relaxed use of constraints

We assume that the strict insertion of termi-
nology through constrained decoding sometimes
breaks output sentences, partly because the de-
coder would have never generated such an expres-
sion by itself. More specifically, the decoder as-
signs a low probability to the constrained phrase,
which leads to a harmful disruption during the
beam search.

Using parallel data containing the required ter-
minology to fine-tune a system is an obvious good
way to adapt a system, and it has the advantage to
leave the decoder unchanged. Although we have
no such data available for training, we do have
monolingual French data that contains at least a
big part of the EU election terminology we wish
to acquire: the monolingual news 2018 corpus re-
leased within the shared task. We could use our
French-to-German baseline to backtranslate these
sentences (Sennrich et al., 2016a), but this would
have the effect of introducing mistranslations in
the source, which would break the strict source-
target mapping we need to learn. For instance, if
the French phrase gilets jaunes is backtranslated as
gelbe Westen, the final German-to-French system
would learn to translate gelbe Westen into French,
but could very well still produce erroneous transla-
tions of the correct source expression Gelbwesten.

To address this issue, we propose to apply the
strict constraints (section 3.1) to the French-to-
German baseline used for backtranslation. Al-
though we condemn ourselves to certain broken
translated outputs, we have the guarantee that the
extracted constraints will be learnt by the system.
Another advantage of this strategy is that the con-
straints are inserted in different contexts, which
should help the decoder learn to insert constrained
terms in the output sentences more correctly.

4.1 Synthetic parallel datasets

The French news monolingual corpus 2018 comes
under the general news domain. We attempted to
extract the sentences dealing with the EU election
topic using Moore-Lewis data selection strategy
(Moore and Lewis, 2010). We chose the French
side of Euelections-dev-2019 as our in-domain
corpus, with the hope that it will favor sentences
containing the constraints we have extracted from
it, in order to maximize the presence of constraint
pairs in the backtranslated data. We finally se-
lected the best 2M sentences in terms of Moore-
Lewis score.

We provide both constrained and unconstrained
translations for the resulting French sentences, us-
ing the same beam sizes as in Section 3.3. The
constrained setup inserted 673,670 phrases in 2M
German sentences.

4.2 Results

We used the German-to-French baseline trained on
2M sentences from Bicleaner07 (section 2.3) as a
starting point for fine-tuning using the constrained

151



Euelections-dev-2019 Newstest-2013 Newstest-2019
Baseline 31.07 27.49 33.04
Unconstrained 34.06 28.07 35.64
Constrained 34.04 27.99 35.45
Ensemble 34.31 28.10 35.62

Table 4: BLEU scores for German-to-French systems fine-tuned on backtranslated data

and unconstrained versions of the backtranslation.
The backtranslated data was mixed with Europarl
and News-commentary corpora. We first tried to
use Newstest-2012 for validation, but only a slight
improvement was observed throughout the train-
ing in terms of BLEU. In order to avoid stopping
the training too early, we finally decided to run val-
idation on Euelections-dev-2019. This most cer-
tainly led to overestimated BLEU scores, since
the backtranslation data has been selected accord-
ing to its proximity to this development set (sec-
tion 4.1). However, it allowed the stopping crite-
rion to fire later during training.

The final models we introduce are averages
of the 4 best checkpoints in terms of BLEU on
Euelections-dev-2019. We also provide results for
an ensemble of 8 checkpoints (4 best constrained
and 4 best unconstrained). We kept the same
hyper-parameters as described in Section 2.2, ex-
cept we lowered the learning rate from 0.0003 to
0.0001, used no warmup, and ran more frequent
validations (every 10k updates).

The result of these fine-tuning procedures are
shown in Table 4. Both backtranslation setups
provide the best improvements we observed on
Newstest-2019 ( +2.5). However, we see no signif-
icant difference between the constrained and un-
constrained setups. This could be expected, since
our experiment was focused on a small set of terms
we wished the systems to generate, which can only
lead to local improvements with low impact on the
BLEU score. The ensemble of 8 models combin-
ing both setups is our primary submission to the
shared task.

We have run a small analysis of the outputs
given by both setups for Newstest-2019. We
observed that the constrained system correctly
copied the German name Alexander Gauland3,
whereas the unconstrained system erroneously
translated the first name into Alexandre. The
constrained system also translated europäischen
Vermögenssteuer (European wealth tax) into the

3Constraint: Alexander Gauland→ Alexander Gauland

acronym ISF européen4, which seems more usual
in the press about the EU elections, compared to
the litteral translation of the unconstrained sys-
tem as impôt européen sur la fortune. Several
phrases that were in our extracted constraints were
correctly translated by the unconstrained system
as well. Unconstrained backtranslation (Sennrich
et al., 2016a) thus seems to be sufficient to adapt
the terminology of a system to a specific system,
at least in our setup with few low-quality automat-
ically extracted lexical constraints. However, both
systems produce consistent errors on terms that we
failed to capture in constraints, which leads us to
think that higher quality constraints should have a
bigger positive impact on terminology adaptation.

5 Conclusions

We have described Lingua Custodia’s submission
to WMT’19 News Translation shared task. We at-
tempted to adapt the terminology of a MT system
to the EU election topic without relevant parallel
training data. Forcing the decoder to generate spe-
cific terms can help, although it disturbs the de-
coder, which may lead to broken output sentences.
Using hard constraint insertion to generate back-
translated target monolingual data showed no im-
provement in terms of BLEU scores, but we have
observed local improvements in the generated ter-
minology. The system that has been submitted to
the shared task is an ensemble of both constrained
and unconstrained models.

Lexically constrained decoding is highly depen-
dent on the quality of the bilingual constraints
available. In future work, we plan to search for
other techniques for automatic lexical constraint
extraction in order to improve recall and reach a
better terminology coverage. We also plan to in-
vestigate new techniques to relax the hard con-
straints applied to the decoder, in order to impose
less disturbance to the beam search and avoid bro-
ken output sentences.

4Constraint: Vermögenssteuer→ ISF
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Word translation without parallel data. CoRR,
abs/1710.04087.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. CoRR, abs/1712.05690.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–
1546, Vancouver, Canada. Association for Compu-
tational Linguistics.

Philipp Koehn. 2005. A parallel corpus for statistical
machine translation. In Proc. MT-Summit, Phuket,
Thailand.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
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Abstract

In this article, we describe the TALP-UPC
research group participation in the WMT19
news translation shared task for Kazakh-
English. Given the low amount of parallel
training data, we resort to using Russian as
pivot language, training subword-based statis-
tical translation systems for Russian-Kazakh
and Russian-English that were then used to
create two synthetic pseudo-parallel corpora
for Kazakh-English and English-Kazakh re-
spectively. Finally, a self-attention model
based on the decoder part of the Transformer
architecture was trained on the two pseudo-
parallel corpora.

1 Introduction

Attention-based models like the Transformer ar-
chitecture (Vaswani et al., 2017) or the Dynamic
Convolution architecture (Wu et al., 2019) are
currently the dominant approaches for Machine
Translation (MT). Nevertheless, these architec-
tures offer best results when trained on large train-
ing corpora. When faced with a low-resource sce-
nario, other supporting techniques are needed in
order to obtain good translation results. In the
WMT19 news translation shared task, two low-
resourced language pairs where proposed, namely
Gujarati-English and Kazakh-English.

In this report, we describe the participation
of the TALP Research Group at Universitat
Politècnica de Catalunya (UPC) at the WMT19
news translation shared task (Barrault et al., 2019)
in Kazakh→English and English→Kazakh trans-
lation directions.

The amount of available parallel Kazakh-
English data is very low. In order to overcome this
problem in the frame of the shared task, we made
use of Russian as an pivot language. This way, we
used English-Russian and Kazakh-Russian data to
train intermediate translation systems that we then

used to create synthetic pseudo-parallel Kazakh-
English data. This data enabled us to train the final
Kazakh-English translation systems.

This work is organized as follows: in section
2 we describe some techniques normally used in
low-resource scenarios, to frame our proposal; in
section 3 we provide an overview of other works
addressing Kazakh-English as language pair for
translation; in section 4 we study the available data
sets, both in terms of amount and quality of the
data, and describe the processing performed over
it; in section 5 we describe the proposed system,
together with the details about, including the data
augmentation techniques used and the final NMT
model trained; in section 6 we describe the ex-
periments carried out to evaluate the translation
quality prior to submitting and the obtain results;
finally, in section 7 we describe the conclusions
drawn from this work.

The source code used for the data download,
data preparation and training of the pivot and fi-
nal systems is available at https://github.
com/noe/wmt19-news-lowres.

2 Low-resource NMT

There are several different approaches that can im-
prove translation quality in under-resourced sce-
narios. In this section, we provide an overview of
some of the dominant techniques and justify their
application in the frame of this shared task.

While for low resource languages there is lim-
ited parallel data, monolingual data is often avail-
able in greater quantities. A common strategy to
integrate this monolingual data into the NMT sys-
tem is back-translation (Sennrich et al., 2016a),
which consists in generating synthetic data by
translating monolingual data of the target language
into the source language that would be then fed to
the system to further train it.
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Another common scenario is that few or no par-
allel data is available between the source and target
languages but there is a third language or pivot. for
which there is parallel data to both source and tar-
get. In this case, two systems can be trained, one
from the source to the pivot language and another
from the pivot to the target language. Inference
will be performed as a cascade using the source to
pivot system output as synthetic data to input to
the pivot to the target system, obtaining a source
to target translation.

An alternative to this approach could be the gen-
eration of a synthetic pseudo-parallel corpus of
translated data between the source and target lan-
guage through the pivot, and train a system as done
in the back translation approach.

Finally, multilingual systems are recently show-
ing nice improvements. Among the different types
of multilingual systems there are the many-to-one
approaches and the many-to-many approaches.
The former is aiming to translate to one single
language and can simply concatenate source lan-
guages (Zoph and Knight, 2016; Tubay and Costa-
jussà, 2018). However, the latter either needs to
use independent encoders and decoders (Schwenk
and Douze, 2017; Firat et al., 2016; Escolano
et al., 2019) or when using universal encoder and
decoders (Johnson et al., 2017) needs to add a tag
in the source input to let the system know to which
language it is translating. This many-to-many sys-
tems are an alternative to pivot systems. However,
most these multilingual systems are not able to
achieve the level of performance of pivot systems
yet.

In the frame of the WMT19 news translation
shared task several of the aforementioned tech-
niques are applicable.

An English+Russian→Kakakh multilingual
system could be trained, but the amount of
Kazakh-Russian data is much larger than Kazakh-
English, which would bias the encoder toward
Russian; as Russian is not similar to English this
would decrease the effectiveness of the approach,
as opposed to what happens for similar languages
(Casas et al., 2018b).

Back-translation could also be applied in this
context, but the amount of Kazakh monolingual
data is not very large and it is crawled data, with
presumably low quality. It could have been used
additionally to other techniques, though.

Finally, pivoting approaches are also applicable

to this scenario. The cascade approach, however,
would not allow to profit from the existing parallel
English-Kazakh data, making the pseudo-parallel
corpus approach the most sensible option.

3 Related Work

In this section we provide an overview of the dif-
ferent approaches proposed in the literature for
Kazakh-English machine translation.

The Apertium Rule-based Machine Transla-
tion (RBMT) system (Forcada et al., 2011) of-
fers a generic platform to implement transfer-
based rule systems for translation. This platform
was used by Assem and Aida (2013) and Sun-
detova et al. (2014) to implement transfer rules for
English→Kazakh and Kazakh→English respec-
tively.

Assylbekov and Nurkas (2014) and Bekbulatov
and Kartbayev (2014) studied the effectiveness of
Statistical Machine Translation (SMT) of Kazakh
to English with different segmentation strategies,
trying to cope with the large amount of surface
forms of Kazakh in relation to the low amount
of available training data. Kartbayev (2015) stud-
ied the influence of different alignment models in
SMT for Kazakh to English SMT.

Finally, Tukeyev et al. (2019) study the appli-
cation of NMT to Kazakh to English translation
by augmenting the training data with synthetically
sentences generated with a rule-based procedure
that computes variations of surface forms over
simple sentence templates.

4 Corpora and Data Preparation

In order to train our MT systems, we used the data
made available by the shared task organizers, in-
cluding the not only Kazakh-English data but also
the English-Russian and Kazakh-Russian data to
train pivot translation systems. In this section we
describe the data used for each language pair and
the processing applied to each of them in order to
compile appropriate training datasets.

4.1 Kazakh-English

The available parallel Kazakh-English corpora for
the shared task included News Commentary v14,
Wiki Titles v1 and a crawled corpus prepared by
Bagdat Myrzakhmetov of Nazarbayev University.

Wiki Titles accounts for half of the available
parallel segments, but its sentences are around 2
tokens long in average. Therefore, we decided not
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to include it in the training data, to avoid biasing
the trained systems toward short translations.

After concatenating the training corpora, we
used the standard Moses scripts to preprocess
them, including tokenization, truecasing and
cleaning. The statistics of the resulting training
data are shown in table 1.

Table 1: Summary statistics of the Kazakh-English
training data.

Lang. Sents. Words Vocab. Lmax Lmean
Kazakh 1.2M 139.6K 85 11.7
English

99.6K
1.5M 85.3K 102 14.9

The WMT organization split a part of News
Commentary to use as development1. From this
data, we left 500 parallel sentences as hold-out to
assess final system translation quality and left the
remaining 1566 segments as development data.

4.2 English-Russian

The available parallel English-Russian corpora for
the shared task included News Commentary v14,
Wiki Titles v1, Common Crawl corpus, ParaCrawl
v3, Yandex Corpus and the United Nations Paral-
lel Corpus v1.0 (Ziemski et al., 2016).

Following the rationale exposed for the English-
Kazakh Wiki Titles data, we also dropped the
English-Russian Wiki Titles data.

Among the other corpora, some are of very
large size. In order to assemble a manageable final
training dataset and taking into account the high
presence of garbage in the crawled datasets, before
combining the individual corpora, we filtered each
corpus and selected from each a random sample of
segments.

For the filtering, we applied heuristic criteria
based on our visual inspection of the data, in-
cluding elimination of lines with repeated separa-
tion characters (like ++++ or ----), elimination
of fixed expressions (like The time is now,
which appeared several times in some corpora)
and eliminating lines with high ratio of numbers
and punctuation characters.

For the random sample, from UN Corpus we
took 2M segments out of 23M, from Common
Crawl we took 200K out of 900K, from ParaCrawl
we took 4M out of 12M and from the Yandex Cor-
pus we took all the 1M segments. These sam-

1The part of News Commentary provided as development
data was excluded from the training set.

ples were then combined and went through stan-
dard processing with Moses scripts, including to-
kenization, truecasing and cleaning. After com-
bining them, we applied Moses corpus cleaning
with more aggressive settings (sentences between
5 and 80 words and a maximum length ratio of 3.0
between source and target). From the combined
corpus, we extracted 4000 random lines as devel-
opment data and 1000 segments as hold out test
set, leaving the rest for training. The statistics of
the resulting training data are shown in table 2.

Table 2: Summary statistics of the English-Russian
training data.

Lang. Sents. Words Vocab. Lmax Lmean
Russian 125.6M 3.2M 80 20.7
English

6.1M
144.9M 2.0M 80 23.9

4.3 Kazakh-Russian
The available parallel Kazakh-Russian corpora for
the shared task included News Commentary v14
and a crawled Russian-Kazakh corpus prepared by
Bagdat Myrzakhmetov of Nazarbayev University.

After concatenating the training corpora, we
used the Moses scripts for preprocessing, includ-
ing tokenization, truecasing and cleaning, using
the same settings as for the aggressive English-
Russian data cleaning described before. From the
combined corpus, we extracted 4000 lines as de-
velopment data and 1000 segments as hold out test
set, leaving the rest for training. The statistics of
the resulting training corpus are shown in table 3.

Table 3: Summary statistics of the Russian-Kazakh
training data.

Lang. Sents. Words Vocab. Lmax Lmean
Russian 78.8M 1.4M 96 18.9
Kazakh

4.2M
75.3M 1.6M 70 18.0

5 System Description

The amount of available parallel training data for
English-Kazakh is scarce. When an NMT system
is directly trained on this data, the resulting trans-
lation quality is very low, as shown in section 6.

Given the amount of available English-Russian
and Kazakh-Russian parallel training data, we de-
cided to use Russian as pivot language. Tak-
ing into account the availability of some paral-
lel Kazakh-English data, the pivoting approach
that best suits this case is to prepare pseudo-
parallel English-Kazakh and Kazakh-English cor-
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pora based on the Russian data and then combine
it with the parallel English-Kazakh data. Further
justification of the technique used can be found in
section 2.

In pivoting approaches, the final translation
quality does not get influenced significantly if syn-
thetic data is used for the source language side;
on the other hand, using synthetic data for the tar-
get language side results in degraded translation
quality in the final system (Casas et al., 2018a;
Costa-Jussà et al., 2019). Therefore, we will
create two different pseudo-parallel corpora for
English→Kazakh and Kazakh→English.

In order to create the English→Kazakh syn-
thetic data, we translated the Russian side of the
Russian-Kazakh corpus into English. To per-
form this translation, we need an intermediate
Russian→English system. We made use of the
Russian-English corpus to train this pivot system.

In order to create the Kazakh→English syn-
thetic data, we translated the Russian side of the
Russian-English corpus into Kazakh. To per-
form this translation, we need an intermediate
Russian→Kazakh system. We made use of the
Russian-Kazakh corpus to train this pivot system.

The preparation and training of the two pivot
translation systems is further described in section
5.1

Once the synthetic data was prepared by means
of the pivot translation systems, we combined each
synthetic corpus with the parallel data, obtaining
the respective training datasets for the two transla-
tion directions. This is further described in section
5.2.

Finally, we trained the English→Kazakh and
Kazakh→English translation systems on the pre-
viously described mix of parallel and synthetic
corpora. The NMT model used is presented in sec-
tion 5.3.

5.1 Pivot SMT Systems

For the Russian→English and Russian→Kazakh
pivot translation systems we decided to use Moses
(Koehn et al., 2007), a popular phrase-based
Statistical Machine Translation (SMT) software
package. The use of pivot approaches for SMT has
been studied previously, like the works by De Gis-
pert and Marino (2006), Wu and Wang (2007) or
Utiyama and Isahara (2007).

Another option would have been to use a Neu-
ral Machine Translation (NMT) approach, but this

would have required large amounts of GPU time
to translate the pseudo-parallel corpora.

While the English language presents simple
morphology, Russian is morphologically rich and
Kazakh is agglutinative. Therefore, the amount
of surface forms in a word-level vocabulary of
the two latter languages is very high. This way,
we decided to apply subword-level tokenization
before training the SMT systems. For this, we
used Byte-Pair Encoding (BPE) (Sennrich et al.,
2016b) to extract a vocabulary of subword parts
based on frequency statistics. We prepared sep-
arate BPE vocabularies for each language, with
32K merge operations each. Although not fre-
quent, there are some precedents for subword tok-
enization in SMT, like the work by Kunchukuttan
and Bhattacharyya (2016, 2017).

The use of subword tokenization leads to longer
token sequence lengths compared to the usual
word-based vocabularies of SMT systems. In
order to cope with this fact, we configured the
subword-based SMT systems to have longer n-
gram order for their Language Models (LM) and
phrase tables: the typical n-gram order used is 3
and we used 6. All other Moses configuration
settings are the standard ones, using KenLM as
language model (Heafield, 2011; Heafield et al.,
2013) and MGIZA++ (Gao and Vogel, 2008) for
alignment.

The data used to create the respective target-side
LMs consisted of the target side of the parallel data
used for training. Some improvement could have
been gained by using the available extra monolin-
gual English and Kazakh data for the LMs.

5.2 Combination of Parallel and Synthetic
Data

The process followed to combine the parallel data
with the synthetic data was the same for English-
Kazakh and for Kazakh-English: we oversam-
pled at 300% the parallel data and concatenated
it with the synthetic data, obtaining the final train-
ing datasets on which the translation systems for
the submissions were trained.

5.3 Joint Source-Target Self-Attention NMT
The translation system trained on the augmented
Kazakh-English data and used for the final WMT
submissions is based on the architecture proposed
by (He et al., 2018; Fonollosa et al., 2019). This
approach is based on the self-attention blocks
from (Vaswani et al., 2017), but breaks from the
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Table 4: BLEU scores (cased) of the Rule-based baseline (RBMT), the Moses system trained on the parallel
Kazakh-English data with word-level tokenization (SMT(w)), the Moses system trained on the parallel Kazakh-
English data with subword-level tokenization (SMT(sw)), the NMT system trained on the parallel Kazakh-English
data, and the final systems trained on the augmented pseudo-parallel corpus data (NMT pseudo-p.)

Direction RBMT SMT (w) SMT (sw) NMT NMT pseudo-p.
Kazakh→English 1.51 6.34 7.48 2.32 21.00
English→Kazakh 1.46 3.53 3.82 1.42 15.47

encoder-decoder structure and has only a single
decoder block that is fed both the source and target
sentences, therefore learning joint source-target
representations from the initial layers. This model
resembles how a language modeling architecture
is trained and used for inference.

The positional encodings are applied separately
to source and target. An extra embedded vector
representation is added to the combination of to-
ken and position in order to distinguish source and
target parts.

The attention weights can be masked to control
the receptive fields (Fonollosa et al., 2019). Both
source-source and target-target receptive fields are
constrained to a local window around each to-
ken, while target-source receptive fields are un-
constrained.

The hyperparameter configuration used was the
same as the one originally used by the authors for
WMT’14 English-German (14 layers, 1024 as em-
bedding dimensionality, feedforward expansion of
dimensionality 4096 and 16 attention heads).

For Kazakh-English we used separate BPE vo-
cabularies with 32K merge operations, while for
English-Kazakh we used a joint BPE vocabulary
with 32K merge operations, together with shared
source-target embeddings.

6 Experiments and Results

In order to assess the translation quality of the
systems, we computed the BLEU score (Papineni
et al., 2002) over the respective held out test sets.

As there is not much literature of current NMT
approaches being applied to English-Kazakh, we
prepared different baselines to gauge the range of
BLEU values to expect:

• Rule-based machine translation system
(RBMT): we used the Apertium system
(Forcada et al., 2011; Sundetova et al., 2014;
Assem and Aida, 2013), which is based on
transfer rules distilled from linguistic knowl-
edge. Using the BLEU score to compare an

RBMT system with data-driven systems is
not fair (see (Koehn, 2010) §8.2.7) but we
included it to have a broader picture.

• Statistical Machine Translation with word-
level tokenization (SMT(w)): we trained a
Moses system on the parallel Kazakh-English
data, using normal word-level tokenization

• Statistical Machine Translation with
subword-level tokenization (SMT(sw)):
we trained a Moses system on the parallel
Kazakh-English data, using BPE tokeniza-
tion with 10K merge operations2. Moses
default values were used for the rest of
configuration settings .

• Neural Machine Translation (NMT): we
trained a Transformer model on the parallel
Kazakh-English data, using BPE tokeniza-
tion with 10K merge operations, separately
for source and target. We used the fairseq
(Ott et al., 2019) implementation with the
same hyperparameters as the IWSLT model,
namely an embedding dimensionality of 512,
6 layers of attention, 4 attention heads and
1024 for the feedwordward expansion dimen-
sionality.

The translation quality BLEU scores of the
aforedescribed baselines were very low, as shown
in table 4.

In order to evaluate the pivot translation systems
described in section 5.1, we also measured the
BLEU scores in the respective held out test sets,
obtaining 36.05 BLEU for the Russian→English
system and 21.06 for the Russian→Kazakh sys-
tem. With these pivot systems, we created two
pseudo-parallel synthetic corpora, merged them
with the parallel data and trained a self-attention
NMT model that obtained BLEU scores one or-
der of magnitude above the chosen baselines, as
shown in table 4.

2The low number of BPE merge operations is justified
with the low amount of training data
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When we tested the final Kazakh→English sys-
tem on the shared task test set, we identified sev-
eral sentences that remained completely in Cyril-
lic script. In order to mitigate this problem, we
trained a SMT system on the augmented Kazakh-
English data and used it for the sentences that had
a large percentage of Cyrillic characters. This
lead to a mere 0.1 increase in the case-insensitive
BLEU score and no change for the uncased one.

7 Conclusion

In this article we described the TALP-UPC sub-
missions to the WMT19 news translation shared
task for Kazakh-English. Our experiments show-
case the effectiveness of pivoting approaches for
low resourced scenarios, making use of SMT to
support the data augmentation process, while us-
ing the more effective attention-based NMT ap-
proaches for the final translation systems.

Acknowledgments

We would like to thank Lluis Guardia for his help
in the news task human evaluation.

This work is partially supported by Lucy Soft-
ware / United Language Group (ULG) and the
Catalan Agency for Management of University
and Research Grants (AGAUR) through an Indus-
trial PhD Grant.

This work is supported in part by a Google Fac-
ulty Research Award

This work is supported in part by the Cata-
lan Agency for Management of University and
Research Grants (AGAUR) through the FI PhD
Scholarship.

This work is also supported in part by the
Spanish Ministerio de Economı́a y Competitivi-
dad, the European Regional Development Fund
and the Agencia Estatal de Investigación, through
the postdoctoral senior grant Ramón y Cajal, con-
tract TEC2015-69266-P (MINECO/FEDER,EU)
and contract PCIN-2017-079 (AEI/MINECO).

References
S. Assem and S. Aida. 2013. Machine translation of

different systemic languages using a apertium plat-
form (with an example of english and kazakh lan-
guages). In 2013 International Conference on Com-
puter Applications Technology (ICCAT), pages 1–4.

Zhenisbek Assylbekov and Assulan Nurkas. 2014. Ini-
tial explorations in kazakh to english statistical ma-

chine translation. In The First Italian Conference on
Computational Linguistics CLiC-it 2014, page 12.
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Adrià De Gispert and Jose B Marino. 2006. Catalan-
english statistical machine translation without par-
allel corpus: bridging through spanish. In Proc.
of 5th International Conference on Language Re-
sources and Evaluation (LREC), pages 65–68. Cite-
seer.

Carlos Escolano, Marta R. Costa-jussà, and José A. R.
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Abstract
We describe here the experiments we per-
formed for the news translation shared task of
WMT 2019. We focused on the new German-
to-French language direction, and mostly used
current standard approaches to develop a Neu-
ral Machine Translation system. We make use
of the Tensor2Tensor implementation of the
Transformer model. After carefully cleaning
the data and noting the importance of the good
use of recent monolingual data for the task, we
obtain our final result by combining the output
of a diverse set of trained models through the
use of their ”checkpoint agreement”.

1 Introduction

The 2019 edition of WMT’s news translation
shared tasks was proposing the German-French
pair for the first time. The inclusion of two not-so-
closely related languages which both have a richer
morphology than English is interesting and can in
theory provide additional challenges to the more
English-X pairs most frequently used for Machine
Translation. Due to the rather large computation
time investment required by the training of a mod-
ern Neural Machine Translation system, we fo-
cused on the German-to-French direction.

Overall, our submission mostly relied on care-
fully following current best practices for Neural
MT, while trying to analyze results and find sim-
ple ways to improve them. We used a Trans-
former sequence-to-sequence model (Vaswani
et al., 2017) as our base system. After cleaning and
selecting data, we ran experiments with different
settings, and finally tried to combine the results of
all of these models. In these combination, we tried
to use what we dubbed ”checkpoint agreement” as
a proxy to measure the confidence of a system in
its translation.

We could obtain a final improvement of more
than +3.5 BLEU over the baseline trained only on

bilingual data. However, the greater part of this
improvement was simply due to the addition of
relevant monolingual data.

2 Basic setting

All of our experiments are based on the Trans-
former sequence-to-sequence model (Vaswani
et al., 2017). We used the Tensor2Tensor im-
plementation1 (Vaswani et al., 2018). For hyper-
parameters, we used the predefined ”big” setting
of Tensor2Tensor:

• 6 layers for the encoder

• 6 layers for the decoder

• Hidden size of 1024

• Feed-forward hidden size of 4096

• 16 attention heads

A dropout of 0.3 was used during training.
Training was done with the Adam (Kingma and
Ba, 2014) algorithm.

Like Popel and Bojar (2018), we also observed
that parallel training on a large number of GPUs
(thus with a larger effective batch size) was lead-
ing to a better final results than only using one or
two GPUs at once. We therefore always ran train-
ing on five to eight GPUs in parallel2. Using a
per-GPU batch size of 2048 tokens, this means our
effective batch-size was in the range of 10 000 to
16 000 tokens.

Except when indicated otherwise, training was
run for at least 500 000 iterations on 8 GPUs (with
more iterations when using fewer GPUs to keep
the number of training epochs roughly equivalent).

1https://github.com/tensorflow/tensor2tensor
2Since we are using a shared computation environment, it

was not practical to always have a batch of 8 GPUs available
for training.
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3 Data preprocessing

3.1 Data used

For bilingual data, we used the provided cor-
pora: europarl (≈ 1.7M sentence pairs), com-
mon crawl(≈ 620k sentence pairs) and news-
commentary (≈ 255k sentence pairs). We did not
use the paracrawl corpus.

In addition, we also used the 2018 set of the
news crawl corpus (≈ 8M sentences) as additional
monolingual data.

3.2 Data cleaning

Inspecting the training data exposed some minor
issues, most notably of encoding and mixed lan-
guages (eg. Spanish and English sentences in the
French part of the corpus).

Encoding issues were mostly due to sentences
encoded in the ”Latin-1” character set being mixed
with ”UTF-8” encoded sentences. Encoding was
fixed using the convenient Python library ftfy3

(Speer, 2019). In addition, we removed all uncom-
mon4 special unicode characters: such characters
waste embeddings/softmax capacity for no bene-
fits.

In order to remove non-French/German sen-
tences from the corpus, we chose to apply a sim-
ple heuristic that was fast enough to be applied
to millions of sentences. Comparing corpuses
of French, German, English, Spanish and Por-
tuguese, we selected ”characteristics” words and
characters that were frequent in French or German
but rare or inexistent in other languages (eg. char-
acter ”ç” or words ”mais”, ”donc” for French).
We then filtered out any sentence longer than 4
words that did not contain any of these character-
istics words/characters. A few dozen thousands
sentences were filtered out this way, with a rate
of false positive empirically estimated at less than
1%.

3.3 Subwords units

As is now common practice, we tokenized all
data with subwords units. We relied on the
subword tokenization algorithm implemented in
Tensor2Tensor. This algorithm is different from
the popular BPE tokenization algorithm (Sennrich

3https://github.com/LuminosoInsight/python-ftfy
4our definition for uncommon was any character whose

frequency rank was beyond 500 and that was not appearing
in any sentence of the dev set.

et al., 2015b), but is expected to be similarly ef-
ficient. We targeted a joint subword vocabulary
of 32 000 units. In other experiments we had ob-
served that smaller subword vocabulary size can
work better for language pairs with many common
prefixes (such as Spanish and Portuguese); this did
not seem to be the case here.

4 The importance of recent news data

4.1 Baseline Experiment and Error Analysis
We ran a first baseline experiment using the setting
described in section 2 and the cleaned bilingual
data of section3. We obtained a cased BLEU score
of 33.18.

Manual inspection of the results showed us that
the trained model could have serious trouble trans-
lating terms or personal names who had only re-
cently appeared in the news. A typical exam-
ple would be the translation of German ”Gelb-
westen” (”Yellow vests”) into French ”Gibiers
jaunes” (”Yellow game5”), instead of the correct
”Gilets jaunes”. The ”Yellow vests” are a French
protest movement that appeared during 2018 fall,
and has received much attention in news from that
time into 2019. The collocation ”Gilets jaunes” is
therefore unlikely to appear in the bilingual train-
ing data (which is typically older), which explains
why the model seems to prefer the similar (in
terms of subwords units) ”Gibiers jaunes”.

Another common problem was the literal trans-
lation of German terms that are normally quoted
as-is in French News. For example, the Ger-
man political Party ”Die Linke” (”The Left”) was
translated as ”le parti de gauche” (”the left-wing
party”), even though French journalists usually
refer to it with its German name (”le parti Die
Linke”).

4.2 Backtranslating recent news
The problem above prompted us to make use of
the provided monolingual data, which includes
more recent pieces of news. We used backtrans-
lation (Sennrich et al., 2015a), which is currently
the most popular approach for using monolingual
data in NMT. Concretely, we trained a French-to-
German model with the sam bilingual data, and
backtranslated into German the 2018 section of
the news crawl data. We expect that using the
data from previous years would have been useful
as well, but we focused on the year 2018, first out

5with the meaning of ”hunted animal”, not (board) game.
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of concern with time constraints, and second con-
sidering the most recent pieces of news should be
by far the most relevant to translate the develop-
ment set and the test set (which are mostly made
of recent news).

We added the backtranslated data to the bilin-
gual data and trained a new model. The new model
had a cased BLEU score of 35.92, almost a 3
BLEU improvement. Manual inspection showed
a large improvement in the translation of recent
terms (eg. ”Gelbwesten” was now correctly trans-
lated as ”Gilets jaunes”). However, the problem
of litterally translating terms such as ”Die Linke”
remained.

4.3 Checkpoint Averaging

In order to improve results further, we tried check-
point averaging6. Averaging was done over 20
checkpoints, each checkpoint being taken with a
one hour interval. This led to a modest improve-
ment of +0.2 BLEU.

5 Output combination

An efficient technique for improving the results
of a given Neural MT system is to train several
models and to compute their ensemble transla-
tions. The ensemble translation is obtained by let-
ting each model predict the probability of the next
words to be generated, and then combine these
probabilities to choose which word is actually gen-
erated to create the final translation. The price for
the improved translation quality is an increase in
training time, decoding time and memory usage
proportional to the number of models used.

In the course of this shared task, we trained sev-
eral different models, but could not use classic en-
semble techniques to combine them, due to several
factors: absence of a ready-made ensemble im-
plementation in Tensor2Tensor and models being
trained with different preprocessing (eg. different
subword units). This is why we considered a sim-
ple system combination algorithm that proved to
be useful.

5.1 Checkpoint agreement

While we could have used some more advanced
system combination techniques, such as (Freitag
et al., 2014), we experimented with the idea that
what we call ”checkpoint agreement” gives us use-

6using the t2t-avg-all script (Popel and Bojar, 2018).

ful indication about the reliability of a given trans-
lation.

The idea is, essentially, to keep many check-
points for each models (as in section 4.3). Each
checkpoint can be used to generate a translation
candidate. If all checkpoints generate the same
translation candidate, we can have higher confi-
dence in the translation than if they all generate
different translation candidates. Further, if twenty
checkpoints lead to a set of, say, three different
translations, we can have more confidence in the
translation that was generated by the most check-
point. This provides us with a model-independent
and implementation-independent way to estimate
the confidence we can have in the output of a
model. We empirically check to which extent this
is true in section 5.2.

Then, in section 5.3, we make use of this check-
point agreement to simply combine the output of
different systems.

5.2 Empirical evaluation of checkpoint
agreement

We first evaluate this idea with the checkpoints of
a single model. The first thing to verify is whether
different checkpoints actually produce different
translations. Using the same checkpoints as in sec-
tion 4.3 (ie. 20 one-hour-spaced checkpoints), we
compute the translations they generate for the de-
velopment set. We find that for 9% of the input
sentences, the 20 checkpoints generate the same
translation. For 2% of the input sentences, they
all produce distinct translations. For the remain-
ing 89% of inputs, there therefore exists at least
one translation candidate generated by at least two
checkpoints.

If, for each input, we select the most often gen-
erated translation candidate, we obtain a BLEU
score improvement of +0.3 (”selection by check-
point agreement” in table 1). This is a bit bet-
ter than simply doing checkpoint averaging, but
of course it takes 20 times more decoding time to
obtain a translation.

5.3 Models output combination through
checkpoint agreement

Given that we now have a model-independent way
of estimating the reliability of a translation, we can
use this to combine the output of different models.
This is what we try here.
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Model Dev cased BLEU Improvement
Baseline (bilingual data only) 33.18 -
+2018 news data (monolingual) 35.92 +2.74
Checkpoint averaging 36.12 +0.2
Selection through checkpoint agreement 36.23 +0.31
All Models combined with Checkpoints agreement 36.73 +0.81

Table 1: Cased-BLEU score on the development set for the different experiments. Improvements of checkpoint
averaging and checkpoint agreement combination are computed with respect to the ”Baseline+2018 monolingual
data” BLEU.

5.3.1 Combined models

The additional models we trained include:

• A model with a subword vocabulary size of
8000

• A model with a subword vocabulary size of
512

• A model trained with a reversed French-side
word order

The models with alternative vocabulary size
were trained to evaluate the effect of the coarse-
ness of the subword segmentation on the final
quality. We had observed this can have an impor-
tant impact on language pairs with many common
substrings (like Spanish and Portuguese), but did
not find it to give better results for German-French.

The model trained with a reversed French-side
order was to evaluate if the model could produce
better results by generating the translation from
right-to-left. Again, we did not find this to lead
to better results in our case.

Note that we could not combine these models
with a ”classic” ensemble of models: due to dif-
ferent subwords units or word order generation,
these models cannot compute consistent ”next-
word” probabilities that could be easily combined.

5.3.2 Results

We combine the results of our models through
a simple ”majority vote” weighted by the con-
fidence deduced from the checkpoint agreement.
We could possibly obtain better results by inte-
grating the confidence score given by checkpoint
agreement in a more complex system combination
algorithm such as Freitag et al. (2014).

We obtain an improvement of +0.8 BLEU (”All
Models Checkpoints combination” in table 1).

6 Conclusion

We experimented with the translation of German
into French in the context of the WMT 2019
shared tasks. Our approach mostly followed the
currently known best practices. We detailed how
we cleaned an pre-processed the training data, and,
in particular, we found it crucial for the task to
make good use of recent monolingual data. We
also evaluated the idea that a set of checkpoints
from a given training run can be used to evalu-
ate the confidence in the quality of the output of
a model. We used this to combine simply the out-
put of a set of different models.
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Abstract
In this paper, we describe our supervised
neural machine translation (NMT) systems
that we developed for the news translation
task for Kazakh↔English, Gujarati↔English,
Chinese↔English, and English→Finnish
translation directions. We focused on
leveraging multilingual transfer learning
and back-translation for the extremely low-
resource language pairs: Kazakh↔English
and Gujarati↔English translation. For the
Chinese↔English translation, we used the
provided parallel data augmented with a
large quantity of back-translated monolingual
data to train state-of-the-art NMT systems.
We then employed techniques that have
been proven to be most effective, such as
back-translation, fine-tuning, and model en-
sembling, to generate the primary submissions
of Chinese↔English. For English→Finnish,
our submission from WMT18 remains a
strong baseline despite the increase in parallel
corpora for this year’s task.

1 Introduction

Neural machine translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has enabled end-to-end training of a trans-
lation system without needing to deal with word
alignments, translation rules, and complicated de-
coding algorithms, which are the characteristics of
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2007). NMT performs well in
resource-rich scenarios but badly in resource-poor
ones (Zoph et al., 2016). With the aid of mul-
tilingualism, transfer learning, and monolingual
corpora, researchers have shown that the transla-
tion quality in a low-resource scenario can be sig-
nificantly boosted (Zoph et al., 2016; Firat et al.,
2016; Sennrich et al., 2016a). Furthermore, unsu-
pervised NMT (Lample et al., 2018) has enabled

∗equal contribution

translation in a scenario where only monolingual
corpora are available.

In this paper, we describe all the sys-
tems for Kazakh↔English, Gujarati↔English,
Chinese↔English, and English→Finnish, that we
developed and submitted for WMT 2019 under the
team name “NICT.” In particular our observations
can be summarized as follows:

Kazakh→English translation heavily benefits
from the existence of Russian as a pivot
language in the form of a Russian–Kazakh
corpus which can be used to generate a
pseudo-parallel Kazakh–English corpus from
the Russian–English corpus.

Gujarati→English translation can be dras-
tically improved by training a robust
Hindi→English model and fine tuning it on
the Gujarati–English corpus.

Chinese↔English translation can benefit from
back-translation, model ensembling, and
fine-tuning based on the development data.

English→Finnish translation generated by our
WMT18’s NMT system (Marie et al., 2018)
remains a strong baseline despite the avail-
ability of larger bilingual corpora for training
this year.

Noisy parallel corpora for back-translation
leads to poor quality pseudo-parallel data
which leads to poor translations.

Kindly refer to the overview paper (Bojar et al.,
2019) for additional details about the tasks, com-
parisons to other submissions, human analyses
and insights.

2 The Transformer NMT Model

The Transformer (Vaswani et al., 2017) is the
current state-of-the-art model for NMT. It is a
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sequence-to-sequence neural model that consists
of two components: the encoder and the decoder.
The encoder converts the input word sequence into
a sequence of vectors. The decoder, on the other
hand, produces the target word sequence by pre-
dicting the words using a combination of the pre-
viously predicted word and relevant parts of the
input sequence representations. The reader is en-
couraged to read the original paper (Vaswani et al.,
2017) for a deeper understanding.

3 Kazakh↔English Task

3.1 Use of Pseudo-Parallel Data
In this paper, we rely on a highly reliable
data-augmentation technique known as back-
translation (Sennrich et al., 2016a). This tech-
nique relies on a L2→L1 model to translate an
L2 monolingual corpus, thereby yielding a large
L1–L2 pseudo-parallel corpus for L1→L2 trans-
lation. The final L1→L2 translation quality de-
pends on the quality of the pseudo-parallel corpus
which in turn depends on L2→L1 translation qual-
ity. For a low-resource L1–L2 pair, this approach
is rather infeasible.1 However, the existence of a
pivot-language, L3, can prove beneficial. In this
situation, we can assume large L3–L1 and L3–L2
corpora. Using a robust L3→L1 model, we can
translate the L3 side of the L3–L2 corpus to ob-
tain a high quality L1–L2 pseudo-parallel corpus
(Firat et al., 2016).

In our participation, we regard Russian as the
helping language, L3.

3.2 Datasets
We used the official Kazakh–English, Kazakh–
Russian, and Russian–English datasets provided
by WMT. All three datasets belong to the news
domain. After filtering the Kazakh–English par-
allel corpus using the “clean-corpus.perl” script in
Moses (Koehn et al., 2007),2 we obtained 98,602
(noisy) sentence pairs.

We filtered the Kazakh–Russian corpus of
5,063,666 lines according to the scores provided
with the corpus files. The real-valued scores
ranged from 0 to a maximum value of 11. Since
higher scores meant better pairs, we filtered the
corpora using the thresholds 1, 2, 3, 4, and 5 and

1We had initially experimented with the large Kazakh
and English monolingual corpora for back-translation but ob-
served no benefits.

2https://github.com/moses-smt/
mosesdecoder

trained NMT models on the filtered corpora. We
found out that a threshold of a score of at least 1
gave a corpus of 2,905,538 lines and performs the
best on a development set.3 Using scores of 2, 3,
and 4 gave slightly lower BLEU scores on the de-
velopment set and thus we decided to use as large
a corpus as possible.

We used 4,596,000 lines4 of Russian sentences,
randomly selected from the 12,061,155 sentences
Russian–English corpus, for back-translation. No
other type of pre-processing was performed.

3.3 Systems

We used the tensor2tensor5 version 1.6 implemen-
tation of the Transformer (Vaswani et al., 2017)
model. We used the default hyper-parameters in
tensor2tensor for all our models with the exception
of the number of training iterations. Unless men-
tioned otherwise we used the Transformer “base”
model hyper-parameter settings with a 215 =
32, 768 sub-word vocabulary which was learned
using tensor2tensor’s internal tokenization and
sub-word segmentation mechanism. We learned
separate sub-word vocabularies for the source and
target languages.

During training, a model checkpoint was saved
every 1000 iterations. All models were trained
till convergence on the WMT19’s official devel-
opment set BLEU score. We averaged the last
N model checkpoints and used it for decoding
the test sets. N is 20 for Kazakh↔English. The
choice of N depended on the number of iterations
for convergence which in turn depended on the
size and quality of the data used to train models.
We chose the beam size and length penalty by tun-
ing on the development set. We did not ensem-
ble multiple models although it could possibly im-
prove the translation quality even further.

We first trained Russian→Kazakh and
Russian→English models for back-translation
purposes. The Russian→Kazakh model was
trained for 300,000 iterations on one GPU
with a batch size of 2048 words and the

3We chose a set of 2,000 sentences, not included in the
training set, to monitor convergence.

4Due to lack of time, we were unable to back-translate all
Russian sentences before the task deadline. After the dead-
line we experimented with back-translating all Russian sen-
tences but did not observe any appreciable improvements in
translation quality.

5https://github.com/tensorflow/
tensor2tensor
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Task BLEU BLEU
cased

IGNORE
BLEU (11b)

IGNORE
BLEU-cased

(11b)

IGNORE
BLEU-cased-norm TER BEER 2.0 CharactTER Rank

Kazakh→English 28.1 26.2 28.1 26.2 26.2 0.670 0.555 0.701 3/9
English→Kazakh 6.4 6.4 6.4 6.4 7.8 0.926 0.418 0.841 8/9
Gujarati→English 18.6 17.2 18.6 17.2 17.3 0.733 0.508 0.705 5/10
English→Gujarati 10.5 10.5 10.5 10.5 10.6 0.856 0.448 0.785 6/8

Table 1: Results for Kazakh↔English and Gujarati↔English tasks. These scores are simply copied from the
official runs list.

Russian→English for 100,000 iterations6 on two
GPUs with a batch size of 4096 words. We
used the Russian→English model to translate
the Russian side of the Russian–Kazakh corpus
into English. On the other hand, we used the
Russian→Kazakh model to translate the Russian
side of the Russian–English corpus into Kazakh.
We used greedy decoding (to save time) with a
length penalty of 1.0 in both cases.

Both Kazakh→English and English→Kazakh
models were trained only on the pseudo-parallel
data, using two GPUs with a batch size of 4096
words, till the convergence of BLEU on the de-
velopment set. As a result, the Kazakh→English
model was trained for 200,000 iterations, whereas
the English→Kazakh model was trained for
220,000 iterations. For both translation directions,
decoding was done using a beam of size 10 and
length penalty of 0.8 (determined by tuning on the
development set).

3.4 Results

Refer to rows 1 and 2 of Table 1 for the various au-
tomatic evaluation scores. For Kazakh→English
our submitted system achieved a cased BLEU
score of 26.2 placing our system at 3rd rank out
of 9 primary systems. On the other hand, our
English→Kazakh performed poorly with its sys-
tem achieving a BLEU score of 6.4 placing it at
8th out of 9 primary systems.

Initially, we had experimented with back-
translating English monolingual corpora to
Kazakh using models trained on the Kazakh–
English parallel corpora. However, this led to
a BLEU score of less than 15. After repeated
experimentation we realized that the Kazakh–
English parallel corpus was of extremely poor
quality and hence decided to experiment with
Russian as a pivot language. We trained a
multilingual English–Russian–Kazakh model

6Given that the Russian–English corpus contains over
12M sentence pairs, training for more iterations could give
better results.

and pivot translation (Firat et al., 2016) gave
a BLEU of around 18 which motivated us to
exploit the Russian–Kazakh data. The main
lesson we learned was: always exploit a pivot
language whenever possible instead of relying
on a parallel corpus of bad quality. Note once
again that our submissions did not involve the use
of the Kazakh–English corpus provided by the
organizers.

4 Gujarati↔English Task

4.1 Fine-Tuning for Transfer Learning

In addition to the approaches in Section 3.1, we
also use fine-tuning for transfer learning. Zoph
et al. (2016) proposed to train a robust L3→L1
parent model using a large L3–L1 parallel corpus
and then fine-tune it on a small L2–L1 corpus to
obtain a robust L2→L1 child model. The under-
lying assumption is that the pre-trained L3→L1
model contains prior probabilities for transla-
tion into L1. The prior information is divided
into two parts: language modeling information
(strong prior) and cross-lingual information (weak
or strong depending on the relationship between
L3 and L2). Dabre et al. (2017) have shown that
linguistically similar L3 and L2 allow for better
transfer learning. As such, we transliterate L3
to L2 before pre-training a parent model. This
could help in faster convergence, ensure cognate
overlap, and potentially lead to a better translation
quality.

In this participation, we used Hindi as the help-
ing language, L3.

4.2 Datasets

We used the official Gujarati–English and Hindi–
English datasets provided by WMT. The Gujarati–
English corpus contains 28,683 sentence pairs be-
longing to the news and Wiki domains. We
also used the ILCI Gujarati–English corpus (Jha,
2010) of 44,777 sentence pairs belonging to the
tourism and health domains. In total the size

170



of the Gujarati–English parallel corpus is 73,460
sentence pairs. The Hindi–English corpus of
1,492,827 sentence pairs contains sentence pairs
belonging to multiple domains.

We used around 2,700,919 lines of Gujarati
monolingual corpora (of which approximately
244,919 lines were from the news domain) for
back-translation.7 We mapped the script on the
Hindi side of the Hindi–English corpus to Gujarati
using the Indic languages toolkit.8 No other type
of pre-processing was performed.

We had initially experimented with a large En-
glish monolingual corpus for back-translation but
observed no benefits.

4.3 Systems

Most training details, including the size of sub-
word vocabulary, are same as those in Section 3.3.
The only exception is the number of checkpoints
we averaged before decoding which is 10 instead
of 20. This is because Gujarati↔English mod-
els converged rather quickly and hence were not
trained for a long period of time.

We first trained a bi-directional
Gujarati↔English model9 using the parallel
corpora mentioned above, for 60,000 iterations on
one GPU with a batch size of 2048 words. We
then used this model to translate Gujarati mono-
lingual data into English using greedy decoding
with a length penalty of 1.0. We also pre-trained
a Hindi→English model where the scripts on the
Hindi side was mapped to those in Gujarati. This
model was trained for 90,000 iterations on one
GPU with a batch size of 4096 words.

We then trained a Gujarati→English model
by fine-tuning the Hindi→English model on the
Gujarati→English data for an additional 15,000 it-
erations10 on one GPU with a batch size of 4096
words. We also trained a English→Gujarati model
using the pseudo-parallel corpus by training for
60,000 iterations11 on one GPU with a batch size

7During back-translation, some parts of the monolingual
corpus remained untranslated due to out-of-memory errors
caused by very long input sentences.

8https://github.com/anoopkunchukuttan/
indic_nlp_library

9We chose a bi-directional model because we observed
higher BLEU scores on the development set compared to a
unidirectional model.

10Fine-tuning converges quickly.
11Given the size of the pseudo-parallel corpus we expected

to train for much longer but observed convergence rather
quickly. It is likely that our generated corpus was quite noisy
and hence the models had limited learning potential.

of 2048 words. For both cases, decoding was done
using a beam of size 10 and length penalty of 0.8.

4.4 Results

Refer to rows 3 and 4 of Table 1 for the various au-
tomatic evaluation scores. For Gujarati→English
our submitted system run achieved a cased BLEU
score of 17.2 placing our system at 5th position
out of 10 primary systems. On the other hand, our
English→Gujarati performed poorly with its sys-
tem run achieving a BLEU score of 10.6 placing it
at 6th position out of 8 primary systems.

Similar to our experience in Kazakh↔English,
using the NMT models trained using Gujarati–
English parallel corpora for back-translation, led
to poor translation quality. Our Gujarati→English
system achieved less than 10 BLEU when rely-
ing on a naive back-translation approach. As
such, we decided to rely on transfer learning
by fine-tuning a Hindi–English model on the
Gujarati–English corpus. In WMT19, Hindi
was the only language linguistically similar to
Gujarati and hence we did not explore other
resource-rich language pairs. Other participants
used Czech–English for transfer learning and
achieved similar success. On the other hand, only
the pseudo English–Gujarati corpus was avail-
able for developing the English→Gujarati system.
Due to lack of time, we did not try using our
transfer learning based Gujarati→English model
for back-translation. Given that our submitted
Gujarati→English system is over 8 BLEU points
higher than the naive back-translation based sys-
tem, we expect that English→Gujarati has a huge
potential for improvement.

As in the case of Kazakh↔English, we noted
that it is extremely beneficial to leverage a helping
language, such as Hindi, for improving translation
quality.

5 Chinese↔English Tasks

5.1 Datasets

The training data for the Chinese↔English
(ZH↔EN) translation tasks consists of two parts:
1) we selected the first 10 million lines of the
News Crawl 2016 English corpus according to our
last year’s finding (Marie et al., 2018), 2) the cor-
responding synthetic data was generated through
back-translation (Sennrich et al., 2016a). We ap-
plied tokenizer and truecaser of Moses (Koehn
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Task System BLEU BLEU
cased

IGNORE
BLEU (11b)

IGNORE
BLEU-cased

(11b)

IGNORE
BLEU-

cased-norm
TER BEER 2.0 CharactTER

ZH→EN

Single model 24.1 23.3 24.1 23.3 23.5 0.667 0.574 0.643
+back-translation 26.6 25.3 26.6 25.3 25.5 0.652 0.585 0.632
+fine-tuning 28.7 27.5 28.7 27.5 27.7 0.621 0.599 0.613
+ensemble five models 32.3 31.0 32.3 31.0 31.3 0.599 0.615 0.569

EN→ZH

Single model 30.3 30.3 0.4 0.4 2.2 0.999 0.304 0.839
+back-translation 31.8 31.8 0.6 0.6 2.6 0.999 0.315 0.765
+fine-tuning 33.1 33.1 0.0 0.0 2.3 1.000 0.319 0.747
+ensemble five models 34.5 34.5 0.7 0.7 2.6 0.999 0.326 0.734

Table 2: Results for ZH↔EN translation task. “Single model” denotes that it was trained by only using the first
10M lines of the News Crawl-2016 English corpus as training data. These scores are simply copied from the
official runs list.

et al., 2007) to the English sentences. Jieba12 was
used to tokenize the Chinese sentence. For clean-
ing, we filtered out sentences longer than 80 to-
kens in the training data.

5.2 Systems
We used Marian toolkit (Junczys-Dowmunt et al.,
2018)13 to build competitive NMT systems based
on the Transformer (Vaswani et al., 2017) archi-
tecture. We used the byte pair encoding (BPE)
algorithm (Sennrich et al., 2016b) for obtaining
the sub-word vocabulary whose size was set to
50,000. The number of dimensions of all input
and output layers was set to 512, and that of the
inner feed-forward neural network layer was set to
2048. The number of attention heads in each en-
coder and decoder layer was set to eight. During
training, the value of label smoothing was set to
0.1, and the attention dropout and residual dropout
were set to 0.1. The Adam optimizer (Kingma
and Ba, 2014) was used to tune the parameters of
the model. The learning rate was varied under a
warm-up strategy with warm-up steps of 16,000.
All NMT models for ZH↔EN tasks were consis-
tently trained on four P100 GPUs. We validated
the model with an interval of 5,000 batches on the
development set and selected the best model ac-
cording to BLEU (Papineni et al., 2002) score on
the newsdev2018 data set.

We performed the following training run inde-
pendently for five times to obtain the models for
ensembling. First, an initial model was trained
on the provided parallel data and used to gener-
ate pseudo-parallel data through back-translation.
A new model was then trained from scratch on
the mixture of the original parallel data and the
pseudo-parallel data. The new model was further

12https://github.com/fxsjy/jieba
13https://marian-nmt.github.io

fine-tuned on the concatenation of newsdev2017
and newstest2017 data sets for 20 epochs. Finally,
we decoded the newstest2019 test set with an en-
semble of the five fine-tuned models to generate
the primary submissions for the ZH↔EN task.

5.3 Results

Table 2 shows the results of ZH↔EN tasks. It
is obvious that the back-translation, fine-tuning,
and ensemble methods are greatly effective for the
ZH↔EN tasks. In particular, the ensemble gave
more improvements on the ZH→EN task over
the “Single model+back-translation+fine-tuning”
model than the EN→ZH task. In addition, these
three methods can incrementally improve transla-
tion performance of the Transformer NMT.

6 English→Finnish Task

For the translation direction English→Finnish, we
used the exactly same NMT models and system
used to generate our last year’s submission (Marie
et al., 2018). We did not exploit the new larger
parallel data provided for this year. For this year,
we only submitted the output produced by the en-
semble of our three NMT models. Our system
was ranked third for the task according to BLEU-
cased, at 23.2 BLEU points, which is 4.2 BLEU
points below the best system submitted to the task.

7 Conclusion

In this paper, we have described our primary sys-
tems whose translations we have submitted to
WMT2019. In general, we found that back-
translation, fine-tuning, and ensembling are the
most effective means of maximizing the transla-
tion quality for all language pairs. In addition to
this, we have observed that leveraging a helping
language, such as Russian for Kazakh↔English
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translation and Hindi for Gujarati→English trans-
lation, can lead to large benefits as compared to
using only parallel corpora and back-translation.
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Abstract
This paper describes the University of Syd-
ney’s submission of the WMT 2019 shared
news translation task. We participated in the
Finnish→English direction and got the best
BLEU(33.0) score among all the participants.
Our system is based on the self-attentional
Transformer networks, into which we inte-
grated the most recent effective strategies from
academic research (e.g., BPE, back transla-
tion, multi-features data selection, data aug-
mentation, greedy model ensemble, rerank-
ing, ConMBR system combination, and post-
processing). Furthermore, we propose a novel
augmentation method Cycle Translation and
a data mixture strategy Big/Small paral-
lel construction to entirely exploit the syn-
thetic corpus. Extensive experiments show
that adding the above techniques can make
continuous improvements of the BLEU scores,
and the best result outperforms the baseline
(Transformer ensemble model trained with
the original parallel corpus) by approximately
5.3 BLEU score, achieving the state-of-the-art
performance.

1 Introduction

Neural machine translation (NMT), as a succinct
end-to-end paradigm, has resulted in massive leap
in state-of-the-art performances for many lan-
guage pairs (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Wu et al., 2016; Vaswani
et al., 2017). Among these encoder-decoder net-
works, the Transformer (Vaswani et al., 2017),
which solely uses along attention mechanism
and eschews the recurrent or convolutional net-
works, leads to state-of-the-art translation qual-
ity and fast convergence speed (Ahmed et al.,
2017). Although many Transformer-based vari-
ants are proposed (e.g., DynamicConv (Wu et al.,
2019), sparse-transformer (Child et al., 2019)), our
preliminary experiments show that their perfor-
mances are unstable compared to the traditional

# cycle translated sample sentence pair
1 She stuck to her principles even when

some suggest that in an environment of-
ten considered devoid of such thing there
are little point.

2 She insists on her own principles, even
if some people think that it doesn’t make
sense in an environment that is often con-
sidered to be absent.

Table 1: Example of difference between original sen-
tence (line 1) and cycle translated result (line 2). Pre-
trained BERT model using all available English cor-
pora show that the Loss decreased from 6.98 to 1.52.

Transformer. Traditional Transformer therefore
was employed as our baseline system. In this pa-
per, we summarize the USYD NMT systems for
the WMT 2019 Finnish→English (FI→EN) trans-
lation task.

As the limitation of time and computation re-
sources, we only participated in one challenging
task FI→EN, which lags behind other language
pairs in translation performance (Bojar et al.,
2018). We introduce our system with three parts.

First, at data level, we find that the data qual-
ity of both parallel and monolingual is unbalanced
(i.e., contains a large number of low quality sen-
tences). Thus, we apply several features to se-
lect the data after pre-processing, for example, lan-
guage models, alignment scores etc. Meanwhile,
in order to fully utilize monolingual corpus, not
only back translation (Sennrich et al., 2015) is
adopted to back translate the high quality monolin-
gual sentences with target-to-source(T2S) model,
we also propose Cycle Translation to improve
the low-quality sentences, in turn resulting in cor-
responding high-quality back translation results.
Note that unlike text style transfer task (Shen et al.,
2017; Fu et al., 2018; Prabhumoye et al., 2018)
which transfers text to specific style (e.g., political
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Figure 1: The schematic structure of the three main stages of the USYD-NMT. They are data preparation stage,
model training stage and inference phrase. For brevity, here Mono, Para, and Valid represent the monolingual,
parallel and validation data respectively.

slant, gender), we aim to improve the fluency of
sentences, for instance, through cycle translation,
low quality sentence in Table 1 becomes more flu-
ent in terms of language model score. The top dia-
gram of Figure 1 depicts data preparation process
concretely.

As to model training in the middle part
of Figure 1, we empirically introduced
Big/Small parallel construction strategy to
construct training data for different models. The
intuition is all the data are advantageous and can
be fully exploited by different models, thus we
train 8 Transformer base models (Msmall × 8) by
using different small scale corpus constructed by
small parallel construction method and a Trans-
former big model (Mbig × 1) based on the big
parallel construction method. In the meantime, a
right-to-left model (Mr2l) is trained.

In addition, in inference phrase, we comprehen-
sively consider the ensemble strategies at model
level, sentence level and word level. For model
level ensemble, while brutal ensemble top-N or
last-M models may improve translation perfor-
mance, it is difficult to obtain the optimal result.
Hence we employ Greedy Model Selection based

Ensembling (GMSE) (Partalas et al., 2008; Deng
et al., 2018). For sentence level ensemble, we
keep top n-best for multi-features reranking. And
for word aspect, we adopt the confusion network
decoding (Bangalore et al., 2001; Matusov et al.,
2006; Sim et al., 2007) with using the consen-
sus network minimum Bayes risk (MBR) crite-
rion (Sim et al., 2007). After combination, a post-
processing algorithm is employed to correct in-
consistent number and years between the source
and target sentences. The bottom part of Figure 1
shows the inference process.

Our omnivorous model achieved the best
BLEU (Papineni et al., 2002) scores among sub-
mitted systems, demonstrating the effectiveness
of the proposed approach. Theoretically, our ap-
proach is not specific to the Finnish→English lan-
guage pair, i.e., it is universal and effective for any
language pairs. The remainder of this article is or-
ganized as follows: Section 2 will describe each
component of the system. In Section 3, we intro-
duce the data preparing details. Then, the exper-
imental results are showed in Section 4. Finally,
we conclude in Section 5.
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model parameters M small M big
num stack 6 6
hidden size 512 1024
FFN size 2048 4096

num heads 8 16
p dropout 0.1 0.3

Table 2: Model differences between base and big.

2 Approach

2.1 Neural Machine Translation Models

Given a source sentence X = x1, ..., xT ′ , NMT
model factors the distribution over target sentence
Y = y1, ..., yT into a conditional probabilities:

p(Y |X; θ) =

T+1∏

t=1

p(yt|y0:t−1, x1:T ′ ; θ) (1)

where the conditional probabilities are parameter-
ized by neural networks.

The NMT model consists of two units: an en-
coder and a decoder. The encoder is assumed that
it can adequately represent the source sentence.
Then, the decoder can recursively predict each tar-
get word. Parameters of encoder, decoder and
attention mechanism are trained to maximize the
likelihood with a cross-entropy loss applied:

LML = log p(Y |X; θ)

=
T+1∑

t=1

log p(yt|y0:t−1, x1:T ′ ; θ)
(2)

Concretely, an self-attentional encoder-decoder
architecture (Vaswani et al., 2017) was selected
to capture the causal structure. For training
with different size of corpus, we employ the
Transformer base (M base) and Transformer big
(M big) in our structure, see Table 2.

2.2 Data Selection Features

Inspired by (Bei et al., 2018), where their system
shows data selection can obtain substantial gains,
we deliberately design criteria for parallel and
monolingual corpus. Both of them employ rule-
based features, count features, language model
features. And for parallel data, word alignment-
based features, T2S translation model score fea-
tures are applied. The feature types are described
in Table 3. Our BERT language model used here is

Category Features

NMT Features T2S score (Sennrich et al., 2016)

LM Features

BERT LM (Devlin et al., 2018)

Transformer LM (Bei et al., 2018)

N-gram LM (Stolcke, 2002)

Alignment Features IBM model 2 (Dyer et al., 2013)

Rule-based features Illegal characters (Bei et al., 2018)

Count Features
Word count

Word count ratio

Table 3: Features for data selection.

trained from scratch by the open-source tool1 with
target side data.

According to our observations, by using above
multiple data selection filters, issues like misalign-
ment, translation error, illegal characters, over
translation and under translation in terms of length
could be significantly reduced.

2.3 Cycle Translation for Low-quality Data

Although the data selection procedure has pre-
served relatively high quality monolingual data,
there are still a large batch of data is incomplete or
grammatically incorrect. To address this problem,
we proposed Cycle Translation (denoted as CT (·),
as Figure 2) to improve the mono-lingual data that
below the quality-threshold (According to our em-
pirical ablation study in section 4, the latter 50%
will be cycle translated in our submitted system).

2.4 Back Translation for monolingual corpus

Back-translation (Sennrich et al., 2015; Bojar
et al., 2018), translating the large scale mono-
lingual corpus to generate synthetic parallel data
by Target-to-Source pretrained model, has been
widely utilized to improve the translation quality
since adding the synthetic data into parallel data
can enhance the in-domain information over the
original corpus distributions, allowing the transla-
tion model to be more robust and deterministic.

2.5 Greedy Model Selection Based Ensemble

Model ensemble is a typical boosting technique,
which refers to combining multiple models to re-
duce stochastic differences in the output that may
not be avoided at a single run. Also normally, en-
semble model outperforms the the best single one.

1https://github.com/huggingface/
pytorch-pretrained-BERT

177



Low quality
Mono-Data 𝑥 T2S model

S2T model

𝑇2𝑆(𝑥)

𝑆2𝑇(𝑇2𝑆(𝑥))

Mono Parallel

Figure 2: The Cycle Translation process, into which
we feed the low quality monolingual data x, and then
correspondingly obtain the improved data CT (x) (de-
noted as S2T (T2S(x)) in figure). Note that models
marked in red and green represent the T2S and S2T
model trained byMsmall with the processed given par-
allel corpus, the red arrows indicate the data flows of
the opposite language type of the inputs. The dotted
double-headed arrow between the input x and the final
output CT (x) means that they share the semantics but
differs in fluency.

In neural machine translation, we generally en-
semble several checkpoints saved during a single
model training. However, our preliminary experi-
ments show that both top-N or last-M ensembling
approaches could only bring very insignificant im-
provements but consume a lot of GPU resources.

To overcome this issue, we adopt greedy model
selection based ensembling(GMSE), which tech-
nically follows the instruction of (Deng et al.,
2018).

2.6 Reranking n-best Hypotheses

As the NMT decoding being generally from left
to right, this leads to label bias problem (Laf-
ferty et al., 2001). To alleviate this problem, we
rerank the n-best hypotheses through training a k-
best batch MIRA ranker (Cherry and Foster, 2012)
with multiple features on validation set. The fea-
ture pool we integrated include left-to-right (L2R)
translation model, (right-to-left) R2L translation
model, (target-to-source) T2S translation model,
language model, IBM model 2 alignment score,
and word count ratio. After multi-feature rerank-
ing, the best hypothesis of each model (Mbig × 1,
Msmall× 8 and R2L model) was retained for sys-
tem combination.

2.6.1 Left-to-right NMT model
The L2R feature refers to the original translation
model that could generate the n-best list. During
reranking training, we keep the original perplexity
score evaluated by this L2R model as L2R feature.

𝑀_𝑏𝑖𝑔 𝑀_𝑠𝑚𝑎𝑙𝑙1 𝑀_𝑠𝑚𝑎𝑙𝑙8 𝑀_𝑅2𝐿…

1best 1best … 1best 1best

Pooling 1 Best List

ConMBR System Combination

Src sentence

Tgt output

Multiple Systems

Figure 3: The System Combination process, into which
we feed each system/model with the source sentence
x, in turn obtain corresponding 1-best resultMbig(x),
Msmall1(x), ... ,Msmall2(x),MR2L(x) (Note that
the 1-best result here of each system was already
reranked). After pooling all system results, we can per-
form the ConMBR system combination decoding and
obtain the final target side results.

2.6.2 Right-to-Left NMT Model

The R2L NMT model using the same training data
but with inverted target sentences (i.e., reverse tar-
get side characters “a b c d”→“d c b a”). Then,
inverting the hypothesis in the n-best list such that
each sequence can be given a perplexity score by
R2L model.

2.6.3 Target-to-Source NMT Model

The T2S model was initially trained for back-
translation, we can employ this model to assess
the translation adequacy as well by adding the T2S
feature to reranking feature pool.

2.6.4 Language Model

Besides above features, we employ language mod-
els as an auxiliary feature to give the fluent sen-
tences better scores such that the results are easier
to understand by human.

2.6.5 Word Count Ratio

To alleviate over-translation or under-translation
in terms of length, we set the optimal ratio of
Lfi : Len to 0.76 according to the corpus-based
statistics. We use the deviation between the ratio
of each sentence pair and this optimal ratio as the
score.
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src Siltalan edellinen kausi liigassa oli

:::::::
2006-07

pred Siltala’s previous season in the
league was

:::::
2006

::
at

:::
07

+post Siltala’s previous season in the
league was

::::::::
2006-07

Table 4: Example of the effectiveness of post-
processing in handling inconsistent number translation.

Data Sentences
filtered parallel corpus 5,831,606
reconstructed mono 82,773,126
filtered synthetic parallel 75,940,978
small construction(×8) 11,663,212
big construction 151,751,856

Table 5: Data statistics after data preparation

2.7 System Combination
As is shown in Figure 3, in order to take full ad-
vantages of different models(Mbig×1,Msmall×8
and R2L model), we adopted word-level combi-
nation where confusion network was built. Con-
cretely, our method follows Consensus Network
Minimum Bayes Risk (ConMBR) (Sim et al.,
2007), which can be modeled as

EConMBR = argminE′L(E′, Econ) (3)

where Econ was obtained as backbone through
performing consensus network decoding.

2.8 Post-processing
In addition to general post-processing strate-
gies (i.e., de-BPE, de-tokenization and de-
truecase 2), we also employed a post-processing
algorithm (Wang et al., 2018) for inconsistent
number, date translation, for example, “2006-07”
might be segmented as “2006 -@@ 07” by BPE,
resulting in the wrong translation “2006 at 07”.
Our post-processing algorithm will search for the
best matching number string from the source sen-
tence to replace these types of errors, see Table 4.

3 Data Preparation

We used all available parallel corpus 3 for
Finnish→English except the “Wiki Headlines”

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

3both parallel and monolingual corpus can be ob-
tained from: http://www.statmt.org/wmt19/
translation-task.html

due to the large number of incomplete sentences,
and for monolingual target side English data,
we selected all besides the “Common Crawl”
and “News Discussions”. The criteria is inspired
by (Marie et al., 2018), who won the first place in
this direction at WMT18. Table 5 shows the final
corpus statistics. More details are as follows:

Parallel Data: We use the criteria in sec-
tion 2.2, the overall criteria are following:

• Remove duplicate sentence pairs.

• Remove sentence pairs containing illegal
characters.

• Retain sentence pairs between 3 and 80 in
length.

• Remove sentence pairs that are too far from
the best ratio(Lfi : Len=0.76)

• Remove pairs containing influent English
sentences according to a series of LM fea-
tures.

• Remove inadequate translation sentence pairs
according toMT2S score.

• Remove sentence pairs with poor alignment
quality according to IBM model 2.

After data selection, there are approximately
5.8M parallel sentences.

Monolingual Data: For our Finnish→English
system, back translation was performed for mono-
lingual English data. Before back-translation,
we filter them according to the aforementioned
criteria in section 2.2 and concurrently, the scores
of each sentence is obtained. After monolingual
selection, there are 82M sentences remained,
which is still a gigantic scale. We cycle translate
the last 25%, 50% and 75% of it in terms of the
LM scores to empirically identify the optimal
threshold and improve the fluency of monolingual
corpora. In doing so, all monolingual corpus is
kept at relatively high quality.

Synthetic Parallel Data: The synthetic parallel
data also needs to be filtered by alignment score
and word count ratio to alleviate poor translation.
Further filtration retains 75M synthetic data.

On the other hand, previous works have shown
that the maximum gain can be obtained by mixing
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# Models news-test18 news-test19 ∆ave

1 Baseline(original parallel + ensemble) 21.8 27.3 −
2 Msmall(selected parallel) 22.6 27.9 +0.70

3 +synthetic 23.9 28.8
4 +GMSE 24.2 29.2
5 +reranking 24.6 29.5
6 +post processing 24.8 29.6 +2.65

7 Cycle translation + B/S construction 25.3 30.9 +3.55

8 +GMSE 25.9 31.7
9 +reranking 26.3 32.4
10 +system combination 26.6 32.8
11 +post processing 26.7 33.0 +5.30

Table 6: FI→EN Results on newstest2018 and newstest2019. The submitted system is the last one.

# CT Ratio Val. ∆

1 [0%] 22.62 -
2 [25%] 23.18 +0.56
3 [50%] 23.70 +1.08
4 [75%] 23.07 +0.45

Table 7: Different experimental settings that employed
different cycle translation thresholds. Val. denotes that
the results are reported on validation set.

the sampled synthetic and original corpus in a
ratio of 1:1 (Sennrich et al., 2015, 2016). The
size of the synthetic corpus is generally larger
than the parallel corpus, thus partial sampling is
required to satisfy the 1-1 ratio. However, such
sampling leads to waste of enormous synthetic
data. To address this issue, we argue that a better
construction strategy can be introduced to make
full use of the synthetic corpus, subsequently
leading to better translation quality.

Small Parallel Construction: We randomly
sampled approximate 5.8M corpus from the
shuffled synthetic data for 8 times and mix them
with parallel data respectively.

Big Parallel Construction: The aim of big
construction is to fully utilize the synthetic data.
To achieve this, we repeated the parallel corpus 13
times and then mixed it with all synthetic corpora.

4 Experiments

The metric we employed is detokenized case-
sensitive BLEU score. news-test2018 is uti-
lized as validation set and test set is officially

released news-test2019. Training set, val-
idation set and test set are processed consis-
tently. Both Finnish and English sentences are
performed tokenization and truecasing with Moses
scripts (Koehn et al., 2007). In order to limit the
size of vocabulary of NMT models, we adopted
byte pair encoding (BPE) (Sennrich et al., 2016)
with 50k operations for each side. All the model
we trained are optimized with Adam (Kingma and
Ba, 2014). Larger beam size may worsen trans-
lation quality (Koehn and Knowles, 2017), thus
we set beam size=10 for each model. All models
were trained on 4 NVIDIA V100 GPUs.

In order to find the optimal threshold in cy-
cle translation procedure, we first report our ex-
perimental results on validation data set with dif-
ferent thresholds, which ranges from [0%, 25%,
50%, 75%]. Intuitively, the quality improvement
of monolingual sentences afforded by cycle trans-
lation could bring better synthetic parallel data,
subsequently leading to more accurate translation
model. Thus, this ablation experiment was trained
with synthetic parallel corpus only with differ-
ent cycle translation ratios on Transformer base
model. As is shown in Table 7, when cycle trans-
lation threshold is 50%, the model could achieve
the relatively best performance. We therefore set
the cycle translation ratio to 50% in our following
main experiment.

Our main experiment is shown in Table 6, our
baseline system is developed with the Msmall

configuration using the original parallel corpus
and last-20 ensemble strategy. Unsurprisingly,
the baseline system relatively performs the worst
in Table 6. The Msmall configuration trained
with selected parallel data improves BLEU by
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+0.7 points. According to exp.[3-6], adding
these components can lead to continuous im-
provements. Notably, with Cycle Translation and
Big/Small parallel construction strategy, our sys-
tem could obtains +3.55 significant improvement.
And exp.[8-11] show that with performing GMSE,
multi-features reranking, ConMBR system combi-
nation and post-processing, our system further im-
proved the BLEU score from 30.9 to 33.0 on the
official data set news-test2019, which sub-
stantially outperforms the baseline by 5.3 BLEU
score.

5 Conclusion and Future Work

This paper presents the University of Sydney’s
NMT systems for WMT2019 Finnish→English
news translation task. We leveraged multi-
dimensional strategies to improve translation qual-
ity in three levels: 1) At data level, in addition to
using various data selection criteria, we proposed
cycle translation to improve monolingual sentence
fluency. 2) For model training, we trained mul-
tiple models with R2L corpus and big/small par-
allel construction corpus respectively. 3) As for
inference, we prove the effectiveness of multi-
features rescoring, ConMBR system combination
and post-processing. We find that cycle transla-
tion and B/S construction approach bring the most
significant improvement for our system.

In future work, we will apply the beam+noise
method (Edunov et al., 2018) to generate robust
synthetic data during back translation, we assume
that this method combined with our proposed cy-
cle translation strategy can bring greater improve-
ment. Also, we would like to investigate hyper-
parameter optimization for neural machine trans-
lation to avoid empirical settings.
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Abstract

This paper describes the UdS-DFKI submis-
sion to the WMT2019 news translation task
for Gujarati–English (low-resourced pair) and
German–English (document-level evaluation).
Our systems rely on the on-line extraction of
parallel sentences from comparable corpora
for the first scenario and on the inclusion of
coreference-related information in the training
data in the second one.

1 Introduction

This document describes the systems and ex-
periments conducted to participate in the news
translation tasks of WMT 2019 for Gujarati–
English (gu–en, low-resourced language pair) and
German–English (de–en, document-level evalua-
tion). We use different approaches to tackle each
setting.

Machine translation (neural, statistical or rule-
based), usually operates on a sentence-by-
sentence basis. However, when translating a co-
herent document, surrounding sentences may con-
tain information that needs to be reflected in
a local sentence. In our experiments for the
document-level task in en2de, we explore how
the information beyond sentence level can be
made available to a neural machine translation
(NMT) system by modifying —tagging— the data
in order to include this knowledge. In a similar
way, multilingual NMT systems have already been
successfully built by only tagging the source data
with the knowledge of the target language (John-
son et al., 2017; Ha et al., 2016). With this ap-
proach, we incorporate the knowledge that car-
ries coreferences through a text in every sentence.
We expect to improve the translation of ambigu-
ous items such as pronouns in English, so we
just tackle a specific number of problems and not
translation quality in general.

The approach for the low-resource setting is
completely different. In this case, we use a neural
architecture that allows us to extract parallel data
from comparable corpora and filter noise from the
available parallel data. The additional data ob-
tained in this way is then used to train SMT mod-
els, which we compare to a baseline trained on the
available parallel data only to observe the effects
of the extraction and filtering.

Below, we describe our coreference-aware sys-
tem for en2de (Section 2) and our low-resourced
approach for en–gu (Section 3). Finally we sum-
marise our findings in Section 4.

2 Coreference-Aware
English-to-German System

2.1 Data Preparation

Our system makes use of the annotation of coref-
erence mentions through documents in the source
side of the corpus. Documents are annotated
with coreference chains using a neural-network-
based mention-ranking model as implemented by
the Stanford CoreNLP tool (Manning et al.,
2014)1. The tool detects pronominal, nominal and
proper names as mentions in a chain. For every
mention, CoreNLP extracts its gender (male, fe-
male, neutral, unknown), number (singular, plural,
unknown), and animacy (animate, inanimate, un-
known). This information is not added directly but
used to enrich the MT training data by applying a
set of heuristics implemented in DocTrans2:

• We enrich pronominal mentions with the
head of the chain

1This system achieves a precision of 80% and recall of
70% on the CoNLL 2012 English Test Data (Clark and Man-
ning, 2016).

2https://github.com/cristinae/
DocTrans/
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– Pronoun ”I” is not enriched with any coref-
erence information

– We clean the head by removing articles
and Saxon genitives and we only consider
heads with less than 4 tokens in order to
avoid enriching a word with a full sentence

• We enrich nominal mentions including
proper names with the gender of the head

• The head itself is enriched with she/he/it/they
depending on its gender and animacy

The example below shows how we tag the
cleaned version of the head of the chain (fish skin)
before a pronominal mention (it):

baseline:
I never cook with it.
coref:
I never cook with <b crf> fish skin <e crf> it.

In order to be able to do this processing, we
need documents and that limits the amount of cor-
pora we can use. Even though all the corpora
made available for the shared task have document
boundaries, ParaCrawl, for instance, has a mean of
1.06 sentences per document which makes it use-
less within our approach.

2.2 Corpus
Monolingual corpora. We use a subset of the
NewsCrawl corpus in English and German (years
2014, 2017 and a part of 2018, named as ss-
NewsCrawl in Table 1) to calculate word em-
beddings as explained in Section 2.3. We first
use langdetect3 to extract only those sentences
that are in the desired language and compile the
final corpora to have a similar number of sub-
word units (Sennrich et al., 2016a) in both lan-
guages and years (∼ 4. 109). The corpus is fur-
ther cleaned, tokenised, truecased (with Moses
scripts4) and BPEd (with subword-nmt5). The vo-
cabulary of the BPE model depends on the system
and is detailed in Section 2.3.

Parallel corpora. Due to the restrictions ex-
plained in Section 2.1, we use the parallel corpora
made available for the shared task in different pro-
portions. Our base system uses CommonCrawl,

3https://pypi.org/project/langdetect/
4https://github.com/moses-smt/

mosesdecoder/tree/master/scripts
5https://github.com/rsennrich/

subword-nmt

# lines Small Large

Monolingual
ssNewsCrawl en 176,220,479 x1 x1
ssNewsCrawl de 220,443,585 x1 x1

Parallel
CommonCrawl 2,394,878 x1 x4
Europarl 1,775,445 x1 x4
NewsCommentary 328,059 x4 x16
Rapid 1,105,651 x1 x4
ParaCrawlFiltered 12,424,790 x0 x1

Table 1: Number of lines of the monolingual and par-
allel corpora used in the en2de translation systems for
the base and large configurations. The second and third
columns show the amount of oversampling (or dilution)
used in both cases.

Europarl, News Commentary and Rapid Corpus.
Our large system also uses the ParaCrawl corpus
but in a diluted way. The purpose of the dilution
is to try to minimise the fact that due to the nature
of our system we cannot use single sentences (in-
trasentence dependencies are already learned by
an NMT system) or back-translations (quality is
not good enough to extract coreference chains in a
source sentence that is an automatic translation).

CommonCrawl, Europarl and News Commen-
tary are cleaned, tokenised, truecased and BPEd
with the same tools as the monolingual corpus.
For the Rapid corpus, we performed an additional
cleaning: since some German sentences were
missing umlauts, we removed all the sentences
that contained any word clearly missing an umlaut
such as europishen or erklrte. For ParaCrawl, we
first removed sentence pairs that were not detected
as English and German sentences by langdetect
and afterwards we removed sentences with emoji,
bullets, and specific tokens such as http, pdf, e, or
hotel, etc. With this, we reduce the corpus size by
more than half of the sentences. The final number
of sentences for all the corpora used for training
are provided in Table 1. Notice that we do over-
sampling for the News Commentary corpus as it is
supposed to have a similar domain to the test set.

2.3 Neural Machine Translation Systems

Our NMT systems are trained using the trans-
former architectures implemented in the Marian
toolkit (Junczys-Dowmunt et al., 2018). We
use two architectures base and big as defined in
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Vaswani et al. (2017):
Transformer base. 6-layer encoder–decoder

with 8-head self-attention, a 2048-dim hidden
feed-forward, and 512-dim word vectors. Grow-
ing learning rate from 0 to 0.0003 till update
16,000 (warmup). Decaying learning rate after-
wards. Adam optimisation with β1=0.9, β2=0.98
and ε=1e-09. Tied target embeddings.

Transformer big. As Transformer base but with
word embeddings with 1024-dim, 4096-dim hid-
den feed-forward layers, learning rate of 0.0002
with the same warmup and decay. β2=0.998.

Using these architectures as basis, we train sev-
eral models on 4 TITAN X GPUs using an adap-
tive batch size that differ on:

• Corpus size. Small vs. Large as defined in
Table 1

• Vocabulary. Joint en–de BPE with 40K sub-
word units (join) vs. separated vocabularies
with 50K subword units each (all the other
models).

• Initial word embeddings. Source and target
initialisation with monolingual embeddings
estimated with word2vec6 (Mikolov et al.,
2013) (Emb) vs. source and target initialisa-
tion with bilingual embeddings mapped using
vecmap7 (Artetxe et al., 2017) (EmbMap) vs.
no initialisation (all the other models).

• Annotation. No annotation (Baseline) vs.
tags with coreference information (all the
other models).

• Ensembling. Combinations of the previous
models at decoding time.

The terms in parenthesis refer to the models
in Table 2. Model names are structured as
architectureVocabulary-Annotation
-Embeddings-Corpus.

2.4 Results
Table 2 shows the BLEU scores of the different
models and ensembles on newstest-2017 (valida-
tion) and news-test2018 (test). The first block
presents the results of a baseline system with-
out any document-level information; the second
block shows the models explored to determine the
best configuration; and the third block summarises

6https://github.com/tmikolov/word2vec
7https://github.com/artetxem/vecmap

Model news17 news18

Baseline
M01:trBig-Baseline-Small 25.82 37.62
M02:trBig-Baseline-Large 27.07 40.38

Coreference-Aware
M03:trBase-Join-Small 20.00 29.08
M04:trBase-Small 24.74 36.56
M05:trBase-Large 26.35 38.74
M06:trBase-Emb-Large 16.15 22.20
M07:trBase-EmbMap-Large 26.72 39.12
M08:trBig-Small 25.85 37.55
M09:trBig-Large 26.38 38.53
M10:trBig-EmbMap-Large 26.33 39.12
M11:trBig-2-Large 27.42 40.07
M12:trBig-2-EmbMap-Large 27.28 40.28

Ensembling
M05-M07-M10 27.18 40.92
M07-M09 27.29 40.10
M05-M07-M09 27.24 40.56
M05-M07-M09-M10 27.31 40.98
M05-M07-M10-M11 27.58 41.58
M07-M10-M11-M12 27.62 42.82

Table 2: BLEU scores of the models trained for the
en2de translation task. The boldfaced ensembled
model was submitted as the primary submission; the
best performing model with boldfaced BLEU scores
was not ready at submission time.

the ensembling combinations explored in order to
chose our primary submission.

The first thing to notice is that in terms of BLEU
systems with and without coreference annota-
tions are not significantly different (M01 vs. M08;
M02 vs. M09/M11). Since we are modifying only
specific aspects of the translation —few words in a
document—, we do not obtain large improvements
according to automatic evaluation measures, but
we expect differences in translation quality ac-
cording to human evaluators.

The vocabulary turned out to be critical. A
system with a joint vocabulary of 40K subword
units (M03) is 5-6 BLEU points below its counter-
part with 50k units and independent vocabularies
(M04).

Embeddings are not that decisive. An ini-
tialisation of the system using bilingual embed-
dings slightly improves the results (M07 vs. M05;
M10 vs. M09; M12 vs.M11). Using monolingual
embeddings implies a very slow training. M06 in
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Table 2 is 10 BLEU points below its counterpart
with bilingual embeddings (M07), but the training
was far from converging even when running for
more days.

As expected, increasing the size of the corpus
and the number of parameters of the architec-
ture is beneficial for the final translation quality.
The former has the only disadvantage of needing
more time and computing power. The latter even if
achieving around 2 BLEU points of improvement
(M04 vs. M05; M08 vs. M09) does not allow us to
use document level information during training for
part of the data.

An ensemble of different high performing mod-
els showed better results than the combination of
the last check-points of the best model. Differ-
ent combinations are reported in Table 2, all of
them using a beam search of size 10 which also
performed better than the default value of 6. The
best ensemble comes from the combination of the
four best performing individual models, but unfor-
tunately the two best performing models were not
ready at submission time. M11 and M12 are the
same as M09 and M10 before convergence and
were the ones used in the ensembled translation
as our primary submission.

3 English–Gujarati Systems

3.1 Corpus

Monolingual corpora. The monolingual corpora
were used mainly as additional data for training
word-embeddings in en and gu. For English we
use the same NewsCrawl selection as for en–de
(ssNewsCrawl). For Gujarati we use the 2018 ver-
sion of NewsCrawl and CommonCrawl.

To further increase the available data size for
training Gujarati embeddings as well as to add
similar content to the English word embeddings,
we crawled additional Gujarati news pages and, if
existent, their English counterparts. This yielded
an increase of about 2 M monolingual Gujarati
sentences. While crawling for the news articles,
articles written during the period from which the
test corpus newstest2019 was created8 were not in-
cluded in the creation of these data sets. The num-
ber of sentences and tokens extracted from each
news outlet is shown in Table 3.

Wikipedia (WP) is a popular source for com-
parable documents. In order to later extract paral-

8September-November 2018

lel sentences from it, the WP dumps9 for English
and Gujarati are downloaded. Only the subset of
articles that are linked across both languages us-
ing Wikipedia’s langlinks are extracted. That is,
an article is only taken into account if there is
a linked article in the other language. For these
purposes, we use WikiTailor (Barrón-Cedeño
et al., 2015)10 to obtain the intersection of articles
of both languages. We additionally use the en–gu
WP reference which was made available for WMT
2019. The monolingual WP in Gujarati is added to
the monolingual data for training the embeddings.

Parallel corpora. We use the concatenation
of several parallel corpora available for the en–
gu news translation task to train the base model.
Firstly, the bible corpus11 as well as two corpora
specially made for WMT201912 are used, namely
a crawled corpus (WMT19 Crawl) and a localisa-
tion corpus extracted from OPUS13 (WMT Local-
isation). Lastly, the Translation Quality Estima-
tion (TQE) dataset for Indian languages (Nisarg
et al., 2018), which essentially is the concatenation
of two corpora by the Indian Languages Corpora
Initiative, which focus on the health and tourism
domain each. For development, we use the first
999 sentences from the English-Gujarati version
of newsdev2019. Further, we report results on the
final newstest2019 corpus.

Pre-processing. All English corpora (exclud-
ing the evaluation corpora) undergo the same pre-
processing. After being sentence split, the corpora
are normalized, tokenized and truecased using
standard Moses scripts (Koehn et al., 2007a). A
byte-pair-encoding (BPE) (Sennrich et al., 2016b)
of 40 k merge operations trained jointly on en–gu
data respectively is applied accordingly. Dupli-
cates are removed and sentences with more than
50 tokens are discarded. In order to enable a
multilingual setup, language tokens indicating the
designated target language are prepended to each
source sentence. As the English–Gujarati setting
is bilingual, this reduces to each Gujarati sentence
starting with the language token <en>, and each
English sentence with <gu>.

Gujarati corpora are normalized and romanized
9Downloaded from https://dumps.wikimedia.

org/ on January 2019.
10https://github.com/cristinae/

WikiTailor
11http://christos-c.com/bible/
12http://www.statmt.org/wmt19/

translation-task.html
13http://opus.nlpl.eu/
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# sentences

Monolingual
ssNewsCrawl en 176,220,479
CommonCrawl gu 3,729,406
NewsCrawl gu 244,919
WP Edition gu 4,280,531

Crawled
Divya Bhaskar gu 563,072
News18 en 460,097
News18 gu 193,455
Gujarat Samachar gu 121,349
Sandesh gu 892,196
Zeenews en 466,449
Zeenews gu 244,191

Parallel
Bible en–gu 7,807
WMT19 Crawl en–gu 10,650
WMT19 Localisation en–gu 107,637
TQE en–gu 50,000
WP Reference en–gu 18,033

Comparable
WP Comparable en 546,924
WP Comparable gu 143,120

Table 3: Size of the corpora used for the en–gumodels.

using the Indic NLP Library.14 The roman-
ized corpora are then tokenized using Moses. As
the romanization is case sensitive, no true-casing
is performed. The shared BPE is applied.

Cross-lingual word embeddings. We initialize
the unsupervised NMT model using cross-lingual
embeddings. These are trained using monolingual
data only. For the English embeddings, we use ss-
NewsCrawl, as well as the English crawled data.
For Gujarati all Gujarati data available in Table 3
is used. The initial monolingual embeddings (of
size 512) are trained using word2vec15. The
two embeddings are then projected into a com-
mon multilingual space using vecmap16 (Artetxe
et al., 2017) . We extract all numerals that occur
in both monolingual corpora in order to supply a
small seed dictionary for training that is not lin-
guistically motivated. After having projected the
embeddings into the same space, they are merged
into a single cross-lingual embedding. Whenever
a word in the two languages is a homograph, one
of the two was chosen randomly.

3.2 Neural Machine Translation System

For training our models, we use both SMT and a
transformer architecture. While the SMT is used

14https://github.com/anoopkunchukuttan/
indic_nlp_library

15https://github.com/tmikolov/word2vec
16https://github.com/artetxem/vecmap

to provide a first model for back-translations as
well as to train the final model submitted, the
transformer is used in-between to extract addi-
tional data from Wikipedia.

The transformer is trained using OpenNMT-py
(Klein et al., 2017) and is defined as follows: 6-
layer encoder-decoder with 8-head self-attention
and 2048-dim hidden feed-forward layers. Adam
optimization with λ=2 and beta2=0.998; noam
learning rate decay (as defined in Vaswani et al.
(2017)) with 8000 warm-up steps. Labels are
smoothed (ε=0.1) and a dropout mask (p=0.1) is
applied. As is common for transformers, posi-
tion encodings and Xavier parameter initialization
(Glorot and Bengio, 2010) are used.

3.3 Statistical Machine Translation System

The second family of systems we use in this set-
ting is statistical machine translation (SMT). We
expect these systems to perform better when the
number of parallel sentences is small. SMT sys-
tems are trained using standard freely available
software. We estimate a 5-gram or 4-gram lan-
guage model using interpolated Kneser–Ney dis-
counting with SRILM (Stolcke, 2002) depend-
ing on the language and the size of the mono-
lingual corpus. Word alignment is done with
GIZA++ (Och and Ney, 2003) and both phrase ex-
traction and decoding are done with the Moses
package (Koehn et al., 2007b). The optimisa-
tion of the feature weights of the model is done
with Minimum Error Rate Training (MERT) (Och,
2003) against the BLEU (Papineni et al., 2002)
evaluation metric. Our model considers the lan-
guage model, direct and inverse phrase probabili-
ties, direct and inverse lexical probabilities, phrase
and word penalties, and a lexicalised reordering.

3.4 Results

We train our SMT and NMT in four steps, yielding
the following models:

1. SMTbase: Train an SMT model on the con-
catenation of all parallel training data listed
in Table 3 (∼194 k pairs). This is then used
to back-translate 4 k (2 k per language direc-
tion) pairs of the monolingual data available.

2. NMTextract: Initialize Transformer with the
pre-trained word-embeddings. The trans-
former is used to extract additional data from
en–gu Wikipedias as well as the crawled
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BLEU dev BLEU nt2019
Reference en2gu gu2en en2gu gu2en

NMTextract 4.65 10.64 3.10 8.60
SMTbase 8.77 12.90 6.90 10.20
SMTextract 9.15 13.08 6.90 10.50
SMTall 8.93 14.08 7.10 10.80

Table 4: BLEU scores achieved on the internal devel-
opment set and the official newstest2019. Scores on the
development set are calculated using multi-bleu
on the tokenized outputs, while the results on new-
stest2019 are those calculated by the WMT matrix. Pri-
mary system submissions are in bold.

Zeenews and News18 articles. It is also used
to filter the back-translations produced by
SMTbase as well as the parallel corpus avail-
able. The extraction is performed using the
joint NMT learning and extraction frame-
work described in Ruiter et al. (2019). There,
we use the margin-based function (Artetxe
and Schwenk, 2018) for scoring both word
embedding and hidden-state representations.
This results in an extracted and filtered cor-
pus of ∼275 k sentences; a slight increase to
the original parallel data available to us de-
spite the filtering of less useful pairs.

3. SMTextract: SMT model, trained on the cor-
pus that resulted from the extraction and fil-
tering performed by NMTextract.

4. SMTall: SMT model, trained on both the ex-
tracted and filtered corpus by NMTextract, as
well as the parallel data available, resulting in
∼475 k training pairs used.

Due to time constraints we could not apply any
system combination technique on the individual
systems. However, due to the big gap in perfor-
mance between SMT and NMT we do not expect
significant improvements.

Table 4 shows translation quality as measured
by BLEU for both the neural and statistical sys-
tems with the different data configurations.

The filtering and extraction performed by
NMTextract led to a small increase in BLEU for
SMTextract and SMTall, indicating that the filter-
ing was based on positive decisions. However,
when taking into account that the average number
of extracted pairs from WP was steadily around
1.6 k pairs, and comparing them with the 18 k
pairs in the en–gu WP reference, it becomes clear
that extraction did not obtain high recall. This is

most likely due to three difficulties that the system
encounters in this setting: i) Not enough compara-
ble data was available to adapt the internal repre-
sentations (word embeddings and hidden states) to
the data, meaning that the extraction performance,
which is bound to the extraction decisions of the
representations, stays below its potential. ii) The
lack of monolingual data to train high-quality gu
embeddings as well as iii) the rareness of homo-
graphs in this rather distant language pair makes
the initialization difficult. Extraction in the first
epochs is usually dependent on such homographs
and a lack thereof reduces the number of identifi-
able pairs in the initialization phase of the model.

4 Conclusions

We presented two approaches for the WMT 2019
news translation shared task. We participated in
the en2de task with a data-based coreference-
aware NMT system. The corpus is enriched with
this document-level information at sentence level
so that the standard training procedure can be
used. However, the amount of data we can use is
smaller than in the standard pipeline and therefore
the global quality can be damaged. We expect the
manual evaluation to show improvements on the
tackled phenomena such as gender translation.

For the en-gu task, we used a NMT architecture
that can be trained on comparable corpora. In this
case we downloaded news web pages as well as
linked Wikipedia articles in Gujarati and English
to extract and train on. Our experiments show that
very few sentences could be used from this corpus
and our results are close to the baseline one can
get with the available parallel resources. Given the
final amount of data, our state-of-the-art SMT sys-
tem performed clearly better than our NMT one.
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Abstract

This paper describes the Neural Machine
Translation system of IIIT-Hyderabad for
the Gujarati→English news translation shared
task of WMT19. Our system is based
on encoder-decoder framework with attention
mechanism. We experimented with Multilin-
gual Neural MT models. Our experiments
show that Multilingual Neural Machine Trans-
lation leveraging parallel data from related lan-
guage pairs helps in significant BLEU im-
provements upto 11.5, for low resource lan-
guage pairs like Gujarati-English.

1 Introduction

Neural Machine Translation (Luong et al., 2015;
Bahdanau et al., 2014; Johnson et al., 2017; Wu
et al., 2017; Vaswani et al., 2017) has been re-
ceiving considerable attention in the recent years,
given its superior performance without the de-
mand of heavily hand crafted engineering ef-
forts. NMT often outperforms Statistical Machine
Translation (SMT) techniques but it still struggles
if the parallel data is insufficient like in the case of
Indian languages.

The bulk of research on low resource NMT has
focused on exploiting monolingual data or parallel
data from other language pairs. Some recent meth-
ods to improve NMT models that exploit mono-
lingual data ranges from back-translation (Sen-
nrich et al., 2015a), dual NMT (He et al., 2016)
to Unsupervised MT models (Lample et al., 2017;
Artetxe et al., 2017; Lample et al., 2018). Trans-
fer Learning is also a promising approach for low
resource NMT which exploits parallel data from
other language pairs (Zoph et al., 2016; Nguyen
and Chiang, 2017; Kocmi and Bojar, 2018). Typ-
ically it is achieved by training a parent model in
a high resource language pair, then using some of
the trained weights as the initialization for a child

model and further train it on the low-resource lan-
guage pair. Other promising approach for improv-
ing translation performance for low resource lan-
guages is Multilingual Neural Machine Transla-
tion. It has been shown that exploiting data from
other language pairs & joint training helps in im-
proving the translation performance of NMT mod-
els. (Ha et al., 2016; Firat et al., 2016; Johnson
et al., 2017).

This paper describes the NMT system of IIIT-
H for WMT19 evaluation. We participated in
the Gujarati→English news translation task. We
used an attention-based encoder-decoder model as
our baseline system and used Byte Pair Encoding
(BPE) to enable open vocabulary translation. We
then leverage Hindi-English parallel corpus in a
multilingual setting so as to improve our baseline
system. We basically combined Hindi-English and
Gujarati-English parallel corpus and use it as our
training corpus. Our multilingual system is simil-
iar to Johnson et al. (2017) but we don’t use any
artificial token at the start of source sentences to
indicate the target language. The reason is triv-
ial, that is we have only English as our target
language. We also provide results of our experi-
ments conducted post WMT19 shared task involv-
ing Transformer models.

2 Neural MT Architecture

Our NMT model consists of an encoder and a
decoder, each of which is a Recurrent Neural
Network (RNN) as described in (Luong et al.,
2015). The model directly estimates the posterior
distribution Pθ(y|x) of translating a source sen-
tence x = (x1, .., xn) to a target sentence y =
(y1, .., ym) as:

Pθ(y|x) =
m∏

t=1

Pθ(yt|y1, y2, .., yt−1, x) (1)
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Each of the local posterior distribution
P (yt|y1,2 , .., yt−1, x) is modeled as a multi-
nomial distribution over the target language
vocabulary which is represented as a linear
transformation followed by a softmax function on
the decoder’s output vector h̃dect :

ct = AttentionFunction(henc1:n , h
dec
t ) (2)

h̃dect = tanh(Wo[h
dec
t ; ct]) (3)

P (y|y1, y2, .., yt−1, x) = softmax(Wsh̃
dec
t ; τ)

(4)
where ct is the context vector, henc and hdec are
the hidden vectors generated by the encoder and
decoder respectively, AttentionFunction(. , .) is
the attention mechanism as shown in (Luong et al.,
2015) and [. ; .] is the concatenation of two vec-
tors.

An RNN encoder first encodes x to a continu-
ous vector, which serves as the initial hidden vec-
tor for the decoder and then the decoder performs
recursive updates to produce a sequence of hidden
vectors by applying the transition function f as:

hdect = f(hdect−1, [h̃
dec
t−1; e(yt)]) (5)

where e(.) is the word embedding operation. Pop-
ular choices for mapping f are Long-Short-Term
Memory (LSTM) units and Gated Recurrent Units
(GRU), the former of which we use in our models.

An NMT model is typically trained under the
maximum log-likelihood objective:

max
θ
J(θ) = max

θ
E(x,y)∼D[logPθ(y|x)] (6)

where D is the training set. Our NMT model
uses a bi-directional RNN as an encoder and a uni-
directional RNN as a decoder with global attention
(Luong et al., 2015) .

3 Multilingual Neural Machine
Translation

Most of the practical applications in Machine
Translation have focused on individual language
pairs because it was simply too difficult to build
a single system that translates to and from many
language pairs. But Neural Machine Translation
was shown to be an end-to-end learning approach
and was quickly extended to multilingual machine
translation in several ways. In Dong et al. (2015),
the authors modify the attention-based encoder-
decoder approach by introducing separate decoder

and attention mechanism for each target language.
In Zoph and Knight (2016), multi-source trans-
lation was proposed where the model has differ-
ent encoders and different attention mechanisms
for different source languages. In Firat et al.
(2016), the authors proposed a multi-way multilin-
gual NMT model using a single shared attention
mechanism but with multiple encoders/decoders
for each source/target language. In this paper, we
adopted the approach proposed in Johnson et al.
(2017), where a single NMT model is used for
multilingual machine translation. We used Hindi-
English as our assisting language pair and com-
bined it with Gujarati-English parallel data to form
a multi source translation system.

4 Experimental setup

4.1 Dataset
In our experiments, we use the Gujarati-English
training data provided by the organisers namely
Wiki Titles, Bible corpus, Localisation Opus,
Wikipedia corpus & crawled corpus. It consists of
around 155K parallel sentences. We used news-
dev2019 as our development corpus. For building
our multilingual model, we used IIT-Bombay par-
allel data (Kunchukuttan et al., 2017) as our Hindi-
English parallel corpus. The top level statistics of
the data used is provided in Table 1.

Table 1: Statistics of our processed parallel data.

Dataset Sentences Tokens
IITB Hi-En Train 15,28,631 21.5M / 20.3M

Gu-En Train 1,55,767 1.68M / 1.58M
Gu-En Dev 1,997 51.3K / 47.4K
Gu-En Test 1,998 51.5K / 47.5K

4.2 Data Processing
We used Moses (Koehn et al., 2007) toolkit for
tokenization and cleaning the English side of the
data. Gujarati and Hindi sides of the data is first
normalized with Indic NLP library1 followed by
tokenization with the same library. As our pre-
processing step, we removed all the sentences of
length greater than 80 from our training corpus.

4.3 Subword Segmentation for NMT
Neural Machine Translation relies on first map-
ping each word into the vector space, and tradi-

1https://anoopkunchukuttan.github.io/indic nlp library/
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tionally we have a word vector corresponding to
each word in a fixed vocabulary. Addressing the
problem of data scarcity and the hardness of the
system to learn high quality representations for
rare words, (Sennrich et al., 2015b) proposed to
learn subword units and perform translation at a
subword level. With the goal of open vocabulary
NMT, we incorporate this approach in our system
as a preprocessing step. In our early experiments,
we note that Byte Pair Encoding (BPE) works bet-
ter than UNK replacement techniques. For our
baseline system, we learn separate vocabularies
for Hindi and English each with 32k merge op-
erations. For our multilingual model, we learn a
joint vocabulary for Hindi and Gujarati & a sepa-
rate vocabulary for English. With the help of BPE,
the vocabulary size is reduced drastically and we
no longer need to prune the vocabularies. After the
translation, we do an extra post processing step to
convert the target language subword units back to
normal words. We found this approach to be very
helpful in handling rare word representations.

4.4 Script Conversion
India is a linguistically rich country having 22 con-
stitutional languages, written in different scripts.
Indian languages are highly inflectional with a rich
morphology, default sentence structure as subject
object verb (SOV) and relatively free word order.
Many of them are structurally similar, also called
as sibling languages. Hindi & Gujarati languages
are such siblings. That is why, we have chosen
Hindi as an assisting language for our multilingual
model.

Although, there are many linguistic similari-
ties between Gujarati & Hindi, both of these lan-
guages are written in different scripts. So, to make
a strong multilingual NMT model, we converted
the script of the Gujarati side of the parallel cor-
pus to Hindi (Devanagari script). We used Indic
NLP Library’s transliteration script for this pur-
pose. We found this approach to be very help-
ful in enabling better sharing between languages
on the encoder side. BPE also enhances the us-
age of script conversion technique. We used script
conversion only with our additional Multilingual
NMT experiments based on Transformer architec-
ture.

4.5 Training Details
The structure of our NMT model is same as in Lu-
ong et al. (2015), an RNN based encoder-decoder

model with Global Attention mechanism. We used
an LSTM based Bi-directional encoder and a uni-
directional decoder. We kept 4 layers in both the
encoder & decoder with embedding size set to
512. The batch size was set to 64 and a dropout
rate of 0.3. We used Adam optimizer (Kingma and
Ba, 2014) for our experiments. Our multilingual
model is trained with all the same hyperparame-
ters as our baseline model except that the training
data is a combination of Hindi-English & Gujarati-
English parallel data.

5 Results

In this section, we report the BLEU (Papineni
et al., 2002) scores on the test sets provided
in WMT19. Our simple NMT model which is
an attention-based LSTM encoder-decoder model
achieves a BLEU score of 6.2 on the test set. Our
multilingual model which is trained with the help
of Hindi-English parallel corpus attains a BLEU
score of 9.8, showing a gain of +3.6 BLEU points
on the same test set.

Table 2: WMT19 evaluation of our systems

System BLEU
encoder-decoder + attention 6.2

Multilingual model 9.8(+3.6)

6 Additional Transformer Experiments

In this section, we present a set of experiments
and results post WMT19 shared task involving the
Transformer (Vaswani et al., 2017) architecture.
We used the Transformer-Base architecture in this
set of experiments with the rest of the pipeline be-
ing kept same as described before. We used 6 lay-
ers in both the encoder decoder with embedding
size set to 512. The batch size was 2048 tokens &
a dropout of 0.3. We used Adam optimizer for our
experiments. During inference time, we averaged
the checkpoints of the model at different epochs
to obtain better results than a single checkpoint.
In the multilingual Transformer experiments, we
employ script conversion technique for its merits
described before.

In table 3, we provide the results of our Trans-
former experiments and also compare it to other
systems submitted to WMT19.
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Table 3: Our Transformer models vs other systems at
WMT19

System BLEU
Transformer 4.28

Multilingual Transformer 15.78 (+11.5)
+ Averaging 16.49 (+0.71)

NICT (Unsupervised MT) 9.6
NICT (Transfer Learning) 18.6

NEU (WMT19 Best) 26.5

7 Conclusion & Future Work

We believe that NMT is a promising approach for
Machine Translation for low resource languages.
But we need various techniques to handle the data
scarcity problem. Transfer Learning and Multilin-
gual Machine Translation are two important areas
of research that tackles this problem. In this paper,
we showed that how Multilingual MT models are
more effective than the individually trained MT
models for a low resource language pair. We pre-
sented our results on the Gujarati→English lan-
guage pair and achieved significant BLEU im-
provements. The Multilingual NMT model we
presented in this paper is a many-to-one model. In
future, we will work on building effective one-to-
many Multilingual NMT systems.
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Abstract

This paper describes the Kingsoft AI Lab’s
submission to the WMT2019 news transla-
tion shared task. We participated in two
language directions: English→Chinese and
Chinese→English. For both language direc-
tions, we trained several variants of Trans-
former models using the provided parallel
data enlarged with a large quantity of back-
translated monolingual data. The best trans-
lation result was obtained with ensemble and
reranking techniques. According to automatic
metrics (BLEU) our Chinese→English sys-
tem reached the second highest score, and our
English→Chinese system reached the second
highest score for this subtask.

1 Introduction

In recent years, the development of sequence-
to-sequence (seq2seq) models have changed the
field of machine translation a lot. This kind of
models replaced traditional statistical approaches
with neural machine translation (NMT) systems
which is based on the encoder-decoder frame-
work. Two years ago, the Transformer model,
which is based on the multi-head attention mech-
anism and feedforward networks, has further ad-
vanced the field of NMT by improving the trans-
lation quality and speed of convergence (Vaswani
et al., 2017; Ahmed et al., 2017). Until now,
a variety of NMT models and advanced tech-
niques have been proposed, leading to better per-
formance of machine translation. We partici-
pated in the WMT19 shared task: the machine
translation of news on English↔Chinese language
pairs. This paper describes the NMT systems
we submitted for the WMT19 Chinese→English
and English→Chinese machine translation tasks.
For data augmentation, we selected a subset of

∗Corresponding author

monolingual corpus as additional datasets and ap-
plied back translation to augment our training cor-
pus. The baseline model in our system was based
on the Transformer architecture. In order to im-
prove the single system’s performance, we experi-
mented with some research findings such as Trans-
former with Relative Position Attention (Shaw
et al., 2018) and Dynamic Convolution Networks
(Wu et al., 2019).

We also proposed our own model architectures
and applied them in the tasks. These architec-
tures improve translation quality a lot and will
be described in the next section. For further im-
provement, we tried different multi-system based
techniques, such as model ensembling and model
reranking. These techniques can improve trans-
lation performance on the basis of a very strong
single system. At the same time, we also designed
some specific strategies to deal with problems dur-
ing ensembling, such as the overflow of memory
space and the slow decoding speed. As a result,
our Chinese→English system achieved the second
highest cased BLEU score among all 15 submitted
constrained systems, and our English→Chinese
system ranked the second out of 12 submitted sys-
tems.

2 Model Features

This section describes five different model archi-
tectures applied to translation tasks. Two of them
come from public research works, while the other
three come from our works. The Transformer was
used as our baseline system.

2.1 Transformer with Relative Position
We used relative position representation in self-
attention mechanism (Shaw et al., 2018) of both
the encoder side and decoder side. Originally, the
Transformer only uses the absolute position in-
formation that calculated by sinusoidal functions,
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lacking of considering the relative position repre-
sentation efficiently. Thus, it is an alternative ap-
proach to incorporate relative position representa-
tion in self-attention mechanism. In contrast to
the absolute position, the relative position repre-
sentation is invariant to the sentence length. We
compared the translation results between whether
using this feature or not, and found that model
with relative position representation performs bet-
ter. We conducted an implement in Fairseq1 as an
additional architecture with precise tuning. Exper-
iments showed that this architecture leads to faster
convergence and better performance.

2.2 Dynamic Convolution Network

Different from Transformer based on self-
attention mechanism, Dynamic Convolution Net-
work (Wu et al., 2019) uses a convolution net-
work to replace the self-attention mechanism in
the model framework. It predicts separate con-
volution kernels based solely on the current time-
step in order to determine the importance of con-
text elements. In other word, a Dynamic Convolu-
tion Network has kernels that vary over time as a
learned function of the individual time steps. Ex-
periments showed that Dynamic Convolution Net-
work got better performance and decoded faster
than the original Transformer. This architecture
has already been implemented in Fairseq.

2.3 Linear Combination Transformer

For the better use of each layer’s output in the
Transformer, we proposed a new architecture
called Linear Combination. In the original Trans-
former, each encoder layer only transfers its output
to the next layer and the decoder only accepts the
output of the final encoder layer. In this condition,
some grammar or semantics information may be
lost even residual connections are applied in each
layer. Therefore, we collect each layer’s output
and calculate them as the final output of the en-
coder through a weight-sum function. After this
operation, the final output is transferred to the de-
coder. Additionally, it only increases a few pa-
rameters which are the same as the number of en-
coder layers. The experimental results showed that
the linear combination function leads the model to
perform better.

1https://github.com/pytorch/fairseq

2.4 Transformer with Layer Aggregation
For further research of gaining information of each
layers, we used layer aggregation mechanism both
in the encoder side and decoder side, iterative deep
aggregation for the encoder side, hierarchical deep
aggregation for the decoder side (Yu et al., 2018),
and the linear operation for the encoder side and
decoder side. Hierarchical deep aggregation re-
quires the number of layers to be the power of 2,
so the number of layers in decoder was set to be
8. Originally, the Transformer only utilizes the
top layer’output of the encoder and decoder, which
misses the opportunity to exploit the useful infor-
mation in other layers. Some recent studies reveal
that simultaneously exposing all layer representa-
tions performs better for natural language process-
ing tasks (Peters et al., 2018; Shen et al., 2018;
Dou et al., 2018). In our experiments, we com-
pared the translation results about whether using
layer aggregation or not, and found that models
with the layer aggregation performed better.

2.5 Encoder Branches with SE-pre in
Transformer

Increasing the width of network can improve the
model performance effectively and recent works
such as Evolved Transformer (So et al., 2019)
have proved this idea. Inspired by this, we pro-
posed a new architecture using multi branches
mechanism in the encoder side, self-attention for
one branch and depthwise separable convolutions
(Kaiser et al., 2017) for the other. The outputs of
different branches are aggregated by gating unit or
just averaging them. We also tried to use SE-pre
method (Hu et al., 2018) to replace residual con-
nection and gained a better performance. To re-
duce the number of parameters, we shared the pa-
rameter of different layers in depthwise separable
convolutions. In source side, the model has a stack
of 6 layers and each layer contains a self-attention
sub-layer, a depthwise separable convolution sbu-
layer, a gating unit and a FFN sub-layer. In target
side, we used the same structure as vanilla decoder
in Transformer. Compared with vanilla Trans-
former, our novel structure outperformed signifi-
cantly in EN-ZH translation task.

3 Experiment Techniques

3.1 Back Translation
Since Sennrich et al. proposed a method which
can translate target side monolingual corpora into
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source side to add synthetic data and exploit large
corpora, back translation has become a routine op-
eration to build a state-of-art system in translation
tasks. Target-side monolingual data plays an im-
portant role in neural machine translation systems,
so we investigated the use of monolingual data for
NMT. In general, we translated monolingual En-
glish sentences into Chinese sentences using our
English→Chinese baseline system and translated
monolingual Chinese sentences into English sen-
tences using our Chinese→English baseline sys-
tem. To improve the quality of the synthetic cor-
pus, we also conducted a strict data filter which
was also used in data preprocessing to exclude bad
sentences with low sentence score.

To select sentences for back-translation, we
trained unsupervised neural language models with
Transformer architectures on target-side bilingual
corpora and used them to score these monolingual
sentences. We chose News-Discuss corpora 2017
and News-Discuss corpora 2018 which contained
about 0.3B sentences totally as our target-side
monolingual corpora in Chinese→English trans-
lation tasks. We first selected about 80M English
sentences from the target-side monolingual corpus
based on language model scores, which reflected
their similarity to the in-domain corpus. Then
we translated them into Chinese sentences and got
about 80M sentence pairs. After that, we trained
another translation model with Transformer archi-
tecture on original bilingual corpora. To calcu-
late bilingual scores for those synthetic sentence
pairs, we used the model to translate source-side
synthetic sentences and scored their losses with
target-side sentences. Finally, we selected 8M sen-
tence pairs with high LM scores and low transla-
tion losses and added them to the original corpus.

For English-Chinese translation task, we used
XMU monolingual corpus2 instead of News-
Discuss corpora, because XMU corpus contained
more in-domain and higher-quality Chinese-side
sentences than other monolingual corpora. All
other filter operation was same as Chinese-English
translation task. Finally, We got 3M synthetic data
adding to original corpus.

3.2 Fine-tuning

The Transfer Learning had been used in the field
of Computer Vision for a long time, and it had gen-
erated significant results (Razavian et al., 2014;

2http://nlp.nju.edu.cn/cwmt-wmt/

Shelhamer et al., 2017; He et al., 2016; Huang
et al., 2017). Recent Researches have shown that
transfer learning can be extended to natural lan-
guage processing (NLP) and reinforcement learn-
ing. Several papers have indicated that transfer
learning and fine-tuning has achieved great suc-
cess in NLP. (McCann et al., 2017; Peters et al.,
2017, 2018; Howard and Ruder, 2018)

In our work of the WMT19, the News-
Commentary-v14 was chosen as the in-domain
corpus, and the rest of training dataset and the
monolingual back-translation corpus were used as
the out-domain corpus. In order to enlarge the
in-domain corpus, we exploited the algorithm de-
tailed in Duh et al.; Axelrod et al.. Three methods
were used to select sentence pairs from large out-
domain corpus that are similar to the in-domain
corpus, and these sentence pairs were added into
the in-domain corpus. Then these new in-domain
corpus we got were used to fine-tune the base-
line model by continuing training a few steps.
The three methods to select similar sentence pairs
in our experiments as follows: the KenLM, the
Transformer language model, and the tf-idf algo-
rithm.

N- Language Model: According to the work of
Deng et al., the in-domain corpus was set as I and
the out-domain corpus was set as O. A smaller out-
domain corpus o was got from the out-domain cor-
pus by random sampling, and this corpus has sim-
ilar size with corpus I. Then the KenLM was used
to train 3-gram language models on the source side
and target side of the corpus I and o respectively
(HI−src, HI−tgt, Ho−src and Ho−tgt). After that,
all the sentence pairs s from out-domain corpus
O were passed into these language models, and
scored by using the bilingual cross-entropy differ-
ence:

[HI−src(s) −HI−tgt(s)] + [Ho−src(s) −Ho−tgt(s)]

At last, the top 20 sentence pairs with lowest
scores were add into the in-domain corpus to fine-
tune the translation model.

Transformer Language Model: Similar to the
above method, the language model with Trans-
former architecture from Tensor2tensor3 was used
to train the source side and target side of the corpus
I and o respectively. The bilingual cross-entropy
difference was used to get top 20 similar sentence

3https://github.com/tensorflow/tensor2tensor
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pairs from the out-domain corpus to generate new
in-domain corpus.

TF-IDF Algorithm: The tf-idf algorithm was
chosen to calculate the similarity of the sentences
in the in-domain corpus and out-domain corpus.
Then we got top 20 similar sentence pairs from
out-domain corpus by using the tf-idf scores.

3.3 Ensemble

Ensemble learning, which trains multiple learn-
ers and combines them, is a widely used tech-
nique in many real-world tasks. Model ensemble
has been successfully applied to neural machine
translation system, it combines the full probability
distribution over the target vocabulary of different
models at each step during sequence prediction.
We implemented model ensemble module in Ten-
sor2tensor and Fairseq, obtained an improvement
of up to 1.2 bleu over the highest single model re-
sult. Noticed that simply increasing the size of an
ensemble does not necessarily improve translation
performance, and brute-force search of all models
is unrealistic. As the number of models increases,
the decoding of ensemble will take more time than
single model, and exceed the limits of computer
resource capacity. So we developed an approach
that is capable of verifying model combination fast
and effectively.

In our algorithm, all the ensemble models are
firstly sorted by performance with beam size = 4.
At the first iteration, we selected the best N mod-
els and combined them. While it is known that
enlarging beam size can improve decoding per-
formance, in order to verify model combination
speedily, beam size was chosen as 1. After that,
we selected the M best model combinations, and
decoding them with beam size = 4 again to fur-
ther reduce the combination size. Once the first
iteration was finished, we added two or four new
models to the existed model combination, and then
put them into a standard ensemble process de-
scribed above in the second iteration. The itera-
tion loop will continue until all the models have
joined ensemble process. If the number of models
is too large, decoding with CPU can be an alter-
native. Finally, we chose the optimal model com-
binations, and then increased beam size and mod-
ified the length penalty to gain better translation
performance.

Model and data diversity are important factors
for ensemble system, so we trained diverse mod-

els depending on different parameters, different
model architectures, and different training data
sets. In order to boost the ensemble performance,
all the models have been fine-tuned. For model en-
semble strategy, it seems intuitive to employ NMT
ensembles by assigning same weights to different
models or simply selecting the maximum output
probability distributions. In this competition, we
adopted a log-avg model ensemble strategy. Both
of the max and avg strategy described above we
have tried, there was no better result observed.

3.4 Rerank

Reranking is a technique to improve translation
quality by choosing potentially better results from
the N-Best list. In order to avoid an N-Best list
with too many noises, we used strong ensemble
systems to generate it. We got an N-Best list with
a size of 200+. Then we used 30+ models to
score the N-Best list. The models details will be
described below. These scores make up several
features to represent a sentence in an N-Best list.
These features we used including:

Word-alignment feature: These features are
generated by using fast-align tools4 to score the
N-Best list and their source sentence.

Language model features: These features are
generated by using KenLM and neural language
model to score the N-Best list.

Translation models features: Translation
model can generate sentences from left to right
(L2R) and right to left (R2L), and both source
to target (S2T) and target to source (T2S) models
can be used to get features. Therefore, there are
four kinds (S2T-L2R, T2S-L2R, S2T-R2L, T2S-
R2L) of translation model features. In order to
get features that can represent the N-Best list
more comprehensively, we used translation mod-
els that trained with three kinds of frameworks
(Tensor2tensor, Fairseq and Sockeye5) to generate
features.

After getting these features, K-batched MIRA
algorithm(Cherry and Foster, 2012) which was
implemented in Moses was introduced to the de-
velopment dataset to get a set of weights. At last,
we used these weights to rescore the N-Best list
and got final translation results.

4https://github.com/clab/fast align
5https://github.com/awslabs/sockeye
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4 Experiments Settings and Results

4.1 Data
The WMT18 English↔Chinese translation task
contains 24.22M raw data, and the WMT19
English↔Chinese translation task contains
26.17M raw data. There are three high-quality
development set: newstest2017, newsdev2017
and newstest2018.

4.2 Pre-processing and Post-processing
Firstly, we tokenized the English sentences by us-
ing NLTK6 toolkit and segmented the Chinese
sentences with Pkuseg7 which was produced by
Peking University. As a routine operation, we ap-
plied BPE (Sennrich et al., 2016b) using Sentence-
piece 8 to enable an open vocabulary which con-
tained about 50k words and subwords. For the data
selection, we removed duplications in the training
data, and designed a filter to exclude bad sentences
according to the sentence score obtained by lan-
guage models and translation models. The final
amount of our training data is about 24M bilin-
gual sentence pairs for EN-ZH tasks, and about
22M bilingual sentence pairs for ZH-EN tasks.

We applied post-processing on the outputs of
these translation tasks. For EN-ZH translation
task, we normalized the punctuations of outputs
through converting the single byte character to
double byte character and removed the space be-
tween Chinese characters. For ZH-EN transla-
tion task, we de-tokenized the outputs by Moses
toolkit.

4.3 Training Details
All models were trained on 8 GPUs using float-
ing point 16 precision and gradients accumulat-
ing (Ott et al., 2018) to employ a bigger batch
size as large as 128 GPUs’. We batched sentence
pairs by approximate length, limited the number
of input and output tokens per batch to 3584 per
GPU and re-shuffled the training corpus between
epochs. Each training batch contained approxi-
mately 450K source tokens and 450K target to-
kens. We also applied a cosine learning rate sched-
ule (Kingma and Ba, 2015; Loshchilov and Hut-
ter, 2017) where the learning rate is first linearly
warmed up for 10K steps from 10−7 to 10−3 and
then annealed following a cosine rate with a single

6https://github.com/nltk/nltk
7https://github.com/lancopku/pkuseg-python
8https://github.com/google/sentencepiece

System Newsdev2017 Newstest2018
baseline 35.32
+Data filtering 36.62
+Back translation 40.23 42.52
+Model enhancement 40.73 42.98
+fine-tuning 41.33 44.10
+ensemble 41.93 46.10
+rerank 42.20 46.40

Table 1: English→Chinese Systems BLEU results on
newsdev2017 and newstest2018. As for newsdev2017
ensemble step, we only mannually selected two models
for ensembling test but for newstest2018, we applied
our ensemble algorithm on all models.

cycle. During training, the label smoothing was
employed with εls = 0.1 and the dropout rate was
set from 0.1 to 0.3 (Hinton et al., 2012; Pereyra
et al., 2017). The baseline system was trained for
about 25 epochs and saved the last 15 epochs to
perform checkpoint averaging. At last, we vali-
dated the model every 1000 mini-batches against
BLEU on the WMT 17 news translation test set.

4.4 English→Chinese Systems

Table 1 shows the English→Chinese translation
results on the validation set (WMT18 testset).
We reported character-level BLEU scores calcu-
lated with Moses mteval-v13a.pl script 9. For the
baseline system with data filtering, it gained 1.3
BLEU scores compared to the result without fil-
tering. After applying back translation, a single
baseline model can improve by about 3.6 BLEU
scores. That means synthetic data plays an im-
portant role in the success of our system. When
it comes to model enhancement, Table 3 shows
that each advanced model architecture got a bet-
ter performance compared to the baseline model.
After applying different combinations of the tech-
niques described in Section 2 and 3, we got 11
systems. Thanks to these varieties of model archi-
tectures and different data selection strategies, our
ensemble system gained a lot and improved about
2 points in term of BLEU. Then we rescored 200+
n-best lists decoding from different single and en-
semble systems and finally achieved an improve-
ment of 0.3 BLEU score.

4.5 Chinese→English Systems

Table 2 shows the Chinese→English translation
results on the validation set. All results are re-

9https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl
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System Newstest2017
baseline
+Data filtering
+Back translation 26.41
+Model enhancement 27.00
+fine-tuning 28.49
+ensemble 29.62
+rerank 29.92

Table 2: Chinese→English Systems BLEU results on
newstest2017.

Models EN-ZH ZH-EN
dev17 test17

Baseline model(Transformer) 40.23 26.41
Relative Transformer 40.73 26.60
Dynamic Convolution Networks 40.10 26.51
Linear Combination Transformer 40.70 27.00
Layer Aggregation Transformer 40.73 26.93
SE-pre in Transformer 40.51 26.72

Table 3: BLEU results for different model architec-
tures. For EN-ZH, It represents the results on news-
dev2017 and for ZH-EN, it represents the results on
newstest2017. All models are trained with synthetic
data after back translation.

ported with cased BLEU scores. We followed ex-
actly the same settings with the English→Chinese
translation system. In this case, the fine-tuning
method brought a substantial improvement about
1.4 BLEU scores, showing the advantages of using
high-quality in-domain data. For model enhance-
ment, each model architecture got nearly the same
BLEU score improvement. Finally, we applied en-
semble and reranking techniques, which provided
1.5 BLEU improvements totally over the best sin-
gle model.

5 Conclusion

We present our NMT systems for WMT19
Chinese↔English news translation tasks. For both
translation directions, our final systems achieved
substantial improvements up by 4∼ 5 BLEU score
over baseline systems by integrating the following
technique:

1. Data filtering and model enhancements
2. Back translate the target monolingual data set
3. Fine-tuning with in-domain data
4. System combination and reranking.
As a result, our submitted Chinese→English

system achieved the second highest cased BLEU
score among all 15 submitted constrained systems
and our English→Chinese system ranked the sec-
ond out of 12 submitted systems.
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Abstract

This paper describes the Air Force Research
Laboratory (AFRL) machine translation sys-
tems and the improvements that were devel-
oped during theWMT19 evaluation campaign.
This year, we refine our approach to train-
ing popular neural machine translation toolk-
its, experiment with a new domain adaptation
technique and again measure improvements in
performance on the Russian–English language
pair.

1 Introduction

As part of the 2019 Conference onMachine Trans-
lation (Bojar et al., 2019) news-translation shared
task, the AFRL Human Language Technology
team participated in the Russian–English portion
of the competition. We build on our strategies from
last year (Gwinnup et al., 2018), adding additional
language ID based data processing and optimizing
subword segmentation strategies. For Russian–
English we again submitted an entry comprising
our best systems trained with Marian (Junczys-
Dowmunt et al., 2018), Sockeye (Hieber et al.,
2017) with Elastic Weight Consolidation (EWC)
(Thompson et al., 2019), OpenNMT (Klein et al.,
2018), and Moses (Koehn et al., 2007) combined
using the Jane system combination method (Fre-
itag et al., 2014).

2 Data and Preprocessing

2.1 Data Preparation
We used and preprocess data as outlined in Gwin-
nup et al. (2018). For all systems trained, we
applied either byte-pair encoding (BPE) (Sen-
nrich et al., 2016) or SentencePiece (Kudo and
Richardson, 2018) subword strategies to address
the vocabulary-size problem.
For this year, we also employed a language ID

filtering step for the BPE-based systems. Using

the pre-built language ID model developed by the
authors of fastText (Joulin et al., 2016a,b), we de-
veloped a utility that examined the source and tar-
get sentence pairs and discarded that pair if either
side fell below 0.81 probability of the desired lan-
guage. We applied this filtering to all provided par-
allel corpora, removing 33.7% of lines. This pro-
cess was particularly effective when used to filter
the Paracrawl corpus where 57.1% of lines were
removed. Pre and post-filtering line counts for var-
ious corpora are shown in Table 1.

Corpus Total Retained

CommonCrawl 723,256 655,069
newscommentary 290,866 264,089
Yandex 1,000,000 901,307
ParaCrawl 12,061,155 5,173,675
UN2016 11,365,709 9,871,406

Total Lines 25,440,968 16,865,546

Table 1: Training corpus total and retained lines after
fastText filtering

testset wmt18preproc wmt19filt

newstest2014 33.0 34.1
newstest2015 28.6 29.6
newstest2016 28.4 29.4
newstest2017 30.8 31.8
newstest2018 26.9 27.9

Table 2: Test set comparison for non-filtered WMT18
training corpus and filtered WMT19 training corpus
measured by SacreBLEU.

A comparison with the organizer-provided par-
allel training data used in our WMT18 system

1We chose this value arbitrarily; future work will explore
varying this threshold.
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(which is largely the same as the provided paral-
lel data for WMT19 in the Russian–English lan-
guage pair) on baseline Marian transformer sys-
tems with identical training conditions show that
aggressive language ID based filtering yields an
approximate +1 BLEU point improvement as mea-
sured by SacreBLEU (Post, 2018). These results
are shown in Table 2.

2.2 Exploration of Byte-Pair Encoding
Merge Sizes

One of the problems faced when addressing the
closed-vocabulary problem is the granularity of the
subword units either produced by SentencePiece or
BPE. To that end, we examined varying the num-
ber of BPE merge operations in order to determine
an optimal setting tomaximize performance for the
Russian–English language pair.
For the OpenNMT-based systems, a vocabulary

size of 32k entries was employed during training
of a SentencePiece segmentation model2. This vo-
cabulary size was determined empirically from the
training data.
Alternatively, for the BPE-based systems, we

systematically examined varying sizes of BPE
merge operations and vocabulary sizes in 10k in-
crements from 30k to 80k. Results in Table 3 show
that 40kBPEmerge operations perform best across
all test sets decoded for this language pair. All
subsequent Marian experiments in this work uti-
lize this 40k BPE training corpus.

3 MT Systems

This year, we focused system-building efforts
on the Marian, Sockeye, OpenNMT, and Moses
toolkits, having explored a variety of parameters,
data, and conditions. While most of our exper-
imentation builds off of previous years’ efforts,
we did examine domain adaptation via continued
training, including Elastic Weight Consolidation
(EWC) (Thompson et al., 2019).

3.1 Marian

As with last year’s efforts, we train multiple
Marian (Junczys-Dowmunt et al., 2018) models
with both University of Edinburgh’s “bi-deep”
(Miceli Barone et al., 2017; Sennrich et al., 2017)
and Google’s transformer (Vaswani et al., 2017)

2SentencePiece was used in part to provide diversity be-
tween our OpenNMT and other systems trained with BPE
data.

architectures. Network hyperparameters are the
same as detailed in Gwinnup et al. (2018). We
again use newstest2014 as the validation set dur-
ing training.
Utilizing the best-performing BPE parameters

from Section 2.2, we first trained a baseline system
in each of the two network architectures, noting the
Transformer system’s better performance of +0.82
BLEU on average across decoded test sets. An ad-
ditional six distinct transformer models were then
independently3 trained for use in ensemble decod-
ing. We then ensemble decoded test sets with all
eight models.
Marian typically assigns each model used in

ensemble decoding a feature weight of 1.0; thus
each model contributes equally to the decoding
process. Borrowing from our Moses training ap-
proach, we utilize a multi-iteration decode and op-
timize feature weights using the “Expected Cor-
pus BLEU” (ECB)metric with the Drem optimizer
(Erdmann and Gwinnup, 2015). We experimented
using newstest2014 and newstest2017 as tun-
ing sets – 2017 did not help performance, but us-
ing 2014 did improve performance by up to +0.9
BLEU4 over the non-tuned ensemble.
Scores for all the above-mentioned systems are

shown in Table 4. The best-performing ensemble
(ensemble tune14) was used in system combina-
tion.

3.2 Sockeye
For our Sockeye (Hieber et al., 2017) systems, we
experimented with continued training (Luong and
Manning, 2015; Sennrich et al., 2015) – a means to
specialize a model in a new domain after a period
of training on a general domain. One downside
of utilizing continued training is the model adapts
“too-well” to the new domain at the expense of
performance in the original domain (Freitag and
Al-Onaizan, 2016). One method to mitigate this
performance drop is to prevent certain parameters
of the network from changing with Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017).
Thompson et al. (2019) conveniently provides an
implementation of this technique in Sockeye.
That work illustrated a use case where the orig-

inal domain is news articles, while the new do-
main is text of patent applications – a marked dif-

3Identical training data and starting parameters except for
random seed.

4This may be due to the choice of newstest2014 for vali-
dation during training.
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System newstest2014 newstest2015 newstest2016 newstest2017 newstest2018

bpe30k 33.7 28.9 28.7 31.4 27.6
bpe40k 34.1 29.6 29.4 31.8 27.9
bpe50k 33.9 29.2 29.1 31.6 27.8
bpe60k 33.4 29.1 28.7 31.3 27.6
bpe70k 33.0 28.8 28.8 31.2 26.9
bpe80k 32.6 28.7 28.2 31.1 26.9

Table 3: Cased, detokenized BLEU for various test sets and BPE merge-value treatments. Best scores for each test
set are denoted with bold text.

System newstest2014 newstest2015 newstest2016 newstest2017 newstest2018

single bi-deep 32.7 29.0 28.7 31.3 27.0
single transformer 34.1 29.6 29.4 31.8 27.9
untuned ensemble 36.2 31.6 30.5 34.2 29.7
ensemble tune17 35.3 31.1 30.2 34.2 29.7
ensemble tune14 37.1 31.3 31.2 34.5 30.5

Table 4: Test set comparison for baseline bi-deep, transformer, untuned and tuned ensembles for various test sets
measured in cased, detokenized BLEU. Best scores for each test set are denoted with bold text.

ference in style and content. Here, we created a
news subdomain corpus from the newstest2014
through newstest2017 test sets. The intuition
is that more current events will be discussed in
these test sets than the remainder of the provided
training corpora, allowing better adaptation of new
events in the newest test sets (newstest2018 and
newstest2019.)
We first trained a baseline transformer system

using the best-performing BPE parameters from
Section 2.2, 512-dimension word embeddings, 6
layer encoder and decoder, 8 attention heads, la-
bel smoothing and transformer attention dropout
of 0.1. We then continue-train a model on the
adaptation set described above. We also followed
the Sockeye EWC training procedure, producing a
model more resilient to overfitting due to contin-
ued training. Results for these systems are shown
in Table 5.
We see that the baseline Sockeye transformer

model performs similarly to the baseline single-
model Marian transformer system shown in Table
4. The continued-training system (con’t train) sys-
tem predictably overfit on newstest2014 as ex-
pected, since that test set is a part of the adap-
tation set. Likewise, performance on the out-of-
domain newstest2018 also dropped as a result
of overfitting. The best-performing EWC system5

5EWC applied with weight-decay of 0.001 and learning-

actually improved performance on 2018 with less-
pronounced overfitting on 2014.

System newstest2014 newstest2018

baseline 33.4 27.6
con’t train 89.3 24.3
best EWC 48.5 29.5

Table 5: Sockeye system scores for newstest2014
(in-domain) and newstest2018 (out-of-domain) test
sets for various training conditions measured in Sacre-
BLEU.

For system combination outlined later in Section
4, we decoded test sets with an ensemble of the
four highest-scoring model checkpoints from the
best EWC training run.

3.3 OpenNMT-T

Our first Open-NMT system was trained using the
Transformer architecture with the default “Trans-
formerBig” settings as described in Vaswani et al.
(2017): 6 layers of 1024 units, 16 attention heads.
Dropout rates of 0.3 for layers and 0.1 for atten-
tion heads and relu’s. Training data for this sys-
tem utilized the training corpus from our WMT17
Russian–English system (Gwinnup et al., 2017)
consisting of provided parallel and backtranslated

rate of 0.00001
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data. This data was then processed with a joint 32k
word vocabulary SentencePiece model.

3.4 OpenNMT-G

For our second OpenNMT system, we first trained
language-specific, 32k word vocabularies using
SentencePiece. WMTnews test data from all years
except 2014 and 2017 were used to train Senten-
cePiece. These data, with the addition of the lan-
guage ID filtered ParaCrawl corpus outlined in
Section 2.1, were used for training the system.
WMT news test data from 2014 was used for val-
idation. OpenNMT-tf was used to create the sys-
tem, using the stock “Transformer” model.

3.5 Moses

As in previous years, we trained a phrase-based
Moses (Koehn et al., 2007) system with the same
data as the Marian system outlined in Section 3.1
in order to provide diversity for system combina-
tion. This system employed a hierarchical reorder-
ingmodel (Galley andManning, 2008) and 5-gram
operation sequence model (Durrani et al., 2011).
The 5-gram English language model was trained
with KenLM on all permissable monolingual En-
glish news-crawl data. The BPE model used
was applied to both the parallel training data and
the language modeling corpus. System weights
were tuned with the Drem (Erdmann and Gwin-
nup, 2015) optimizer using the “Expected Corpus
BLEU” (ECB) metric.

4 System Combination

Jane system combination (Freitag et al., 2014) was
employed to combine outputs from the best sys-
tems from each approach outlined above. Indi-
vidual component system and final combination
scores are shown in Table 6 for cased, detokenized
BLEU and BEER 2.0 (Stanojević and Sima’an,
2014) .

5 Submission Systems

We submitted the final 5-system combination out-
lined in Section 4 and the four-checkpoint EWC
ensemble detailed in Section 3.2 to the Russian–
English portion of the WMT19 news task evalu-
ation. Selected newstest2019 automatic scores
from the WMT Evaluation Matrix6 are shown in
Table 7.

6http://matrix.statmt.org

System BLEU BEER

1. Marian 30.47 0.5995
2. Sockeye EWC 29.43 0.5968
3. OpenNMT-T 26.22 0.5737
4. OpenNMT-G 30.05 0.6017
5. Moses 27.33 0.5836

Syscomb-5 32.12 0.6072

Table 6: System combination and input system scores
measured in cased, detokenized BLEU and BEER on
the newstest2018 test set.

System BLEU BEER

afrl-syscomb19 37.2 0.627
afrl-ewc 34.3 0.613

Table 7: Final submission system scores measured in
cased BLEU and BEER on the newstest2019 test set.

6 Conclusion

We presented a series of improvements to our
Russian–English systems, including improved
preprocessing and domain adaptation. Clever
remixing of older techniques from the phrase-
based MT era enabled improvements in ensem-
bled neural decoding. Lastly, we performed sys-
tem combination to leverage benefits from these
new techniques and favorite approaches from pre-
vious years.
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Abstract

We study several methods for full or partial
sharing of the decoder parameters of multilin-
gual NMT models. Using only the WMT 2019
shared task parallel datasets for training, we
evaluate both fully supervised and zero-shot
translation performance in 110 unique trans-
lation directions. We use additional test sets
and re-purpose evaluation methods recently
used for unsupervised MT in order to evalu-
ate zero-shot translation performance for lan-
guage pairs where no gold-standard parallel
data is available. To our knowledge, this is
the largest evaluation of multi-lingual transla-
tion yet conducted in terms of the total size of
the training data we use, and in terms of the
number of zero-shot translation pairs we eval-
uate. We conduct an in-depth evaluation of
the translation performance of different mod-
els, highlighting the trade-offs between meth-
ods of sharing decoder parameters. We find
that models which have task-specific decoder
parameters outperform models where decoder
parameters are fully shared across all tasks.

1 Introduction

Multi-lingual translation models, which can map
from multiple source languages into multiple tar-
get languages, have recently received significant
attention because of the potential for positive
transfer between high- and low-resource language
pairs, and because of the potential efficiency gains
enabled by translation models which share param-
eters across many languages (Dong et al., 2015;
Ha et al., 2016; Firat et al., 2016; Johnson et al.,
2016; Blackwood et al., 2018; Sachan and Neubig,
2018; Aharoni et al., 2019). Multi-lingual mod-
els which share parameters across tasks can also
perform zero-shot translation, translating between
language pairs for which no parallel training data
is available (Wu et al., 2016; Ha et al., 2016; John-
son et al., 2016).

Although multi-task models have recently been
shown to achieve positive transfer for some com-
binations of NLP tasks, in the context of MT,
multi-lingual models do not universally outper-
form models trained to translate in a single di-
rection when sufficient training data is available.
However, the ability to do zero-shot translation
may be of practical importance in many cases,
as parallel training data is not available for most
language pairs (Wu et al., 2016; Johnson et al.,
2016; Aharoni et al., 2019). Therefore, small
decreases in the performance of supervised pairs
may be admissible if the corresponding gain in
zero-shot performance is large. In addition, zero-
shot translation can be used to generate synthetic
training data for low- or zero- resource language
pairs, making it a practical alternative to the boot-
strapping by back-translation approach that has
recently been used to build completely unsuper-
vised MT systems (Firat et al., 2016; Artetxe et al.,
2018; Lample et al., 2018a,b). Therefore, under-
standing the trade-offs between different methods
of constructing multi-lingual MT systems is still
an important line of research.

Deep sequence to sequence models have be-
come the established state-of-the-art for machine
translation. The dominant paradigm continues to
be models divided into roughly three high-level
components: embeddings, which map discrete to-
kens into real-valued vectors, encoders, which
map sequences of vectors into an intermediate rep-
resentation, and decoders, which use the represen-
tation from an encoder, combined with a dynamic
representation of the current state, and output a
sequence of tokens in the target language condi-
tioned upon the encoder’s representation of the in-
put. For multi-lingual systems, any combination
of encoder and/or decoder parameters can poten-
tially be shared by groups of tasks, or duplicated
and kept private for each task.
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Figure 1: The decoder component of the transformer
model (Vaswani et al., 2017). We can share all parame-
ters across all target tasks, or we can create a unique set
of decoder parameters for each task (outer dashed line).
Alternatively, we can create unique attention parame-
ters for each task, while sharing the final feed-forward
layers (inner dotted lines). The possiblility of including
an embedding for the target task is visualized at the bot-
tom of the diagram. Illustration modeled after Sachan
and Neubig (2018).

Our work builds upon recent research on many-
to-one, one-to-many, and many-to-many transla-
tion models. We are interested in evaluating many-
to-many models under realistic conditions, includ-
ing:

1. A highly imbalanced amount of training data
available for different language pairs.

2. A very diverse set of source and target lan-
guages.

3. Training and evaluation data from many do-
mains.

We focus on multi-layer transformer models
(Vaswani et al., 2017), which achieve state-of-
the-art performance on large scale MT and NLP
tasks (Devlin et al., 2018; Bojar et al., 2018). We
study four ways of building multi-lingual trans-
lation models. Importantly, all of the models we
study can do zero-shot translation: translating be-
tween language pairs for which no parallel data
was seen at training time. The models use training
data from 11 distinct languages1, with supervised
data available from the WMT19 news-translation
task for 22 of the 110 unique translation direc-
tions2. This leaves 88 translation directions for
which no parallel data is available. We try to eval-
uate zero-shot translation performance on all of
these additional directions.

Target Language Specification Although the
embedding and encoder parameters of a multi-
lingual system may be shared across all languages
without any special modification to the model,
decoding from a multi-lingual model requires a
means of specifying the desired output language.
Previous work has accomplished this in different
ways:

• pre-pending a special target-language token
to the input (Wu et al., 2016)

• using an additional embedding vector for the
target language (Lample and Conneau, 2019)

• using unique decoders for each target lan-
guage (Luong et al., 2016; Firat et al., 2016)

• partially sharing some of the decoder param-
eters while keeping others unique to each
target language (Sachan and Neubig, 2018;
Blackwood et al., 2018)

However, to the best of our knowledge, no side-
by-side comparison of these approaches has been
conducted. We therefore train models which are
identical except for the way that decoding into dif-
ferent target languages is handled, and conduct

1CS, DE, EN, FI, FR, GU, KK, LT, RU, TR and ZH
2Note we do not consider auto-encoding, thus the number

of translation directions is 112 − 11 = 110.
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a large-scale evaluation. We use only the lan-
guage pairs and official parallel data released by
the WMT task organisers, meaning that all of our
systems correspond to the constrained setting of
the WMT shared task, and our experimental set-
tings should thus be straightforward to replicate.

2 Multi-Task Translation Models

This section discusses the key components of the
transformer-based NMT model, focusing on the
various ways to enable translation into many tar-
get languages. We use the terms source/target task
and language interchangeably, to emphasize our
view that multi-lingual NMT is one instantiation
of the more general case of multi-task sequence to
sequence learning.

2.1 Shared Encoders and Embeddings
In this work, we are only interested in ways of pro-
viding target task information to the model – infor-
mation about the source task is never given explic-
itly, and the encoder is always completely shared
across all tasks. The segmentation model and em-
bedding parameters are also shared between all
source and target tasks (see below for more de-
tails).

2.2 Multi-lingual Decoder Configurations
Figure 1 visualizes the decoder component of the
transformer model, with dashed and dotted lines
indicating the parameter sets that we can replicate
or share across target tasks.

2.2.1 Target Task Tokens (PREPEND)
Wu et al. (2016) showed that, as long as a mech-
anism exists for specifying the target task, it is
possible to share the decoder module’s parameters
across all tasks. In the case where all parameters
are shared, the decoder model must therefore learn
to operate in a number of distinct modes which are
triggered by some variation in the input. A simple
way to achive this variation is by pre-pending a
special "task-token" to each input. We refer to this
method as PREPEND.

2.2.2 Task Embeddings (EMB)
An alternative to the use of a special task token is
to treat the target task as an additional input fea-
ture, and to train a unique embedding for each tar-
get task (Lample and Conneau, 2019), which is
combined with the source input. This technique
has the advantage of explicitly decoupling target

task information from source task input, introduc-
ing a relatively small number of additional param-
eters. This approach can be seen as adding an ad-
ditional token-level feature which is the same for
all tokens in a sequence (Sennrich and Haddow,
2016). We refer to this setting as EMB.

2.2.3 Task-specific Decoders (DEC)
In general, any subset of decoder parameters may
be replicated for each target language, resulting in
parameter sets which are specific to each target
task. At one extreme, the entire decoder module
may be replicated for each target language, a set-
ting which we label DEC (Dong et al., 2015).

2.2.4 Task-specific Attention (ATTN)
An approach somewhere in-between EMB and
DEC is to partially share some of the decoder
parameters, while keeping others unique to each
task. Recent work proposed creating unique atten-
tion modules for every target task, while sharing
the other decoder parameters (Sachan and Neubig,
2018; Blackwood et al., 2018). The implementa-
tion of their approaches differ significantly – we
propose to create completely unique attention pa-
rameters for each task. This means that for each
of our 11 languages, we have unique context- and
self-attention parameters in each layer of the trans-
former decoder. We refer to this setting as ATTN.

3 Experiments

All experiments are conducted using the
transformer-base configuration of Vaswani
et al. (2017) with the relevant modifications for
each system discussed in the previous section. We
use a shared sentencepiece3 segmentation model
with 32000 pieces. We use all available parallel
data from the WMT19 news-translation task for
training, with the exception of commoncrawl,
which we found to be very noisy after manually
checking a sample of the data, and paracrawl,
which we use only for EN-FI and EN-LT4.

We train each model on two P100 GPUs with an
individual batch size of up to 2048 tokens. Gradi-
ents are accumulated over 8 mini-batches and pa-
rameters are updated synchronously, meaning that
our effective batch size is 2 ∗ 2048 ∗ 4 = 16384
tokens per iteration. Because the task pair for

3https://github.com/google/sentencepiece
4Turkish (TR) is included from the 2018 language pairs

because the task-organizers suggest the possibility of using
TR data to improve KK performance
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# seen # available # epochs % budget

EN-CS 3,466,692 51,136,198 0.06 10.7
EN-DE 2,678,808 3,054,632 0.88 8.3
EN-FI 3,466,692 6,457,071 0.54 10.7
EN-GU 1,260,615 137,905 9.14 3.9
EN-KK 1,181,827 158,067 7.47 3.7
EN-LT 3,624,269 2,283,272 1.59 11.2
EN-RU 5,042,462 11,391,126 0.44 15.6
EN-TR 1,575,769 207,678 7.58 4.9
EN-ZH 5,846,104 14,549,833 0.40 18.1
DE-FR 4,097,000 1,980,332 2.06 12.7

TOTAL 32,240,238 91,356,114 - 100

Table 1: Training dataset statistics for our multilingual
NMT experiments. # seen is the total number of seg-
ments seen during training. # available is the num-
ber of unique segments available in the parallel training
datasets. # epochs is the number of passes made over
the available training data – when this is < 1, the avail-
able training data was only partially seen. % budget is
the percentage of the training budget allocated to this
pair of tasks.

each mini-batch is sampled according to our pol-
icy weights and (fixed) random seed, and each it-
eration consists of 8 unique mini-batches, a sin-
gle parameter update can potentially contain infor-
mation from up to 8 unique task pairs. We train
each model for 100,000 iterations without early
stopping, which takes about 40 hours per model.
When evaluating we always use the final model
checkpoint (i.e. the model parameters saved af-
ter 100,000 iterations). We use our in-house re-
search NMT system, which is heavily based upon
OpenNMT-py (Klein et al., 2017).

The sampling policy weights were specified
manually by looking at the amount of available
data for each pair, and estimating the difficulty of
each translation direction. The result of the sam-
pling policy is that lower resource language pairs
are upsampled significantly. Table 1 summarizes
the statistics for each language pair. Note that the
data in each row represents a pair of tasks, i.e.
the total number of segments seen for EN-CS is
split evenly between EN→CS, and CS→EN. Be-
cause we train for only 100,000 iterations, we do
not see all of the available training data for some
high-resource language pairs.

With the exception of the system which
prepends a target task token to each input, the in-
put to each model is identical. Each experimen-
tal setting is mutually exclusive, i.e. in the EMB

setting we do not prepend task tokens, and in the
ATTN setting we do not use task embeddings.

Figure 2 plots the validation performance dur-
ing training on one of our validation datasets. The
language embeddings from the EMB system are
visualized in figure 3.

3.1 Results

Figure 2: Word-level accuracy on WMT EN-DE 2014
dev set as training progresses. The model which has a
DE-specific decoder achieves the highest accuracy on
this dev set.

Figure 3: Language embeddings of the EMB system
projected with UMAP (McInnes et al., 2018).

We evaluate the performance of our models in
four ways. First, we check performance on the
supervised pairs using dev and test sets from the
WMT shared task. We then try to evaluate zero-
shot translation performance in several ways. We
use the TED talks multi-parallel dataset (Ye et al.,
2018) to create gold sets for all zero-shot pairs
that occur in the TED talks corpus, and evaluate
on those pairs. We also try two ways of evalu-
ating zero-shot translation without gold data. In
the first, we do round-trip translation SRC →
PIVOT → SRĈ, and measure performance on
the (SRĈ, SRC) pair – this method is labeled
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Evaluation Dataset

EN-CS newstest2018
EN-DE newstest2018
EN-FI newstest2018
EN-GU newsdev2019
EN-KK newsdev2019
EN-LT newsdev2019
EN-RU newstest2018
EN-TR newstest2018
EN-ZH newstest2018
DE-FR euelections_dev2019

Table 2: The WMT evaluation dataset used for each
language pair.

PREPEND EMB DEC ATTN

SUPERVISED 23.4 23.4 24.0 24.1
ZERO-SHOT-TED 10.6 7.8 12.6 12.4
ZERO-SHOT-PIVOT 16.9 18.1 14.0 15.1
ZERO-SHOT-PARALLEL-PIVOT 13.1 11.9 12.8 13.2

Table 3: Overall results for supervised and zero-shot
tasks. Tokenized BLEU scores are computed by con-
catenating all of the hypotheses for all translation di-
rections, and computing BLEU with respect to the
concatenated references. We use the sentencepiece-
segmented hypotheses and references to avoid issues
with tokenization of multi-lingual hypotheses and ref-
erences.

ZERO-SHOT PIVOT. In the second, we use par-
allel evaluation datasets from the WMT shared
tasks (consisting of (SRC, REF) pairs), and trans-
late SRC → PIVOT → TRĜ, then measure per-
formance on the resulting (TRĜ, REF) pairs (see
below for more details), where the pivot and tar-
get language pair is a zero-shot translation task
– this method is labeled ZERO-SHOT PARALLEL

PIVOT.
Table 2 lists the WMT evaluation dataset that

we use for each language pair. In the ZERO-SHOT

PIVOT setting, the reference side of the dataset is
used as input.

Table 3 shows global results for all parallel tasks
and all zero-shot tasks, by system. Global scores
are obtained by concatenating the segmented out-
puts for each translation direction, and computing
the BLEU score against the corresponding con-
catenated, segmented reference translations. The
results in table 3 are thus tokenized BLEU scores.

3.2 Parallel Tasks

In the following results, we report BLEU scores
on de-tokenized output, and compute scores using

PREPEND EMB DEC ATTN

CS-EN 20.2 20.2 20.9 20.9
EN-CS 12.4 12.7 13.7 13.3
DE-EN 26.2 26.1 27.4 27.1
EN-DE 23.2 23.4 25.7 25.2
FI-EN 13.7 13.5 14.4 14.2
EN-FI 8.3 8.0 9.4 9.2
GU-EN 15.4 15.4 15.7 15.4
EN-GU 8.1 7.8 5.1 7.3
KK-EN 14.4 14.0 14.3 13.9
EN-KK 5.6 5.2 1.9 4.6
LT-EN 18.6 18.9 19.3 19.0
EN-LT 12.8 13.0 14.4 13.7
RU-EN 20.8 20.6 21.3 21.3
EN-RU 15.5 15.9 17.0 16.7
TR-EN 14.8 15.0 15.2 15.1
EN-TR 10.3 10.0 10.9 11.3
ZH-EN 13.5 13.7 14.1 13.7
EN-ZH 24.2 24.4 25.6 25.4
FR-DE 18.6 18.4 19.9 19.3
DE-FR 21.2 22.1 21.7 22.6

Table 4: Results for all task pairs in the WMT 2019
news-translation shared task where parallel training
data is available.

sacrebleu 5. Therefore, we expect BLEU scores to
be equivalent to those used in the WMT automatic
evaluation.

We note that across all but the lowest-resource
tasks, the model with a unique decoder for each
language outperforms all others. However, for
EN→GU and EN→KK, the lowest-resource trans-
lation directions, the unique decoder model fails
completely, probably because the unique parame-
ters for KK and GU were not updated by a sufficient
number of mini-batches (approximately 15,600
for EN→GU and 14,800 for EN→KK).

3.3 Zero-shot Translation Tasks
In order to test our models in the zero-shot set-
ting, we adapt an evaluation technique that has re-
cently been used for unsupervised MT – we trans-
late from the source language into a pivot lan-
guage, then back into the source language, and
evaluate the score of the resulting source-language
hypotheses against the original source (Lample

5BLEU+case.mixed+
lang.<src-lang>-<trg-lang>+
numrefs.1+smooth.exp+tok.<trg-lang>+
version.1.2.19
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PREPEND EMB DEC ATTN

RU→CS→RU 20.9 23.8 20.8 21.0
RU→DE→RU 14.6 11.9 16.4 15.6
RU→EN→RU* 21.7 22.2 23.9 23.2
RU→FI→RU 11.2 17.0 12.1 11.6
RU→FR→RU 13.8 15.4 14.1 15.1
RU→GU→RU 10.3 9.6 3.5 5.1
RU→KK→RU 5.8 19.6 1.0 2.2
RU→LT→RU 16.9 22.0 16.5 16.6
RU→TR→RU 7.9 10.2 7.4 7.7
RU→ZH→RU 8.8 10.5 9.1 8.5

Table 5: Zero-shot translation results for RU→*→RU
Note that BLEU scores are computed by translating
SRC → PIVOT → SRĈ, and computing the score be-
tween SRC and SRĈ. Systems which do not pass the
language identification filter are struck-through and re-
moved from global evaluation. Note that parallel train-
ing data was available for RU→EN.

PREPEND EMB DEC ATTN

# Failed Pivot Tasks 3 31 1 1

Table 6: Out of 110 pivot translation tasks, how many
failed the language identification check?

et al., 2018a). This technique allows us to eval-
uate for all possible translation directions in our
multi-directional model.

Aware of the risk that the model simply copies
through the original source segment instead of
translating, we assert that at least 95% of pivot
translations’ language code is correctly detected
by langid6, and pairs which do not meet this
criteria for any system are removed from the
evaluation for all systems (not just for the sys-
tem that failed). For all models except EMB

only RU→KK→RU FI→LT→FI, and ZH→GU→ZH

failed this test, but for the EMB model 31 of the
110 translation directions failed (see tables 6 and
77. This result indicates that models which use
language embeddings may have a more "fuzzy"
representation of the output task, and are much
more prone to copying than other approaches
to multi-lingual MT. However, even for the lan-
guages which passed the language identification
filter, we suspect that some copying is occurring

6https://github.com/saffsd/langid.py
7We conduct round trip translation on all 110 directions,

but we only use directions that are (1) not available in the
parallel training data, and (2) pass the language identification
test to compute the global zero-shot translation performance

for the EMB system, because of the mismatch in
results between the ZERO-SHOT PIVOT task and
the SUPERVISED, ZERO-SHOT TED, and ZERO-
SHOT PARALLEL PIVOT tasks (see table 3). Table
7 (in appendix) contains the results for all possible
translation directions and all models in the ZERO-
SHOT PIVOT evaluation setting.

3.3.1 Zero-Shot Evaluation on TED Talks
Corpus

We conduct an additional evaluation on some of
the language pairs from the TED Talks multi-
parallel corpus (Ye et al., 2018), which has re-
cently been used for the training and evaluation of
multi-lingual models. We filter the dev and test
sets of this corpus to find segments which have
translations for all of EN, FR, RU, TR, DE, CS, LT,
FI, and are at least 20 characters long, resulting
in 606 segments. Because this corpus is prepro-
cessed, we first de-tokenize and de-escape punc-
tuation using sacremoses8. We then evaluate
zero-shot translation for all possible pairs which
do not occur in our parallel training data, aggre-
gate results are shown in the third row of table 3.

3.4 Discussion

Our results show that a models with either (1) a
completely unique decoders for each target lan-
guage or (2) unique decoder attention parameters
for each target language clearly outperform mod-
els with fully shared decoder parameters in our
setting.

It is plausible that the language-independence
of encoder output could be correlated with the
amount of sharing in the decoder module. Be-
cause most non-English target tasks only have par-
allel training data in English, a unique decoder for
those tasks only needs to learn to decode from En-
glish, not from every possible source task. How-
ever, our results show that the ATTN model, which
partially shares parameters across target languages
only slightly outperforms the DEC model globally,
because of the improved performance of the ATTN

model on the lowest-resource tasks (Table 4, Table
7 (in appendix)).

4 Related Work

Dong et al. (2015); Firat et al. (2016); Ha et al.
(2016); Johnson et al. (2016) and others have

8https://github.com/alvations/sacremoses
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shown that multi-way NMT systems can be cre-
ated with minimal modification to the approach
used for single-language-pair systems. Johnson
et al. (2016) showed that simply prepending a
target-task token to source inputs is enough to en-
able zero-shot translation between language pairs
for which no parallel training data is available.

Our work is most similar to Sachan and Neubig
(2018), where many different strategies for shar-
ing decoder parameters are investigated for one-
to-many translation models. However, their eval-
uation setting is constrained to one-to-many mod-
els which translate from English into two target
languages, whereas our setting is more ambitious,
performing multi-way translation between 11 lan-
guages. Blackwood et al. (2018) showed that us-
ing separate attention parameters for each task can
improve the performance of multi-task MT mod-
els – this work was the inspiration for the ATTN

setting in our experiments.
Several recent papers focus specifically upon

improving the zero-shot performance of multi-
lingual MT models (Chen et al., 2017; Arivazha-
gan et al., 2019; Gu et al., 2019; Lu et al., 2018;
Al-Shedivat and Parikh, 2019; Sestorain et al.,
2019).

Concurrently with this work, (Aharoni et al.,
2019) evaluated a multiway MT system on a large
number of language pairs using the TED talks cor-
pus. However, they focus upon EN-* and *-EN,
and do not test different model variants.

5 Conclusions and Future Work

We have presented results which are consistent
with recent smaller-scale evaluations of multi-
lingual MT systems, showing that assigning
unique attention parameters to each target lan-
guage in a multi-lingual NMT system is optimal
when evaluating such a system globally. However,
when evaluated on the individual task level, mod-
els which have unique decoder parameters for ev-
ery target task tend to outperform other configura-
tions, except when the amount of available train-
ing data is extremely small. We have also intro-
duced two methods of evaluating zero-shot trans-
lation performance when parallel data is not avail-
able, and we conducted a large-scale evaluation of
translation performance across all possible trans-
lation directions in the constrained setting of the
WMT19 news-translation task.

In future work, we hope to continue studying

how multi-lingual translation systems scale to re-
alistic volumes of training data and large numbers
of source and target tasks.
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PREPEND

CS

15.7 19.6 11.4 11.1 8.7 3.6 16.6 17.4 7.8 7.5
EMB 9.3 19.9 24.4 12.4 9.3 3.3 28.4 15.8 10.2 7.5
DEC 17.7 21.3 11.5 13.3 3.3 0.7 14.0 17.8 6.7 7.5

ATTN 17.5 21.6 11.6 13.8 4.5 1.8 14.4 17.4 7.2 7.6

PREPEND 22.3

DE

27.1 16.4 25.3 11.2 5.3 18.3 18.1 12.4 12.3
EMB 41.5 27.6 38.0 25.1 19.4 8.5 40.7 23.6 29.9 19.6
DEC 23.4 29.8 15.6 25.8 4.0 0.9 16.2 19.1 11.2 12.2

ATTN 22.8 29.0 15.9 26.3 6.4 2.7 17.1 18.0 11.2 12.1

PREPEND 35.4 37.1

EN

24.6 34.5 22.1 9.3 29.2 32.9 23.3 25.6
EMB 36.5 37.4 25.9 35.0 21.5 9.3 30.4 33.9 24.2 26.6
DEC 35.8 37.5 25.8 32.6 10.1 1.6 29.7 33.2 22.8 26.3

ATTN 36.9 36.6 25.9 34.4 15.7 6.2 30.3 33.9 23.6 26.8

PREPEND 12.1 11.0 14.3

FI

7.2 5.6 2.6 13.1 9.2 6.6 6.2
EMB 19.9 7.9 14.7 8.2 6.2 4.2 23.8 11.1 12.0 6.8
DEC 11.2 11.7 15.4 9.8 3.0 0.5 10.7 9.9 6.2 5.8

ATTN 12.2 11.5 15.0 10.0 4.2 1.7 10.9 9.8 6.5 5.8

PREPEND 25.6 32.7 31.9 17.8

FR

17.1 7.8 20.5 22.9 16.0 15.3
EMB 26.0 32.0 36.5 20.4 12.4 5.0 24.5 22.5 15.6 14.1
DEC 25.7 32.9 33.9 18.4 5.9 1.5 20.2 23.6 14.4 15.1

ATTN 26.0 33.2 34.3 19.5 8.5 4.5 21.0 24.6 15.5 15.4

PREPEND 5.1 5.7 8.2 4.2 4.0

GU

2.0 5.3 5.2 3.5 3.9
EMB 5.3 4.6 7.6 5.4 4.4 1.6 6.2 3.6 4.2 3.7
DEC 3.5 3.5 5.5 3.2 3.2 0.5 3.6 3.4 2.9 2.7

ATTN 4.9 5.1 7.6 4.4 4.5 1.0 4.6 4.5 4.0 4.0

PREPEND 4.9 4.8 7.1 3.4 2.8 4.3

KK

4.6 4.9 4.4 3.9
EMB 3.4 3.4 6.4 3.8 3.5 1.9 3.9 3.6 4.5 2.4
DEC 1.7 1.8 2.2 1.6 1.5 1.1 1.5 1.7 1.7 1.2

ATTN 3.9 4.0 5.3 3.2 3.2 2.3 3.6 3.9 4.3 3.2

PREPEND 18.8 14.5 17.9 13.8 10.4 9.9 4.7

LT

16.8 10.0 9.0
EMB 30.5 12.0 18.3 30.7 10.8 10.6 6.8 18.2 19.7 13.7
DEC 16.7 13.6 18.9 12.8 11.6 3.7 0.9 16.1 8.0 8.5

ATTN 17.0 13.9 18.8 12.5 12.4 5.5 1.9 15.7 8.7 9.2

PREPEND 20.9 14.6 21.7 11.2 13.8 10.3 5.8 16.9

RU

7.9 8.8
EMB 23.8 11.9 22.2 17.0 15.4 9.6 19.6 22.0 10.2 10.5
DEC 20.8 16.4 23.9 12.1 14.1 3.5 1.0 16.5 7.5 9.1

ATTN 21.0 15.6 23.2 11.6 15.2 5.1 2.2 16.6 7.7 8.5

PREPEND 9.1 8.2 13.3 7.4 7.4 8.8 5.6 8.9 7.1

TR

6.4
EMB 12.7 7.2 12.6 14.6 7.5 6.7 4.1 17.3 6.6 6.4
DEC 7.2 7.6 13.1 6.5 6.8 2.5 0.7 6.4 5.6 5.3

ATTN 7.3 8.1 13.4 6.6 7.3 3.9 1.9 6.7 5.6 5.3

PREPEND 20.4 19.6 29.0 17.1 17.4 18.2 8.4 20.2 19.5 17.4

ZH
EMB 20.1 16.9 29.4 19.6 17.8 11.9 6.6 22.8 18.3 16.7
DEC 19.2 19.4 30.2 16.6 17.6 7.2 2.2 19.5 20.1 16.3

ATTN 19.8 20.4 30.0 16.7 18.2 11.0 5.0 18.6 19.4 17.1

Table 7: Pivot-based translation results in all directions, for all models. Rows indicate source language, columns
indicate pivot language. For example, cell (1, 2) contains the results for CS→DE→CS. Runs which did not pass
the language identification filter are struck-through. The MT-matrix (http://matrix.statmt.org/matrix) was the in-
spiration for this rendering.
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Abstract

This paper describes the participation of
the MLLP research group of the Universi-
tat Politècnica de València in the WMT 2019
News Translation Shared Task. In this edition,
we have submitted systems for the German↔
English and German↔ French language pairs,
participating in both directions of each pair.
Our submitted systems, based on the Trans-
former architecture, make ample use of data
filtering, synthetic data and domain adaptation
through fine-tuning.

1 Introduction

In this paper we describe the supervised Statis-
tical Machine Translation (MT) systems devel-
oped by the MLLP research group of the Univer-
sitat Politècnica de València for the News Trans-
lation Shared Task of the ACL 2019 Fourth Con-
ference on Machine Translation (WMT19). For
this year’s edition, we participated in both di-
rections of the German ↔ English and German
↔ French language pairs, using Neural Machine
Translation (NMT) models following the Trans-
former (Vaswani et al., 2017) architecture. Fol-
lowing the lessons learned from last year, we have
continued working on data filtering, and we have
experimented with additional synthetic data tech-
niques and bigger neural network architectures
trained with multi-GPU machines.

This paper is organized as follows. Section 2
describes the data processing steps (including data
filtering and synthetic data generation) carried out
prior to system training. Section 3 describes the
architecture and settings used for our NMT mod-
els, and the different experiments and evaluations
performed are detailed in Section 4. Our conclu-
sions for this shared task are outlined in Section
5.

2 Data preparation

Data preprocessing, corpus filtering and data aug-
mentation are described in the following sections.

2.1 Corpus preprocessing
The data was processed using the standard Moses
pipeline (Koehn et al., 2007). Specifically, we
normalized punctuation, and tokenized and true-
cased data. Additionally, we applied 40K BPE op-
erations (Sennrich et al., 2016b), learned jointly
over the source and target languages, and excluded
from the vocabulary all subwords that did not ap-
pear at least 10 times in the training data. BPE
operations are learned before adding the data ex-
tracted using corpus filtering, described in Section
2.2. Sentences longer than 100 subwords were ex-
cluded from the training data.

2.2 Corpus filtering
The addition of the ParaCrawl corpus to the WMT
shared tasks has placed an increasing importance
in filtering and data selection techniques in order
to take advantage of this additional data. This is
highlighted by the fact that a majority of partici-
pating systems in the WMT18 News Translation
Task (Bojar et al., 2018) apply filtering techniques
to ParaCrawl. Additionally, the experiments car-
ried out for our 2018 submission (Iranzo-Sánchez
et al., 2018) show that using a noisy corpus such
as ParaCrawl without filtering can result in a worse
performance compared with a baseline system that
simply excludes the noisy corpus from the training
data.

We have compared two different approaches to
corpus filtering:

• LM-based filtering (Iranzo-Sánchez et al.,
2018): This approach uses language models
for estimating the quality of a sentence pair,
under the assumption that a low-perplexity
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sentence is more likely to be an adequate sen-
tence for training. Using in-domain data, we
train one language model for each language,
and then use them to score the corresponding
side of the sentence pair, giving us perplexity
scores (s, t). The score (perplexity) of a sen-
tence pair is the geometric mean

√
s · t. We

select sentence pairs with the lowest score.
This is the approach we used for our WMT18
submission.

• Dual Conditional Cross-Entropy filtering
(Junczys-Dowmunt, 2018): This approach
computes the sentence pair score by means
of a product of a series of partial scores.

f(x, y) =
∏

i

fi(x, y) (1)

We have used the same configuration sent for
the WMT18-filtering task, which uses 3 par-
tial scores: a language identification score
(lang), a dual conditional cross-entropy score
(adq), and a cross-entropy difference score
(dom) with a cut-off value of 0.25. The full
details of each of these partial scores is given
in Junczys-Dowmunt (2018). The transla-
tion models for the adq score are Transformer
Base models trained with the Europarl por-
tion of WMT19. In terms of the data for the
dom score, we randomly sampled 1M sen-
tences from NewsCrawl 2016 as in-domain
data, and 1M sentences from ParaCrawl as
out-of-domain data.

We carried out a series of comparisons between
the two techniques, and found out that the cross-
entropy model provides better performance than
the LM-based filtering model. This is consistent
with the fact that the cross-entropy filtering was
the winning submission to the WMT18 Shared
Task on Parallel Corpus Filtering (Koehn et al.,
2018). As a result, we have elected to use the
cross-entropy filtering method for filtering the dif-
ferent versions of the ParaCrawl corpus present in
all language pairs.

2.3 Synthetic source sentences
The use of synthetic data produced by means
of the backtranslation technique (Sennrich et al.,
2016a) is an effective way of benefiting from ad-
ditional monolingual data. Further improvements
are possible if the data is from the same domain

as the test data. For this reason, we have produced
synthetic data for all the language pairs we have
participated in.

We used the following configuration:

• German→ English: We have used 20M sen-
tences from our WMT18 submission (Iranzo-
Sánchez et al., 2018), and an additional 24M
sentences generated using a system with the
same configuration as WMT18, but trained
with 3 GPUs instead of 1. The monolin-
gual sentences were randomly sampled from
News Crawl 2017.

• English→ German: We have generated 18M
sentences using our German→ English sys-
tem submitted to WMT18, with monolin-
gual sentences randomly sampled from News
Crawl 2017.

• German→ French: We have generated 10M
synthetic sentences, using the reverse direc-
tion baseline system described in Section
3. The monolingual sentences were sampled
from News Crawl 2015-2018.

• French→ German: We have generated 18M
synthetic sentences, using the reverse direc-
tion baseline system described in Section
3. The monolingual sentences were sampled
from News Crawl 2017.

Prior to selecting sentences, we filtered out from
the German News Crawl 2017 all sentences that
were written in a language different from German,
using the langid tool (Lui and Baldwin, 2012).
When combining bilingual and synthetic data, the
original bilingual data was upsampled in order to
achieve a 1:1 ratio.

3 System description

This section describes the configuration and deci-
sions adopted for training our NMT systems. We
will first begin by describing the details that are
common to all systems, and we will then move on
to specific details for each of the considered trans-
lation directions.

Our models follow the Transformer architecture
(Vaswani et al., 2017), and are configured based
on the Transformer Base and Transformer Big set-
tings.

The Transformer Base models are trained with
a batch size of 3000 tokens per GPU, whereas
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the Transformer Big models use a batch size of
2300 tokens per GPU. We store a checkpoint ev-
ery 10 000 updates, and inference is carried out by
averaging the last 8 checkpoints.

We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9,β2 = 0.98. The learning
rate was updated following an inverse square-root
schedule, with an initial learning rate of 0.0005,
and 4000 warm-up updates. All models use 0.1
label smoothing (Szegedy et al., 2016) and 0.1
dropout (Srivastava et al., 2014), with the excep-
tion of the German↔ French models, that use 0.3
dropout due to having less training data.

The systems from our WMT18 submission and
this year’s baseline systems were built using the
Sockeye toolkit (Hieber et al., 2017). The rest of
the systems were built using the fairseq toolkit (Ott
et al., 2019), in order to train using Half Precision
and gradient accumulation like in Ott et al. (2018).

3.1 Finetuning

Finetuning (training on a new set of data af-
ter system convergence) has been widely used
as a method for domain-adaptation in NMT sys-
tems (Luong and Manning, 2015; Sennrich et al.,
2016a). Due to the different data sources provided
in the competition, and possible domain mismatch
between training and test data, we have decided
to carry out finetuning in order to improve model
performance. The goal of adapting our models to
the domain of the test data is achieved by using
test sets from previous years as in-domain data for
finetuning.

To carry out finetuning, we set the learning rate
to the value that was being used when training fin-
ished, and we reduced the checkpoint interval in
order to store a checkpoint every 20 updates. Fine-
tuning continues as long as the performance does
not decrease in the appropriate dev set. For the
German ↔ English systems, we follow the setup
of Schamper et al. (2018), and use test sets from
previous years (newstest08-16) as training data for
the finetuning step. Since this is the first time the
German ↔ French language pair is included in
WMT, we do not have available test sets from pre-
vious editions, so we resort to using the dev1 set
as training data, and stop finetuning when perfor-
mance drops in dev2 (see Section 4).

4 Experimental evaluation

This section describes the experiments and eval-
uation carried out for each of the language direc-
tions, with special emphasis placed in the German
↔ English systems.

For the German ↔ English systems, we have
used newstest2017 as dev set, and newstest2018
as test set. Additionally, we report results on this
year’s test set, newstest 2019. For the German↔
French systems, we splitted in half the supplied
euelections dev set into two sets, dev 1 and dev
2, and used the former as dev set and the latter
as test set. We also report the results obtained
in the official test set newstest2019. We report
BLEU scores (Papineni et al., 2002) computed us-
ing SacreBLEU (Post, 2018).

4.1 German→ English

Table 1 shows the results obtained by our systems
trained for the German → English direction. As
baselines, we take our WMT18 system, trained
with 1 GPU (this is the configuration that was
used for our WMT18 submission), and the same
setup trained with 3 GPUs. The increase in effec-
tive batch size from 3000 to 9000 tokens results
in an improvement of 1.7 BLEU in newstest2018
and 2.0 BLEU in newstest2019 without any other
change in hyperparameters.

We began our WMT19 experiments by build-
ing a system following the Transformer Big ar-
chitecture, trained in a 4-GPU machine and using
the 20M backtranslations produced for WMT18.
This results in an increase of 0.3 BLEU in new-
stest2018 and 0.6 BLEU in newstest2019. We then
applied gradient accumulation by setting the Up-
date Frequency (UF) to 2. Under this setting, the
model’s weights are updated every two steps (this
simulates a batch size equivalent to training on 8
GPUs). This model obtains a significant improve-
ment in the dev (+0.7 BLEU), and test sets (+1.4
BLEU), however the performance decreases by
0.7 BLEU when evaluating on newstest2019. We
have found no explanation for this phenomenon.
Finetuning on the news in-domain data results im-
proves all previous results, resulting in 47.8 BLEU
in newstest2018 and 39.4 BLEU in newstest2019.

For our final submission, we trained a system
with noisy backtranslations, following the work of
Edunov et al. (2018). We used the previous 20M
backtranslations and appended an additional 24M
generated with the system in row 2 of Table 1. We
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BLEU
System GPUs newstest2018 newstest2019
WMT18 (Transformer Base) 1 44.2 35.6
WMT18 (Transformer Base) 3 45.9 37.6
Transformer Big, 20M backtrans 4 46.2 38.3
+ UF=2 4 47.6 37.7

+ finetuned 4 47.8 39.4
+ 24M backtrans, noise (non-converged) 4 47.5 39.9

+ finetuned 4 48.0 39.3
+ 24M backtrans, noise (converged) 4 48.0 40.2

+ finetuned 4 47.9 40.1

Table 1: Evaluation results of German→ English systems

added noise to the source side of the synthetic sen-
tence pairs using the technique described by Lam-
ple et al. (2018). Following the setup of Edunov
et al. (2018), bilingual data was not upsampled,
resulting in a ratio of around 1:3 original to syn-
thetic sentences. The system had not converged at
the time of the shared task deadline, so we report
results both from our submission, which was gen-
erated when the system was still training, as well
as the results from the converged system, obtained
after the competition ended.

The system trained with noisy backtranslation
obtains 47.5 BLEU in newstest2018 and 39.9
BLEU in newstest2019. An additional finetuning
step improves the results in newstest2018 by 0.5
BLEU. Due to having obtained the best results in
the test set, this was the system we submitted to the
competition. However, when evaluating the fine-
tuned version with this year’s test set, we find a de-
crease of 0.6 BLEU. Allowing the system to train
for additional epochs leaves us with a final result
of 48.0 BLEU and 40.2 BLEU in newstest2018
and newstest2019, and 47.9 and 40.1 BLEU, re-
spectively, after finetuning.

We observe that, in the case of the noisy sys-
tem, finetuning seems to obtain mixed results, in
contrast with other trained systems and language
directions (see Sections 4.2, 4.3 and 4.4), where
finetuning achieves a performance increase in all
cases. We theorize this could be due to the fact
that the system was first trained with a ratio that
included 3 times as many noisy sentences as clean
data, but the finetuning was carried out only with
clean data, without any added noise.

4.2 English→ German

Table 2 shows the results obtained by our sys-
tems trained for the English→ German direction.
We began with a baseline system trained using
our WMT18 configuration and data, plus an ad-
ditional 18M backtranslations. This system ob-
tains 45.2 BLEU in newstest2018 and 39.3 BLEU
in newstest2019. For our WMT19 submission,
we trained a Transformer Big model, using the
WMT19 data (including 10M filtered sentences
from ParaCrawl), as well as the already mentioned
18M backtranslations. This system was trained
with 2 GPUs and an Update Frequency of 2, giv-
ing us an effective batch size equivalent to 4 GPUs.
This system obtains an improvement of 0.4 BLEU
in newstest2018 and 0.1 BLEU in newstest2019
over the baseline. Increasing the number of GPUs
from 2 to 4 shows no significant differences in ei-
ther newstest2018 or newstest2019. Our final sub-
mission was generated after applying a finetuning
step to the previous configuration. This finetun-
ing resulted in an increase of 2.4 BLEU in new-
stest2018 and 2.3 BLEU in newstest2019 when
compared with the non-finetuned model.

4.3 German→ French

Table 3 shows the results obtained by our sys-
tems trained for the German → French direc-
tion. Our baseline system is a Transformer Base
model trained with all the WMT19 data exclud-
ing ParaCrawl. This system obtains 31.3 BLEU in
dev2 and 32.1 BLEU in newstest2019. We then
moved on to training a Transformer Big model,
adding 1M sentences filtered from ParaCrawl, and
10M backtranslations generated with the French
→ German baseline system. This system was
trained with 2 GPUs and an Update Frequency
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BLEU
System GPUs newstest2018 newstest2019
WMT18 (Transformer Base), 18M backtrans 3 45.2 39.3
Transformer Big, 18M backtrans, UF=2 2 45.6 39.4
+ GPU=4 4 45.7 39.4
+ finetuned 4 48.1 41.7

Table 2: Evaluation results of English→ German systems

BLEU
System GPUs dev2 nt2019
WMT19 - {ParaCrawl} 1 31.1 32.1
Transformer Big, UF=2 2 33.3 34.4
+ finetuning 2 33.5 34.5

Table 3: Evaluation results of German → French sys-
tems

BLEU
System GPUs dev2 nt2019
WMT19 - {ParaCrawl} 1 22.8 25.7
Transformer Big, UF=2 2 24.9 26.9
+ finetuning 2 25.4 27.5

Table 4: Evaluation results of French → German sys-
tems

of 2. This results in an increase of 2.2 BLEU in
dev2 and 2.3 BLEU in newstest2019. An addi-
tional finetuning step, carried out using the dev1
data, results in an increase of 0.2 BLEU in dev2
and 0.1 BLEU in newstest2019, and constituted
our submission to the competition.

4.4 French→ German

Table 4 shows the results obtained by our systems
trained for the French → German direction. The
approach and configurations for this language di-
rections mirror those of the German → French
direction (Section 4.3). We began with a base-
line Transformer Base model, that obtains 22.8
BLEU in dev2 and 25.7 BLEU in newstest2019.
The Transformer Big model obtains an improve-
ment of 2.1 BLEU in dev2 and 1.2 BLEU in new-
stest2019, and the finetuning step results in an ad-
ditional increase of 0.5 BLEU in dev2 and 0.6
BLEU in newstest2019.

5 Conclusions

The experiments carried out this year have allowed
us to explore one of the missing pieces of our

WMT18 submission, which is the interaction be-
tween the Transformer architecture and different
batch sizes. The results show that the performance
of models following the Transformer architecture
is highly dependent on the batch size used to train
the model, requiring multiple GPUs or gradient
accumulation in order to fully take advantage of
this architecture. This result is consistent with
other works such as Popel and Bojar (2018).

As future work, we would like to look fur-
ther into using massive amounts of synthetic data
jointly with noise, as our experiments this year
have not provided conclusive results. Overall, the
finetuning steps loos like an effective way of ob-
taining translation improvements, at the expense
of only a small amount of computation. This do-
main adaptation step can be carried out as long as
we have some amount of in-domain data available.
More work needs to be carried out to explore the
interaction between finetuning and adding noise to
the data. Another avenue for improvement is to
look into the optimal amount of filtered data to ex-
tract from ParaCrawl, as well as the upsampling
ratio to mix bilingual and synthetic data. These
aspects were not explored in our WMT19 submis-
sion due to time constraints.
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Abstract

This paper describes the Microsoft Translator
submissions to the WMT19 news translation
shared task for English-German. Our main fo-
cus is document-level neural machine transla-
tion with deep transformer models. We start
with strong sentence-level baselines, trained
on large-scale data created via data-filtering
and noisy back-translation and find that back-
translation seems to mainly help with trans-
lationese input. We explore fine-tuning tech-
niques, deeper models and different ensem-
bling strategies to counter these effects. Us-
ing document boundaries present in the authen-
tic and synthetic parallel data, we create se-
quences of up to 1000 subword segments and
train transformer translation models. We ex-
periment with data augmentation techniques
for the smaller authentic data with document-
boundaries and for larger authentic data with-
out boundaries. We further explore multi-task
training for the incorporation of document-
level source language monolingual data via
the BERT-objective on the encoder and two-
pass decoding for combinations of sentence-
level and document-level systems. Based on
preliminary human evaluation results, evalu-
ators strongly prefer the document-level sys-
tems over our comparable sentence-level sys-
tem. The document-level systems also seem
to score higher than the human references in
source-based direct assessment.

1 Introduction

This paper describes the Microsoft Translator sub-
missions to the WMT19 news translation shared
task (Bojar et al., 2019) for English-German. Our
main focus is document-level neural machine trans-
lation with deep transformer models.

We first explore strong sentence-level systems,
trained on large-scale data created via data-filtering
and noisy back-translation and investigate the in-
teraction of both with the translation direction

of the development sets. We find that back-
translation seems to mainly help with translationese
input. Next, we explore fine-tuning techniques,
deeper models and different ensembling strate-
gies to counter these effects. Using document
boundaries present in the authentic and synthetic
parallel data, we create sequences of up to 1000
subword segments and train transformer transla-
tion models. We experiment with data augmenta-
tion techniques for the smaller authentic data with
document-boundaries and for larger authentic data
without boundaries.

We further explore multi-task training for the
incorporation of document-level source language
monolingual data via the BERT-objective on the
encoder, and two-pass decoding for combinations
of sentence-level and document-level systems. We
find that current transformer models are perfectly
capable of translating whole documents with up to
1000 subword segments with improved quality over
comparable sentence-level systems. Deeper models
seem to benefit more from the added context.

Based on preliminary human evaluation results,
evaluators strongly prefer the document-level sys-
tems over comparable sentence-level systems. The
document-level systems also seem to score higher
than the human references in source-based direct
assessment.

2 Sentence-Level Baselines

Before moving on to building our document-level
systems, we first start with a baseline sentence-
level system. We try to combine the strengths
of last year’s two dominating systems for the
English-German news translation task – FAIR’s
submission with large-scale noisy back-translation
(Edunov et al., 2018) and our own, based on dual
cross-entropy data-filtering (Junczys-Dowmunt,
2018b,a). For the current WMT19 shared task for
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English-German, evaluation is carried out on a test
set where the source side consists of original En-
glish content only, the target side is a translation.
To inform our system choices, we create a similar
dev set out of test2016, test2017 and test2018 by
splitting the test sets by original language and con-
catenating the respective splits, each about 4500
sentences. We report results on both splits of our
new dev set as well as on the joint dev set. We
further report results on the original test sets for
comparison. We use SacreBLEU1 (Post, 2018) for
all reported scores.

It is currently not quite clear to us how to inter-
pret results on the split test sets. One would assume
that improvements on the original source language
indicate actual translation quality improvements,
but here we might be suffering from reference bias
towards non-native target content. This might indi-
cate higher adequacy but effectively penalize more
fluent output. Conversely, higher results on the
split with original target language might indicate
higher fluency, but the reduced complexity of the
non-native source language might make the trans-
lation task easier and result in false confidence in
generally better translation quality. It is also un-
clear at this point if the model is able to tell apart
native and non-native input and if possible data
separation occurs. In that case the improvements
on one side of the split might not be carried over
to the other side. We currently assume the fol-
lowing strategy: we try to achieve high scores on
the originally-English side without sacrificing too
much quality on the originally-German side. We
pretend that high scores on the originally-English
side indicate adequacy while high scores on the
originally-German side indicate fluency. This is
a shot in the dark and we hope the results of the
shared task will bring more clarity in this regard.

2.1 Model and Training
We use the Marian toolkit (Junczys-Dowmunt et al.,
2018) for all our experiments. We train vanilla
transformer-big models (Vaswani et al., 2017)
when training 6-layer models. For 12-layer mod-
els we modify an idea from Radford et al. (2019)
and initialize residual layers with Glorot uniform
weights (Glorot and Bengio, 2010) multiplied by
1/
√
i where i is the number of the i-th layer from

the bottom. Radford et al. (2019) used 1/
√
d where

1BLEU+case.mixed+lang.en-de+numrefs.1
+smooth.exp+test.wmt18+tok.13a
+version.1.3.0

d is the total depth of the transformer stack. We
found that their method helped with perplexity, but
hurt BLEU. We did not see detrimental effects for
our progressive multiplier. Omitting the multiplier
led to problems with convergence for deep models.
We use the same SentencePiece vocabulary for all
models (Kudo and Richardson, 2018).

For the purpose of the task, we extended the
Marian toolkit with fp16 training, BERT-models
(Devlin et al., 2018) and multi-task training. Simi-
lar to Edunov et al. (2018) we use mixed-precision
training with fp16, an optimizer delay of 16 before
updating the gradients. We train on 8 Voltas with
16GB each. Training of one model takes between 2
and 4 days on a single machine. In terms of words
per second we reach about 180K target words per
second for 6-layer sentence-level systems and 120K
target labels for 6-layer document-level systems
with long sequences.

2.2 Data-Filtering
Table 1 summarizes our experiments with a single
transformer model. We also recomputed numbers
for a single model from our WMT18 submission,
and quoted results from FAIR’s submission where
available. Our WMT18 model used a combina-
tion of data-filtering and about 10M “clean” back-
translated sentences. Transformer models are the
same. It seems that the data-quality of the English-
German training data (in particular of Paracrawl)
improved from WMT18 to WMT19 as we are not
seeing the strongly detrimental effects of adding
unfiltered Paracrawl data to the training data mix
anymore. Data-filtering still improves the results,
but apparently only on the originally German side.
Since there is barely any loss on the originally-
English side we hope this shows a general improve-
ment in fluency or a domain-adaptation effect due
the language model scores used in filtering.

2.3 Noisy Back-Translation
We mostly reproduce the results from Edunov et al.
(2018) and back-translate the entire German News-
Crawl data with noisy back-translation. Similar to
Edunov et al. (2018)’s best method, we use output
sampling as the noising approach. This has been
implemented in Marian with the Gumbel softmax
trick. We end up with about 550M sentences of
back-translated data. We up-sample the original
parallel filtered data to match the size of the back-
translated data and concatenate. Results on the split
test set are interesting, to say the least. It seems we
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Separated by origin Original test sets

en de both 2016 2017 2018

WMT18-Microsoft (single model) 41.1 35.5 39.1 38.6 31.3 46.5
WMT18-FAIR (single model) – – – – 32.7 44.9

6-layers: sentence-level parallel data only 41.8 32.5 38.2 37.7 30.3 46.5
+ filtering based on WMT18 41.7 34.0 39.0 38.3 31.1 46.6
+ large-scale noisy back-translation 38.9 40.4 39.7 38.9 32.8 46.3
+ fine-tuning 42.2 39.2 41.2 40.6 33.6 48.9

12-layers: sentence-level parallel data only – – – – – –
+ (a) filtering based on WMT18 41.6 33.4 38.4 38.2 30.5 45.7
+ (b) large-scale noisy back-translation 38.1 42.5 40.1 39.2 33.5 46.6
+ (c) fine-tuning 42.1 40.4 41.7 41.3 34.2 48.9

Table 1: SacreBLEU results for sentence-level systems on new devset (concatenated test2016, test2017, test2018)
split by source language and combined. 6-layers denotes transformer models with 6 blocks, 12-layers with 12
blocks. For comparison, we also provide results on the original test sets although we did not use these numbers to
inform our choices. Results have been computed for a single chosen model and may vary with different random
initializations, but generally follow this pattern.

are losing a lot of quality on the originally-English
side while gaining on the originally-German side.
The general improvement on the unsplit WMT test
sets hides this effect. In a setting where systems are
going to be evaluated on originally-English data
this seems unfortunate.

2.4 Fine-Tuning

To counter the quality loss on the originally-English
side, we fine-tune on our filtered data only. We
keep the same settings as in the first training pass,
only substitute data and keep training until BLEU
scores on the originally-English dev set stop im-
proving. This seems to be a very successful strategy
which restores and even improves quality on the
originally-English split and retains most of the qual-
ity gains from back-translation on the originally-
German half. At this point our single 6-layer
model strongly outperforms a single model from
our WMT18 submission.

2.5 Deeper Models

We also experiment with deeper models and in-
crease the number of blocks in encoder and de-
coder to 12. Interestingly, we see mostly gains on
the originally-German side. Since there is no loss
on the originally-English half, we choose to use
the 12-layer models for the following experiments.
We did not see further improvements from even
deeper models at this point, we tried 18 and 24

blocks, but there might have been problems with
hyper-parameters.

2.6 Ensembling

In Table 2 we explore different ensembling strate-
gies to further control for higher quality on the
originally-English side without sacrificing too
much quality on the other half. We experiment with
(a) models that have been trained on filtered paral-
lel data only and (c) models that have been trained
with back-translated data and then fine-tuned on
parallel filtered data. All models are 12-layer mod-
els, have been trained with the same training pro-
cedure and only differ in data and random initial-
ization. We did not explore adding (b) models that
were trained with back-translated data but without
fine-tuning. After submission we found that small
gains could be achieved by adding these to the mix
as well. Unless stated differently, all models are
weighted equally.

Unsurprisingly, adding more homogeneous mod-
els to the ensemble improves quality across all in-
dicators in similar degree; gains become smaller
when adding more models, but it seems we do not
reach saturation with 4 models of the same type.
Ensembling heterogeneous models – mixing type
(a) and type (c) – results in more interesting behav-
ior. The two-model ensemble (a) + (c) is stronger
on the originally-English half than both homoge-
neous two-model ensembles (2×a) or (2×c) and
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Separated by origin Original test sets

en de both 2016 2017 2018

WMT18-Microsoft (ensemble) 42.5 36.2 40.1 39.6 31.9 48.3
WMT18-FAIR (ensemble) – – – – 33.4 46.5

(a) 41.6 33.4 38.4 38.2 30.5 45.7
(2×a) 42.0 34.3 39.0 38.8 31.0 46.5
(4×a) 42.5 34.5 39.4 39.1 31.2 47.2

(c) 42.1 40.4 41.7 41.3 34.2 48.9
(2×c) 42.7 41.6 42.6 42.0 34.9 50.1
(4×c) 43.2 41.3 42.8 42.2 34.8 50.5

(a) + (c) 43.2 38.6 41.7 41.6 33.4 49.6
(2×a) + (2×c) 43.8 39.0 42.1 41.9 33.9 49.9
(4×a) + (4×c) 44.0 38.5 42.0 41.8 33.5 49.9

0.3 · (a) + 1.0 · (c) 42.6 40.6 42.2 41.7 34.3 49.6
0.3 · (2×a) + 1.0 · (2×c) 43.5 40.6 42.7 42.3 34.6 50.3
0.3 · (4×a) + 1.0 · (4×c) (submitted) 43.8 40.3 42.7 42.4 34.4 50.4

Table 2: SacreBLEU results for various ensembles of 12-layer sentence-level systems on new dev set (concatenated
test2016, test2017, test2018) split by source language and combined. Ensembles are weighted equally when no
weights are shown. (a) refers to a single model trained on filtered parallel data only, (c) refers to a models trained
with back-translated data, fine-tuned on filtered parallel data.

loses quality on the originally-German part. The
same is true when we compare heterogeneous four-
model ensembles to their homogeneous counter-
parts. Adding all eight models to a single ensemble
(4×a) + (4×c) results in the strongest numbers
on the originally-English side, but the loss on the
other half remains. We try to mitigate this effect by
weighting the model components by type.

We find that down-weighting type (a) models
trained only with parallel data allows us to regain
part of the quality on the originally-German dev
set with acceptable losses on the originally-English
side. We empirically choose a weight of 0.3 for
type (a) models, using a weight of 1 for type (c)
models. In hindsight, an ensemble of 8 models of
type (c) might have been the better choice, however,
we did not train that many models of type (c). Our
final sentence-level model is the 0.3 · (4×a) + 1.0 ·
(4×c) ensemble; we submit this model as our pure
sentence-level model.

3 Document-Level Systems

Our work is inspired rather by recent results
on long-sequence language modelling than by
previous document-level machine translation ap-
proaches. However, Tiedemann and Scherrer

(2017) needs to be emphasized as an important
precursor to this paper. They explore the influence
of a limited number of context sentences by sim-
ply concatenating up to two sentences in source
or target. We drop the limits and consume full
documents if their total length stays below 1000
subword units. These sequences can easily consist
of 20 or more sentences.

Recent work by Devlin et al. (2018) and Rad-
ford et al. (2019) have shown significant impact
by training deeper models on large data sets with
long-sequence context. In terms of architecture, the
language modeling work relies on standard trans-
former architectures with small variations, this is
true for BERT as well as for GPT-2. Document-
level context is mostly handled by increasing
training-sequence length, increasing model depth
and adding sentence-embeddings. BERT also adds
a cost-criterion that classifies if sentences belong to
the same document or are random concatenations.
We adopt the long-sequence training and increased
model-depth in our experiments. For co-training
of the encoder we also use the BERT masked-LM
training criterion in a multi-task learning setting.
We do not use sentence embeddings (this remains
to be explored in the future).
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<BEG> Toys R Us Plans to Hire Fewer Holiday Season Workers<SEP> Toys R Us says it
won't hire as many holiday season employees as it did last year, but the toy and
baby products retailer says it will give current employees and seasonal workers a
chance to work more hours.<SEP> The company said it plans to hire 40,000 people to
work at stores and distribution centers around the country, down from the 45,000
hired for the 2014 holiday season.<SEP> Most of the jobs will be part-time.<SEP> The
company said it will start interviewing applicants this month, with staff levels
rising from October through December.<SEP> While the holidays themselves are months
away, holiday shopping season is drawing closer and companies are preparing to hire
temporary employees to help them staff stores and sell, ship and deliver
products.<SEP><END>

Figure 1: Example document from validation set with mark-up.

3.1 Data and Data Preparation
Previous work on document-level MT was also
limited by the availability of document-level paral-
lel data. This year, for a subset (Europarl, Rapid,
News-Commentary) of the parallel data document
boundaries have been restored, the rest is provided
without boundaries. The available monolingual
news crawl data contains document boundaries for
all its content, both in German and English. All
three types of data are assembled into real and fake
documents with varying degrees of data augmenta-
tion.

3.1.1 Document-level Mark-up
We use given document boundaries to concatenate
parallel sentences into document-level sequences;
parallel documents consist of the same number of
sentences on both sides. We want to ensure that the
models produce as many output sentences per doc-
ument as input sentences were provided when we
simply break on predicted separators to revert back
to the sentence-level for evaluation. As a fail-safe
mechanism, we sentence-align the sentence-broken
document-level output with a sentence-level trans-
lation. The sentence-level translation serves as a
template in which we replace all 1-1-aligned sen-
tences with their document-level counterparts. This
mechanism proved useful for early or intermediate
models. For all our submissions, the document-
level systems would correctly predict sentence
boundaries and the fail-safe could be skipped. This
by itself is noteworthy.

Figure 1 contains an example document from the
validation set with added mark-up. We add sym-
bols for document start (<BEG>) and end (<END>)
and for sentence separators (<SEP>). In cases
where documents exceed our length limit of 1000
sub-word tokens, we use a break symbol (<BRK>)
instead of <END> and start the next sequence
with a continuation symbol (<CNT>) instead of

<BEG>. When breaking parallel documents due
to the length restriction, we break consistently
across languages. All training and validation data
is marked up in the same way.

3.1.2 Parallel Data with Boundaries
In the case of original parallel data with document
boundaries, we use all available content without
data filtering. This set of original documents is
quite small (about 200K documents) compared to
the back-translated data, so we increase the size of
the corpus by adding randomly chosen continuous
parallel sub-documents to the original data set, but
not more than 10 possible sub-document per full
document. Allowing all possible sub-documents
would heavily skew the distribution towards longer
documents. We repeat the process until the size
of the corpus matches about half the size of the
back-translated data. Every repetition is created
with different random sub-documents.

3.1.3 Parallel Data without Boundaries
The majority of authentic parallel data does not
come with documents boundaries. Here, we shuffle
the filtered parallel sentences and randomly add
document boundaries. This results in fake doc-
uments that consist of unrelated but parallel sen-
tences with consistent sentence boundaries inside
the documents. Again, we repeat the process with
random shuffles resulting in new fake documents
until we reach a size close to half of the back-
translated data.

3.1.4 Back-translated Documents
We back-translated the entire available news crawl
data for our sentence-level system and can use the
present boundaries to assemble parallel documents.
Due to the large amount of monolingual data, we
do not use any document-level data-augmentation
besides back-translation.
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Separated by origin Original test sets

en de both 2016 2017 2018

12-layers: Document-level – – – – – –
+ filtering based on WMT18 – – – – – –
+ large-scale noisy back-translation 39.3 42.0 40.8 40.0 34.2 47.0
+ fine-tuning 41.4 41.7 41.8 * 34.5 48.6

12-layers: Document-level with BERT – – – – – –
+ (A) filtering based on WMT18 42.6 32.5 38.3 * * *
+ (B) large-scale noisy back-translation 40.3 40.7 40.8 39.8 33.7 47.3
+ (C) fine-tuning 42.7 39.2 41.5 41.3 34.2 48.4

Table 3: SacreBLEU results for document-level systems on new devset. Missing numbers marked as * were not
computed during our experiments.

3.1.5 Monolingual English Documents
The English monolingual news-crawl also contains
document boundaries. We simply assemble our
long sequences from this data for our multi-task
training.

3.2 Experiments

We train our document-level models with similar
hyper-parameters as our sentence-level models, in-
creasing the maximum allowed training sequence
length to 1024.

3.2.1 Baseline Document-level Models
We compiled our results for the training of single
document-level models in Table 3. The BLEU
scores follow largely the results for the sentence-
level systems, including improved scores for deeper
models. Document-level models with capital letters
(A), (B), (C) have been trained on similar data sets
as sentence-level systems (a), (b), (c) respectively.
Both (C) and (c) have undergone similar fine-tuning
procedures. It is interesting to see that decoding
very long sequences of up to 1000 tokens does not
seem to degrade translation performance compared
to sentence-level systems.

3.2.2 Multi-Task Training with BERT
We also experiment with multi-task training in the
hope of improving the quality of our encoder. We
are training on large amounts of back-translated
data and much smaller parallel data that has been
augmented to match the size of the back-translated
data. It is unclear how much content in the authen-
tic data is actual native English. Hence we add
a BERT-style encoder over monolingual English
source documents that is being trained in paral-

lel to the sequence-to-sequence transformer model
on separately fed parallel data. The BERT-style
encoder is trained with the masked LM cost cri-
terion from Devlin et al. (2018) and a masking
factor of 20%. This encoder shares all parameters
and structure with the encoder of the translation
model. BERT masked LM cost is simply added
to the cross-entropy cost of the translation model.
During translation, the BERT encoder is not being
constructed, the output layer of the masked LM is
dropped. During fine-tuning, the BERT encoder is
also being trained, but on the parallel source data,
not on a separate monolingual data stream.

In Table 3, when training with large-scale back-
translated documents, we seem to observe a shift
towards higher quality on the originally-English
side when comparing to training without the BERT
criterion. This persists during fine-tuning, but it is
generally unclear if this is an actual improvement.
Based on our strategy of preferring improvements
on the originally-English side, we use the multi-
task trained models from now on.

3.2.3 Second-Pass Decoding
We also briefly experiment with second-pass de-
coding for the purpose of “up-casting” sentence-
level translations to document-level translations.
The initial idea was to have the potentially higher
adequacy of sentence-level translations (due to
more easily aligned sentence-boundaries) and then
smooth it out with document-level knowledge.
This would also allow to ensemble the sentence-
level system output via the second pass with other
document-level systems. In hindsight, for ensem-
bling purposes, it might have been better to train a
copy model that provides a document-level prob-
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Separated by origin Original test sets

en de both 2016 2017 2018

1st-sent-level: (c) 42.1 40.4 41.7 41.3 34.2 48.9
2nd-doc-level: (PA) 42.5 * * 39.8 32.5 47.3
2nd-doc-level: (PC) 42.2 * * 41.5 33.8 48.6

1st-sent-level: 0.3 · (4×a) + 1.0 · (4×c) 43.8 40.3 42.7 42.4 34.4 50.4
2nd-doc-level: (PA) 43.4 36.9 40.9 40.5 32.5 47.8
2nd-doc-level: (PC) 42.6 40.1 41.7 41.5 33.8 48.7

Table 4: SacreBLEU results for second-pass decoding of single fine-tuned sentence-level model (c) and best
sentence-level ensemble. We pass both sentence level models through two second pass models. Missing num-
bers marked as * were not computed during our experiments.

Separated by origin Original test sets

en de both 2016 2017 2018

WMT18-Microsoft (ensemble, submission) 42.5 36.2 40.1 39.6 31.9 48.3
WMT18-FAIR (ensemble, submission) – – – – 33.4 46.5

(C) 42.7 39.2 41.5 41.3 34.2 48.4
(4×C) (submitted) 44.0 40.1 42.5 42.2 34.5 50.2

(2×A) + (4×C) 44.8 38.0 42.1 41.6 33.7 49.3
(2×A) + (4×C) + (PA) + (PC) (submitted) 45.2 38.8 42.6 42.5 34.1 50.3

Table 5: SacreBLEU results various for ensembles of 12-layer document-level systems on new devset

ability distribution for unmodified concatenated
sentence-level input.

We forward-translated most of our training cor-
pus with sampling (future work should examine
the effects of this) to produce the first-pass out-
put and next we trained a dual-encoder document-
level transformer model following exactly Junczys-
Dowmunt and Grundkiewicz (2018) as an auto-
matic post-editing system. The three inputs being
original source data and first-pass translation on the
source and original target data. We train a second-
pass system on original parallel data only (PA) and
on all data (PC).

In Table 4, we apply the second pass models sep-
arately to a single fine-tuned sentence-level model
(c) and to our best sentence-level ensemble. In
both cases we see degradation in the second pass
in terms of BLEU, but the second-pass seems to
follow the improved quality of the sentence-level
inputs. The two second-pass models over the strong
sentence-level ensemble are actually among the bet-
ter single document-level models we have trained
(ignoring at this point that these are a different kind
of ensemble or system combination).

3.3 Stacking and Ensembling

Following our ensembling efforts for sentence-level
models, we also combine the diverse document-
level models into larger ensembles. We see that a
pure document-level system with four fine-tuned
12-layer models seems to be a promising can-
didate. We can further increase the quality on
the originally-English side (while losing compa-
rable quality on the originally-German half) by
ensembling all eight models trained on diverse data
sources. The last ensemble can be thought of as
a hybrid sentence/document-level system as it in-
cludes two second-pass models.

4 Submissions

We submitted four systems in total, our original
system from WMT18 applied to the new WMT19
test set, our best sentence-level ensemble, our best
document-level ensemble (without second-pass de-
coding) and our best hybrid system, the document-
level system ensemble that includes second-pass
decoding systems. Cased BLEU scores from the
WMT-matrix page are listed in Table 6. Our
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System en de 2019

WMT18-Microsoft 42.5 36.2 41.9
Pure sentence-level 43.8 40.3 43.0
Pure document-level 44.0 40.1 43.9
Hybrid document-level 45.2 38.8 43.9

Table 6: Results from the WMT-Matrix on test 2019 for
our submitted systems. We also include BLEU scores
for our split dev set for comparison.

Ave. Ave. z System

90.3 0.347 Facebook-FAIR

93.0 0.311 Microsoft-WMT19-sent-doc
92.6 0.296 Microsoft-WMT19-doc-level
90.3 0.240 HUMAN
87.6 0.214 MSRA-MADL

. . .
84.2 0.094 online-B
86.6 0.094 Microsoft-WMT19-sent-level
87.3 0.081 JHU

. . .
82.4 0.132 TartuNLP-c

76.3 0.400 online-X

43.3 1.769 en-de-task

Table 7: Preliminary human evaluation results shared
by the organizers. Our system submissions are marked
with bold font. There was a total of 23 submissions,
we selected highest and lowest scoring systems in each
cluster and systems surrounding our own submissions.

document-level systems score second behind the
highest submission of MSRA in terms of BLEU.

Table 7 contains preliminary human evaluation
results shared by the organizers, see Bojar et al.
(2019) for a full version and discussion. Our doc-
ument systems are two out of three submissions
that seem to outperform the human references in
terms of quality (although non-significantly in the
case of our systems when based on normalized z-
scores). What is very encouraging is the large per-
formance gain of the document-level systems over
the sentence-level system which was not obvious
when looking at BLEU scores. Since these systems
are very comparable in terms of raw data, model
size and training setting, the strong improvements
seem to stem from the large context. However,
more work and rigorous ablation testing is required
to confirm this conclusion.

Finally, we would like to cast a bit of doubt at
the (preliminary) ranking in Table 7. The large
discrepancy between average raw scores and nor-
malized z-scores for the top three systems seems
disconcerting. At Microsoft, we base our deploy-
ment decisions on raw scores as z-scores proved
unreliable. In our experience, a change of 3 percent
points in terms of raw scores would usually indicate
paradigm-shifts and drastically improved systems,
especially at quality levels beyond 90%. We are
curious to see the final ranking and comments by
the organizers addressing this issue.
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Abstract
This paper describes the CUNI submission
to the WMT 2019 News Translation Shared
Task for the low-resource languages: Gujarati-
English and Kazakh-English. We participated
in both language pairs in both translation di-
rections. Our system combines transfer learn-
ing from different high-resource language pair
followed by training on backtranslated mono-
lingual data. Thanks to the simultaneous train-
ing in both directions, we can iterate the back-
translation process. We are using the Trans-
former model in a constrained submission.

1 Introduction

Recently, the rapid development of Neural Ma-
chine Translations (NMT) systems led to the
claims, that human parity has been reached (Has-
san et al., 2018) on a high-resource language pair
Chinese-English. However, NMT systems tend to
be very data hungry as Koehn and Knowles (2017)
showed the NMT lacks behind phrase based ap-
proaches in the low-resource scenarios. This lead
to the rise of attention in the low-resource NMT
in recent years, where the goal is to improve the
performance of a language pair that have only a
limited available parallel data.

In this paper, we describe our approach to
low-resource NMT. We use standard Transformer-
big model (Vaswani et al., 2017) and apply two
techniques to improve the performance on the
low-resource language, namely transfer learning
(Kocmi and Bojar, 2018) and iterative backtrans-
lation (Hoang et al., 2018).

A model trained solely on the authentic parallel
data of the low-resource NMT model has poor per-
formance, thus using it directly for the backtrans-
lation of monolingual data lead to poor translation.
Hence the transfer learning is as a great tool to first
improve the performance of the NMT system later
used for backtranslating the monolingual data.

The structure of this paper is organized as fol-
lows. First, we describe the transfer learning and
backtranslation, followed by a description of used
datasets and the NMT model architecture. Next,
we present our experiments, final submissions,
and followup analysis of synthetic training data
usage. The paper is concluded in Section 5.

2 Background

In this chapter, we first describe the technique of
transfer learning and iterative backtranslation, fol-
lowed by our training procedure that combines
both approaches.

2.1 Transfer learning
Kocmi and Bojar (2018) presented a trivial method
of transfer learning that uses a high-resource lan-
guage pair to train the parent model. After the
convergence, the parent training data are replaced
with the training data of the low-resource lan-
guage pair, and the training continues as if the re-
placement would not happen. The training contin-
ues without changing any parameters nor resetting
moments or learning rate.

This technique of fine-tuning the model param-
eters is often used in a domain adaptation scenario
on the same language pair. However, when us-
ing for different language pairs, there emerges a
problem with vocabulary mismatch. Kocmi and
Bojar (2018) overcome this problem by prepar-
ing the shared vocabulary for all languages in both
language pairs in advance. Their approach is to
prepare mixed vocabulary from training corpora
of both languages and generate wordpiece vocab-
ulary (Vaswani et al., 2017) from it.

We use the balanced vocabulary approach, that
combines an equal amount of parallel data from
both training corpora, low-resource as well as the
same amount from high-resource language pair.
Hence the low-resource language subwords are
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Corpora Language pair Sentence pairs Words 1st lang. Words in English
Commoncrawl Russian-English 878k 17.4M 18.8M

News Commentary Russian-English 235k 5.0M 5.4M
UN corpus Russian-English 11.4M 273.2M 294.4M

Yandex Russian-English 1000k 18.7M 21.3M
CzEng 1.7 Czech-English 57.4M 546.2M 621.9M

Crawl Kazakh-English 97.7k 1.0M 1.3M
News commentary Kazakh-English 9.6k 174.1k 213.2k

Wiki titles Kazakh-English 112.7k 174.9k 204.5k
Bible Gujarati-English 7.8k 198.6k 177.1k

Dictionary Gujarati-English 19.3k 19.3k 28.8k
Govincrawl Gujarati-English 10.7k 121.2k 150.6k

Software Gujarati-English 107.6k 691.5k 681.3k
Wiki texts Gujarati-English 18.0k 317.9k 320.4k
Wiki titles Gujarati-English 9.2k 16.6k 17.6k

Table 1: The parallel training corpora used to train our models with counts of the total number of sentences as
well as the number of words (segmented on space). More details on the individual corpora can be obtained at
http://statmt.org/wmt19/.

represented in the vocabulary in the roughly same
amount as the high-resource language pair.

As Kocmi and Bojar (2018), showed the lan-
guage pair does not have to be linguistically re-
lated, and the most important criteria is the amount
of parent parallel data. For this reason, we have se-
lected Czech-English as a parent language pair for
Gujarati-English and Russian-English as a parent
for the Kazakh-English. The Russian was selected
due to the use of Cyrillic and being a high-resource
language pair. All language pairs share English.
We prepare Gujarati-English and Kazakh-English
systems separately from each other.

2.2 Backtranslation
The amount of available monolingual data typi-
cally exceeds the amount of available parallel data.
The standard technique of using monolingual data
in NMT is called backtranslation (Sennrich et al.,
2016). It uses a second model trained in the re-
verse direction to translate monolingual data to the
source language of the first model.

Backtranslated data are aligned with their
monolingual sentences to create synthetic parallel
corpora. The standard practice is to mix the au-
thentic parallel corpora to the synthetic. Although
it is not the only approach. (Popel, 2018) proposed
a scenario of alternating the training between us-
ing only synthetic and only authentic corpora in-
stead of mixing them.

This new corpus is used to train the first model
by using backtranslated data as the source and the

monolingual as the target side of the model.
Hoang et al. (2018) showed that backtranslation

can be iterated and with the second round of back-
translation, we improve the performance of both
models. However, the third round of backtransla-
tion does yield better results.

The performance of the backtranslation model
is essential. Especially in the low-resource sce-
nario, the baseline models trained only on the au-
thentic parallel data have a poor score (2.0 BLEU
for English→Gujarati) generate very low quality
backtranslated data. We have improved the base-
line with the transfer learning to improve perfor-
mance and generate the synthetic data of better
quality.

2.3 Training procedure
We are training two models in parallel, one for
each translation direction. Our training procedure
is as follows. We train four parent models on
the high-resource language pair until convergence:
two models, one for each direction, for both direc-
tions. We stop training the models if there was
no improvement bigger than 0.1 BLEU in the last
20% of the training time.

At this point, we run a hyperparameter search
on the Gujarati→English and update the parame-
ters for all following steps of all language pairs.

Afterward, we apply transfer learning on the au-
thentic dataset of the corresponding low-resource
language pair. We preserve the English side, thus
Czech→English is a parent to Gujarati→English
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Corpora Lang. Sent. Words
News crawl 2018 EN 15.4M 344.3M
Common Crawl KK 12.5M 189.2M

News commentary KK 13.0k 218.7k
News crawl Kk 772.9k 10.3M

Common Crawl GU 3.7M 67.3M
Newscrawl GU 244.9k 3.3M

Emille GU 273.2k 11.4M

Table 2: Statistics of all monolingual data used for the
backtranslation. It shows the number of sentences in
each corpus and the number of words segmented on
space. We mixed together all corpora for each language
separately.

and English→Czech to English→Gujarati, like-
wise for the Russian-Kazakh.

After transfer learning, we select one of the
translation directions to translate monolingual
data. As a starting system for the backtranslation
process, we have selected the English→Gujarati
and Kazakh→English. This decision is moti-
vated by choosing the better performing model
in Kazakh-English language pair, and since the
Gujarati-English have a similar score for both di-
rections, we decided to select a model with En-
glish target side in contrast to Kazakh-English.

Following the backtranslation, we create syn-
thetic data by mixing them with authentic parallel
data and using to improve the performance of the
second system. We continue repeating this pro-
cess: Use the better system to backtranslate the
data, and use this data in order to build an even
better system in reverse direction.

We make two rounds of backtranslation for both
directions on Gujarati-English and only one round
of backtranslation on Kazakh-English due to the
time consumption of the NMT translation process.

At last, we take the model with the highest
BLEU score on the devset and average it with
seven previous checkpoints to create final model.

3 Datasets and Model

In this section, we describe the datasets used to
train our final models. All our models were trained
only on the data allowed for the WMT 2019 News
shared task. Hence our submission is constrained.

All used training data are presented in Table 1.
We used all available parallel corpora allowed and
accessible by WMT 2019 except for the Czech-
English language pair, where we used only the

CzEng 1.7. We have not clean any of the par-
allel corpora except deduplication and removing
pairs with the same source and target translations
in Wiki Titles dataset.

We used official WMT testsets from previ-
ous years as a development set. The year 2013
for Czech-English and Russian-English. For the
Gujarati-English, we used the official 2019 devel-
opment set. Lastly, for the Kazakh-English, the
organizers do not provide any development set.
Therefore we separated the first 2000 sentence
pairs from the News Commentary training set and
used as our development set.

The monolingual data used for the backtransla-
tion are shown in Table 2. We use all available
monolingual data for Gujarati and Kazakh. For
the English, we did not use all available English
monolingual data due to the backtranslation pro-
cess being time-consuming, therefore we use only
the 2018 News Crawl.

The available monolingual corpora are usually
of high quality. However, we noticed that the
Common Crawl contains many sentences in a dif-
ferent language and also long paragraphs, that are
not useful for sentence level translation.

Therefore, we used language identification tool
by Lui and Baldwin (2012) on the Common Crawl
corpus and dropped all sentences automatically
annotated as a different language than Gujarati or
Kazakh respectively. Followed by splitting the re-
maining sentences that are longer than 100 words
on all full stops, which led to an increase of sen-
tences.

3.1 Model

The Transformer model seems superior to other
NMT approaches as documented by several lan-
guage pairs in the manual evaluation of WMT18
(Bojar et al., 2018).

We are using version 1.11 of sequence-to-
sequence implementation of Transformer called
tensor2tensor1. We are using the Transformer
“big single GPU” configuration as described in
(Vaswani et al., 2017), model which translates
through an encoder-decoder with each layer in-
volving an attention network followed by a feed-
forward network. The architecture is much faster
than other NMT due to the absence of recurrent
layers.

1https://github.com/tensorflow/
tensor2tensor
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Figure 1: Learning curves for both directions of
Gujarati-English models. The BLEU score is uncased
and computed on the development set.

Popel and Bojar (2018) documented best prac-
tices to improve the performance of the model.
Based on their observation, we are using as an
optimizer Adafactor with inverse square root de-
cay. Based on our previous experiments (Kocmi
et al., 2018) we set the maximum number of sub-
words in a sentence to 100, which drops less than
0.1 percent of training sentences. However, it al-
lows increasing the maximum size of the batch to
4500 for our GPU. The experiments are trained on
a single GPU NVidia GeForce 1080 Ti.

4 Experiments

In this section, we describe our experiments start-
ing with hyperparameter search, our training pro-
cedure, and supporting experiments.

All reported results are calculated over the test-
set of WMT 2019 and evaluated with case sensi-
tive SacreBLEU (Post, 2018)2 if not specified oth-
erwise.

4.1 Hyperparameter search
Before the first step of transfer learning,
we have done a hyperparameter search on
Gujarati→English over the set of parameters that
are not fixed from the parent (like dimensions of

2The SacreBLEU signature is BLEU + case.mixed +
numrefs.1 + smooth.exp + tok.13a + version.1.2.12.

matrices or structure of layers). We examined
the following hyperparameters: learning rate,
dropout, layer prepostprocess dropout, label
smoothing, and attention dropout.

The performance before hyperparameter search
was 9.8 BLEU3 for Gujarati→English, this score
was improved to 11.0 BLEU. Based on the hy-
perparameter search we set the layer prepostpro-
cess dropout and label smoothing both to 0.2 in
the setup of Transformer-big.

These improvements show that transfer learning
is not strictly associated with parent setup and that
some parameters are possible to change. Although
it must be noted, that we experimented only with
a small subset of all hyperparameters and it is pos-
sible that other parameters could also be changed
without damaging the parent model.

In this paper, we are using these parameters
for all experiments (except for the parent mod-
els). Although applying hyperparameter search
on each model separately or even between before
each dataset switch is an interesting question, it is
over the scope of this paper.

4.2 Problems with backtranslation

The synthetic data have a quality similar with the
model by which they were produced. Since the
low-resource scenario has an overall low quality,
we observed, that the synthetic data contain many
relics:

• Repeated sequence of words: The State De-
partment has made no reference in state-
ments, statements, statements, statements ...
• Sentences in Czech or Russian, most proba-

bly due to the parent model.
• Source sentences generated untranslated.

To avoid these problems, we cleaned all syn-
thetic data in the following way. We had dropped
all sentences, that contained any repetitive se-
quence of words. Then we checked the sentences
by language identification tool (Lui and Baldwin,
2012) and dropped all sentences automatically an-
notated as a wrong language. The second step also
filtered out some remaining gibberish translations.

We have not used beam search during back-
translation of monolingual data in order to speed
up the translation process roughly 20 times com-
pared to the beam search of 8.

3This score is computed over devset with averaging of 8
latest models distanced one and half hour of training time.
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Training dataset EN→GU GU→EN EN→KK KK→EN
Authentic (baseline) 2.0 1.8 0.5 4.2

Parent dataset 0.7 0.1 0.7 0.6
Authentic (transfer learning) 1© 9.1 9.2 6.2 1© 14.4
Synth generated by model 1© - 2© 14.2 2© 8.3 -
Synth generated by model 2© 3© 13.4 - - 17.3
Synth generated by model 3© - 4© 16.2 - -
Synth generated by model 4© 13.7 - - -

Averaging + beam 8 14.3 17.4 8.7 18.5

Table 3: Testset BLEU scores of our setup. Except for the baseline, each column shows improvements obtained
after fine-tuning a single model on different datasets beginning with the score on a trained parent model.

4.3 Final models

Following the training procedure describe in Sec-
tion 2.3, we trained the parent models for two mil-
lion steps. One exception from the described ap-
proach is that we used a subset of 2M monolingual
English data for the first round of backtranslation
by the English→Gujarati model to cut down on
the total consumed time.

Figure 1 shows the progress of training
Gujarati-English models in both directions. The
learning curves start at two millionth step as a vi-
sualization of the parent model training. We can
notice that after each change of parallel data, there
is a substantial increment of the performance. The
learning curve is visualized on the development
data, exact numbers for the testsets are in Table 3.

The baseline model in Table 3 is trained on the
authentic data only, and it seems that the amount
of parallel data is not sufficient to train the NMT
model for the investigated language pairs. The rest
of the rows shows incremental improvements of
the models based on an undertaken step. The last
step of model averaging takes the best perform-
ing model and averages it with the previous seven
checkpoints that are distanced on average one and
half hour of training time between each other.

We see that the transfer learning can be com-
bined with iterated backtranslation on a low-
resource language to obtain an improvement
of 12.3 BLEU compared to the baseline in
Gujarati→English and 15.6 in English→Gujarati.

For the final submission, we have se-
lected models at following steps: step
2.99M for English→Gujarati, step 3.03M
for Gujarati→English, step 2.48M for
English→Kazakh and step 2.47M for
Kazakh→English

4.4 Ratio of parallel data

Poncelas et al. (2018) showed that the balance be-
tween the synthetic and authentic data matters, and
there should always be a part of authentic parallel
data. We started our experiments with this intu-
ition. However, the low-resource scenario compli-
cates the setup since the amount of authentic data
is several times smaller than synthetic. In order to
balance the authentic and synthetic parallel data,
we duplicated the authentic data several times.

We notice that the performance did not change
from the setup that is using only synthetic
data. Thus we prepare an experiment, where
we do a second round of backtranslation on
Gujarati→English with a various ratio of authen-
tic and synthetic parallel data. For this experiment,
we duplicated the full authentic parallel corpora of
173k sentences into a subsampled synthetic paral-
lel corpus used in the second round of backtransla-
tion. We have randomly selected 3.6M sentences
from the synthetic corpora. The number of sen-
tences is equal to 20x size of synthetic corpora.
Therefore, we can present the ratio between au-
thentic and synthetic corpora in percentage. The
ratio in the legend of Figure 2 represent the ac-
tual ratio in the final corpus and not how much
times the corpus has been duplicated. The syn-
thetic is never duplicated, we only duplicate the
authentic corpora. For example, the ratio “au-
thentic:synthetic 1:2” means that the authentic has
been multiplied ten times because the synthetic is
twenty times bigger than the authentic corpora.

In Figure 2, we can see the difference between
the amount of synthetic and authentic data. It
seems that using only synthetic data generates the
best performance, and whenever we increase the
authentic part, the performance slowly decreases,
contrary to the Poncelas et al. (2018). It could be
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Figure 2: Comparison of different ratio of authentic
and synthetic data.

due to the noise in the data, which implies that syn-
thetic data are cleaner and more suitable for train-
ing the model.

4.5 Synthetic from Scratch

In the previous section, we have shown that during
the iterative backtranslation of low-resource lan-
guages, the authentic data hurt the performance.
In this section, we use the various ratios of train-
ing data and train the model from scratch with-
out transfer learning or other backtranslation. No-
tably, all the parameters, as well as the wordpiece
vocabulary, are the same.

Table 4 present the result of using synthetic data
directly without any adaptation. It shows that hav-
ing more authentic data hurt the low-resource lan-
guages. However, the most surprising fact is that
training from scratch leads to significantly better
model than the model trained by transfer learn-
ing and two rounds of the backtranslation by 0.7
(cased) BLEU. Unfortunately, we proposed this
experiment after the submission. Therefore our fi-
nal system has worse performance.

We believe it could be a result of unconscious
overfitting to the development set because the per-
formance on the development set is higher for our
final model 26.9 BLEU compared to the perfor-
mance of 25.8 BLEU for the synthetic only train-

Training dataset cased uncased
Authentic (baseline) 1.8 2.2

Synthetic only 16.9 18.7
Auth:Synth 1:1 16.8 18.4
Auth:Synth 2:1 16.3 17.8
Auth:Synth 4:1 15.2 16.8

Final model 16.2 17.9

Table 4: BLEU scores for training English→Gujarati
from scratch on synthetic data from the second round
of backtranslation. Neither of models uses the aver-
aging or beam search. Thus the final model is our
submitted model before averaging and beam search
(the model 3©). The scores are equal to those from
http://matrix.statmt.org.

ing. It could have been because we used devel-
opment set three times during the training of the
final model: first to select the best model from the
transfer learning, then when selecting the best per-
forming model in the first round of backtransla-
tion and then third times during the second round
of backtranslation. On the other hand, training on
synthetic data from scratch used the development
set only once for selection of the best performing
model to evaluate.

Another possible explanation is that the final
model is already overspecialized on the data from
the first round of backtranslation, that it is not able
to adapt to the improved second synthetic data.

5 Conclusion

We participated in four translation directions on
a low-resource language pairs in the WMT 2019
News translation Shared Task. We combined
transfer learning with the iterated backtranslation
and obtained significant improvements.

We showed that mixing authentic data and back-
translated data in a low-resource scenario does not
affect the performance of the model: synthetic
data is far more critical. This is a different re-
sult from what Poncelas et al. (2018) observed on
higher-resource language pairs.

Lastly, in some scenarios, it is better to train the
model on backtranslated data from scratch instead
of fine-tuning the previous model.

In the future work, we want to investigate, why
the training from scratch on backtranslated has led
to better results. One of the reviewers suggested
keep mixing the Czech→English corpus even dur-
ing later stages of training as an additional source
of parallel data, which we would like to compare.
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Abstract

In this paper we describe the CUNI transla-
tion system used for the unsupervised news
shared task of the ACL 2019 Fourth Confer-
ence on Machine Translation (WMT19). We
follow the strategy of Artetxe et al. (2018b),
creating a seed phrase-based system where the
phrase table is initialized from cross-lingual
embedding mappings trained on monolingual
data, followed by a neural machine translation
system trained on synthetic parallel data. The
synthetic corpus was produced from a mono-
lingual corpus by a tuned PBMT model refined
through iterative back-translation. We further
focus on the handling of named entities, i.e.
the part of vocabulary where the cross-lingual
embedding mapping suffers most. Our system
reaches a BLEU score of 15.3 on the German-
Czech WMT19 shared task.

1 Introduction

Unsupervised machine translation is of particu-
lar significance for low-resource language pairs.
In contrast to traditional machine translation, it
does not rely on large amounts of parallel data.
When parallel data is scarce, both neural ma-
chine translation (NMT) and phrase-based ma-
chine translation (PBMT) systems can be trained
using large monolingual corpora (Artetxe et al.,
2018b,c; Lample et al., 2018).

Our translation systems submitted to WMT19
were created in several steps. Following the strat-
egy of Artetxe et al. (2018b), we first train mono-
lingual phrase embeddings and map them to the
cross-lingual space. Secondly, we use the mapped
embeddings to initialize the phrase table of the
PBMT system which is first tuned and later refined
with back-translation. We then translate the Czech
monolingual corpus by the PBMT system to pro-
duce several synthetic parallel German-Czech cor-
pora. Finally, we train a supervised NMT system

on a filtered synthetic data set, where we exclude
sentences tagged as ”not Czech”, shuffle the word
order and handle mistranslated name entities. The
training pipeline is illustrated in Figure 1.

The structure of this paper is the following. The
existing approaches used to build our system are
described in Section 2. The data for this shared
task is described in Section 3. Section 4 gives de-
tails on phrase embeddings. Section 5 describe the
phrase-based model and how it was used to create
synthetic corpora. Section 6 proceeds to the neu-
ral model trained on the synthetic data. Section 7
introduces our benchmarks and Section 8 reports
the results of the experiments. Finally, Section 9
summarizes and concludes the paper.

2 Background

Unsupervised machine translation has been re-
cently explored by Artetxe et al. (2018c,b) and
Lample et al. (2018). They propose unsupervised
training techniques for both the PBMT model and
the NMT model as well as a combination of the
two in order to extract the necessary translation in-
formation from monolingual data. For the PBMT
model (Lample et al., 2018; Artetxe et al., 2018b),
the phrase table is initialized with an n-gram map-
ping learned without supervision. For the NMT
model (Lample et al., 2018; Artetxe et al., 2018c),
the system is designed to have a shared encoder
and it is trained iteratively on a synthetic parallel
corpus which is created on-the-fly by adding noise
to the monolingual text (to learn a language model
by de-noising) and by adding a synthetic source
side created by back-translation (to learn a trans-
lation model by translating from a noised source).

The key ingredient for functioning of the above
mentioned systems is the initial transfer from a
monolingual space to a cross-lingual space with-
out using any parallel data. Zhang et al. (2017)
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Figure 1: The training pipeline and an overview of our resulting systems. Corpora are displayed as rounded
rectangles, MT systems as grey ovals.

and Conneau et al. (2018) have inferred a bilin-
gual dictionary in an unsupervised way by align-
ing monolingual embedding spaces through adver-
sarial training. Artetxe et al. (2018a) propose an
alternative method of mapping monolingual em-
beddings to a shared space by exploiting their
structural similarity and iteratively improving the
mapping through self-learning.

3 Data

In line with the rules of the WMT19 unsuper-
vised shared task, we trained our models on the
NewsCrawl1 corpus of newspaper articles col-
lected over the period of 2007 to 2018.

We tokenized and truecased the text using stan-
dard Moses scripts. Sentences with less than 3
or more than 80 tokens were removed and the re-
sulting monolingual corpora used for training of
the unsupervised PBMT system consisted of 70M
Czech sentences and 267M German sentences.

We performed further filtering of the Czech cor-
pus before the NMT training stage. Since there are
a lot of Slovak sentences in the Czech NewsCrawl
corpus, we used a language tagger langid.py
(Lui and Baldwin, 2012) to tag all sentences and
remove the ones which were not tagged as Czech.
After cleaning the corpus, the resulting Czech
training set comprises 62M sentences.

Since small parallel data was allowed to tune
the unsupervised system, we used newstest2013
for development of the PBMT system. Finally,
we used newstest2012 to select the best PBMT

1http://data.statmt.org/news-crawl/

model and newstest2010 as the validation set for
the NMT model.

4 Phrase Embeddings

The first step towards unsupervised machine trans-
lation is to train monolingual n-gram embeddings
and infer a bilingual dictionary by learning a map-
ping between the two embedding spaces. The re-
sulting mapped embeddings allow us to derive the
initial phrase table for the PBMT model.

4.1 Training

We first train phrase embeddings (up to trigrams)
independently in the two languages. Following
Artetxe et al. (2018b), we use an extension of
the word2vec skip-gram model with negative sam-
pling (Mikolov et al., 2013) to train phrase embed-
dings. We use a window size of 5, embedding size
of 300, 10 negative samples, 5 iterations and no
subsampling. We restricted the vocabulary to the
most frequent 200,000 unigrams, 400,000 bigrams
and 400,000 trigrams.

Having trained the monolingual phrase embed-
dings, we use VecMap (Artetxe et al., 2018a) to
learn a linear transformation to map the embed-
dings to a shared cross-lingual space.

4.2 Output: Unsupervised Phrase Table

The output of this processing stage is the unsu-
pervised phrase table which is filled with source
and target n-grams. For the sake of a reasonable
phrase table size, only the 100 nearest neighbors
are kept as translation candidates for each source
phrase. The phrase translation probabilities are de-
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Figure 2: Step-by-step illustration of the iterative back-
translation procedure.

rived from a softmax function over the cosine sim-
ilarities of their respective mapped embeddings
(Artetxe et al., 2018a).

5 PBMT Model

We followed the Monoses2 pipeline of Artetxe
et al. (2018b) for our unsupervised phrase-based
system. The initial translation model is estimated
based on the unsupervised phrase table induced
from the mapped embeddings and the language
model is estimated on the monolingual data. The
reordering model is not used in the first step. The
initial model is tuned and later iteratively refined
by back-translation (Sennrich et al., 2016).

5.1 Training

The models are estimated using Moses (Koehn
et al., 2007), with KenLM (Heafield, 2011) for
5-gram language modelling and fast align (Dyer
et al., 2013) for alignments. The feature weights
of the log-linear model are tuned using Minimum
Error Rate Training.

The back-translation process is illustrated in
Figure 2. Both de→cs and cs→de systems are
needed at this step. The de→cs system is used to
translate a portion of the German monolingual cor-
pus to Czech and create a synthetic parallel data
set, which is then used to train the cs→de system
and the procedure continues the other way around.

2https://github.com/artetxem/monoses

We note that we do not make use of the initial
model for cs→de. Once the synthetic parallel data
set is created, the problem turns into a supervised
one and we can use standard PBMT features, in-
cluding the standard phrase table extraction pro-
cedure and the reordering model estimated on the
aligned data sets.

Since back-translation is computationally de-
manding, we experimented with using a synthetic
data set of 2 and 4 million sentences for back-
translation rather than translating the whole mono-
lingual corpus.

5.2 Output: PBMT Systems (cs→de)

We evaluated various PBMT models to select the
best candidate to translate the whole monolingual
corpus from Czech to German. The translation
quality was measured on newstest2012.

We experimented with tuning the model both on
an authentic parallel development set (3K sentence
pairs) and a synthetic back-translated development
set (10K sentence pairs). In the first scenario,
possibly as a result of a smaller development set,
the model started diverging after the first round of
back-translation. In the second scenario, the best
result is achieved after two and three rounds of
back-translation for the cs→de and de→cs model,
respectively (see the results in Table 1).

PBMT-Unsupervised-bestBLEU system

We selected the cs→de model with the highest
BLEU of 14.22 for creating the synthetic corpus
for the initial training of the NMT system. This
PBMT model was tuned on a synthetic develop-
ment set with two rounds of back-translation).

PBMT-Unsupervised-wordOrder system

However, after reviewing the translations and de-
spite the BLEU results, we kept also the cs→de
model with a BLEU score of 12.06 which was
tuned on authentic parallel data. The translations
were superior especially in terms of the word or-
der.

5.3 Output: Synthetic Corpora

The training data sets for our NMT models were
created by translating the full target monolin-
gual corpus (filtered as described in Section 3)
from Czech to German using the best performing
cs→de PBMT models. Due to time constraints,
we were gradually improving our PBMT models
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Iteration No. Authentic Dev Set Synthetic Dev Set
de→cs cs→de de→cs cs→de

Initial model 9.44 11.46 9.06 11.06
1 11.11 *12.06 4.61 12.92
2 7.26 6.78 11.70 **14.22
3 1.06 2.32 12.06 14.07
4 - - 5.65 13.67
5 - - 11.69 14.18
6 - - 11.56 13.96

Table 1: Results of the PBMT models on newstest2012. The systems in left two columns were tuned on the
parallel newstest2013 (3K sentence pairs) and iteratively refined on 2M sentence pairs. The ones in the right two
columns were tuned on a synthetic set (10K back-translated sentence pairs) and iteratively refined on 4M sentence
pairs. ** indicates the model selected for creating the synthetic training data for the initial training of the NMT
model (PBMT-Unsupervised-bestBLEU). * indicates the model selected for creating the synthetic training data for
further fine-tuning of the NMT model (PBMT-Unsupervised-wordOrder).

and already training the NMT model on the syn-
thetic data. As a result, the final NMT model used
synthetic data sets of increasing quality in four
training stages.

5.3.1 Frequent Errors in Synthetic Corpora

We read through the translations to detect further
error patterns which are not easily detectable by
BLEU but have a significant impact on human
evaluation. We noticed three such patterns:

• wrong word order (e.g. in contrast to
the Czech word order, verbs in subordinate
clauses and verbs following a modal verb are
at the end of a sentence in German)

• unknown Czech words copied to German
sentences during translation

• randomly mistranslated named entities (NEs)
(e.g. king Ludvik translated as king Harold or
Brno translated as Kraluv Dvur);

5.3.2 Heuristics to Improve Synthetic
Corpora

In order to reduce the detrimental effects of the
above errors, we created several variations of the
synthetic corpora. Here we summarize the final
versions of the corpora that served in the subse-
quent NMT training:

SynthCorpus-Initial

The PBMT-Unsupervised-bestBLEU model was
used for creating the data set for the initial training
of the model. All submitted systems were trained
on this initial training set.

SynthCorpus-noCzech

This time we translated the Czech corpus by the
PBMT-Unsupervised-wordOrder model. Despite
its lower BLEU, the translations produced by this
model seem more fluent. In order to remove Czech
words from German sentences in the synthetic cor-
pus, we identified words with Czech diacritics and
replaced them on the German side with the unk to-
ken. As a result, the models trained on this corpus
do not learn to simply copy unknown words and
therefore, the German translations produced by
such models rarely contain copied Czech words.

SynthCorpus-noCzech-reordered

The SynthCorpus-noCzech was further treated to
improve the word order in the synthetic corpus.
We shuffled words in the synthetic German sen-
tences within a 5-word window and mixed the re-
ordered sentences into the original ones. We es-
sentially doubled the size of the training corpus by
first reordering odd-indexed sentences while keep-
ing even-indexed sentences intact and then vice
versa.

The motivation for this augmentation was to
support the NMT system in learning to handle
word reordering less strictly, essentially to im-
prove its word order denoising capability. Ideally,
the model should learn that German word order
need not be strictly followed when translating to
Czech. This feature is easy to observe in authen-
tic parallel texts but the synthetic corpora are too
monotone. We are aware of the fact that a 5-word
window is not sufficient to illustrate the reordering
necessary for German verbs but we did not want to
introduce too language-specific components to our
technique.
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SynthCorpus-noCzech-reordered-NER

The SynthCorpus-noCzech-reordered was further
treated to alleviate the problem of mistranslated
NEs present in the data.

NEs were identified in the monolingual Czech
corpus by a NE recognition tagger NameTag3

(Straková et al., 2014). The model was trained
on the training portion of the Czech Named En-
tity Corpus 2.04 which uses a detailed two-level
named entity hierarchy. We then used auto-
matic word alignments (fast align) between the
Czech side and the synthetic German side of the
corpus and checked the German counterparts of
automatically-identified Czech NEs. If the Ger-
man counterpart was close enough (Levenshtein
distance of at most 3) to the Czech original, we
trusted the translation. In other cases, we either
copied the NE from the source or we used unk on
the German side, preventing the subsequent NMT
system from learning a mistranslation. Instead, the
unk should never match any input and the NMT
system should be forced to fall back to its standard
handling of unknown words. Ideally, this would
be to copy the word, but since there is no copy
mechanism in our NMT setups, the more probable
solution of the system would be to somehow cir-
cumvent or avoid the NE in the target altogether.

Named entity types and their treatment are
listed in Table 2. Mistranslated NEs were treated
in two stages. First during improving the synthetic
corpora and then during post-processing, as de-
scribed in Section 6.2.

6 NMT Model

6.1 Model and Training

We use the Transformer architecture by Vaswani
et al. (2017) implemented in Marian framework
(Junczys-Dowmunt et al., 2018) to train an NMT
model on the synthetic corpus produced by the
PBMT model. The model setup, training and de-
coding hyperparameters are identical to the CUNI
Marian systems in English-to-Czech news trans-
lation task in WMT19 (Popel et al., 2019), but in
this case, due to smaller and noisier training data,
we set the dropout between Transformer layers to
0.3. We use 8 Quadro P5000 GPUs with 16GB
memory.

3http://ufal.mff.cuni.cz/nametag
4http://ufal.mff.cuni.cz/cnec/cnec2.0

Named Entity Type Pre-treatment Post-treatment
Numbers in addresses copied copied
Geographical names removed copied
Institutions copied ignored
Media names copied ignored
Number expressions copied copied
Artifact names copied ignored
Personal names copied copied
Time expressions copied ignored

Table 2: Named Entity types extracted from Czech
Named Entity Corpus 2.0. and their treatment dur-
ing pre-processing and post-processing. During pre-
treatment (creation of the synthetic corpus), the NEs
were identified in the Czech corpus and their transla-
tion on the German synthetic side was either removed,
copied from the source Czech side or completely ig-
nored. During post-treatment (post-processing of the
final NMT outputs), the NEs were identified in the
Czech translations and either copied from the source
German side or ignored.

6.2 Post-processing

During post-processing of the translated Czech
test set, we always adjusted quotation marks to suit
Czech standards. Some systems were subject to
further post-processing as indicated in the follow-
ing section.

6.3 Output: NMT Systems

Our resulting systems share the same architecture
and training parameters but they emerged from
different stages of the training process as illus-
trated in Figure 1. The entire training process in-
cluded training the system on the initial training
corpus, fine-tuning on other corpora and final post-
processing.

CUNI-Unsupervised-base

This system was trained on the initial syn-
thetic data set SynthCorpus-Initial until conver-
gence. We used early stopping after 100 non-
improvements on validation cross-entropy, with
validation step 1 000. The training finished af-
ter 3 days and 11 hours at 249 000 steps. Then
we selected the checkpoint with the highest
bleu-detok, which was at 211 000 steps, in
epoch 3.

No further fine-tuning was performed. This sys-
tem was not submitted to WMT19.

CUNI-Unsupervised

This system was fine-tuned on the SynthCorpus-
noCzech corpus for 4 hours, when it reached
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BLEU BLEU TER BEER 2.0 CharacTER
System Name uncased cased
CUNI-Unsupervised-base 13.6 13.3 0.799 0.482 0.688
CUNI-Unsupervised* 15.3 15.0 0.784 0.489 0.672
CUNI-Unsupervised-NER* 14.6 14.3 0.786 0.487 0.675
CUNI-Unsupervised-NER-post** 14.4 14.1 0.788 0.485 0.677
CUNI-Unsupervised-combined* 14.9 14.6 0.785 0.488 0.674
Benchmark-Supervised 19.3 18.8 0.719 0.517 0.636
Benchmark-TransferEN 13.6 13.3 0.793 0.482 0.683

Table 3: Our systems and their performance on newstest2019 (* indicates our WMT submissions and ** indicates
our primary system).

a maximum, and for another 4 hours on
SynthCorpus-noCzech-reordered.

CUNI-Unsupervised-NER

This system is a result of additional 4 hours of
fine-tuning of the CUNI-Unsupervised system on
the SynthCorpus-noCzech-reordered-NER corpus.
Although the effect of this fine-tuning on the fi-
nal translation might not be significant in terms of
BLEU points, the problem of mistranslated named
entities is perceived strongly by human evaluators
and warrants an improvement.

CUNI-Unsupervised-NER-post

The translations produced by CUNI-
Unsupervised-NER were post-processed to
tackle the remaining problem with named entities.
We first trained GIZA++ (Och and Ney, 2003)
alignments on 30K sentences. We used NameTag
to tag NEs in Czech sentences and using the align-
ments, we copied personal names, geographical
names and numbers from the German source to
the Czech target.

CUNI-Unsupervised-combined

We translated the test set by two models and com-
bined the results. We used NameTag to tag Czech
sentences with named entities and translated the
tagged sentences by CUNI-Unsupervised-NER.
The sentences with no NEs were translated by the
CUNI-Unsupervised system.

7 Benchmarks

For comparison, we created a NMT system us-
ing the same model architecture as above but
training it in a supervised way on the German-
Czech parallel corpus from Europarl (Koehn,
2005) and OpenSubtitles2016 (Tiedemann, 2012),
after some cleanup pre-processing and character
normalization provided by Macháček (2018). As

far as we know, these are the only publicly avail-
able parallel data for this language pair. They con-
sist of 8.8M sentence pairs and 89/78M tokens on
the German and the Czech side, respectively. The
system Benchmark-Supervised was trained from
scratch for 8 days until convergence.

Our other comparison system, Benchmark-
TransferEN, was first trained as an English-to-
Czech NMT system (see CUNI Transformer Mar-
ian for the English-to-Czech news translation task
in WMT19 by Popel et al. (2019)) and then fine-
tuned for 6 days on the SynthCorpus-noCzech-
reordered-NER. The vocabulary remained un-
changed, it was trained on the English-Czech
training corpus. This simple and effective trans-
fer learning approach was suggested by Kocmi and
Bojar (2018).

The scores of the systems on newstest2019 are
reported in Table 3.

8 Final Evaluation

The systems submitted to WMT19 are listed in
Table 3 along with our benchmarks. In addi-
tion to BLEU, we also report BEER (Stanojević
and Sima’an, 2014) and CharacTER (Wang et al.,
”2016”) scores.

Table 5 summarizes the improvement we
gained by introducing a special named entity
treatment. We manualy evaluated three sys-
tems, CUNI-Unsupervised, CUNI-Unsupervised-
NER and CUNI-Unsupervised-NER-post on a
stratified subset of the validation data set created
by randomly selecting 100 sentences with NEs and
100 sentences without NEs. The results are pre-
sented in two steps, the first table shows that fine-
tuning the system CUNI-Unsupervised-NER on a
synthetic corpus with amended NEs proved bene-
ficial in 52% of tested sentences which included
NEs and it did not harm in 20% of sentences.
When comparing the two systems on sentences
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Source Phrase
Original Der Lyriker Werner Söllner ist IM Walter.
Reference Básnı́k Werner Söllner je tajný agent Walter.
CUNI-Unsupervised Prozaik Filip Bubenı́ček je agentem StB Josefem.
CUNI-Unsupervised-NER Prozaik Filip Söllner je agentem StB Ladislavem Bártou.
CUNI-Unsupervised-NER-post Prozaik Werner Söllner je agentem StB Walter.

Table 4: Sample translations showing that fine-tuning on synthetic corpus with cleaned NEs (CUNI-Unsupervised-
NER) alleviates a part of the NE problem while post-processing can handle the rest. However, note the imperfect
translation of Lyriker as novelist rather than poet and the extra word StB which was not tagged as a NE and therefore
not treated during post-processing.

Winning Systems Sentences
with NEs

Sentences
with no NEs

CUNI-Unsup 28% 26%
CUNI-Unsup-NER 52% 28%
No winner 20% 46%

Winning Systems Sentences
with NEs

Sentences
with no NEs

CUNI-Unsup-NER 14% 0%
CUNI-Unsup-NER-post 18% 0%
No winner 68% 100%

Table 5: Results of manual evaluation of three systems
on a stratified subset of the validation data set created
by randomly selecting 100 sentences with NEs and 100
sentences without NEs.

with no NEs, their performance is very similar.
Furthermore, adjusting NEs during post-

processing proved useful in 18% of sentences with
NEs and it did not harm in 68% of sentences. Post-
processing introduced two types of errors: copy-
ing German geographical names into Czech sen-
tences (e.g. translating Norway as Norwegen in-
stead of Norsko) and replacing a Czech named en-
tity with a word which does not correspond to it
due to wrong alignments (e.g. translating Miss
Japan as Miss Miss). On the other hand, when
alignments were correct, the post-processing was
able to fix remaining mismatches in named enti-
ties. See Table 4 for a sample translation.

9 Conclusion

This paper contributes to recent research attempts
at unsupervised machine translation. We tested the
approach of Artetxe et al. (2018b) on a different
language pair and faced new challenges for this
type of translation caused by the non-similar na-
ture of the two languages (e.g. different word or-
der, unrelated grammar rules).

We identified several patterns where the ini-

tial translation models systematically failed and
we focused on alleviating such issues during fine-
tuning of the system and final post-processing.
The most severe type of a translation error, in our
opinion, was a large number of randomly mis-
translated named entities which left a significant
impact on the perceived translation quality. We fo-
cused on alleviating this problem both during fine-
tuning of the NMT system and during the post-
processing stage. While our treatment is far from
perfect, we believe that an omitted named entity
or a non-translated named entity causes less harm
than a random name used instead.

While the performance of our systems still lags
behind the supervised benchmark, it is impres-
sive that the translations reach their quality with-
out ever seeing an authentic parallel corpus.
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Abstract
This paper describes our submission to the
WMT 2019 Chinese-English (zh-en) news
translation shared task. Our systems are
based on RNN architectures with pre-trained
embeddings which utilize character and sub-
character information. We compare models
with these different granularity levels using
different evaluating metics. We find that a finer
granularity embeddings can help the model ac-
cording to character level evaluation and that
the pre-trained embeddings can also be bene-
ficial for model performance marginally when
the training data is limited.

1 Introduction

Neural Machine Translation (NMT) systems are
mostly based on an encoder-decoder architecture
with attention. Given a sentence x in source lan-
guage, the model predicts a corresponding output
sentence y in target language, which maximizes
the conditional probability p(y|x). The attention-
based Recurrent Neural Network (RNN) version
of this architecture has been a very popular ap-
proach to NMT (Bahdanau et al., 2015; Luong
et al., 2015). Despite the success of these mod-
els, they still suffer from problems such as out-
of-vocabulary (OOV) words, i.e. words that have
not been seen at training. To alleviate the OOV
problem, we follow the methods used in word rep-
resentation and segment words into smaller units.
In some morphorlogically rich languages such as
Chinese, a word can be divided into characters
and then the characters can be further divided into
smaller components called glyphs. Both character
and glyph might contain semantic information and
therefore utilizing such information might help al-
leviate the OOV problem.

Based on the RNN attention-based model (Bah-
danau et al., 2015), we experiment with different
granularity levels on the WMT19 Chinese-English

(zh-en) news translation shared task. This pa-
per describes our submitted systems with embed-
dings pre-trained on monolingual corpora. The
two submitted systems use pre-trained embed-
dings enhanced by character and sub-character in-
formation respectively. The preprocessing meth-
ods include Chinese word segmentation, tokeniza-
tion, data filtering based on rules and Byte Pair
Encoding (BPE). Our baseline model is based
on RNNSearch (Bahdanau et al., 2015) operat-
ing on word level and we use Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) as encoder and decoder. For character
level word embeddings, we use the Character-
Enhanced Word Embedding (CWE) proposed by
Chen et al. (2015). For the sub-character level em-
beddings, we use the Joint Learning Word Embed-
ding (JWE) proposed by Yu et al. (2017). We use
various metrics, namely BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
TER (Snover et al., 2006) and CharacTER (Wang
et al., 2016) for evaluation.

When compared with our baseline model, the
models with pre-trained sub-character level em-
beddings on monolingual corpus show better per-
formance, achieving an increase of +0.53 BLEU
score with the sub-character level embeddings.
We ran additional experiments on the charac-
ter and subcharacter level pre-trained embeddings
and found that the use of these embeddings can
benefit the model when the training corpus size is
limited.

This paper is structured as follows: Section 2 in-
troduces the related work including the model ar-
chitecture and pre-trained embeddings used in our
experiment. In Section 3, data selection and pre-
processing methods are described. Section 4 intro-
duces the model architectures and hyperparameter
settings. Section 5 shows the evaluation results on
models with different granularity levels. Section 6
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shows additional experiments to better understand
our models.

2 Related Work

NMT has been an important task in Natural
Language Processing. A translation system
aims to find the corresponding target sentence
y = {y1, y2, ..., ym} given a sentence x =
{x1, x2, ..., xn} in source language, in a prob-
abilistic manner, represented as maxy P (y|x).
Most NMT models are based on the sequence-to-
sequence approach, and the RNN-based architec-
ture (Sutskever et al., 2014) with attention (Bah-
danau et al., 2015) is a popular version of such an
approach. The attention mechanism functions as a
dynamic calculation of the context vector. At each
decoding step, a probability distribution is calcu-
lated based on the current decoder hidden state and
all encoder hidden states. This distribution is de-
fined as the attention score, representing the im-
portance of each input token at current decoding
time step. The context vector is calculated as a
weighted average of all encoder hidden state vec-
tor, where the attention score is the weight. With
the introduction of attention, the model does not
need to rely on a single context vector to represent
the whole sentence and thus can better handle long
sentences.

In recent years model architectures based on
convolutional neural networks (Gehring et al.,
2017) and transformers (Vaswani et al., 2017) have
shown competitive or better performance than
RNN-based architectures. In addition, strategies
such as back translation (Sennrich et al., 2016a),
reranking (Neubig et al., 2015) and model ensem-
bling have led to improvements in translation qual-
ity. In our experiments, we only experiment with
RNN architectures and focus on the effect of using
character and sub-character level embeddings and
only use ensembling for comparison purposes.

We use the CWE model proposed by Chen et al.
(2015) and the JWE model proposed by Yu et al.
(2017) for pre-trained embeddings training. Both
models are based on the word2vec proposed by
Mikolov et al. (2013). Based on Continuous-Bag-
of-Word (CBOW), the CWE model construct a
new word representation by summing the word
embeddings with character embeddings (see Eq
1). Chen et al. also proposed a multi-prototype
character embeddings where characters are tagged
with additional factors, such as position and con-

text cluster, for character disambiguation.

xj = wj ⊕
1

Nj

Nj∑

k=1

ck (1)

where wj is the word embeddings and ck is the
embeddings of the k-th character in xj . ⊕ is the
composition operator (either addition or concate-
nation).

The JWE model proposed by Yu et al. (2017)
is also based on CBOW and it utilizes character
and sub-character level information. They con-
struct a dictionary that maps each Chinese char-
acter to its sub-character components. As Figure
1 shows, words together with the characters and
sub-character components within the context win-
dow are all used to predict the target word. The
additional semantic information provided by char-
acter and subcharacters are shown to improve over
word representation, especially in addressing out-
of-vocabulary words.

Figure 1: Illustration of JWE embedding taken from
(Yu et al., 2017). wi−1 and wi+1 are context words.
ci−1 and ci+1 represent characters in context words.
si−1 and si+1 represent sub-characters of context char-
acters and si is the sub-character of target word wi.

3 Data and Preprocessing

We use all the parallel data provided by WMT
for the zh-en translation task, including the News
Commentary v14, UN Parallel Corpus V1.0 and
the CWMT corpora. In addition, the Common
Crawl Corpus from WMT is used as monolin-
gual data to pre-train the embeddings. We use the
newsdev2018 and newsdev2017 as validation set
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and the newstest2019 as our test data. We tok-
enize English sentences with the Moses tokenizer
(Koehn et al., 2007). On the Chinese side we use
Jieba for Chinese word segmentation.1 The data
preprocessing consists of filtering sentences to be
added to the parallel training corpus by rules and
by alignment score. Following the preprocessing
criteria from submissions in previous years (Xu
and Carpuat, 2018; Stahlberg et al., 2018; Haddow
et al., 2018), we filter the training data based on the
following criteria:

• The length of sentences in both languages
must be between 4 and 50.

• The maximum length ratio of sentence pairs
is 1.3.

• Chinese sentences with no Chinese character
are filtered out.

• English sentences with no English character
are filtered out.

• Same source and target sentences are re-
moved.

• Sentences should not contains HTML tags.

• Sentence pairs with alignment score above -
65 are removed.2

The fast_align toolkit3 is used to calculate the
alignment score for the parallel data. After the fil-
tering, 10.38M sentence pairs are used as training
data. We apply Byte-pair Encoding (BPE) (Sen-
nrich et al., 2016b) with 30,000 merge operations
on the English sentences. For Chinese sentences,
we segment them into different granularity levels,
including words, subwords via BPE and charac-
ters. In the character level setting, only Chinese
words are separated and each character is treated
as a single token. The training texts for models
with pre-trained embeddings is the same as base-
line, which use words as basic units.

4 Models

4.1 Baseline
The baseline model is based on the bidirectional
RNN architecture with attention (Bahdanau et al.,

1https://github.com/fxsjy/jieba
2We tried different filter strategies and found this criterion

gives a better performance than others.
3https://github.com/clab/fast_align

2015). Our models are built with OpenNMT-py
(Klein et al., 2017). We follow the hyperparameter
setting of Deep RNN from Xu and Carpuat (2018)
and use a four-layer LSTM for both the encoder
and decoder. The embeddings and hidden layer
size are limited to 512. We use the Adam opti-
mizer (Kingma and Ba, 2015) with initial learn-
ing rate of 0.0005. We apply label smoothing
(Szegedy et al., 2016) and dropout (Srivastava
et al., 2014) of 0.1 to avoid overfitting. We use the
multi-layer perception (mlp) attention as in (Bah-
danau et al., 2015). The batch size is 4096 to-
kens per batch and the models are selected based
on best performance on the validation set. All our
models are trained on a GTX 1080Ti GPU.

4.2 Pre-trained Embeddings

We apply pre-trained embeddings to the two sub-
mitted systems. The character level and sub-
character level pre-trained embeddings are trained
with CWE (Chen et al., 2015) and JWE (Yu et al.,
2017) respectively. We trained the embeddings on
the Common Crawl Corpus provided by WMT19
and fine-tuned them on the task data when training
the RNN. The preprocessing for monolingual data
includes Chinese word segmentation and removal
of non-Chinese characters. Apart from the pre-
trained embeddings, the hyperparameters of the
two submissions are the same as in the baseline
system.

5 Result and Analysis

We use the CharacTER.py4 script for Charac-
TER score calculation and multeval5 (Clark
et al., 2011) to calculate BLEU, METEOR and
TER scores. The evaluation results for models on
word, subword and character level are presented
in Table 1.

The model with BPE applied on both source
and target languages (bpe2bpe) achieves higher
score than other single models, with an increase
of +1.18 BLEU score over the baseline system.
The two models (baseline+cwe, baseline+jwe) uti-
lizing character and sub-character information are
based on pre-trained embeddings with CWE and
JWE as described in Section 2. We use the source
training text for the pre-trained embeddings to pre-
vent the introduction of noise. As we can see
from the BLEU scores, the model with JWE pre-

4https://github.com/rwth-i6/CharacTER
5https://github.com/jhclark/multeval
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Granularity Model BLEU METEOR TER CharacTER

word
baseline 16.90 23.0 64.0 0.717
baseline+cwe 16.59 22.8 64.4 0.716
baseline+jwe 16.91 23.0 64.0 0.712

subword
bpe2bpe 18.08 24.2 62.1 0.678
bpe2bpe+cwe 17.97 24.2 62.4 0.677

char char2bpe 15.80 22.5 64.9 0.705

word

apprentice-c* 16.94 23.0 63.7 0.713
apprentice-g* 16.54 23.0 63.7 0.717
apprentice-g(best) 17.43 23.2 63.4 0.710
ensemble(jwe) 18.16 23.5 62.9 0.702

Table 1: Model performance on different granularity levels. The two models with a star are the official systems
submitted to the WMT19 zh-en news translation shared task, where the pre-trained embeddings is trained on extra
monolingual data.

trained embeddings shows similar performance to
the baseline system while the model with CWE
embeddings on character level shows a marginal
decrease. The METEOR and TER score presents
similar trends to BLEU, whereas from the eval-
uation of CharacTER scores the introduction of
pre-trained embeddings on both character and sub-
character levels shows better performance than the
baseline.

It can also be seen from the comparison on
BPE-based models that the model with CWE
embeddings performs slightly worse than the
bpe2bpe model, which operates on BPE on both
source and target languages. The results accord-
ing to CharacTER show that finer granularity em-
beddings can benefit the model in character level
evaluations. The char2bpe model shows the worst
performance according to BLEU scores, whereas
the CharacTER score of this model is higher than
that of other word level models. Finally, when we
ensemble the baseline and four models with JWE
embeddings pre-trained on different iterations, the
BLEU score shows an increase of +1.26 BLEU
over the baseline.

The two models with stars (apprentice-c and
apprentice-g) are our official shared task submis-
sions, with the first one operating on character
level and the second, on glyph (sub-character)
level. The apprentice-c model uses the CWE pre-
trained embeddings while the apprentice-g uses
JWE embeddings. For the first, we train the
pre-trained embeddings on the monolingual data
(Common Crawl) and then fine-tune it on filtered
parallel data during the training of RNN models.
Note that we did not use back-translation to aug-

ment the training data and due to time limit we ap-
ply a relatively larger learning rate than previous
work to boost training speed, therefore our sys-
tems achieve relatively lower score than the pre-
vious work (Xu and Carpuat, 2018). The CWE-
based model shows a better BLEU score than
the baseline model. The lower performance for
the apprentice-g model might have resulted from
insufficient training epochs for the JWE embed-
dings. Due to time restrictions, we did not sub-
mit the system with the best word embeddings. In
the additional experiments after the task deadline,
we fine-tuned the models on the best word embed-
dings version and achieve a higher BLEU score of
17.43 for the apprentice-g(best) model. The Char-
acTER score for the fine-tuned model is lower than
other models except the two with BPE. Generally,
the sub-character level models perform better than
the word level and character level models.

6 Additional Experiments

6.1 Evaluating Embeddings
We have tried additional experiments to evaluate
the effect of character and subcharacter level pre-
trained embeddings. Table 2 presents the model
performance with respect to the embeddings per-
formance in traditional word similarity and anal-
ogy tasks. We use the wordsim-240 and wordsim-
297 dataset and the analogy dataset from Chen
et al. (2015) for word similarity and analogy eval-
uation respectively. We use the evaluation script
in JWE6 for both evaluations.

From Table 2, we can see that among all models
with JWE pre-trained embeddings, the one with

6https://github.com/HKUST-KnowComp/JWE
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Model BLEU wordsim-240 wordsim-297 analogy
baseline 16.90 / / /
baseline+jwe5 16.43 0.4880 0.5833 0.4680
baseline+jwe10 16.91 0.5099 0.5985 0.5293
baseline+jwe20 16.82 0.5152 0.6037 0.5205
baseline+jwe50 16.37 0.5048 0.6075 0.4786
baseline+cwe5 16.59 0.4569 0.5769 0.2820
baseline+cwe10 16.47 0.4593 0.5742 0.3585
baseline+cwe20 16.52 0.4610 0.5764 0.3754
baseline+cwe50 16.49 0.4528 0.5765 0.3443

Table 2: Comparison of model performance and word embeddings performance. The evaluation on wordsim-240
and wordsim-297 test set shows Spearman correlation between the pre-trained embedding and human judgements.
The performance on analogy indicates accuracy on analogy reasoning in ”a:b::c:?” format. The number after the
embeddings type represents number of training iterations.

10 iterations performs the best. When the em-
beddings are trained over 20 iterations, the BLEU
score starts to decrease. The same pattern can
be found on the CWE-based models. However,
the model with 5-iteration embeddings achieves
the highest BLEU score among all CWE-based
models. From the embeddings performance on
the analogy task, excluding the cwe5 model, we
find that the embeddings performance correlates
with BLEU scores. When comparing the CWE-
based models with the JWE-based models, we see
that on both translation quality and word embed-
dings evaluations, the model on finer granularity
performs best.

6.2 Effect of Corpus Size

Another experiment was done to compare the ef-
fect of pre-trained embeddings on different cor-
pora sizes. We train the word embeddings with
best iteration setting and train the RNN model on
different corpora sizes. Smaller corpora are cre-
ated by taking 25% and 50% of the original cor-
pus. Table 3 presents the BLEU scores for models
on smaller corpora.

Model/data size 25% 50% 100%
baseline 15.95 15.95 16.90
baseline+cwe5 16.00 15.82 16.59
baseline+jwe10 16.04 15.95 16.91

Table 3: BLEU score with different training data sizes.

It can be seen from Table 3 that with smaller
parallel training corpora the introduction of the
pre-trained word embeddings has a more marked
positive influence. When the dataset is reduced to

half, all the three models show a decrease in BLEU
score. However, the gap between the baseline and
the cwe-based model is smaller. When the dataset
is further limited to 25%, both models with pre-
trained embeddings perform better than the base-
line, whose score does not change. Although it
seems that the pre-trained embeddings, even with
sub-character level semantic information involved,
could only benefit marginally on the whole train-
ing data, the introduction of extra semantic infor-
mation might play a more important role when the
parallel training resources are limited.

6.3 Effect of Sentence Length

Figure 2: BLEU score of models w.r.t sentence length.

Here we measure the performance of models
with varying sentence lengths, as shown in Fig-
ure 2. The test set is seperated into 8 subsets
based on the sentence lengths and models are eval-
uated on each subset, the x-axis in Figure 2 repre-
sents sentence length intervals. We see that the
two models with embeddings trained on a larger

253



monolingual corpus perform better than the other
models in medium-length sentences (between 30
and 50). The apprentice-c model, which uses
CWE embeddings operating on character level,
greatly outperforms the other models on short sen-
tences with length less than 10. Since the sen-
tence length is short, the tokens in the sentence are
mostly composed of one or two characters, thus
the model with character-based embeddings has
an advantage. Regarding the two models with em-
beddings trained without extra monolingual data,
both models show good performance on medium
length sentences but perform poorly on long sen-
tences. The introduction of pre-trained embed-
dings can increase the models’ preference to gen-
erate shorter sentences, resulting in the model
achieving lower BLEU score on long sentences.

6.4 Analysis of Model Perplexity

In order to understand the effect of pre-trained em-
bedding on target language model, we calculate
the model perplexity on the test data with mod-
els on different corpus size. The result is rep-
resented in Table 4. The model with JWE pre-
trained embeddings performs better on all corpus
sizes, having a lower perplexity, though the differ-
ence is marginal. Similar result as the BLEU eval-
uation shows that the pre-trained embeddings ben-
efit model performance on smaller corpus sizes.

Model Perplexity Corpus size
baseline 2.947

100%+cwe 3.005
+jwe 2.932

baseline 3.049
50%+cwe 3.046

+jwe 3.023
baseline 2.860

25%+cwe 2.847
+jwe 2.836

Table 4: Model perplexity on test set.

6.5 Transformer Models

Besides the RNN model, we also experimented
with pre-trained embeddings and the transformer
architecture. We follow the hyperparameter set-
ting from Vaswani et al. (2017), limiting the em-
beddings to 512 dimensions. We compare the
transformer models with and without pre-trained
embeddings. The results are presented in Table 5.

From the evaluation results on BLEU and Charac-
TER, the transformer models without pre-trained
embeddings show better performance. We find
it interesting that the embedding pre-trained with
CWE decrease the performance severely, lead-
ing to a reduction of -3.85 BLEU score from the
model without it. The introduction of finer gran-
ularity embeddings might not benefit the trans-
former performance. We hypothesize that the pre-
trained embedding enhanced by character and sub-
character infomation might conflict with the fixed
positional encoding used in transformer.

Model BLEU CharacTER
transformer 17.82 0.692
transformer+cwe 13.97 0.754
transformer+jwe 17.59 0.695

Table 5: BLEU and CharacTER for transformer mod-
els.

7 Conclusion

This paper describes our NMT models with pre-
trained embeddings operating on character and
sub-character levels. We participated in the
WMT19 zh-en news translation shared task and
submitted two systems with embeddings trained
on monolingual corpus. We experimented with
the effect of using fine-grained pre-trained embed-
dings and showed the potential benefit of using
them. In additional experiments, we find that us-
ing pre-trained embeddings can better benefit the
translation models when the parallel training data
is limited.
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Abstract

This paper described NiuTrans neural ma-
chine translation systems for the WMT 2019
news translation tasks. We participated in 13
translation directions, including 11 supervised
tasks, namely EN↔{ZH, DE, RU, KK, LT},
GU→EN and the unsupervised DE↔CS sub-
track. Our systems were built on deep Trans-
former and several back-translation method-
s. Iterative knowledge distillation and ensem-
ble+reranking were also employed to obtain
stronger models. Our unsupervised submis-
sions were based on NMT enhanced by SMT.
As a result, we achieved the highest BLEU
scores in {KK↔EN, GU→EN} directions,
ranking 2nd in {RU→EN, DE↔CS} and 3rd
in {ZH→EN, LT→EN, EN→RU, EN↔DE}
among all constrained submissions.

1 Introduction

Our NiuTrans team participated in 13 WMT19
shared news translation tasks, including 11 super-
vised and 2 unsupervised sub-tracks. We reused
some effective approaches of our WMT18 sub-
missions (Wang et al., 2018), including back-
translation by beam search (Sennrich et al.,
2016b), BPE (Sennrich et al., 2016c) and further
strengthened our systems by exploiting some new
techniques this year.

For our supervised task submissions, all the
language pairs shared similar model architec-
tures and training flow. We proposed four novel
Deep-Transformer architectures based on (Wang
et al., 2019) as our baseline, which outperformed
the standard Transformer-Big significantly
in terms of both translation quality and conver-
gence speed.

As for the data augmentation aspect, we exper-
imented several back-translation methods (Sen-
nrich et al., 2016b), including beam search, un-
restricted sampling and sampling-topK proposed

by Edunov et al. (2018), to leverage the target-
side monolingual data. We also applied itera-
tive knowledge distillation (Freitag et al., 2017) to
leverage the source-side monolingual data.

Our system also employed the convention-
al combination methods including ensemble and
feature-based re-ranking to further improve the
translation quality. We proposed a simple greedy
search algorithm to find the best ensemble combi-
nation effectively and efficiently. Hypothesis com-
bination (Hassan et al., 2018) was also adopted
to generate more diverse hypotheses for better r-
eranking.

For unsupervised tasks, we mainly investigated
the methodology of unsupervised SMT (Artetx-
e et al., 2019) and NMT (Lample and Conneau,
2019) to build our baselines, then presented a joint
training strategy on top of these baselines to boost
their performances.

This paper was structured as follows: we de-
scribed the details of our novel Deep-Transformer
in Section 2, then in Section 3 we presented an
overview of our universal training flow for al-
l supervised language pairs and the unsupervised
methods. The experiment settings and main re-
sults were shown in Section 4.

2 Deep Transformer

Neural machine translation models based on
multi-layer self-attention (Vaswani et al., 2017)
has shown strong results on several large-scale
tasks. Enlarging the model capacity is an ef-
fective way to obtain stronger networks, includ-
ing widening the hidden representation or deep-
ening the model layers. Bapna et al. (2018) has
shown that learning deeper networks is not easy
for vanilla Transformer due to the gradient vanish-
ing/exploding problem.
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Figure 1: Examples of pre-norm residual unit and post-
norm residual unit. F = sub-layer, and LN = layer nor-
malization.

Wang et al. (2019) emphasized that the location
of layer normalization played a vital role when
training deep Transformer. In early versions of
Transformer (Vaswani et al., 2017), layer normal-
ization was placed after the element-wise residual
addition (see Figure 1(a)). While in recent im-
plementations (Vaswani et al., 2018), layer nor-
malization was applied to the input of every sub-
layer(see Figure 1(b)), which can provide a direc-
t way to pass error gradient from top to bottom.
In this way pre-norm Transformer is more effi-
cient for training than post-norm (vanilla Trans-
former) when the model goes deeper. Remarkably,
a dynamic linear combination of previous layers
method1 can further improve the translation qual-
ity. Note that we built our deep self-attentional
counterparts in pre-norm way as default. In this
section we described the details about our deep ar-
chitectures as below:

Pre-Norm Transformer: In recent Ten-
sor2Tensor implementations2, layer normaliza-
tion (Lei Ba et al., 2016) was applied to the
input of every sub-layer which the computa-
tion sequence could be expressed as: normal-
ize→Transform→dropout→residual-add. In this
way we could successfully train a deeper pre-norm
Transformer within comparable performance with
Transformer-Big or even better, only one
fourth training cost.

Pre-Norm Transformer-RPR: We found
Transformer-RPR (Shaw et al., 2018) which
simultaneously incorporating relative position
information with sinusoidal position encodings
for sequences in pre-norm style could outperform
the pre-norm Transformer with the same encoder
depth. We used clipping distance k = 20 with the

1We called it as Transformer-DLCL in the subsequen-
t sections

2https://github.com/tensorflow/
tensor2tensor

unique edge representations per layer and head.
Pre-Norm Transformer-DLCL: The

Transformer-DLCL employed direct links
with all the previous layers and offered efficient
access to lower-level representations in a deep
stack. An additional weight matrix Wl+1 ∈ RL×L

was used to weigh each incoming layer in a linear
manner. This method can be formulated as:

Ψ(y0, y1...yl) =
l∑

k=0

W l+1
k LN(yk) (1)

Eq.1 provided a way to learn preference of lay-
ers in different levels of the stack, Ψ(y0, y1...yl)
was the combination of previous layer representa-
tion. Furthermore, this method is model architec-
ture free which we can integrate with either pre-
norm Transformer or pre-norm Transformer-RPR
for further enhancement. The details can be seen
in Wang et al. (2019).

3 System Overview

3.1 Data Filter
Previous work (Junczys-Dowmunt, 2018; Wang
et al., 2018; Stahlberg et al., 2018) indicated that
rigorous data filtering scheme is crucial, or it will
lead to catastrophic loss in quality, especially in
EN↔DE and EN↔RU. For most language pairs,
we filter the training bilingual corpus with the fol-
lowing rules:

• Normalize punctuation with Moses scripts
except the ZH↔ EN language pair.

• Filter out the sentences longer than 100 word-
s, or exceed 40 characters in a single word.

• Filter out the sentences which contain HTML
tags or duplicated translations.

• Filter out the sentences which both the source
and the target side are identical language.

• Filter out the sentences whose alignment s-
cores obtained by fast-align3 are lower than
-6.

• The word ratio between the source and the
target must not exceed 1:3 or 3:1.

After several data augmentation methods to
leverage monolingual data in order to further boost
translation quality, the same data filter strategy
was employed.

3https://github.com/clab/fast_align
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3.2 Back Translation
Back-translation (Sennrich et al., 2016b) is an es-
sential method to integrate the target side monolin-
gual synthetic knowledge when building a state-
of-the-art NMT system. Especially for low-
resource language tasks, it’s indispensable to aug-
ment the training data by mixing the pseudo cor-
pus with the parallel part, in that the target side
lexicon coverage is insufficient, such as EN ↔
{KK, GU} only consist of 0.11M and 0.5M bilin-
gual data, respectively.

How to select the appropriate sentences from
the abundant monolingual data is a crucial issue
due to the limitation of equipment and huge over-
head time. We trained a 5-gram language mod-
el based on the mixture of development set and
bilingual-target side data to score the monolingual
sentences. In addition, considering the impact of
sequence length, we set a threshold range from 10
to 50.

Recent work (Edunov et al., 2018) has shown
that different methods of generating pseudo corpus
made discrepant influence on translation perfor-
mance. Edunov et al. (2018) indicated that sam-
pling or noisy synthetic data gives a much stronger
training signal than data generated by beam or
greedy search. This year we attempted several da-
ta augmentation methods as follows:

• Beam search: Generated target translation by
beam search with beam 4.

• Sampling: Selected a word randomly from
the whole distribution each step which in-
creases the diversity of pseudo corpus com-
pared with beam search, but low precision.

• Sampling Top-K: Selected a word in a re-
stricted way that only top-K (we set K as 10)
words can be chosen.

It’s worthy noting that experimental results
on different language pairs behaved inconsisten-
t: sampling is more helpful when it comes to
low-resource problem like Kazakh, Gujarati and
Lithuanian. Oppositely, we observed that lan-
guage pairs with abundant parallel corpus like
ZH↔EN are insensitive to sampling method, and
slight improvement by restricted sampling which
selected from top-10 candidates. We used differ-
ent strategies to leverage monolingual resource for
specific task which we will show detail description
in Section4.

3.3 Greedy Based Ensemble

Ensemble decoding is an effective system combi-
nation method to boost machine translation quali-
ty via integrating the predictions of several single
models at each decode step. It has been proved ef-
fective in the past few years’ WMT tasks (Wang
et al., 2018; Deng et al., 2018; Junczys-Dowmunt,
2018; Sennrich et al., 2016a). We enhanced the
single model by employing deep self-attentional
models. Note that the improvement is poor if the
single models performed strong enough and no
significant benefits from increasing the participan-
t quantity. So it’s necessary to utilize the models
sufficiently to search for a better combination on
the development set. We adopted an easily opera-
ble greedy-base strategy as the following:

Algorithm 1 An Simple ensemble algorithm
based on greedy search
Input:

a model list Ωcand sorted by the development
scores.

Output:
a final model list Φfinal.

1: for all 4 model combination that model ∈
top− 8 models do

2: Ensemble decoding to get the score
3: end for
4: Choose the best 4model combination as the

initial Φfinal .
5: repeat
6: Shift the single model from the rest of

Ωcand to the Φfinal which performs better
when combined with Φfinal.

7: until there is tiny improvement as the model
number increases

To ensure the diversity among the candidate
models, we constructed a single model from sev-
eral perspectives, such as different initialization
seed, training epochs, model sizes and network
architectures described in Section 2. On the de-
velopment set, this algorithm can consistently im-
prove nearly 1-1.5 BLEU scores over the best s-
ingle model across all the tasks in which we have
participated.

3.4 Iterative Knowledge Distillation

A natural idea to further boost the performance
of the ensemble model obtained in Section 3.3 is
to alternate knowledge distillation (Hinton et al.,
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Figure 2: A simple example of Iterative Knowledge
Distillation with 5 students, 2 teachers and 2 iterations

2015; Freitag et al., 2017) and ensemble iterative-
ly. The naive approach started with a list of single
model candidates as the students and the best 4
models combination retrieved from Algorithm 1 as
the teacher. Sequence-level knowledge distillation
(Kim and Rush, 2016) was then applied to fine-
tune each student model with additional source da-
ta. With these enhanced student models, a stronger
4 models combination can be produced through
Algorithm 1. We iterated this process until less
than 0.1 BLEU improvement on the validation set.

However, in the preliminary experiments we
found that such iteration didn’t yield good results
as we expected. We attributed this phenomenon
to the deficiency of model diversity, due to the
fact that all students were collapsed to a similar
optimum induced by the same teacher they learn-
t from, which limited the potential gain from it-
eration. To avoid this, in each step of the itera-
tion, we split the candidates into 4 subsets random-
ly and assign each subset a distinct teacher mod-
el sampled from the top-4 models combinations,
then fine-tuned each model within the same subset
with its corresponding teacher model. Moreover,
we added additional 2M source-side monolingual
data in each step to better preserve the model di-
versity. Figure 2 shows an example.

3.5 Feature Reranking
This year we adopted an hypothesis combination
strategy to pick up a potentially better translation
from the N-best consisting of several different en-
semble outputs. For example we generated 96 hy-
pothesises by 8 different ensemble systems, and
set the beam size as 12 during the decoding proce-
dure instead of obtaining all 96 outputs from a sin-

gle but best ensemble model. The oracle computed
by sentence-level BLEU script on development set
indicated that hypothesis combination achieved 5
BLEU scores higher compared with the single en-
semble output. Our reranking features would be
described on five aspects as follows:

Right-to-Left Models: NMT models generate
the target translations in a left to right fashion,
so it’s obvious that incorporating models which
generate the target sentences in reverse order can
be complementary (Stahlberg et al., 2018). We
trained four deep Transformer-DLCL models with
different hyper-parameter settings by reversing the
target side sentence, followed by ensemble knowl-
edge distillation method to enhance the single
model performance. Experiment results showed
that the accuracy of the reverse model was ex-
tremely necessary, or you may even get worse re-
sults.

Target-to-Source Models: Re-scoring between
the hypothesis and the source input by target-
to-source systems. In addition Target-to-Source-
Right-to-Left models were needed.

Language Model: We both used a 5-gram lan-
guage model and a deep self-attention language
model trained on target monolingual data.

Cross-lingual Sentence Similarity: We mixed
the source-to-target and target-to-source training
data about 1:1 to train a cross-lingual translation
model, in order to compute the cosine similari-
ty between the n-best hypothesis and the source
sentence-level vectors (Hassan et al., 2018) .

Sentence-Align Score: We used fast-align tool
to evaluate the alignment probability between the
source and the target.

Translation Coverage: A SMT phrase-table to
obtain the top-50 translation for each source-to-
target word pair. In this way, the translation cov-
erage score can be easily gained with respect to
the dual direction hits in the dictionary with length
normalization.

We rescored 96-best outputs generated by sev-
eral ensemble systems using a rescoring model
consisting of features above by K-batched MI-
RA (Cherry and Foster, 2012) algorithm which is
widely used in Moses4.

4https://github.com/moses-smt/
mosesdecoder
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3.6 Unsupervised NMT

We also participated in the unsupervised transla-
tion tasks with only the monolingual data provid-
ed by WMT organizer. We both attempted the un-
supervised SMT and NMT, then combined them
for better results. To train SMT models, the un-
supervised tuning (Artetxe et al., 2019) was ap-
plied to further enhance the unsupervised SMT
system, which employed a small pseudo generated
by the target-to-source system to adjust weights of
the source-to-target system. We followed Artetxe
et al. (2019) to exploit subword information into
unsupervised SMT system, which two additional
weights were added to the initial phrase-table. The
new features employed a character-level similarity
function instead of word translation probabilities,
which are analogous to the lexical weightings.

For unsupervised NMT, the techniques we used
were based on the recently proposed method for
unsupervised machine translation (Lample and
Conneau, 2019), including proper initialization,
leveraging a strong language model and iterative
back-translation (Lample et al., 2018). Our sys-
tems were initiated by cross-lingual masked lan-
guage model, which brought significant improve-
ment than cross-lingual embedding method. Af-
ter that, the standard NMT architecture can be
trained by only leveraging monolingual data us-
ing combining denoising auto-encoding and iter-
ative back-translation. We adopted two training
strategies combining both NMT and SMT models
to further enhance our unsupervised system:

• Generate the pseudo corpus by SMT and
warmup the NMT models restricted in first
1000 training steps, then we used the pseu-
do corpus generated by NMT systems for the
remained training.

• We mixed the pseudo corpus consisting of N-
MT and SMT outputs in 1:1 at the beginning,
and we increased the ratio of NMT pseudo
corpus iteratively until there was no signifi-
cantly improvement on validation set.

4 Experiments and Results

For all supervised tasks, we used deep self-
attentional models as our baseline, and we also
experimented the shallow and wide counterpart-
s to verify its effectiveness with the same train-
ing corpus. Preliminary experiments indicated that

our deep models can even outperform the stan-
dard Transformer-Big by 0.7-1.3 BLEU s-
cores on different language pairs. All of our exper-
iments employed 25/30 encoder layers and 6 de-
coder layers, both embedding and hidden size have
a dimension of 512, 8 heads for the self-attention
and encoder-decoder attention mechanisms. We
shared the target-side embedding and softmax ma-
trix. All BLEU scores were reported with mteval-
v13a.pl5. Next, we will show details for different
language pairs in the following subsections.

4.1 Experiment setting

We implemented deep fashion models based on
Tensor2Tensor, all models were trained on eight
1080Ti GPUs. We used the Adam optimizer with
β1 = 0.97, β2 = 0.997 and ε = 10−6 as well
as gradient accumulation due to the high GPU
memory consumption. The training data was re-
shuffled after finishing each training epoch, and
we batched sentence pairs by target-side sentences
lengths, with 8192 tokens per GPU. Large learning
rate and warmup-steps were chosen for faster con-
vergence. We set max learning rate as 0.002 and
warmup-steps as 8000 for most language pairs in-
cluding EN↔{ZH, RU, KK, LT}. Specifically in
EN↔DE task, 16000 warmup-steps achieved bet-
ter results. During training, we also employed la-
bel smoothing with a confidence score 0.9 and all
the dropout probabilities were set to 0.1. Further-
more, we averaged the last 15 checkpoints of a s-
ingle training process for all language pairs. The
models were saved and validated every 20 min-
utes.

4.2 English↔ Chinese

For ZH↔ EN system, our parallel corpus includ-
ed CWMT, wikititles-v1, NewsCommentary-v14,
and 30% randomly sampled data from UN corpus.
All parallel data were segmented by NiuTrans (X-
iao et al., 2012) word segmentation toolkit. After
the preprocessing, we trained BPE (Sennrich et al.,
2016c) models with 32, 000 merge operations for
both sides respectively.

For back-translation, we trained 25-layers trans-
former models using WMT18 (Wang et al., 2018)
training data for both directions. We selected 10M
NewsCrawl2018 monolingual data for ZH→EN
and the combination of XinHua and XMU data

5https://github.com/mosessmt/
mosesdecoder/blob/master/scripts/
generic/mtevalv13a.pl
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for EN→ZH. Experimental results from table 1
showed that generating the pseudo corpus by beam
search brought significant improvement on new-
stest2018 for ZH↔EN. Meanwhile, for EN→ZH
system, additional pseudo corpus6 by sampling-
top10 could obtain +0.7 BLEU scores on new-
stest2018, but exhibited negative impact on new-
stest2019.

For ZH→EN, we trained 12 models
with different configurations, e.g., layer-
s, batch size, filters, seed, etc. The best
performance on our development set new-
stest2018 gained +1.6 BLEU improvement over
Transformer-Base, even +0.7 BLEU higher
than that of Transformer-Big. Iterative
Knowledge Distillation with 4 teachers, 3 itera-
tions and 1 epoch per iteration gave +1.6 BLEU
improvement over the best single model. To this
end, almost +4 BLEU improvement was observed
on newstest2019. Through greedy based ensemble
algorithm, we selected the best 8-model combi-
nation on newstest2018 and boosted our system
performance by +0.8 BLEU. Our reranking model
contained 27 features, including 4 L2R-Ensemble,
4 R2L-Ensemble, 4 T2S-Ensemble, 4 T2S-R2L-
Ensemble and other features mentioned in Section
3.5.

For EN→ZH, we used the same training set-
tings to obtain our best system. The results after
applying each component are reported in Table 1.
Surprisingly, adding pseudo corpus hindered our
system improvement on newstest2019, yet gained
+3.7 BLEU improvement on newstest2018. One
possible explanation is that the construction of test
set in this year is different from those in previous
years.

EN-ZH ZH-EN
System 18test 19test 18test 19test

Base 38.3 35.7 24.2 -
+Beam 41.3 36.1 26.2 27.0
+S-TopK 42.0 35.9 - -

Big 43.2 37.1 27.1 27.7
DLCL25RPR 43.9 38.2 27.8 29.1
+EKD 44.6 39.3 29.6 33.0
+Ensemble 45.1 39.8 30.4 34.0
+Reranking 45.6 39.9 30.9 34.2

Table 1: Results for EN↔ZH on official WMT test

6We mixed the sampling-topk corpus with the parallel one
to fine-tune each single model

4.3 English↔ German
Table 2 presents the BLEU scores on new-
stest2018 and newstest2019 for EN↔DE tasks.
All parallel training data released were used and
we adopted the dual conditional cross-entropy
method (Junczys-Dowmunt, 2018) to filter out the
noise data in ParaCrawl corpus, resulting in 10M
bilingual sentence pairs. A joint BPE model was
applied in both directions with 32, 000 merge op-
erations. Moreover, we selected shared vocabulary
for both language pairs.

The target-side monolingual data played an im-
portant role in the success of this language pairs.
We back-translated 10M monolingual in-domain
data from the collection of NewsCrawl2016-2018
filtered by XenC (Rousseau, 2013). We observed
that generating pseudo corpus via random sam-
pling is much more effective than beam search
with the same volume of monolingual sentences,
resulting in 2.5/3.7 BLEU improvement on new-
stest2018 for EN→DE and DE→EN respective-
ly. Transformer-DLCLwith 25 encoder layers
and 4096 filters obtained +2.5/1.7 BLEU improve-
ment. Iterative Knowledge Distillation and 8 mod-
els combination yielded another +0.8/1.4 BLEU
scores. Unfortunately, we failed to identify any
significant improvement from reranking in terms
of validation BLEU scores. Perhaps the features
we used were not strong enough to score the n-best
properly. It’s worth noting that we re-normalized
the quotes in German for the additional 1.8 BLEU
improvement on EN→DE.

EN-DE DE-EN
System 18test 19test 18test 19test

Base 41.4 38.3 40.8 42.3
+Paracrawl 43.2 39.5 42.7 44.7
+Beam 44.0 39.7 46.2 45.0
+Sampling 45.7 40.7 46.4 45.5

DLCL25filter4096 48.2 42.7 48.1 47.0
+EKD 48.6 44.2 47.0 47.6
+Ensemble 49.4 45.5 48.4 48.3

Table 2: Results for EN↔DE on official WMT test set

4.4 English↔ Russian
For EN↔RU, we used the following resource pro-
vided by WMT, including News Commentary-
v14, ParaCrawl-v3, CommonCrawl and Yandex
Corpus. The parallel corpus we used was com-
prised of 7.66M sentences after removing the bad
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case mentioned in Section 3.1. We experiment-
ed different BPE code size, ranging from 30, 000
to 80, 000, inspired by the morphology richness
of Russian. Considering the efficiency and per-
formance, we finally chose 50, 000 for both direc-
tions. We used the same data selection strategy as
in EN↔DE and retained only 16M monolingual
data from NewsCrawl2015-20187. The selected
sentences were then divided into two equal parts.
We generated the pseudo corpus from the first part
with beam search sized 4 and trained our NMT
models with this corpus together with the parallel
ones. The other 8M data were back-translated by
random sampling and used to fine-tune each mod-
el.

Our final submissions consisted of four Deep
Transformer models strengthened by Knowl-
edge Distillation, including DLCL25, DLCL30,
DLCL25RPR and DLCL30RPR for EN→RU.
The reverse direction contained DLCL25, DL-
CL25RPR with 4096 filters, DLCL30RPR and
DLCL30Filter with 4096 filters. The overal-
l results of our system were reported in Table
3. We observed the same phenomenon as in
EN→ZH, where back-translation could yield bet-
ter results on newstest2018 but inferior ones on
newstest2019.

EN-RU RU-EN
System 18test 19test 18test 19test

Base 29.0 27.8 30.9 38.2
+Beam 30.4 28.9 33.0 37.8
+Sampling 32.2 28.3 33.6 37.5

DLCL25RPR 33.4 29.8 34.9 38.9
+EKD 34.1 33.1 35.9 39.5
+Ensemble 35.1 33.8 36.5 40.0
+Reranking 35.5 34.0 36.7 40.0

Table 3: Results for EN↔RU on official WMT test set

4.5 English↔ Kazakh
This section described our EN↔KK submission-
s, where we ranked No. 1 in both directions.
This task was different from the above three lan-
guage pairs, whose bilingual data, including News
Commentary-v14 and English-Kazakh crawled
corpus, contained only 97, 000 sentences after fil-
tering. It was not possible to train a large NMT
model, with only 2.6/10.1 BLEU on newsdev2019

7All monolingual data from NewsCrawl2015-2018 were
selected for both directions

as shown in Table 4. We used Russian as the piv-
otal language to construct the additional EN↔KK
bilingual corpus from the crawled RU↔KK cor-
pus as well as the RU↔EN one provided by WMT
organizers, resulting in 3.78M high-quality bilin-
gual data8.

For back-translation, we generated the pseudo
corpus via random sampling from 2M monolin-
gual data selected by Xenc in the collection of
Common Crawl, News Commentary, News crawl
and Wiki dumps. This pseudo corpus was ex-
tremely effective for our system.

For KK→EN system, we adopted the same
training procedure, except that we chose 4M En-
glish monolingual sentences from News crawl
2015-2018 instead, which consisted of 2M in-
domain sentences selected by Xenc and 2M ran-
domly sampled. The detailed experiment results
could be seen in Table 4.

EN-KK KK-EN
System 19dev 19test 19dev 19test

Big 2.6 1.9 10.1 11.5
+Pivot 14.9 7.8 23.4 19.8
+Sampling 19.7 10.3 26.2 28.8

DLCL25 20.5 10.7 26.3 29.0
+RPR - - 26.6 30.1
+Ensemble 21.3 11.1 26.8 30.5

Table 4: Results for EN↔KK on official WMT test set

4.6 English↔ Lithuanian

For EN↔ LT tasks, we used all parallel data avail-
able as follows: Europarl-v9, ParaCrawl-v3 and
Rapid corpus of EU press releases. Through data
filtering mentioned in Section3-1, 1.93M bilingual
corpus were remained. Lithuanian monolingual
resources containing Common Crawl, Europarl,
News crawl and Wiki dumps were back-translated
to strengthen the EN→LT translation quality by
sampling approach. Similarly, News Crawl from
2015 to 2018 were used for the reverse direc-
tion pair. We adopted the same performance im-
provement pipelines mentioned above, including
various deep self-attentional architectures, greedy
based ensemble and knowledge distillation teach-
er, except for feature reranking. We showed the
detailed experiment results in Table 5.

8The training data we used included the pseudo corpus as
well as the provided parallel corpus
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EN-LT LT-EN
System 19dev 19test 19dev 19test

Base 18.3 11.5 27.1 29.2
+Pseudo 24.8 13.8 32.2 30.2

DLCL25 25.1 14.0 33.2 31.5
+EKD 26.1 15.0 34.6 33.8
+Ensemble 26.7 15.2 35.1 34.3

Table 5: Results for EN↔LT on official WMT test set

4.7 Gujarati→ English
Our GU→EN system was based on Bible Corpus,
crawled corpus, OPUS and wikipedia, a total of
0.5M sentence pairs. Additionally, 1.5M HindEn-
Corp corpus were converted to GU→EN bilingual
corpus in terms of the alphabet mapping between
Gujarati and Hindi languages. Due to the gram-
mar divergence in the two languages, we built a
baseline model by bilingual data to score the cor-
pus and removed the bad cases in which the scores
were inferior to the threshold predefined. Prelim-
inary experiments have shown that data filtering
was extremely crucial, for noisy signals in train-
ing data did harm to our translation quality. Only
0.98 bilingual pairs were remained after strict da-
ta cleaning, including parallel corpus provided by
WMT and pivot pairs originated from HindEnrop
corpus.

We used the same approach to select pseudo
corpus with KK→EN task, while different gener-
ation approach were applied. Our pseudo corpus
consisted of two parts: 2M pseudo data by beam
search within (1.2, 10) for alpha and beam size re-
spectively and another 1M through randomly sam-
pling. From Table 6 we found that the data quan-
tity was the key factor to enhance the translation
quality in this task, and deep DLCL25RPR took
full advantage of deep encoder layers to extrac-
t more expressive representations.

4.8 German↔ Czech
This section demonstrated our unsupervised re-
sult on DE↔CS, Table 7 presents the BLEU s-
cores on newstest2013 and newstest2019. We re-
moved the duplicated sentences and the sentences
with exceptional length ratio. As a result, we used
24.38M Czech monolingual data and 24.36M Ger-
man monolingual data for each direction respec-
tively from News Crawl2007-2018. All texts were
segmented with scripts provides by Moses, and
60, 000 BPE merge operations were applied to un-

GU-EN
System 19dev 19test

Base 3.1 3.0
+Pivot 16.3 12.5
+Beam 30.7 19.7
+Sampling 32.5 21.3

DLCL25RPR 34.2 22.8
+EKD 34.9 23.8
+Ensemble 35.5 24.6
+Reranking 36.1 24.9

Table 6: Results for EN→GU on official WMT test set

supervised NMT systems.

We used the Transformer architecture as de-
scribed in Lample and Conneau (2019) that we
revised the Transformer-Big with 8 atten-
tion heads, learned positional embedding and
GELU activation functions. From Table 7 we ob-
served that through several techniques, the unsu-
pervised SMT has gained significantly improve-
ment on newstest2013 and newstest2019. More-
over, leveraging the pseudo corpus generated by
unsupervised-SMT system can bring furthermore
enhancement though the unsupervised SMT was
inferior to NMT system. We both experimented
the training strategies mentioned in Section 3.6,
and the iterative training method was more effi-
cient. We only fused two single models in decod-
ing procedure and there is no significant improve-
ment on both valid and test sets. Note that we fixed
the quotes in both directions.

DE-CS CS-DE
System 13test 19test 13test 19test

SMT Base 9.3 7.9 10.5 9.1
+weight-tune 10.0 8.2 11.2 9.5
+sub-word 11.0 9.2 12.4 10.7
+iterative-BT 13.3 11.7 14.7 12.7

NMT Base 17.8 15.8 18.8 16.2
+warmup 20.0 17.4 20.6 17.8
+iteration 20.1 17.6 21.0 18.0

Ensemble 20.3 17.6 21.2 18.1
+fix quotes* - 18.9 - 17.7

Table 7: Unsupervised results for DE↔CS on official
WMT test set, note that the newstest2019 contains 1997
sentence pairs for both directions
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5 Conclusion

This paper described all 13 tasks of NiuTrans sys-
tems in WMT19 news shared translation tasks
including both supervised and unsupervised sub
tracks, showing that we could adopt an universal
training strategies to gain promising achievemen-
t. We built our final submissions considering two
mainstreams:

• Neural architecture improvement by employ-
ing several deep self-attentional based mod-
els.

• Taking full advantage of both additional
source and target monolingual data by knowl-
edge distillation and back-translation, respec-
tively.

In addition, a greed-based ensemble algorithm was
helpful to search for a robust combination of mod-
els, and we adopted hypothesis combination strat-
egy for more diverse re-ranking. Our systems per-
formed strongly among all the constrained sub-
missions: we ranked 1st in EN→KK, KK→EN
and GU→EN respectively, and stayed Top-3 for
the remained language pairs.
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Abstract

We describe the neural machine translation
(NMT) system developed at the National Re-
search Council of Canada (NRC) for the
Kazakh-English news translation task of the
Fourth Conference on Machine Translation
(WMT19). Our submission is a multi-source
NMT system taking both the original Kazakh
sentence and its Russian translation as input
for translating into English.

1 Introduction

The WMT19 (Bojar et al., 2019) Kazakh-English
News Translation task presented a machine trans-
lation scenario in which parallel resources be-
tween the two languages (˜200k sentences) were
considerably fewer than parallel resources be-
tween these languages and a third language, Rus-
sian (˜14M English-Russian sentence pairs and
˜5M Kazakh-Russian pairs).

The NRC team therefore explored machine
translation pipelines that utilized the Russian re-
sources, including:

1. “Pivoting” through Russian: training an MT
system from Kazakh to Russian, and another
system from Russian to English (Fig. 1a).

2. Creating a synthetic Kazakh-English paral-
lel corpus by training a Russian-Kazakh MT
system and using it to “cross-translate”1 the
Russian-English corpus (Fig. 1b).

3. Training a multi-encoder (Libovický and
Helcl, 2017; Libovický et al., 2018) Trans-
former system (Vaswani et al., 2017) from

1We term synthetic data creation by translation between
source languages “cross-translation” to distinguish it from
“back-translation” in the sense of Sennrich et al. (2016).
Nishimura et al. (2018), which also uses source1-to-source2
translation, calls both kinds of synthetic data creation “back-
translation”, but because our pipeline uses both kinds we dis-
tinguish them with separate terms.

Kazakh/Russian to English that subsumes
both of these approaches (Fig. 1c).

Techniques (1) and (2) both involve the trans-
lation of genuine data into a synthetic translation
(into Russian in the first case, and into Kazakh in
the second case). It is, however, possible to attend
to both the original sentence and its translation
using multi-source techniques (Zoph and Knight,
2016; Libovický and Helcl, 2017; Nishimura et al.,
2018); we hypothesized that giving the system
both the originals and “cross-translations”, in
both directions (Kazakh-to-Russian and Russian-
to-Kazakh), would allow the system to make use
of the additional information available by seeing
the sources before translation.

Our multi-encoder Transformer approach per-
formed best among our submitted systems by a
considerable margin, outperforming pivoting by
4.2 BLEU and augmentation by one-way cross-
translation by 10.2 BLEU.2

2 Multilingual data

2.1 Kazakh-English
The raw bilingual Kazakh-English data provided
for the constrained news translation task consists
of web-crawled data, news commentary data and
Wikipedia article titles. In total, they account for
˜200k sentence pairs. All these data were used to
train the foundation systems for back-translation.
Since the web-crawled data is very noisy, we re-
moved all the web-crawled portion from the train-
ing data before training our final submitted sys-
tem.

For tuning and evaluating, we used the
newsdev2019-kken data set; for SMT, we

2However, these systems, as submitted, are not directly
comparable due to some additional data filtering in our final
submitted system; we will be releasing more direct compar-
isons and a more thorough description of the architecture in a
companion article.
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(a) “Pivoting”: two systems (source-
to-L3 and L3-to-target) executed in a
pipeline

(b) Augmentation of source/target
corpus with “cross-translated” syn-
thetic data

(c) Multi-source system with augmen-
tation by cross-translation in both di-
rections

Figure 1: Approaches to utilizing a third language (“L3”) in machine translation.

split it into two sets as our internal dev and dev-
test; dev contains 1266 sentence pairs and devtest
contains the remaining 800 sentence pairs.

2.2 Kazakh-Russian

The raw bilingual Kazakh-Russian data provided
to assist in the news translation task is web-
crawled data. In total, they account for ˜5M sen-
tence pairs. All these data were used to train the
foundation systems for cross-translation.

For tuning and evaluating, we randomly se-
lected 1000 sentence pairs each for the dev and
devtest sets from the provided bilingual data. The
remaining bilingual data is de-duplicated against
the bag of 6-grams collected from the dev and de-
vtest sets. The de-duplicated bilingual data has
˜4.2M sentence pairs.

2.3 Russian-English

The raw bilingual Russian-English data we used
in our systems consists of web-crawled data, news
commentary data and Wikipedia article titles. In
total they account for ˜14M sentence pairs. All
these data were used to train the foundation sys-
tems for back-translation. Since the Paracrawl
portion of the bilingual data is very noisy, be-
fore training our final submitted system we ran our
parallel corpus filtering pipeline (Lo et al., 2018)
with YiSi-2 as the scoring function (instead of MT
+ YiSi-1) and trimmed the size of the Paracrawl
portion from 12M sentence pairs to 4M sentence
pairs.

For tuning and evaluating, we used the
newstest2017-enru data set as the dev set
and the newstest2018-enru data set as the
devtest set.

3 Data preparation

3.1 Cleaning and tokenization

Our preprocessing pipeline begins by cleaning the
UTF-8 with both Moses’ cleaning script3 and an
in-house script that performs additional white-
space, hyphen, and control character normaliza-
tion. We then proceed to normalize and tokenize
the sentences with Moses’ punctuation normaliza-
tion4 and tokenization scripts5.

3.2 Transliteration

To mitigate some of the overall complexity, and
allow greater sharing in joint BPE models and
weight tying, we first converted the Kazakh and
Russian text from Cyrillic to Roman, using offi-
cial Romanization standards using spm normalize
(Kudo, 2018) and transliteration tables from Wik-
tionary for Kazakh6 and Russian7.

3.3 Byte-pair encoding

Our BPE model is a joint one across transliter-
ated Kazakh, transliterated Russian, and English.
Using fastBPE8, we created a 90k-operation BPE
model, balancing the three languages with ˜8.2M
sentences of each, using:

• all available Kazakh from bilinugual kk-en;

• all available Kazakh from bilinugual kk-ru;

3github.com/moses-smt/
mosesdecoder/scripts/tokenizer/
remove-non-printing-char.perl

4github.com/moses-smt/mosesdecoder/
scripts/tokenizer/normalize-punctuation.
perl

5github.com/moses-smt/mosesdecoder/
scripts/tokenizer/tokenizer.perl

6en.wiktionary.org/wiki/Module:
kk-translit

7en.wiktionary.org/wiki/Module:
ru-translit

8github.com/glample/fastBPE
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• all monolingual Kazakh news and wiki data;

• all available English from bilingual kk-en;

• a sample of ˜8M English sentences from
bilingual ru-en and monolingual en;

• all available Russian from bilinugual kk-ru;

• a sample of ˜3.2M Russian sentences from
bilingual ru-en and monolingual ru.

A separate vocabulary was extracted for each lan-
guage using the corpora used to create the BPE
model. The BPE model was then applied to all
training, dev and devtest data.

4 Multi-encoder transformer

We implemented a multi-source Transformer
(Vaswani et al., 2017) architecture, in the Sock-
eye (Hieber et al., 2017) framework, that combines
the output of two encoders (one for Kazakh, one
for Russian); this architecture will be described in
greater detail in a companion paper.

Our encoder combination takes place during at-
tention (that is, the attention step in which infor-
mation from the decoder and encoders are com-
bined, rather than the self-attention steps inside
each encoder and decoder); Figure 2 illustrates the
position in which the multiple sources are com-
bined into a single representation.

First, we perform multi-head scaled dot-product
attention between the the decoder and each en-
coder separately.

C(s) = MultiHead(s)
(
D,H(s),H(s)

)
(1)

MultiHead(s) (Q,K,V ) =
h∑

i

Head(s)i WO
i

(s)
(2)

Head(s)i (Q,K,V , dk) =

A(QWQ
i

(s)
,KWK

i
(s)
,V W V

i
(s)
, dk) (3)

A (Q,K,V , dk) = softmax
(
QK>√
dk

)
V (4)

where D = (d1,d2, · · · ,dn), di ∈ Rdmodel repre-
sents the decoder states, H = (h1,h2, · · · ,hm),
hi ∈ Rdmodel represents the outputs of the

encoder’s final self-attention layer, WQ
i

(s) ∈
Rdmodel×dk , WK

i
(s) ∈ Rdmodel×dk , W V

i
(s) ∈

Figure 2: Multi-source attention on S sources. Each
output from the S encoders is attended to by a sepa-
rate multi-head attention layer (Eqs. 1-4), and then the
outputs of these attention layers are combined (Eq. 5).

Rdmodel×dk and WO
i

(s) ∈ Rdk×dmodel are trainable
parameter matrices which project the key, query
and value into a smaller dimensionality. Together
with dk = dmodel/h, we have C(s) ∈ Rn×dmodel .

Next, we combine the outputs from the different
encoders with a simple projection and sum, similar
to what Libovický et al. (2018) refer to as “paral-
lel”:

C̃ =
S∑

i

C(i)WC (i)
(5)

As this is essentially the same operation as the
multi-head combination in Equation (2), and no
nonlinearities intervene, we can also conceptual-
ize Equations (1)-(5) as if they were a single multi-
head attention layer with S ∗ h heads (in this case
2 ∗ 8 heads), in which each group of h heads is
constrained to attend to the output of one encoder.

We also experimented with a hierarchical atten-
tion mechanism along the lines of Libovický and
Helcl (2017) and Libovický et al. (2018), but as
this did not outperform the simpler combination
mechanism in (5) in internal testing, our submit-
ted systems utilized the latter.
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Figure 3: The relations of all the MT systems involved in building the NRC final submitted system.

5 Experiments and results

5.1 NMT Setup
Our code extends sockeye-1.18.72 from Hieber
et al. (2017). Each source encoder has 6 lay-
ers and our decoder also has 6 layers, with a
model dimension of dmodel = 512 and 2048 hid-
den units sub-layer feed-forward networks. We
use weight tying, where the source embeddings,
the target embeddings and the target softmax
weights are tied, which implies a shared vocab.
We trained employing a cross-entropy loss with
Adam (Kingma and Ba, 2014), β1 = 0.9, β2 =
0.999, ε = 1e − 8 and an initial learning rate of
0.0001, decreasing the learning by 0.7 each time
the development-set BLEU did not improve for 8
checkpoints. We optimized against BLEU using
newsdev2019-kken as the development set,
stopping early if BLEU did not improve for 32
checkpoints of 1000 updates each. The inputs and
output lengths were restricted to a maximum of 60
tokens, and mini-batches were of variable size de-
pending on sentence length, with each mini-batch
containing up to 4096 words.

5.2 SMT Setup
We trained en2kk, ru2kk and en2ru SMT sys-
tems using Portage (Larkin et al., 2010), a conven-
tional log-linear phrase-based SMT system, us-
ing the corresponding BPEed parallel corpora pre-
pared as described in Section 3. The translation
model of each SMT system uses IBM4 word align-
ments (Brown et al., 1993) with grow-diag-final-
and phrase extraction heuristics (Koehn et al.,
2003). The systems each have two n-gram lan-
guage models: a 5-gram language model (LM)
(a mixture LM in the kk2en case) trained on the
target-side of the corresponding parallel corpora

using SRILM (Stolcke, 2002), and a pruned 6-
gram LM trained on the monolingual training cor-
pora (for en2ru, trained just on news using KenLM
(Heafield, 2011); for ru2kk and en2kk, a static
mixture LM trained on all monolingual Kazakh
data using SRILM). Each SMT system also in-
cludes a hierachical distortion model, a sparse fea-
ture model consisting of the standard sparse fea-
tures proposed in Hopkins and May (2011) and
sparse hierarchical distortion model features pro-
posed in Cherry (2013), and a neural network joint
model, or NNJM, with 3 words of target con-
text and 11 words of source context, effectively a
15-gram LM (Vaswani et al., 2013; Devlin et al.,
2014). The parameters of the log-linear model
were tuned by optimizing BLEU on the develop-
ment set using the batch variant of the margin in-
fused relaxed algorithm (MIRA) by Cherry and
Foster (2012). Decoding uses the cube-pruning
algorithm of Huang and Chiang (2007) with a 7-
word distortion limit.

We then used these SMT systems to back-
translate a ˜2M sentence subselection of monolin-
gual English news into Kazakh and Russian, and
a ˜5M sentence subselection of monolingual Rus-
sian news into Kazakh, as well as cross-translating
the Russian of the ru-en parallel corpora into
Kazakh.

5.3 Building the NRC Submission System

Our final submission involved several SMT com-
ponents and several NMT components to produce
back-translations and cross-translations needed
for our multi-source submission system, as shown
in Figure 3.
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Available Training Dev./Test BLEU
Resources Source 1 Source 2 Att. Comb. Source 1 Source 2 Dev. Test

kk-en kk+en2kk – – kk – 12.8 9.9
kk-en, ru-en kk+ru+en2kk – – kk – 15.4 12.6

kk-en, kk-ru, ru-en kk+ru2kk+en2kk – – kk – 17.9 14.8
kk-ru, ru-en pivoting 19.3 20.8

kk-en, kk-ru, ru-en kk+ru2kk+en2kk kk2ru+ru+en2ru Parallel kk kk2ru 19.6 24.2 /25.0*

Table 1: BLEU scores on WMT19 Kazakh-English news translation. en2kk denotes synthetic Kazakh back-
translated from English. ru2kk denotes synthetic Kazakh cross-translated from Russian. en2ru denotes synthetic
Russian back-translated from English. kk2ru denotes synthetic Russian cross-translated from Kazakh. * denotes an
unofficial post-competition result, a fully-trained version of our top system, which had only been partially trained
due to time constraints.

5.3.1 Synthetic cross-translations

To synthesize cross-translations, we trained 3 sys-
tems using our filtered ˜4.2M sentences of bilin-
gual Russian-Kazakh data. First, we trained a
Russian-to-Kazakh (ru2kk) SMT system and then
used it to generate ˜5M sentences of synthetic
Kazakh. Augmenting the bilingual data with the
Kazakh back-translations, we trained a Kazakh-to-
Russian NMT system to back translate ˜800k sen-
tences of monolingual Kazakh news for a ru2kk
NMT system and to cross translate ˜125k kk-en
sentences for one component of our final system.
Finally, we trained a Russian-to-Kazkah NMT
system using the bilingual data and the synthetic
Russian to cross translate ˜6M for our second com-
ponent of the final system.

5.3.2 Synthetic back-translation

A stack of another three MT systems was used
to synthesize Kazakh from English using ˜200k
of available English-Kazakh bilingual data for
training. Starting with an English-to-Kazakh
SMT system, ˜2M English sentences were back-
translated to Kazakh. Augmenting the bilingual
data with the newly generated Kazakh, we trained
a NMT Kazakh-to-English system and back trans-
lated ˜800k sentences of Kazakh news. The last
English-to-Kazakh NMT system in that stack was
trained using the bilingual data enlarged with the
˜800k previously generated back-translations. It
generated our en2kk back-translation of ˜2M sen-
tences of English news.

Our final component was accomplished by
training an English-to-Russian SMT system us-
ing ˜14.3M bilingual sentences and back translat-
ing the ˜2M sentence subselection of English news
into Russian.

5.3.3 Putting it all together

The box labelled “NRC’s Submission” in Figure
3 depicts how each sub-corpus was assembled
into the final bilingual corpora used to train our
multi-source NMT submission system. Each set
of curly braces surrounds a pair of corresponding
Kazakh and Russian sources. The first pair repre-
sents Kazakh and its cross-translation to Russian,
the second is the cross-translation of Russian-to-
Kazakh with the original Russian, and lastly we
have our sub-selected corpus back-translated into
both Kazakh and Russian.

5.4 Results

We can see in Table 1 that the full multi-
source, multi-encoder system with two-way cross-
translation (both Kazakh-to-Russian and Russian-
to-Kazakh) is significantly better than our other
systems, outperforming the pivoting system (on
the fourth line) by 4.2 BLEU and augmentation
by one-way cross-translation (on the third line) by
10.2 BLEU.

We believe this improvement over the other two
methods is due to the model being able to attend
to additional original data, to which the other sys-
tems do not have direct access. Both pivoting and
one-way synthetic augmentation involve “discard-
ing” genuine data, in that some of the original sen-
tences – Kazakh sentences in the former, and Rus-
sian sentences in the later – are never seen by the
downstream system, since they are only encoun-
tered in translation. Multi-source methods allow a
system to attend to the original data in both direc-
tions, thus capturing information that would oth-
erwise be lost in translation.

Notable in this table is the comparative im-
provement of the test scores over the dev scores,
between the pivoting (line 4) and multi-source
(line 5) systems. This can be explained, we
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System BLEU YiSi-1 YiSi-1 srl
NEU 30.5 79.19 76.97
rug-morfessor 27.9 77.70 75.47
talp-upc-2019 24.9 75.07 72.74
NRC-CNRC 24.9 75.76 73.41
Frank-s-MT 19.8 76.17 73.87

Table 2: Automatic evaluation results for the top 5 con-
strained systems in WMT19

System Ave Ave. B
NEU 70.1 0.218
rug-morfessor 69.7 0.189
talp-upc-2019 67.1 0.113
NRC-CNRC 67.0 0.092
Frank-s-MT 65.8 0.066

Table 3: Human evaluation results for the top 5 con-
strained systems in WMT19

think, by a domain difference between the dev
and test sets, where the dev set was sampled from
the same news commentary dataset as the train-
ing data, whereas the test set comes from actual
newswire text. The scores appear to show that
the multi-source system has managed to general-
ize better to newswire text, possibly because it has
seen synthetic newswire text (synthesized from the
English-Russian dataset) and can respond more
appropriately to it.9

Tables 2 and 3 compare our multi-source sys-
tem to the other official submissions in the top 5 of
the WMT19 competition. In automatic evaluation
by BLEU, we were tied for third place, although
with a slight edge when measured by YiSi-1 (Lo,
2019); in human evaluation, we were in a statisti-
cal tie for second place. Notably, our multi-source
system was the top non-ensemble pure NMT sys-
tem, with other higher-scoring systems either be-
ing ensembles or SMT/NMT hybrids.

6 Conclusion and future work

We present the NRC submission to the WMT19
Kazakh-English news translation shared task. Our
submitted system is a multi-source, multi-encoder
neural machine translation system that takes Rus-
sian as the second source in the system. The ad-

9Note that, although we did perform additional filtering
on the training data of the multi-source system, we do not
believe this is the cause of the better performance on the test
compared to the pivoting system. In later tests, we found the
pivoting system to be relatively insensitive to this filtering
process, giving similar BLEU on both dev and test.

vantages of using the multi-source NMT archi-
tecture are that it incorporates additional informa-
tion obtained from 1) the Russian-English training
data cross translated into Kazakh, and 2) the Rus-
sian cross translated from Kazakh in the Kazakh-
Russian training data.

The drawback of this approach is the compar-
ative complexity of the pipeline, with separate
systems being trained to create back-translations
and cross-translations (including back-translations
to train those systems themselves). This com-
plexity was difficult for a human team to manage
when considered for three languages; it would be
prohibitive (without additional automation) when
making systems that involve four or more lan-
guages. Making use of the multi-source architec-
ture itself for creating back- and cross-translations
together, and sharing encoders and decoders be-
tween systems that share languages, would con-
siderably lessen the the complexity of the pipeline
and the number of distinct systems that need to be
trained.

In other future work, we want to consider addi-
tional methods of multi-source attention, as well
as other means of creating cross-linguistic syn-
thetic data beyond machine translation, for lower-
resource language pairs that do not have substan-
tial parallel data but may be, for example, closely
related.
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Abstract

This paper describes CAiRE’s submission to
the unsupervised machine translation track of
the WMT’19 news shared task from German
to Czech. We leverage a phrase-based sta-
tistical machine translation (PBSMT) model
and a pre-trained language model to combine
word-level neural machine translation (NMT)
and subword-level NMT models without us-
ing any parallel data. We propose to solve
the morphological richness problem of lan-
guages by training byte-pair encoding (BPE)
embeddings for German and Czech separately,
and they are aligned using MUSE (Conneau
et al., 2018). To ensure the fluency and consis-
tency of translations, a rescoring mechanism is
proposed that reuses the pre-trained language
model to select the translation candidates gen-
erated through beam search. Moreover, a se-
ries of pre-processing and post-processing ap-
proaches are applied to improve the quality of
final translations.

1 Introduction

Machine translation (MT) has achieved huge
advances in the past few years (Bahdanau et al.,
2015; Gehring et al., 2017; Vaswani et al., 2017,
2018). However, the need for a large amount of
manual parallel data obstructs its performance un-
der low-resource conditions. Building an effective
model on low resource data or even in an unsuper-
vised way is always an interesting and challeng-
ing research topic (Gu et al., 2018; Radford et al.,
2016; Lee et al., 2019). Recently, unsupervised
MT (Artetxe et al., 2018b,a; Conneau et al., 2018;
Lample et al., 2018b; Wu et al., 2019), which can
immensely reduce the reliance on parallel corpora,
has been gaining more and more interest.

Training cross-lingual word embeddings (Con-
neau et al., 2018; Artetxe et al., 2017) is always the

*These two authors contributed equally.

first step of the unsupervised MT models which
produce a word-level shared embedding space for
both the source and target, but the lexical cover-
age can be an intractable problem. To tackle this
issue, Sennrich et al. (2016b) provided a subword-
level solution to overcome the out-of-vocabulary
(OOV) problem.

In this work, the systems we implement for
the German-Czech language pair are built based
on the previously proposed unsupervised MT sys-
tems, with some adaptations made to accom-
modate the morphologically rich characteristics
of German and Czech (Tsarfaty et al., 2010).
Both word-level and subword-level neural ma-
chine translation (NMT) models are applied in
this task and further tuned by pseudo-parallel data
generated from a phrase-based statistical machine
translation (PBSMT) model, which is trained fol-
lowing the steps proposed in Lample et al. (2018b)
without using any parallel data. We propose to
train BPE embeddings for German and Czech sep-
arately and align those trained embeddings into a
shared space with MUSE (Conneau et al., 2018) to
reduce the combinatorial explosion of word forms
for both languages. To ensure the fluency and
consistency of translations, an additional Czech
language model is trained to select the transla-
tion candidates generated through beam search by
rescoring them. Besides the above, a series of
post-processing steps are applied to improve the
quality of final translations. Our contribution is
two-fold:

• We propose a method to combine word and
subword (BPE) pre-trained input representa-
tions aligned using MUSE (Conneau et al.,
2018) as an NMT training initialization on
a morphologically-rich language pair such as
German and Czech.

• We study the effectiveness of language model
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rescoring to choose the best sentences and
unknown word replacement (UWR) proce-
dure to reduce the drawback of OOV words.

This paper is organized as follows: in Section
2, we describe our approach to the unsupervised
translation from German to Czech. Section 3 re-
ports the training details and the results for each
steps of our approach. More related work is pro-
vided in Section 4. Finally, we conclude our work
in Section 5.

2 Methodology

In this section, we describe how we built our main
unsupervised machine translation system, which is
illustrated in Figure 1.

2.1 Unsupervised Machine Translation
2.1.1 Word-level Unsupervised NMT
We follow the unsupervised NMT in Lample
et al. (2018b) by leveraging initialization, lan-
guage modeling and back-translation. However,
instead of using BPE, we use MUSE (Conneau
et al., 2018) to align word-level embeddings of
German and Czech, which are trained by FastText
(Bojanowski et al., 2017) separately. We leverage
the aligned word embeddings to initialize our un-
supervised NMT model.

The language model is a denoising auto-
encoder, which is trained by reconstructing orig-
inal sentences from noisy sentences. The process
of language modeling can be expressed as mini-
mizing the following loss:

Llm = λ ∗ {Ex∼S [−logPs→s(x|N(x))]+

Ey∼T [−logPt→t(x|N(y))]}, (1)

where N is a noise model to drop and swap some
words with a certain probability in the sentence x,
Ps→s and Pt→t operate on the source and target
sides separately, and λ acts as a weight to control
the loss function of the language model. a Back-
translation turns the unsupervised problem into a
supervised learning task by leveraging the gener-
ated pseudo-parallel data. The process of back-
translation can be expressed as minimizing the fol-
lowing loss:

Lbt =Ex∼S [−logPt→s(x|v∗(x))]+
Ey∼T [−logPs→t(y|u∗(y))], (2)

where v∗(x) denotes sentences in the target lan-
guage translated from source language sentences

S, u∗(y) similarly denotes sentences in the source
language translated from the target language sen-
tences T and Pt→s, and Ps→t denote the trans-
lation direction from target to source and from
source to target respectively.

2.1.2 Subword-level Unsupervised NMT
We note that both German and Czech (Tsarfaty
et al., 2010) are morphologically rich languages,
which leads to a very large vocabulary size for
both languages, but especially for Czech (more
than one million unique words for German, but
three million unique words for Czech). To over-
come OOV issues, we leverage subword informa-
tion, which can lead to better performance.

We employ subword units (Sennrich et al.,
2016a) to tackle the morphological richness prob-
lem. There are two advantages of using the
subword-level. First, we can alleviate the OOV is-
sue by zeroing out the number of unknown words.
Second, we can leverage the semantics of sub-
word units from these languages. However, Ger-
man and Czech are distant languages that originate
from different roots, so they only share a small
fraction of subword units. To tackle this problem,
we train FastText word vectors (Bojanowski et al.,
2017) separately for German and Czech, and ap-
ply MUSE (Conneau et al., 2018) to align these
embeddings.

2.1.3 Unsupervised PBSMT
PBSMT models can outperform neural models in
low-resource conditions. A PBSMT model uti-
lizes a pre-trained language model and a phrase
table with phrase-to-phrase translations from the
source language to target languages, which pro-
vide a good initialization. The phrase table stores
the probabilities of the possible target phrase
translations corresponding to the source phrases,
which can be referred to as P (s|t), with s and t
representing the source and target phrases. The
source and target phrases are mapped accord-
ing to inferred cross-lingual word embeddings,
which are trained with monolingual corpora and
aligned into a shared space without any parallel
data (Artetxe et al., 2017; Conneau et al., 2018).

We use a pre-trained n-gram language model to
score the phrase translation candidates by provid-
ing the relative likelihood estimation P (t), so that
the translation of a source phrase is derived from:
argmaxtP (t|s) = argmaxtP (s|t)P (t).

Back-translation enables the PBSMT models
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Figure 1: The illustration of our system. The translation procedure can be divided into five steps: (a) pre-
processing, (b) translation generation (§2.1) from word-level NMT, subword-level NMT, and PBSMT. In the train-
ing, we fine-tune word-level and subword-level NMT models with pseudo-parallel data from NMT models and
the best PBSMT model. Moreover, an unknown word replacement mechanism (§2.2) is applied to the translations
generated from the word-level NMT model, (c) translation candidate rescoring, (d) construction of an ensemble of
the translations from NMT models, and (e) post-processing.

to be trained in a supervised way by providing
pseudo-parallel data from the translation in the re-
verse direction, which indicates that the PBSMT
models need to be trained in dual directions so that
the two models trained in the opposite directions
can promote each other’s performance.

In this task, we follow the method proposed by
Lample et al. (2018b) to initialize the phrase ta-
ble, train the KenLM language models (Heafield,
2011)1 and train a PBSMT model, but we make
two changes. First, we only initialize a uni-gram
phrase table because of the large vocabulary size
of German and Czech and the limitation of com-
putational resources. Second, instead of training
the model in the truecase mode, we maintain the
same pre-processing step (see more details in §3.1)
as the NMT models.

2.1.4 Fine-tuning NMT

We further fine-tune the NMT models mentioned
above on the pseudo-parallel data generated by
a PBSMT model. We choose the best PBSMT
model and mix the pseudo-parallel data from the
NMT models and the PBSMT model, which are
used for back-translation. The intuition is that we
can use the pseudo-parallel data produced by the
PBSMT model as the supplementary translations
in our NMT model, and these can potentially boost
the robustness of the NMT model by increasing
the variety of back-translation data.

1The code can be found at https://github.com/kpu/kenlm

2.2 Unknown Word Replacement
Around 10% of words found in our NMT train-
ing data are unknown words (<UNK>), which
immensely limits the potential of the word-level
NMT model. In this case, replacing unknown
words with reasonable words can be a good rem-
edy. Then, assuming the translations from the
word-level NMT model and PBSMT model are
roughly aligned in order, we can replace the un-
known words in the NMT translations with the
corresponding words in the PBSMT translations.
Compared to the word-level NMT model, the PB-
SMT model ensures that every phrase will be
translated without omitting any pieces from the
sentences. We search for the word replacement
by the following steps, which are also illustrated
in Figure 2:

Step 1 For every unknown word, we can get the
context words with a context window size of two.

Step 2 Each context word is searched for in the
corresponding PBSMT translation. From our ob-
servation, the meanings of the words in Czech are
highly likely to be the same if only the last few
characters are different. Therefore, we allow the
last two characters to be different between the con-
text words and the words they match.

Step 3 If several words in the PBSMT transla-
tion match a context word, the word that is closest
to the position of the context word in the PBSMT
translation will be selected and put into the can-
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Figure 2: The illustration of the unknown word replacement (UWR) procedure for word-level NMT. The words
of the PBSMT model translation in the pink boxes match the context words of the unknown word <UNK> in the
word-level NMT model translation in the blue boxes. Finally, we choose a possible target word, in the yellow box,
from the PBSMT model translation to replace the unknown word in the green box.

didate list to replace the corresponding <UNK> in
the translation from the word-level NMT model.

Step 4 Step 2 and Step 3 are repeated until all
the context words have been searched. After re-
moving all the punctuation and the context words
in the candidate list, the replacement word is the
one that most frequently appears in the candidate
list. If no candidate word is found, we just remove
the <UNK> without adding a word.

2.3 Language Model Rescoring

Instead of direct translation with NMT models, we
generate several translation candidates using beam
search with a beam size of five. We build the lan-
guage model proposed by Merity et al. (2018b,a)
trained using a monolingual Czech dataset to
rescore the generated translations. The scores are
determined by the perplexity (PPL) of the gener-
ated sentences and the translation candidate with
the lowest PPL will be selected as the final trans-
lation.

2.4 Model Ensemble

Ensemble methods have been shown very effective
in many natural language processing tasks (Park
et al., 2018; Winata et al., 2019). We apply an
ensemble method by taking the top five transla-
tions from word-level and subword-level NMT,
and rescore all translations using our pre-trained
Czech language model mentioned in §2.3. Then,
we select the best translation with the lowest per-
plexity.

3 Experiments

3.1 Data Pre-processing

We note that in the corpus, there are tokens rep-
resenting quantity or date. Therefore, we delex-

icalize the tokens using two special tokens: (1)
<NUMBER> to replace all the numbers that express
a specific quantity, and (2) <DATE> to replace all
the numbers that express a date. Then, we retrieve
these numbers in the post-processing. There are
two advantages of data pre-processing. First, re-
placing numbers with special tokens can reduce
vocabulary size. Second, the special tokens are
more easily processed by the model.

3.2 Data Post-processing
Special Token Replacement In the pre-
processing, we use the special tokens <NUMBER>
and <DATE> to replace numbers that express a
specific quantity and date respectively. There-
fore, in the post-processing, we need to restore
those numbers. We simply detect the pattern
<NUMBER> and <DATE> in the original source
sentences and then replace the special tokens in
the translated sentences with the corresponding
numbers detected in the source sentences. In order
to make the replacement more accurate, we will
detect more complicated patterns like <NUMBER>
/ <NUMBER> in the original source sentences. If
the translated sentences also have the pattern, we
replace this pattern <NUMBER> / <NUMBER>
with the corresponding numbers in the original
source sentences.

Quotes Fixing The quotes are fixed to keep
them the same as the source sentences.

Recaser For all the models mentioned above
that work under a lower-case setting, a recaser im-
plemented with Moses (Koehn et al., 2007) is ap-
plied to convert the translations to the real cases.

Patch-up From our observation, the ensemble
NMT model lacks the ability to translate name en-
tities correctly. We find that words with capital
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characters are named entities, and those named en-
tities in the source language may have the same
form in the target language. Hence, we capture
and copy these entities at the end of the translation
if they does not exist in our translation.

3.3 Training

Unsupervised NMT The settings of the word-
level NMT and subword-level NMT are the same,
except the vocabulary size. We use a vocabulary
size of 50k in the word-level NMT setting and 40k
in the subword-level NMT setting for both Ger-
man and Czech. In the encoder and decoder, we
use a transformer (Vaswani et al., 2017) with four
layers and a hidden size of 512. We share all en-
coder parameters and only share the first decoder
layer across two languages to ensure that the la-
tent representation of the source sentence is robust
to the source language. We train auto-encoding
and back-translation during each iteration. As the
training goes on, the importance of language mod-
eling become a less important compared to back-
translation. Therefore the weight of auto-encoding
(λ in equation (1)) is decreasing during training.

Unsupervised PBSMT The PBSMT is imple-
mented with Moses using the same settings as
those in Lample et al. (2018b). The PBSMT model
is trained iteratively. Both monolingual datasets
for the source and target languages consist of 12
million sentences, which are taken from the latest
parts of the WMT monolingual dataset. At each
iteration, two out of 12 million sentences are ran-
domly selected from the the monolingual dataset.

Language Model According to the findings in
Cotterell et al. (2018), the morphological richness
of a language is closely related to the performance
of the model, which indicates that the language
models will be extremely hard to train for Czech,
as it is one of the most complex languages. We
train the QRNN model with 12 million sentences
randomly sampled from the original WMT Czech
monolingual dataset, 2 which is also pre-processed
in the way mentioned in §3.1. To maintain the
quality of the language model, we enlarge the vo-
cabulary size to three million by including all the
words that appear more than 15 times. Finally, the
PPL of the language model on the test set achieves
93.54.

2http://www.statmt.org/wmt19/

Recaser We use the recaser model provided in
Moses and train the model with the two million
latest sentences in the Czech monolingual dataset.
After the training procedure, the recaser can re-
store words to the form in which the maximum
probability occurs.

3.4 PBSMT Model Selection
The BLEU (cased) score of the initialized phrase
table and models after training at different itera-
tions are shown in Table 1. From comparing the
results, we observe that back-translation can im-
prove the quality of the phrase table significantly,
but after five iterations, the phrase table has hardly
improved. The PBSMT model at the sixth itera-
tion is selected as the final PBSMT model.

Model BLEU Cased
Unsupervised PBSMT
Unsupervised Phrase Table 3.8

+ Back-translation Iter. 1 6.6
+ Back-translation Iter. 2 7.3
+ Back-translation Iter. 3 7.5
+ Back-translation Iter. 4 7.6
+ Back-translation Iter. 5 7.7
+ Back-translation Iter. 6 7.7

Table 1: Results of PBSMT at different iterations

3.5 Results
The performances of our final model and other
baseline models are illustrated in Table 2. In
the baseline unsupervised NMT models, subword-
level NMT outperforms word-level NMT by
around a 1.5 BLEU score. Although the unsuper-
vised PBSMT model is worse than the subword-
level NMT model, leveraging generated pseudo-
parallel data from the PBSMT model to fine-
tune the subword-level NMT model can still boost
its performance. However, this pseudo-parallel
data from the PBSMT model can not improve the
word-level NMT model since the large percentage
of OOV words limits its performance. After ap-
plying unknown words replacement to the word-
level NMT model, the performance improves by
a BLEU score of around 2. Using the Czech
language model to re-score helps the model im-
prove by around a 0.3 BLEU score each time. We
also use this language model to create an ensem-
ble of the best word-level and subword-level NMT
model and achieve the best performance.
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Model BLEU BLEU Cased TER BEER 2.0 CharacterTER
Unsupervised PBSMT
Unsupervised phrase table 4 3.8 - 0.384 0.773

+ Back-translation Iter. 6 8.3 7.7 0.887 0.429 0.743
Unsupervised NMT
Subword-level NMT 9.4 9.1 - 0.419 0.756

+ fine-tuning 9.8 9.5 0.832 0.424 0.756
+ fine-tuning + rescoring 10.3 10 0.833 0.426 0.749

Word-level NMT 7.9 7.6 - 0.412 0.823
+ fine-tuning 7.9 7.7 - 0.413 0.819
+ fine-tuning + UWR 10.1 9.6 0.829 0.432 0.766
+ fine-tuning + UWR + rescoring 10.4 9.9 0.829 0.432 0.764

Model Ensemble
Best Word-level + Subword-level 10.6 10.2 0.829 0.429 0.755

+ patch-up 10.6 10.2 0.833 0.430 0.757

Table 2: Unsupervised translation results. We report the scores of several evaluation methods for every step of our
approach. Except the result that is listed on the last line, all results are under the condition that the translations are
post-processed without patch-up.

4 Related Work

4.1 Unsupervised Cross-lingual Embeddings
Cross-lingual word embeddings can provide a
good initialization for both the NMT and SMT
models. In the unsupervised senario, Artetxe et al.
(2017) independently trained embeddings in dif-
ferent languages using monolingual corpora, and
then learned a linear mapping to align them in a
shared space based on a bilingual dictionary of
a negligibly small size. Conneau et al. (2018)
proposed a fully unsupervised learning method
to build a bilingual dictionary without using any
foregone word pairs, but by considering words
from two languages that are near each other as
pseudo word pairs. Lample and Conneau (2019)
showed that cross-lingual language model pre-
training can learn a better cross-lingual embed-
dings to initialize an unsupervised machine trans-
lation model.

4.2 Unsupervised Machine Translation
In Artetxe et al. (2018b) and Lample et al. (2018a),
the authors proposed the first unsupervised ma-
chine translation models which combines an auto-
encoding language model and back-translation in
the training procedure. Lample et al. (2018b)
illustrated that initialization, language modeling,
and back-translation are key for both unsuper-
vised neural and statistical machine translation.
Artetxe et al. (2018a) combined back-translation

and MERT (Och, 2003) to iteratively refine the
SMT model. Wu et al. (2019) proposed to dis-
card back-translation. Instead, they extracted and
edited the nearest sentences in the target language
to construct pseudo-parallel data, which was used
as a supervision signal.

5 Conclusion

In this paper, we propose to combine word-level
and subword-level input representation in unsu-
pervised NMT training on a morphologically rich
language pair, German-Czech, without using any
parallel data. Our results show the effectiveness
of using language model rescoring to choose more
fluent translation candidates. A series of pre-
processing and post-processing approaches im-
prove the quality of final translations, particularly
to replace unknown words with possible relevant
target words.
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Abstract
In the current work, we present a description
of the system submitted to WMT 2019 News
Translation Shared task. The system was cre-
ated to translate news text from Lithuanian to
English. To accomplish the given task, our
system used a Word Embedding based Neu-
ral Machine Translation model to post edit
the outputs generated by a Statistical Machine
Translation model. The current paper docu-
ments the architecture of our model, descrip-
tions of the various modules and the results
produced using the same. Our system garnered
a BLEU score of 17.6.

1 Introduction

Machine Translation (MT) is automated transla-
tion of one natural language to another using a
computer. Translation, itself, is a very tough task
for both humans as well as a computer. It re-
quires a thorough understanding of the syntax and
semantics of both the languages under considera-
tion. For producing good translations, a MT sys-
tem needs good quality and sufficient amount of
parallel corpus (Mahata et al., 2016, 2017).

In the modern context, MT systems can be
categorized into Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT).
SMT has had its share in making MT very popu-
lar among the masses. It includes creating statis-
tical models, whose input parameters are derived
from the analysis of bilingual text corpora, created
by professional translators (Weaver, 1955). The
state-of-art for SMT is Moses Toolkit1, created by
Koehn et al. (2007), incorporates subcomponents
like Language Model generation, Word Alignment
and Phrase Table generation. Various works have
been done in SMT (Lopez, 2008; Koehn, 2009)
and it has shown good results for many language
pairs.

1http://www.statmt.org/moses/

On the other hand NMT (Bahdanau et al.,
2014), though relatively new, has shown con-
siderable improvements in the translation results
when compared to SMT (Mahata et al., 2018b).
This includes better fluency of the output and bet-
ter handling of the Out-of-Vocabulary problem.
Unlike SMT, it doesnt depend on alignment and
phrasal unit translations (Kalchbrenner and Blun-
som, 2013). On the contrary, it uses an Encoder-
Decoder approach incorporating Recurrent Neu-
ral Cells (Cho et al., 2014). As a result, when
given sufficient amount of training data, it gives
much more accurate results when compared to
SMT (Doherty et al., 2010; Vaswani et al., 2013;
Liu et al., 2014).

For the given task2, we attempted to create a MT
system that can translate sentences from Lithua-
nian to English. Since, using only SMT or NMT
models leads to some or the other disadvantages,
we tried to use both in a pipeline. This leads to an
improvement of the results over the individual us-
age of either SMT or NMT. The main idea was to
train a SMT model for translating Lithuanian lan-
guage to English. Thereafter, a test set was trans-
lated using this model. Then, a word embedding
based NMT model was trained to learn the map-
pings between the SMT output (in English) and
the gold standard data (in English).

The organizers provided the required parallel
corpora, consisting of 9,62,022 sentence pairs,
for training the translation model. Among this,
7,62,022 pairs was used to train the SMT system
and 2,00,000 pairs were used to test the SMT sys-
tem and then train the NMT system. The statistics
of the parallel corpus is depicted in 1.

The remainder of the paper is organized as fol-
lows. Section 2 will describe the methodology of
creating the SMT and the NMT model and will in-

2http://www.statmt.org/wmt19/translation-task.html
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# sentences in Lt corpus 9,62,022
# sentences in En corpus 9,62,022
# words in Lt corpus 1,16,65,937
# words in En corpus 1,56,22,488
# word vocab size for Lt corpus 4,88,593
# word vocab size for En corpus 2,27,131

Table 1: Statistics of the Lithuanian-English parallel
corpus provided by the organizers. ”#” depicts No. of.

”Lt” and ”En” depict Lithuanian and English,
respectively. ”vocab” means vocabulary of unique

tokens.

clude the preprocessing steps, a brief summary of
the encoder-decoder approach and the architecture
of our system. This will be followed by the results
and conclusion in Section 3 and 4, respectively.

2 Methodology

2.1 SMT
For designing the model we followed some stan-
dard preprocessing steps on 7,62,022 sentence
pairs, which are discussed below.

2.1.1 Preprocessing
The following steps were applied to preprocess
and clean the data before using it for training our
Statistical machine translation model. We used the
NLTK toolkit3 for performing the steps.

• Tokenization: Given a character sequence
and a defined document unit, tokenization is
the task of chopping it up into pieces, called
tokens. In our case, these tokens were words,
punctuation marks, numbers. NLTK supports
tokenization of Lithuanian as well as English
texts.

• Truecasing: This refers to the process of
restoring case information to badly-cased or
non-cased text (Lita et al., 2003). Truecasing
helps in reducing data sparsity.

• Cleaning: Long sentences ( of tokens > 80)
were removed.

2.1.2 Moses
Moses is a statistical machine translation system
that allows you to automatically train translation
models for any language pair, when trained with
a large collection of translated texts (parallel cor-
pus). Once the model has been trained, an efficient

3https://www.nltk.org/

search algorithm quickly finds the highest proba-
bility translation among the exponential number of
choices.

We trained Moses using 7,62,022 sentence pairs
provided by WMT2019, with Lithuanian as the
source language and English as the target lan-
guage. For building the Language Model we used
KenLM4 (Heafield, 2011) with 7-grams from the
target corpus. The English monolingual corpus
from WMT2019 was used to build the language
model

Training the Moses statistical MT system re-
sulted in generation of Phrase Model and Trans-
lation Model that helps in translating between
source-target language pairs. Moses scores the
phrase in the phrase table with respect to a given
source sentence and produces best scored phrases
as output.

2.2 NMT
Neural machine translation (NMT) is an approach
to machine translation that uses neural networks
to predict the likelihood of a sequence of words.
The main functionality of NMT is based on the se-
quence to sequence (seq2seq) architecture, which
is described in Section 2.2.1.

2.2.1 Sequence to Sequence Model
Sequence to Sequence learning is a concept in
neural networks, that helps it to learn sequences.
Essentially, it takes as input a sequence of tokens
(words in our case)

X = {x1, x2, ..., xn}

and tries to generate the target sequence as output

Y = {y1, y2, ..., ym}

where xi and yi are the input and target symbols
respectively.

Sequence to Sequence architecture consists of
two parts, an Encoder and a Decoder.

The encoder takes a variable length sequence
as input and encodes it into a fixed length vec-
tor, which is supposed to summarize its meaning
and taking into account its context as well. A
Long Short Term Memory (LSTM) cell was used
to achieve this. The uni-directional encoder reads
the words of the Lithuanian texts, as a sequence
from one end to the other (left to right in our case),

~ht = ~f enc(Ex(xt),~ht-1)

4https://kheafield.com/code/kenlm/
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Here, Ex is the input embedding lookup table (dic-
tionary), ~f enc is the transfer function for the LSTM
recurrent unit. The cell state h and context vector
C is constructed and is passed on to the decoder.

The decoder takes as input, the context vector C
and the cell state h from the encoder, and computes
the hidden state at time t as,

st = fdec(Ey(yt-1), st-1, ct)

Subsequently, a parametric function outk re-
turns the conditional probability using the next tar-
get symbol k.

(yt = k | y < t,X) =
1

Z
exp(outk(Ey(yt−1), st, ct))

Z is the normalizing constant,

∑
jexp(outj(Ey(yt − 1), st, ct))

The entire model can be trained end-to-end by
minimizing the log likelihood which is defined as

L = − 1

N

N∑

n=1

Tyn∑

t=1

logp(yt = yt
n, y¡t

n, Xn)

where N is the number of sentence pairs, and Xn

and yt
n are the input sentence and the t-th target

symbol in the n-th pair respectively.
The input to the decoder was one hot tensor

(embeddings at word level) of 2,00,000 English
sentences while the target data was identical, but
with an offset of one time-step ahead.

2.3 Architecture

                                            NMT

SMT (Moses
Toolkit)

Lituanian-
English

parallel Data
Training

Complete
Trained SMT

model

Lithuanian
Test Data

Translated
English

Data

Gold
Standard
English

Data

Training
CompleteHybrid Model

Lithuanian
data

Final
Translated

Data

Testing

Training

Figure 1: Architecture

2.3.1 Training
For the training purpose, 7,62,202 , prepro-
cessed, Lituanian-English sentence pairs were fed
to Moses Toolkit. This created a SMT transla-
tion model with Lithuanian as the source language
and English as the target language. Thereafter, we
had 2,00,000 Lithuanian-English sentence pairs,
from which the Lithuanian sentences were given
as input to the SMT model and it gave 2,00,000
translated English sentences as output. Now, this
2,00,000 translated English sentences and the re-
spective gold standard 2,00,000 sentences, from
the Lithuanian-English sentence pair, were given
as input to a word embedding based NMT model.
As a result, this constituted our Hybrid model.

2.3.2 Testing
For the testing purpose, 10k Lithuanian Sentences
were fed to the Hybrid model, and the output,
when checked using BLEU (Papineni et al., 2002),
resulted in an accuracy of 21.6. The training and
testing architecture is shown in Figure 1

3 Results

WMT2019 provided us with a test set of Lithua-
nian sentences in .SGM format. This file was
parsed and fed to our hybrid system. The output
file was again converted to .SGM format and sub-
mitted to the organizers. Our system garnered a
BLEU Score of 17.6, when it was scored using au-
tomated accuracy metrics. Other accuracy scores
are mentioned in Table 2.

Metric Score
BLEU 17.6

BLEU-cased 16.6
TER 0.762

BEER 2.0 0.497
CharactTER 0.718

Table 2: Accuracy scores calculated using various
autmoated evaluation metrics.

4 Conclusion

The paper presents the working of the translation
system submitted to WMT 2019 News Translation
shared task. We have used Word Embedding based
NMT on top of SMT, for our proposed system. We
have used a single LSTM layer as an encoder as
well as a decoder. As a future prospect, we plan
to use more LSTM layers in our model. We plan

285



to create another model that incrementally trains
both the SMT and NMT systems in a pipeline to
improve the translation quality.
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Abstract

We describe the work of Johns Hopkins Uni-
versity for the shared task of news transla-
tion organized by the Fourth Conference on
Machine Translation (2019). We submitted
systems for both directions of the English-
German language pair. The systems combine
multiple techniques – sampling, filtering, iter-
ative backtranslation, and continued training
– previously used to improve performance of
neural machine translation models. At sub-
mission time, we achieve a BLEU score of
38.1 for De-En and 42.5 for En-De translation
directions on newstest2019. Post-submission,
the score is 38.4 for De-En and 42.8 for En-De.
Various experiments conducted in the process
are also described.

1 Introduction

This paper describes the Johns Hopkins Univer-
sity (JHU) submission to the Fourth Conference
on Machine Translation (WMT19) news transla-
tion shared task (Bojar et al., 2019). We built
systems for both German-English and English-
German. Our attempts are based on previous
year’s submissions by Edinburgh (model archi-
tectures) (Sennrich et al., 2017), Microsoft (data
filtering) (Junczys-Dowmunt, 2018), Facebook
(backtranslation using sampling) (Edunov et al.,
2018), and JHU (continued training on previous
years’ test sets) (Koehn et al., 2018).

Our models leverage several techniques popu-
lar in neural machine translation – backtranslation,
continued training (Luong and Manning, 2015)
and sentence filtering. We use Transformer-big
(Vaswani et al., 2017) models trained on avail-
able bitext to generate backtranslations via sam-
pling. These backtranslations are then scored and
filtered using dual conditional cross-entropy and
cross-entropy difference scores, then added to up-

sampled bitext (x2). ParaCrawl1 and Common
Crawl2 are filtered similarly, and added to form
the training set for the final models. We refine
each final model by performing continued train-
ing on the test sets of previous years of WMT.
We then perform ensemble decoding using mul-
tiple models for each language. Finally, transla-
tions are reranked using separately-trained models
to obtain the final output. In the De-En direction,
scores from a language model also contribute to
reranking. In the automatic evaluation, we scored
38.1 on De-En and 42.5 on En-De at submission
time. Post-submission, we ensembled more simi-
lar models and scored 38.4 on De-En and 42.8 on
En-De.

We built our systems using the Marian and
Fairseq toolkits.

1.1 Marian

Marian3 (Junczys-Dowmunt et al., 2018) is a
purely C++11 toolkit that allows for creation and
training of neural machine translation models effi-
ciently. Most of our models were built using Mar-
ian and the sample scripts therein.

1.2 Fairseq

Fairseq4 (Ott et al., 2019) is a sequence-to-
sequence learning toolkit created with a focus on
neural machine translation. It contains implemen-
tations for various standard NMT architectures
and system components. Using this toolkit al-
lows us to use sampling as a method for inference
(Edunov et al., 2018).

1https://ParaCrawl.eu/index.html
2http://CommonCrawl.org
3https://marian-nmt.github.io/
4https://github.com/pytorch/fairseq

287



2 Motivation

Our work was motivated by three submissions to
the news translation task at WMT18. Namely,
we combined critical parts of Junczys-Dowmunt
(2018), Edunov et al. (2018) and Koehn et al.
(2018), and iterated upon them to create our sys-
tem. Junczys-Dowmunt (2018) was based off of
Edinburgh’s WMT17 submission (Sennrich et al.,
2017).

Our contributions are using filtered backtrans-
lation data and performing hyperparameter search
to improve BLEU score gain when performing
continued training using previous years’ test sets.
Models were slightly different for the En-De and
De-En directions, which is noted in the subsequent
sections.

3 Model Description

Our reproduction of Junczys-Dowmunt (2018),
follows the example at https://github.
com/marian-nmt/marian-examples/
tree/master/wmt2017-transformer,
using the same data and similar preprocessing.
The data is the parallel training bitext provided
in the WMT17 shared task, excluding Rapid.
Punctuation normalization, tokenization, corpus
cleaning and truecasing was applied using Moses
(Koehn et al., 2007). The truecaser applied to the
clean bitext was trained over the punctuation nor-
malized, tokenized, and cleaned bitext, whereas
the truecaser applied to other data, such as the data
to backtranslate, was trained on ParaCrawl. We
deviated slightly from the example and applied a
joint byte pair encoding (BPE) (Sennrich et al.,
2016) model that was trained previously over
the ParaCrawl German-English bitext to form
32,000 subword units. For the 10 million lines of
German monolingual news data to backtranslate,
any sentences longer than 100 tokens as well as
pairs with source/target length ratio exceeding
9 were discarded after BPE was applied using
Moses’ clean-corpus-n.perl.

Just as Junczys-Dowmunt (2018) replicated Ed-
inburgh’s WMT17 results for En-De and up-
graded to using the Transformer, we have repli-
cated Junczys-Dowmunt (2018)’s replication with
the Transformer-base model. The models were
trained on upsampled WMT17 bitext (x2) plus
10M lines of backtranslated German monolingual
data. The vocabulary was a joint vocabulary cre-
ated from the WMT17 bitext and contained 36000

subword units.
Our models for the replication of Junczys-

Dowmunt (2018) were trained on a single GPU.
For Transformer-base models, we added –maxi-
batch-sort src5. We additionally added an opti-
mizer delay of 4, and changed the beam size to 6
and the –normalize hyperparameter to 0.66. We
trained our Transformer-base models until con-
vergence with early stopping, which was imple-
mented based on Marian word-wise normalized
cross-entropy with a patience of 5 and validation
occurring every 5000 steps. The maximum train-
ing epochs was set to 10. Inference was done using
the model with best BLEU score during training.

Model BLEU

Microsoft Transformer-base (x1) 28.8
+Ensemble 29.4

Our Transformer-base (x1) 29.5
+Ensemble 30.2

Table 1: Reproduction of Microsoft’s replication of
the University of Edinburgh’s submission to WMT17,
using the Transformer-base model. Scores are re-
ported on newstest2017. Our single model perfor-
mance ranged from 28.3-28.6.

Next, we filtered the ParaCrawl data by remov-
ing sentence pairs that scored below e−4 based on
dual conditional cross-entropy filtering, then kept
the top 8 million based on cross-entropy differ-
ence filtering7 (Junczys-Dowmunt, 2018). This
model’s vocabulary included the WMT17 bitext
and backtranslated data. The WMT17 bitext
was also cleaned after BPE was applied for this
model. It achieved a BLEU score of 30.6 on new-
stest2017, as evidence of the benefit of adding fil-
tered ParaCrawl data.

We also replicated the backtranslation model
from Facebook’s WMT18 submission in order to
use inference by sampling. We first preprocess
data in the manner described by Edunov et al.
(2018) and then train a Transformer-big model for
backtranslation using all available bitext. We used
the same hyperparameters mentioned in the orig-
inal work. The learning rate was set to 0.0001,
which is suitable for large batches.

5https://github.com/marian-nmt/
marian-dev/issues/184

6Marcin Junczys-Dowmunt, personal communication
7Marcin Junczys-Dowmunt, personal communication

288



All models for the replication of Facebook’s
submission were trained on a single GPU, which
makes it difficult to match results achieved on
a large number of GPUs. Fairseq has a train-
ing flag to simulate training on multiple GPUs
(update-freq) which accumulates updates for a cer-
tain number of batches and applies them all at
once. Here, the flag was set to 16 (even though
it does not replicate the exact settings of the orig-
inal work). Table 2 shows BLEU scores on new-
stest2017 for our replication of Facebook AI Re-
search’s (FAIR) submission last year.

Train Set FAIR ’18 Replication

En-De Bitext 29.5 27.0
Bitext+top10 32.1 29.6

De-En Bitext - 27.8
Bitext+top10 - 30.6

Table 2: FAIR 2018 Replication

The discrepancy may be due to different batch-
ing in the original work and our replication, as
the Transformer-big is very sensitive to batch sizes
and updates. Edunov et al. (2018) used word
batching that we could not match due to mem-
ory shortage in the machines we were using. It
is likely that this difference in batch size and the
distributed versus single-machine training can ex-
plain the discrepancies in the numbers. For ideal
sampling, we desire a model with as high a BLEU
score as possible when translating using beam
search, and simultaneously as low a BLEU score
as possible when translating using sampling8.

4 System Components

Our basic training architecture was based off
Junczys-Dowmunt (2018), which itself was based
of Sennrich et al. (2017).

4.1 Transformer architectures
Using Fairseq, a Transformer-big model was
trained over all processed bitext. It was used to
translate the prepared monolingual data, employ-
ing top-10 sampling (Edunov et al., 2018). Typi-
cally, beam search is used to create backtranslated
data. Sampling from the model’s distribution to
create this data allows more room for diverse ex-
amples to be generated. Edunov et al. (2018) ar-
gue that synthetic data created using this technique

8Sergey Edunov, personal communication

sends a “stronger training signal than data gener-
ated by beam or greedy search”.

Top-10 sampling creates effective, noisy sam-
ples and it takes far less time to translate the entire
monolingual set than unrestricted sampling.

4.2 Filtering Methods

We applied dual conditional cross-entropy filter-
ing (Junczys-Dowmunt, 2018) and cross-entropy
difference filtering (Moore and Lewis, 2010;
Junczys-Dowmunt, 2018) to filter our backtrans-
lated data, ParaCrawl, and Common Crawl.
ParaCrawl and Common Crawl were combined
into a single corpus before filtering.

For both the backtranslation data as well as
ParaCrawl and Common Crawl, we first sorted
each corpus by “adequacy score”, which corre-
sponds to dual conditional cross-entropy filtering.
We then removed the lowest-scoring sentences9,
corresponding to an adequecy score threshold of
approximately e−5 for the backtranslated data, and
e−4 for ParaCrawl and Common Crawl. Next, we
sorted by “domain score”, which corresponds to
cross-entropy difference filtering, and kept the top
60% of data backtranslated from German, and the
top 80% of data backtranslated from English. For
ParaCrawl and Common Crawl, we kept the top
50% of data. This data was domain-scored for the
target domain. Thus, when the data would be used
to train an En-De model, the domain scores were
based on cross-entropy difference filtering using
models trained with German data, vice-versa for
De-En.

Translation models used in dual conditional
cross-entropy filtering were shallow RNNs trained
on a 1 million line random sample of all available
constrained bitext for 2019, excluding ParaCrawl
and Common Crawl. The “in-domain” language
model for cross-entropy difference filtering was
trained on a 1 million line random sample of
monolingual News crawl data from WMT16-18,
and the “out-of-domain” model was trained on a
random 1 million lines from the concatenation of
ParaCrawl and Common Crawl.

We discovered a small error in our in-domain
language models for cross-entropy difference fil-
tering after submission whereby we had uninten-
tionally filtered out many WMT18 German-side
monolingual sentences before creating the lan-
guage models (LMs). These LMs were used to

9Marcin Junczys-Dowmunt, personal communication
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score both backtranslation as well as ParaCrawl
and Common Crawl data.

In total, the filtering methods above resulted in:

• 10.3M lines of ParaCrawl + Common Crawl

• 20.1M lines backtranslated from German

• 13.7M lines backtranslated from English

The filtered data (backtranslations, ParaCrawl,
and Common Crawl) was concatenated with 2x
upsampled bitext. This results in a final dataset of
40.3M for En-De and 33.9M for De-En. Multiple
Transformer-base models were trained over this
data using Marian to serve as the primary trans-
lation models. A similar method was used to cre-
ate training data for reranking models, except for
these, we reused models whose backtranslations
had been generated using beam search. The filter-
ing methods described above resulted in slightly
smaller subsets of backtranslated German and En-
glish data for the reranking models. Furthermore,
the training set for the De-En reranking models
was generated by exploiting iterative backtrans-
lation (Hoang et al., 2018; Koehn et al., 2018)
along with the filtering methods described. The
adequacy score threshold used to filter backtrans-
lations generated via beam search was e−4.

4.3 Continued Training

We fine-tuned the models on newstest2015-18,
which closely mirrors the data in the test set. Due
to continued training, our models gained up to 1
BLEU point for De-En and up to 1.5 BLEU points
for En-De. Multiple such models were then en-
sembled to perform translations.

5 Training Setup

For our submissions to WMT19, we use similar
preprocessing techniques as described for the re-
production of Junczys-Dowmunt (2018), but this
time using WMT19 bitext. As a result, 5.2M sen-
tences were obtained. For our submission, we ap-
ply Moses’ clean-corpus-n.perl to the bi-
text before use.

For backtranslation, we ran a similar prepro-
cessing method on WMT18 News crawl monolin-
gual data. Any sentences with greater than 100
BPE tokens were discarded, leaving us with 34M
German monolingual and 24M English monolin-
gual sentences.

Similar to (Sennrich et al., 2017) and (Junczys-
Dowmunt, 2018), our training regimen can be di-
vided into these steps:

• Train a Transformer-big model for backtrans-
lation with Fairseq using the clean bitext.

• Backtranslate monolingual data from
WMT18 using top-10 sampling.

• Filter backtranslations using domain and ad-
equacy scores.

• Use backtranslated data, upsampled bitext,
and filtered ParaCrawl + Common Crawl to
train Transformer-base translation models.

• Perform continued training.

• Ensemble decode using translation models.

• Rerank translations using Transformer-base
translation models for both language direc-
tions, and a language model for De-En.

Reranking models were trained similar to
Junczys-Dowmunt (2018) and Sennrich et al.
(2017). Our training recipe is as follows:

• Train a shallow RNN model with Marian for
backtranslation using clean bitext

• Backtranslate News crawl monolingual data
from WMT18 using beam search

• Filter backtranslations using domain and ad-
equacy scores.

• Use backtranslated data, upsampled bitext,
and filtered ParaCrawl + Common Crawl to
train Transformer-base reranking models.

• Perform continued training.

Since we reused previously-trained models for
reranking, the De-En reranking models had
additionally undergone filtered iterative back-
translation. The secondary model for backtrans-
lation was a Transformer-base model in the En-De
language direction, trained on the upsampled bi-
text plus the filtered WMT18 News crawl back-
translation data produced by the shallow RNN in
the De-En direction. Backtranslations were pro-
duced using beam search by the secondary model,
concatenated with 2x the clean bitext and the fil-
tered ParaCrawl + Common Crawl, and used to
train Transformer-base De-En reranking models.
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Figure 1: System Architecture. For peculiarities in
models of each direction, see Sections 5.1 and 5.2.

BLEU (Papineni et al., 2002) was calculated us-
ing the multi-bleu-detok.perl script in Moses.

An overview of our architecture can be found in
Figure 1. In the figure, filtered data is comprised
of filtered backtranslations, and filtered ParaCrawl
and Common Crawl data. All models were trained
on a single NVIDIA GeForce GTX 1080Ti GPU.

5.1 English→German
Following the training regimen described above,
we first train a Transformer-big model over the
original bitext. Hyperparameters used here are the
same as the ones used when replicating FAIR. This
is used to perform backtranslation of monolingual
German data via sampling. The generated data
was filtered to the top 60% using both domain and
adequacy scoring as described in Section 4.2, be-
fore being concatenated with twice the bitext and
the filtered ParaCrawl and Common Crawl. Fi-
nally, this is used to train two Transformer-base
models which are continued trained. We run con-
tinued training for 5 epochs at an increased learn-
ing rate of 0.001, without the use of a learning rate
scheduler. These models are ensembled and used
to generate translations which are finally reranked
by the reranking models.

For reranking, we replicate the same models

mentioned above, except that backtranslations are
generated using standard beam search. We retain
the same percentage of the backtranslated data.
Four such models are created and undergo contin-
ued training as described above.

For this direction of the language pair, we cor-
rected the quotation marks of the German transla-
tions in a post-processing step.

5.2 German→English

Translation and reranking models for this direction
of the language pair were trained the similarly as
En-De. We retain the top 80% of the backtrans-
lations by domain score as described in Section
4.2; the ones generating using sampling are used
to train the primary translation models, whereas
the ones generatd by beam search are used to train
the reranking models. We train three Transformer-
base translation models that we adapt to previous
years’ test sets. They run for 5 epochs at an in-
creased learning rate of 0.0005, without the use of
a learning rate scheduler. These models are then
ensembled to produce a 12-best list of translations.

For reranking in this language direction, we
trained our reranking models using iterative back-
translation. We first trained a De-En backtransla-
tion model and used beam search to generate back-
translations for monolingual data from WMT18.
The filtered backtranslation data was used along
with upsampled bitext to train a second-round En-
De backtranslation model. Beam search back-
translations generated using this model, along
with clean bitext, ParaCrawl and Common Crawl
was used to train the final reranking models. Three
of these models were used as the reranking models
in conjuction with the three primary models men-
tioned earlier.

A Transformer-base language model trained on
100M lines of English monolingual data from
WMT16-18 also contributed to rescoring the
translations for this language direction.

6 Results and Evaluation

A critical component of our system is contin-
ued training (CT). To demonstrate the effective-
ness of this method, we continue training using
newstest2014-18, excluding newstest2017, using
the learning rates mentioned in the previous sec-
tion. The scores presented in Table 3 are reported
on newstest2017.

Ensembling multiple models is a common way
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System Before CT CT CT-Ensemble

De-En 37.3 38.3 39.0 (x3)
En-De 30.8 32.3 32.6 (x2)

Table 3: Effect of continued training and ensembling,
reported on newstest2017.

to improve performance of a NMT system. In Ta-
ble 3, we observe a +0.74 improvement when en-
sembling 3 models (De-En) and +0.38 when en-
sembling 2 models (En-De).

M1 M2 M3 M1+M3 Ensemble (all)

30.8 29.7 30.8 32.6 32.3

Table 4: Results of ensembling En-De models, re-
ported on newstest2017. Ensembling with the lower-
performing model #2 (M2) degrades performance ver-
sus ensembling only models #1 and #3 (M1 and M3).

Table 4 shows the effects of ensembling En-De
models with identical training setups, labeled M1,
M2, and M3. M2 converged earlier than expected,
and we observe that ensembling with this lower-
performing model causes lower BLEU score than
just ensembling the better performing models. As
such, we exclude M2 from the final submission.

System Our Submission Highest Score

De-En 38.1 42.8 (MSRA)
En-De 42.5 44.9 (MSRA)

Table 5: BLEU-cased score on newstest2019.

For submission, we perform continued train-
ing using newstest2014-18 and ensemble multiple
models with the same vocabulary for translation.
We then employ reranking models on the 12-best
lists produced from the ensembles.

6.1 Post-Submission Work
We built additional En-De and De-En translation
models using the same training regimen described
in this work. This allowed use to ensemble more
models to boost performance. Results are seen
in Table 6. Each post-submission ensemble was
comprised of four models.

7 Conclusion

We began by replicating various top-scoring sub-
missions from WMT 2018 (Bojar et al., 2018):

System Submission Score Final Score

De-En 38.1 38.4
En-De 42.5 42.8

Table 6: BLEU-cased score on newstest2019.

Microsoft (Junczys-Dowmunt, 2018) and FAIR
(Edunov et al., 2018). We were unable to match all
the numbers from latter, perhaps due to our limited
compute and differing hyperparameters.

Our system is built on various components from
these submissions and JHU’s 2018 submission
(Koehn et al., 2018). We use clean bitext to
train a backtranslation model (Transformer-big)
and translate monolingual data using sampling in-
ference. We filter the backtranslations, ParaCrawl,
and Common Crawl, according to the domain and
adequacy scores described in Junczys-Dowmunt
(2018). We concatenate the filtered data with
upsampled clean bitext to train Transformer-base
translation models, and perform continued train-
ing over previous years’ test sets.

An ensemble of such models are used to de-
code the test set, and translations are reranked us-
ing reranking models (Transformer-base) that are
trained on a concatenation of upsampled bitext
and filtered beam search backtranslated data. The
reranking models also undergo equivalent contin-
ued training. On the De-En side, we also use a lan-
guage model trained on 100 million monolingual
English sentences to this effect. At the time of sub-
mission, we achieve a BLEU score of 38.1 for De-
En and 42.5 for En-De. Our post-submission sys-
tem consisting of 4-model ensembles scores 38.4
for De-En and 42.8 for En-De.

It is likely that effective training of
Transformer-big models would have further
boosted scores for our system, had we been able
to do so on our single-GPU setup in time for this
year’s shared task.
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Abstract

This paper presents the NICT’s participation
in the WMT19 unsupervised news translation
task. We participated in the unsupervised
translation direction: German-Czech. Our
primary submission to the task is the result
of a simple combination of our unsupervised
neural and statistical machine translation
systems. Our system is ranked first for
the German-to-Czech translation task, using
only the data provided by the organizers
(“constraint”), according to both BLEU-cased
and human evaluation. We also performed
contrastive experiments with other language
pairs, namely, English-Gujarati and English-
Kazakh, to better assess the effectiveness of
unsupervised machine translation in for distant
language pairs and in truly low-resource
conditions.

1 Introduction

This paper describes the unsupervised neural
(NMT) and statistical machine translation (SMT)
systems built for the participation of the National
Institute of Information and Communications
Technology (NICT) to the WMT19 shared News
Translation Task. Only one translation direction
was proposed in the unsupervised track of task:
German-to-Czech (de-cs). Our submitted systems
are constrained, in other words, we used only the
provided monolingual data for training our models
and the provided parallel data for development,
i.e., validation and tuning. We trained unsu-
pervised NMT (UNMT) and unsupervised SMT
(USMT) systems, and combined them through
training a pseudo-supervised NMT model with
merged pseudo-parallel corpora and n-best list

∗Equal contribution in alphabetical order. This work was
conductd when Haipeng Sun visited NICT as an internship
student.

†Corresponding author.

reranking using different informative features as
proposed by Marie and Fujita (2018a). This
simple combination method performed the best
among unsupervised MT systems at WMT19 by
BLEU 1 and human evaluation (Bojar et al., 2019).
In addition to the official track, we also present
the unsupervised systems for English-Gujariti and
English-Kazakh for contrastive experiments with
much more distant language pairs.

The remainder of this paper is organized
as follows. In Section 2, we introduce the
data preprocessing. In Section 3, we describe
the details of our UNMT, USMT, and pseudo-
supervised MT systems. Then, the combination of
pseudo-supervised NMT and USMT is described
in Section 4. Empirical results produced with our
systems are shown and analyzed in Section 6 and
7, and Section 8 concludes this paper.

2 Data and Preprocessing

2.1 Data

As monolingual training data to train our de-
cs UNMT and USMT systems, we randomly
extracted 50 million sentences from WMT
monolingual News Crawl datasets.2 Bilingual
development data (16.6K sentences) from “last
years’ parallel dev and test sets”3 were also
officially provided “for bootstrapping” the UNMT
systems.4 Among the large number of possible
approaches for exploiting the development data,
we only used it for tuning USMT, validate UNMT
models, train a reranking system, and finally to
fine-tune our pseudo-supervised NMT systems.

1http://matrix.statmt.org/matrix/
systems_list/1897

2http://data.statmt.org/news-crawl/
3http://data.statmt.org/wmt19/

translation-task/dev.tgz
4http://www.statmt.org/wmt19/

translation-task.html
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De-Cs:Translation

Pseudo-supervised MT

De monolingual data

{XN(Yi ),Yi}
{Xi}

{Yi}

Cs monolingual data

{XS(Yi ),Yi}

Pseudo-parallel corpora

UNMT

USMT

Figure 1: Our training framework. UNMT can generate the pseudo-parallel corpora {XN (Yi), Yi}; USMT
can generate the pseudo-parallel corpora {XS(Yi), Yi}. These pseudo-parallel corpora were merged to train the
pseudo-supervised MT system.

2.2 Tokenization, Truecasing, and Cleaning

We used Moses tokenizer (Koehn et al., 2007)5

and truecaser for both languages. The truecaser
was trained on one million tokenized lines
extracted randomly from the monolingual data.
Truecasing was then performed on all the
tokenized data. For cleaning, we only applied
the Moses script clean-corpus-n.perl to
remove lines in the monolingual data containing
more than 50 tokens, and replaced characters
forbidden by Moses. Note that we did not
perform any punctuation normalization.

3 Systems

Our entire system is illustrated in Figure 1.

3.1 Unsupervised NMT

To build competitive UNMT systems, we chose to
rely on the Transformer-based UNMT initialized
by a pre-trained cross-lingual language model
(Lample and Conneau, 2019) since it had been
shown to outperform UNMT initialized with word
embeddings, in quality and efficiency. In order
to limit the size of the vocabulary of the UNMT
model, we segmented tokens in the training data
into sub-word units via byte pair encoding (BPE)
(Sennrich et al., 2016b). We determined 60k BPE
operations jointly on the training monolingual
data for German and Czech, and used a shared
vocabulary for both languages with 60k tokens
based on BPE.

We used 50M monolingual corpora to train a

5https://github.com/moses-smt/
mosesdecoder

--lgs ’cs-de’ --mlm steps
’cs,de’ --emb dim
1024 --n layers 6
--n heads 8 --dropout 0.1
--attention dropout 0.1
--gelu activation true
--batch size 32 --bptt 256
--optimizer adam,lr=0.0001

Table 1: Parameters for training XLM.

cross-lingual language model using XLM6 in order
to pre-train the UNMT model. We used the
accumulate gradient method to train the language
model on 1 GPU7 to solve the out-of-memory
problem caused by big batch. The accumulate size
was set to 8. The other parameters for training
the language model were set as listed in Table
1. Then we trained a Transformer-based UNMT
model with the pre-trained cross-lingual language
model using XLM toolkit.

The auto-encoder of UNMT architecture cannot
learn useful knowledge without some constraints;
it would merely become a copying task that learns
to copy the input words one by one (Lample
et al., 2018). To alleviate this issue, we utilized a
denoising auto-encoder (Vincent et al., 2010), and
added noise in the form of random token swapping
in input sentences to improve the model learning
ability (Hill et al., 2016; He et al., 2016).

The denoising auto-encoder acts as a language
model that has been trained in one language and

6https://github.com/facebookresearch/
XLM

7NVIDIA @ Tesla @ P100 16Gb.
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--lgs ’cs-de’ --ae steps
’cs,de’ --bt steps
’cs-de-cs,de-cs-de’
--word shuffle 3
--word dropout 0.1
--word blank 0.1 --lambda ae
’0:1,100000:0.1,300000:0’
--encoder only false
--emb dim 1024 --n layers
6 --n heads 8 --dropout
0.1 --attention dropout
0.1 --gelu activation
true --tokens per batch
2000 --batch size 32
--bptt 256 --optimizer
adam inverse sqrt,beta1=0.9,
beta2=0.98,lr=0.0001
--eval bleu true

Table 2: Parameters for training UNMT.

does not consider the final goal of translating
across different languages. Therefore, back-
translation (Sennrich et al., 2016a) was adapted
to train a translation system in a true translation
setting based on monolingual corpora. The
pseudo-parallel sentence pairs generated by the
model at the previous iteration is used to train the
new translation model.

We used 50M monolingual corpora to train the
UNMT model for 50000 iterations. The de-cs
UNMT system was trained on 4 GPUs, with the
parameters listed in Table 2.

3.2 Unsupervised SMT

Previous work has shown that USMT performs
similarly or better than UNMT (Artetxe et al.,
2018c). Marie and Fujita (2018b) has also shown
that USMT can be used to train a standard
NMT system to obtain significant improvements
in translation quality while the whole training
framework remains unsupervised.

We built USMT systems using a framework
similar to the one proposed in Marie and Fujita
(2018b). The first step of USMT consists in
inducing a phrase table from the monolingual
corpora. We first collected phrases of up to
six tokens from the monolingual News Crawl
corpora using word2phrase.8 As phrases,

8https://code.google.com/archive/p/
word2vec/

we also considered all the token types in the
corpora. Then, we selected the 300k most frequent
phrases in the monolingual corpora to be used
for inducing a phrase table. All possible phrase
pairs are scored, as in Marie and Fujita (2018b),
using bilingual word embeddings (BWE), and the
300 target phrases with the highest scores were
kept in the phrase table for each source phrase.
In total, the induced phrase table contains 90M
phrase pairs. BWE of 512 dimensions were
obtained using word embeddings trained with
fastText9 and aligned in the same space using
unsupervised Vecmap (Artetxe et al., 2018b)10

for this induction. In total four scores, to be used
as features in the phrase table, for each of these
phrase pairs were computed to mimic phrase-
based SMT: forward and backward phrase and
lexical translation probabilities. Then, the phrase
table was plugged into a Moses system that was
tuned on the development data using KB-MIRA.
We performed four refinement steps to improve
the system using at each step 3M synthetic parallel
sentences generated by the forward and backward
translation systems, instead of using only either
forward (Marie and Fujita, 2018b) or backward
translations (Artetxe et al., 2018c). We report on
the performance of the systems obtained after the
fourth refinement step.

3.3 Pseudo-supervised MT
As shown in Marie and Fujita (2018b), pseudo-
parallel data generated by unsupervised MT can
be directly used as training data to train a standard
NMT system with a significantly better translation
quality. We adopted the same strategy for our
unsupervised systems. We generated pseudo-
parallel corpora with our USMT and UNMT
systems. Then we trained a Transformer-based
NMT model (Vaswani et al., 2017) on these
pseudo-parallel corpora. Since the pseudo-parallel
corpora generated by USMT and UNMT are of
very different nature, and that USMT and UNMT
perform similarly in translation quality, we can
expect that the complementarity of both data
will be useful to train a better NMT system in
contrast to using only data generated either by
USMT or UNMT. Our synthetic parallel corpora
for training this system was composed of 6M
sentence pairs generated by USMT and 20M

9https://github.com/facebookresearch/
fastText

10https://github.com/artetxem/vecmap
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--type transformer
--max-length 100
--transformer-dim-ffn 4096
--dim-vocabs 50000 50000
-w 12000 --mini-batch-fit
--valid-freq 5000 --save-freq
5000 --disp-freq 500
--valid-metrics ce-mean-words
perplexity translation
--quiet-translation
--sync-sgd --beam-size
12 --normalize=1
--valid-mini-batch 16
--keep-best --early-stopping
20 --cost-type=ce-mean-words
--enc-depth 6 --dec-depth
6 --tied-embeddings
--transformer-dropout
0.1 --label-smoothing
0.1 --learn-rate 0.0003
--lr-warmup 16000
--lr-decay-inv-sqrt
16000 --lr-report
--optimizer-params 0.9
0.98 1e-09 --clip-norm 5
--exponential-smoothing

Table 3: Parameters for training Marian.

sentence pairs generated by UNMT. To train
this pseudo-supervised NMT (PNMT) system, we
chose Marian (Junczys-Dowmunt et al., 2018)11

since it supports state-of-the-art features and is one
of the fastest NMT frameworks publicly available.
Specifically, the pseudo-supervised NMT system
for de-cs was trained on 4 GPUs for 300,000
iterations, with the parameters listed by Table 3.

4 Combination of PNMT and USMT

Our primary submission for the task was the
result of a simple combination of PNMT and
USMT similarly to what we did last year
in our participation to the supervised News
Translation Task of WMT18 (Marie et al., 2018).
As demonstrated by Marie and Fujita (2018a),
and despite the simplicity of the method used,
combining NMT and SMT makes MT more
robust and can significantly improve translation
quality, even though SMT greatly underperforms

11https://marian-nmt.github.io/

NMT. Following Marie and Fujita (2018a), our
combination of PNMT and USMT works as
follows.

4.1 Generation of n-best Lists

We first independently generated the 100-best and
12-best translation hypotheses12 with N PNMT
models, independently trained, and also with the
ensemble of these N PNMT models. We also
generated 100-best translation hypotheses with
our USMT system. We then merged all these lists
generated by different systems, without removing
duplicated hypotheses, which resulted in a list of
(N+2)∗100+(N+1)∗12 translation hypotheses
for each source sentence. Finally, we rescored
all the hypotheses in the list with a reranking
framework using features to better model the
fluency and the adequacy of each hypothesis.
This method can find a better hypothesis in these
merged n-best lists than the one-best hypothesis
originated by the individual systems.

4.2 Reranking Framework and Features

We chose KB-MIRA (Cherry and Foster, 2012)
as a rescoring framework and used a subset of
the features proposed in Marie and Fujita (2018a).
All the following features we used are described
in details by Marie and Fujita (2018a). It
includes the scores given by N PNMT models
independently trained. We computed sentence-
level translation probabilities using the lexical
translation probabilities learned by mgiza during
the training of our USMT system. We also
used two 4-gram language models to compute
two features for each hypothesis. One is the
same language model used by our USMT system
while the other is a small model trained on all
the development data from which we removed
the data used to train the reranking framework.
To account for hypotheses length, we added the
difference, and its absolute value, between the
number of tokens in the translation hypothesis and
the source sentence.

The reranking framework was trained on n-best
lists generated by decoding the first 3k sentence
pairs of the development data that we also used to
validate the training of UNMT and PNMT systems
and to tune the weights of USMT models.

12We generated n-best with different beam size for
decoding since translation quality can decrease with larger
beam size (Koehn and Knowles, 2017).

297



# Methods de-cs

1 Single UNMT system 15.5
2 Single USMT system 11.1

3 Single NMT system pseudo-supervised by UNMT 15.9
4 Single NMT system pseudo-supervised by USMT 15.3
5 Single Pseudo-supervised MT system 16.2
6 Ensemble Pseudo-supervised MT system 16.5
7 Re-ranking Pseudo-supervised MT system 17.0

8 Fine-tuning Pseudo-supervised MT system 18.7
9 Fine-tuning Pseudo-supervised MT system + fixed quotes 19.6
10 Fine-tuning + re-ranking Pseudo-supervised MT system + fixed quotes 20.1

Table 4: BLEU scores of UMT. #10 is our primary system submitted to the organizers.

5 Fine-tuning and Post-processing

Fine-tuning (Luong and Manning, 2015; Sennrich
et al., 2016a) is a conventional method for NMT
on low-resource language pairs and domain-
specific tasks (Chu et al., 2017; Chu and Wang,
2018; Wang et al., 2017a,b). The PNMT
model only relying on monolingual corpora was
further trained on the parallel development data
to improve translation performance. Finally, fixed
quotes method was applied to the final Czech
translation.

6 Results on the German-to-Czech Task

The results of our systems computed for the
Newstest2019 test set are presented in Table 4.
As Table 4 shows, UNMT systems significantly
outperformed our best USMT system according
to BLEU. However, compared with pseudo-
supervised MT model trained only on pseudo-
parallel corpora generated by either UNMT
(#3) or USMT (#4), merging pseudo-parallel
corpora generated by UNMT and USMT (#5)
can improve translation performance. Reranking
Moses 100-best hypotheses using PNMT models
(#7) significantly improved the translation quality.
Another methods such as ensemble, fine-tuning,
and fixed quotes also could improve translation
performance.

7 Contrastive Experiments on
English-Gujarati and English-Kazakh

To obtain a better picture of the feasibility of
unsupervised MT, we also set up unsupervised MT
for two truly low-resource and distant language

pairs: English-Gujarati (en-gu) and English-
Kazakh (en-kk).13 As shown by previous work
(Søgaard et al., 2018), we can expect unsupervised
word embeddings to be challenging to train
for distant language pairs, and subsequently to
obtain unsupervised MT systems with a very poor
translation quality.

Note that for these experiments, we did not
train any UNMT systems. We present results
only for USMT and NMT pseudo-supervised by
USMT. Since training unsupervised BWE for
these language pairs is particularly challenging,
we also present configurations using supervised
BWE trained using the approach described by
Artetxe et al. (2018a) on a bilingual word lexicon
extracted from the development data provided by
the organizers. Our configuration of USMT and
PNMT are the same as for de-cs.

As English training data, we only used all
the provided News Crawl corpora as they are
large in-domain corpora. For Gujarati and
Kazakh, we used Common Crawl and News
Crawl corpora, in addition to the provided News
Commentary corpus for Kazakh. Statistics of the
data preprocessed with Moses are presented in
Table 5.

Our results are presented in Table 6. In contrast
to what we observed for de-cs, unsupervised BWE
are too noisy to be used in phrase table induction
for USMT. For both en-gu and en-kk, we obtained
unexploitable results confirming the conclusions
of Søgaard et al. (2018).

Switching to supervised BWE improved sig-
nificantly the translation quality of USMT but

13These language pairs were proposed for the supervised
News Translation Task.
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Corpus
en-gu en-kk

en gu en kk

Monolingual
#lines 187.50M 3.39M 187.50M 9.03M

#tokens 4.39B 50.52M 4.39B 141.06M

Development
#lines 1,998 1,998 2,066 2,066

#tokens 42,264 38,963 53,451 42,910

Table 5: Statistics of preprocessed monolingual and development data used for en-gu and en-kk.

System
en-gu en-kk

→ ← → ←
Unsupervised BWE USMT < 1.0 < 1.0 < 1.0 < 1.0

Supervised BWE
USMT 5.7 6.2 1.4 4.7
Pseudo-supervised NMT 8.1 8.8 2.1 5.7

Supervised NMT 10.5 17.2 6.4 26.2

Table 6: BLEU scores of our USMT and NMT pseudo-supervised by USMT systems. Note that we did not conduct
experiments with pseudo-supervised NMT using USMT initialized with unsupervised BWE as the generated
pseudo-parallel data were not useful to train a NMT system at all. The results of our supervised systems (last
row) submitted for the News Translation Task are presented for comparison.

remains below 10 BLEU points in all our
experiments. Compared with our best supervised
system, the difference in translation quality
appears very large especially when translating into
English.

These results show that while we obtained a
reasonable translation quality for de-cs, unsu-
pervised MT is far from being useful for real
world applications, i.e., truly low-resource distant
language pairs. Training useful bilingual weakly-
supervised/unsupervised BWE for distant lan-
guage pairs remains one of the main challenges.

8 Conclusion

We participated in the unsupervised translation
direction and compared USMT and UNMT per-
formances. We achieved the best results through
the combination of both approaches thanks to an
NMT framework pseudo-supervised by UNMT
and USMT. We also showed that reranking of the
n-best lists in this unsupervised settings can bring
additional improvements in translation quality.
While we achieved a reasonable translation quality
for German-to-Czech, a language pair for which
there exists plenty of bilingual data, our results for
English-Gujarati and English-Kazakh highlighted
that unsupervised machine translation is still
very far from exploitable for low-resource distant

language pairs.
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Abstract 

This paper describes the PROMT 

submissions for the WMT 2019 Shared 

News Translation Task. This year we 

participated in two language pairs and in 

three directions: English-Russian, English-

German and German-English. All our 

submissions are MarianNMT-based neural 

systems. We use significantly more data 

compared to the last year. We also present 

our improved data filtering pipeline. 

1 Introduction 

This paper provides an overview of the PROMT 

submissions for the WMT 2019 Shared News 

Translation Task. This year we participate with 

neural MT systems for the second time. We 

participate in two language pairs and in three 

directions (English-Russian, English-German and 

German-English). We describe our data 

preparation pipelines, models training setups and 

present the results on the newstest sets. 

The paper is organized as follows: Section 2 is 

a brief overview of the submitted systems. Section 

3 describes the data preparation, preprocessing 

and statistics in detail. Section 4 provides a 

detailed description of the systems. In Section 5 

we present and discuss the results. Section 6 

concludes the paper. 

2 Systems overview 

We submitted three systems based on the 

MarianNMT (Junczys-Dowmunt et al., 2018) 

toolkit: English-Russian, English-German and 

German-English. All systems are unconstrained 

(we use the allowed data, private data and 

publicly available unconstrained data like 

OpenSubtitles). The English-German and 

German-English have the same architecture. The 

English-Russian system is slightly different as we 

use separate vocabularies. 

3 Data 

We use all data provided by the WMT organizers, 

private in-house parallel data and other publicly 

available data, mainly from the OPUS website 

(Tiedemann, 2012). 

The Tatoeba sets as our validation sets and the 

newstest2018 is our test set. The reason why we 

choose the Tatoeba corpus for validation is that 

we aim at building general-domain (and not just 

news-domain) models. Besides, the Tatoeba 

corpus is available for many language pairs 

beyond the scope of the WMT Translation Task. 

We select a small subset from training data and 

mix it with monolingual news with its back-

translations for fine-tuning. This will be described 

in detail in Section 3.4 below. 

3.1 Data filtering 

There are several stages in our data filtering 

pipeline. The statistics for the final training data 

are shown in Table 1 (English-Russian) and Table 

2 (English-German). 

Basic filtering 

This includes some simple length-based and 

source-target length ratio-based heuristics, 

removing tags, lines with low amount of 

alphabetic symbols etc. We also remove lines 

which appear to be emails or web-addresses. In 

addition, we remove lines with rare words from 

the Bookshop and the OpenSubtitles corpora 

(using frequency lists built on large monolingual 

corpora including all monolingual data from 

WMT, private data and Wikipedia dumps). 
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Deduplication 

We remove duplicate translations and keep only 

the most frequent translation for the source 

sentence if it repeats more than two times. This 

procedure is applied to some corpora, e.g. 

OpenSubtitles and MultiUN which contain a lot of 

various (and often incorrect) translations for 

common phrases. For example, the English phrase 

‘No.’ is encountered almost 100k times in the 

source side of the English-Russian OpenSubtitles 

corpus. It has more than 78k unique translations, 

second most popular among which is ‘Да.’ (‘Yes.’ 

in Russian). 

Language detection 

The algorithm is a fairly simple ensemble of three 

tools: pycld2 1 , langid (Lui and Baldwin, 

2012), langdetect2. 

Parallel segments filtering 

We apply this step to low-quality data (basically, 

OpenSubtitles, CommonCrawl, ParaCrawl, 

Bookshop). We use Hunalign (Varga et al., 

2005) to obtain basic sentence pair scores. We 

also extract about 30 additional features from 

sentence pairs and apply inhouse classifier to 

discard unparallel sentence pairs. It is a simple 

SVM classifier, and the features include source 

and target lengths in tokens, average token length 

in symbols, number of punctuation symbols in 

                                                           
1
 https://pypi.org/project/pycld2/ 

2
 https://pypi.org/project/langdetect/ 

source and target etc. We do not use any 

categorical features. 

Data filtering using language models 

As last year, we use the modified bilingual 

Moore-Lewis data selection algorithm (Axelrod et 

al., 2011). However, this time we apply it all 

training corpora. We use the English and Russian 

news 2018 corpora from statmt.org as the in-

domain corpora. The idea is that the news corpora 

can be seen as high quality general-domain data. 

So using them in this scenario allows to remove 

some noisy outlying data. 

We also substitute numbers and alphanumeric 

sequences with placeholders and sort the data 

according to language models scores. We use 

Levenshtein distance (set to a rather low 

threshold) to remove similar sentence pairs with 

similar scores. We regard such sentence pairs as 

useless (or even harmful) duplicates which can 

prevent our translation models from better and 

faster converging. We remove up to 15% of data 

using this procedure. 

3.2 Data preprocessing 

BPE 

We use byte pair encoding (BPE) (Sennrich et al., 

2016b) to encode our data to subword units. This 

year we use a different preprocessing scheme 

compared to the last year’s systems. We noticed 

Corpus  #sent  #tokens 

EN  

#tokens 

DE  

ParaCrawl 20.3 424.8 403.4 

OpenSubtitles 10.5 97.3 91.1 

Private data 9.2 101.3 94.5 

DGT 3.2 72.9 55.4 

Europarl 2.0 57.7 54.7 

CommonCrawl 1.4 31.4 29.9 

EUBookshop 1.3 28.6 27.1 

Rapid 1.3 22.9 22.0 

EMEA 1.2 12.0 11.5 

JRC-Acquis 0.7 34.1 30.7 

NewsCommentary 0.3 6.2 6.4 

MultiUN 0.2 6.2 5.7 

TED Talks 0.1 2.4 2.3 

ECB 0.1 3.1 2.8 

Total 51.8 900.9 837.5 

Table 2: Statistics for the filtered parallel English-

German data in millions of sentences (#sent) and 

tokens. 

 

 

Corpus  #sent  #tokens 

EN  

#tokens 

RU  

MultiUN 14.9 440.6 415.1 

Private data 12.4 120.1 96.2 

OpenSubtitles 10.9 104.9 90.5 

ParaCrawl 3.0 64.3 55.9 

WikiPedia 1.0 21.2 18.7 

Yandex corpus 0.6 16.8 15.4 

CommonCrawl 0.4 10.3 9.5 

NewsCommentary 0.3 6.2 5.9 

TED Talks 0.1 2.4 2.1 

Total 43.6 786.8 709.3 

Table 1: Statistics for the filtered parallel English-

Russian data in millions of sentences (#sent) and 

tokens. 
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that the BPE algorithm from the OpenNMT toolkit 

(Klein et al., 2017) gives better results compared 

to the default script learn_bpe.py from the 

MarianNMT toolkit. We see two reasons for that: 

1) the BPE merge operations are learnt to 

distinguish subword units at the beginning, in the 

middle and at the end of the word and 2) the BPE 

merge operations can be learnt in case-insensitive 

mode (OpenNMT architecture supports features, 

so a feature can be used to handle case). Case-

insensitive BPE model is very useful when 

dealing with a lot of  different and sometimes 

noisy data (like, for example, OpenSubtitles 

where uppercase is often used to communicate 

emphasis). This is also crucial when dealing with 

legal and financial data where specific terms are 

written in title case or uppercase. News headlines 

are also often written in title case or uppercase. 

As MarianNMT does not support features yet, 

we decided to perform a ‘trick’ similar to the one 

described in (Tamchyna et al., 2017): instead of 

using a feature we insert special tokens <C> and 

<U> after sequences in title case or uppercase. For 

example, a source sentence 

World Championships 2017: Neil Black praises 

Scottish members of Team GB 

is converted to 

world <C> championships <C> 2017 : neil 

<C> black <C> pra@@ ises scottish <C> 

members of team <C> gb <U> 

We do not use truecaser in our pipeline as it is 

redundant. All data is tokenized using the Moses 

toolkit (Koehn et al., 2007) tokenizer with 

aggressive tokenization, then the OpenNMT BPE-

splitter is applied, after that we convert the case 

feature to separate tokens. 

English-Russian system 

Same as last year, we train the model with 

separate vocabularies due to the Cyrillic nature of 

Russian alphabet. Therefore we use separate BPE 

models for source and target with 35k and 45k 

merge operations respectively. We experimented 

with shared vocabulary following the procedure 

for the English-Russian pair described in 

(Sennrich et al., 2016b) but did not get 

improvements. This year, however, we train much 

smaller BPE models as we noticed that our NMT 

systems do not handle large vocabularies (70-90k) 

well and generate many OOVs in the output. 

English-German and German-English 

systems 

We train a joint BPE model for the English-

German pair with 40k merge operations. We use a 

shared vocabulary and tie all embeddings of the 

translation models. The human parallel data for 

the German-English system is exactly the same as 

for the English-German system, the two systems 

only have different synthetic back-translated data. 

3.3 Synthetic data 

There are two types of additional synthetic 

training data described in detail below. The final 

size of the training data for the submitted systems 

is roughly 4 times the total size of the filtered data 

in Tables  and 2. 

Back-translated data 

Back-translations (Sennrich et al., 2016a) are a 

common way to improve NMT models quality. As 

we aim at building general-domain models, we 

use data from Wikipedia dumps and news from 

statmt.org. We shuffle the Wikipedia data and 

randomly select a subset of appropriate size. The 

selected Wikipedia subset and the news subset are 

roughly equal in size. The size of the whole 

corpus used for back-translation is approximately 

equivalent to the size of human training data. 

For the English-Russian pair we train a baseline 

Russian-English transformer model using the data 

prepared for the last year’s WMT news task 

(Molchanov, 2018). For the German-English we 

also trained a transformer model using some data 

from OPUS as is: Europarl, DGT, JRC-Acquis, 

EMEA, ECB, NewsCommentary, TED2013, 

GlobalVoices. We use the Tatoeba corpus as our 

validation set in both cases. We use our final 

English-German model to obtain back-translations 

for the German-English model. 

The trained systems were used to back-translate 

the 2017, 2018 news corpora from statmt.org and 

data selected from Wikipedia in Russian, German 

and English respectively. 

Replicated data with unknown words 

We apply the technique described in (Pinnis et al., 

2017) to create a synthetic parallel corpus. The 

procedure includes the following steps: first, we 

perform word-alignment of our initial parallel 

training corpus using the fast-align  tool (Dyer et 

al., 2013). Then, we randomly replace from one to 
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three unambiguously (one-to-one) aligned tokens 

in both source and target parallel sentences with 

the special <UNK> placeholder. The same 

pipeline is applied to both the initial and back-

translated data. We train our models to reproduce 

the <UNK> placeholder in various contexts and 

use this feature for handling named entities 

described in Section 4.2 below. 

3.4 Data for fine-tuning 

We again apply the modified bilingual Moore-

Lewis data selection algorithm. We use the news 

2018 corpora as our in-domain data. We select 1M 

sentences from the human training data 

(excluding MultiUN and OpenSubtitles). We also 

randomly select 1M sentences from the news 

2018 corpus with their back-translations. The 

same procedure is applied to both English-

Russian and English-German pairs. 

4 Systems architecture 

This section describes the trained systems in 

detail. We train transformer (Vaswani et al., 2017) 

models for all submitted systems. We use the 

recipe available at the MarianNMT website
3
. The 

system configuration, hyperparameters and 

training steps follow those in the recipe. There are 

two minor differences: 1) we check the validation 

translation less frequently and set a higher early-

stopping threshold to allow the model iterate over 

the training data a bit longer; 2) we do not use 

shared vocabulary for the English-Russian system 

because of the different alphabets in English and 

Russian as we mentioned earlier. For this reason 

we do not tie all embeddings and only tie the 

target embeddings to the output layer. 

We trained two models - Model1 and Model2 - 

for the English-Russian pair with different seeds 

for almost five epochs each. The training data for 

the two models is slightly different: 1) we did not 

use the deduplication scheme described in Section 

3.1 above for Model1; 2) we found about 350k 

English sentences in the Russian news 2018 

corpus. These were removed from the synthetic 

data only before training Model2. 

We trained single models for the English-

German and German-English. Both models were 

trained for two epochs. 

                                                           
3 https://github.com/marian-nmt/marian-

examples/tree/master/wmt2017-transformer 

4.1 Back-off to RBMT 

We fall back to our rule-based system (RBMT) in 

several cases: 

 if the NMT model output’s language is 

other than expected. For example, we 

noticed that the English-Russian model 

sometimes generates English text (less 

than 1% of the test set sentences). The 

reasons for this were the 350k English 

sentences in Russian news 2018 corpus 

that we used for back-translation. We did 

not apply language filtering to the news-

crawl corpora because they had been 

filtered by the WMT organisers until 

2018. The English output is handled by 

the inhouse language detection tool. 

 If the output contains recurring words or 

n-grams. 

 If the output is much shorter or longer 

compared to the input sentence. We use 

simple rules based on source-translation 

length ratio to detect such cases. 

 We also fall back to RBMT to translate 

very short strings (one or two words). 

4.2 Handling named entities 

We preserve several types of named entities 

(NEs): numbers, emails, alphanumeric sequencies 

etc. in the following way. First, we produce the 

baseline NMT translation without any processing. 

Then we validate the translation of NEs by 

comparing the system’s output to the source 

sentence. The validation is simple: we search for 

the corresponding strings (numbers, emails etc.) in 

the system’s output. If some of the NEs are not 

translated or are translated incorrectly, we replace 

the entities with the <UNK> placeholder in the 

source sentence and translate the sentence again 

allowing the decoder to generate unknown words 

in the output. Finally, we substitute the <UNK> 

placeholders in the output with their initial value. 

If the number of the <UNK> placeholders in the 

NMT system’s output is not equal to the number 

of the placeholders in the source sentence, we fall 

back to the baseline NMT translation without NEs 

processing. We do not do any specific processing 

for proper names this time as they are handled 

much better by our current systems compared to 

our last year’s submissions. 
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4.3 Models configuration 

We use an ensemble of two fine-tuned models as 

our final translation system for the English-

Russian pair. 

We use a single fine-tuned model for the 

English-German system; the German-English 

system is a single baseline model. 

We use the beam of size 12 and the --

normalize parameter is set to 1. 

5 Results and discussion 

In this section we present the BLEU (Papineni et 

al., 2002) scores for our systems on two test sets 

and the analysis of the results. 

The scores are presented in Table 4. Calculation 

is done using the multi-bleu-detok.perl 

script from the Moses toolkit. 

We significantly outperform the baseline for the 

English-Russian pair - our last year’s submission 

for the News Task, an ensemble of 4 models. The 

results for Model1 and Model2 show us that better 

data filtering leads to better translation quality. 

Fine-tuning does not give us significant 

improvements in terms of BLEU. We should 

probably try new approaches to data selection for 

domain adaptation. 

We should also note the lower quality of the 

German-English model compared to our models 

and other participants. We think this must be 

connected with the fact that the data used for 

training the German-English model was in fact 

filtered for training the English-German model 

(thus, we paid less attention to the English side of 

the data). 

6 Conclusions and Future work 

In this paper we have described our submissions 

for the WMT 2019 Shared News Translation Task. 

Overall we have made three submissions: 

English-Russian, English-German and German-

English. 

We have documented the methodology used to 

prepare the training data, system training set-ups, 

the pipelines for handling NEs and using RBMT. 

We show competitive results in two out of three 

language pairs. 

We plan our future research in several 

directions. First of all, data filtering improvement 

(especially when training models in both 

directions). Second, handling proper names 

translation into Russian. Finally, exploring other 

language pairs including the Chinese and Kazakh 

languages. 
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Abstract

In this paper we describe our joint submission
(JU-Saarland) from Jadavpur University and
Saarland University in the WMT 2019 news
translation shared task for English–Gujarati
language pair within the translation task sub-
track. Our baseline and primary submis-
sions are built using a Recurrent neural net-
work (RNN) based neural machine translation
(NMT) system which follows attention mecha-
nism followed by fine-tuning using in-domain
data. Given the fact that the two languages be-
long to different language families and there is
not enough parallel data for this language pair,
building a high quality NMT system for this
language pair is a difficult task. We produced
synthetic data through back-translation from
available monolingual data. We report the
automatic evaluation scores of our English–
Gujarati and Gujarati–English NMT systems
trained at word, byte-pair and character encod-
ing levels where RNN at word level is consid-
ered as the baseline and used for comparison
purpose. Our English–Gujarati system ranked
in the second position in the shared task.

1 Introduction

Neural Machine translation (NMT) is an ap-
proach to machine translation (MT) that uses
artificial neural network to directly model the
conditional probability p(y|x) of translating a
source sentence (x1,x2,...,xn) into a target sen-
tence (y1,y2,...,ym). NMT has consistently per-
formed better than the phrase-based statistical MT
(PB-SMT) approaches and has provided state-of-
the-art results in the last few years. However,
one of the major constraints of using supervised
NMT is that it is not suitable for low resource lan-
guage pairs. Thus, to use supervised NMT, low
resource pairs need to resort to other techniques

∗These three authors have contributed equally.

to increase the size of the parallel training dataset.
In the WMT 2019 news translation shared task,
one such resource scarce language pair is English-
Gujarati. Due to insufficient volume of parallel
corpora available to train an NMT system for these
language pairs, creation of more actual/synthetic
parallel data for low resources languages such as
Gujarati, is an important issue.

In this paper, we described our joint partici-
pation of Jadavpur University and Saarland Uni-
versity in the WMT 2019 news translation task
for English–Gujarati and Gujarati–English. The
released training data set is completely differ-
ent in-domain compared to the development set
and the size is not anywhere close to the siz-
able amount of training data which is typically re-
quired for the success of NMT systems. We use
additional synthetic data produced through back-
translation from the monolingual corpus. This
provides significant improvements in translation
performance for both our English–Gujarati and
Gujarati–English NMT systems. Our English–
Gujarati system was ranked second in terms of
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) in the shared task.

2 Related Works

Dungarwal et al. (Dungarwal et al., 2014) devel-
oped a statistical method for machine translation,
where phrase based method for Hindi-English and
factored based method for English-Hindi SMT
system was used. They had shown improvements
to the existing SMT systems using pre-procesing
and post-processing components that generated
morphological inflections correctly. Imankulova
et al. (Imankulova et al., 2017) showed how back-
translation and filtering from monolingual data
can be used to build an effective translation system
for a low-resourse language pair like Japanese-
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Dataset Pairs
Parallel Corpora 192,367
Cleaned Parallel Corpora 64,346
Back-translated Data 219,654
Development Data 1,998
Gujarati Test Data 1,016
English Test Data 998

Table 1: Data Statistics of WMT 2019 English–
Gujarati translation shared task.

Russian. Sennrich et al. (Sennrich et al., 2016a)
shown how back-translation of monolingual data
can improve the NMT system. Ramesh et
al. (Ramesh and Sankaranarayanan, 2018) demon-
strated how an existing model like bidirectional
recurrent neural network can be used to gener-
ate parallel sentences for non-English languages
like English-Tamil and English-Hindi, which be-
long to low-resource language pair, to improve
the SMT and the NMT systems. Choudhary
et al. (Choudhary et al., 2018) has shown how
to build NMT system for low resource paral-
lel corpus language pair like English-Tamil using
techniques like word embeddings and Byte-Pair-
Encoding (Sennrich et al., 2016b) to handle Out-
Of-Vocabulary Words.

3 Data Preparation

For our experiments we used both parallel and
monolingual corpus released by the WMT 2019
Organizers. We back-translate the monolingual
corpus and use it as additional synthetic parallel
corpus to train our NMT system. The detailed
statistics of the corpus is given in Table 1.

We performed our experiments on two datasets,
one using the parallel corpus provided by WMT
2019 for the Gujarati–English news translation
shared task, and the other using the parallel cor-
pus combined with back translated sentences from
provided monolingual corpus (only News crawl
corpus was used for back translation) for the same
language pair.

Since the released parallel corpus was very
noisy, containing redundant sentences, we cleaned
the parallel corpus, the procedure of which is de-
scribed in section 3.1.

In the next step we shuffle the whole corpus as
it reduces variance and makes sure that our model
overfits less. We then split the dataset into three
parts: training, validation and test set. Shuffling

is important in the splitting part too as it is impor-
tant to choose the test and validation set from the
same distribution and must be chosen randomly
from the available data. Here, test set was also
shuffled as this dataset was used for our internal
assessment. After cleaning, we randomly selected
64,346 sentence pairs for training, 1,500 sentence
pairs for validation and 1,500 sentences as test
data. It is to be noted that our validation and test
corpus is taken from the released parallel data to
setup a baseline model. Later when WMT19 Or-
ganizers released the development set, we contin-
ued training our models by considering WMT19
development set as our test set and the new devel-
opment set consisting of 3,000 sentences which
were obtained after combining 1,500 sentences
from the validation and the testing set (both were
from the parallel corpus as stated above). While
training our final model, the released development
set was used. After cleaning it was obvious that
the amount of training data is not enough to train
a neural system for such a low resource language
pair. Therefore, preparation for large volume of
parallel corpus is required which can be produced
either by manual translation by professional trans-
lators or scraping parallel data from the internet.
However, these processes are costly, tedious and
sometimes inefficient (in case of scraping from in-
ternet).

As the released data was insufficient, to gener-
ate more training data, we use back-translation.
For back-translation we applied two methods,
first, using unsupervised statistical machine trans-
lation as described in (Artetxe et al., 2018) and
second, using Doc translation API1 (The API uses
Google translator as of April 2019). We have ex-
plained the extraction of sentences and the corre-
sponding results using the above methods in sec-
tion 4.2. The synthetic dataset which we have gen-
erated can be found here.2

3.1 Data Preprocessing

To train an efficient machine translation system,
it is required to clean the available raw parallel
corpus for the system to produce consistent and
reliable translations. The released version of the
raw parallel corpus consisted of redundant pairs
which needs to be removed to obtain better results

1https://www.onlinedoctranslator.com/
en/

2https://github.com/riktimmondal/
Synthetic-Data-WMT19-for-En-Gu-Language-pair
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as demonstrated in previous works (Johnson et al.,
2017) which are of types as given below:

• The source is same for different targets.

• The source is different for the same target.

• Repeated identical sentence pair

The redundancy in the translation pairs makes
the model prone to overfitting and hence prevents
it from recognizing new features. Thus, one of
the sentence pair is kept while the other redun-
dant pairs are removed. Some sentence pairs had
combinations of both language pairs which were
also identified as redundant. These pairs strictly
need elimination as the vocabularies of the in-
dividual languages consist of alphanumeric char-
acters of the other language which results in in-
consistent encoding and decoding during encoder-
decoder application steps on the considered lan-
guage pair. We tokenize the English side using
Moses (Koehn et al., 2007) tokenizer and for Gu-
jarati, we use the Indic NLP library tokenization
tool3. Punctuation normalization was also done.

3.2 Data Postprocessing
Postprocessing, such as detokenization (Klein
et al., 2017), punctuation normalization4 (Koehn
et al., 2007), was performed on our translated data
(on the test set) to produce the final translated data.

4 Experiment Setup

We have explained our experimental setups in
the next two sections. The first section con-
tains the setup used for our final submission and
the next section describes all the other support-
ing experimental setups. We use the OpenNMT
toolkit (Klein et al., 2017) for our experiments.
We performed several experiments where the par-
allel corpus is sent to the model as space separated
character format, space separated word format,
and space separated Byte Pair Encoding (BPE)
format (Sennrich et al., 2016b). For our final
(i.e., primary) submission for the English–Gujarati
task, the source input words were converted to
BPE whereas the Gujarati words were kept as it
is. For our Gujarati–English submission, both the
source and the target were in simple word level
format.

3http://anoopkunchukuttan.github.io/
indic_nlp_library/

4punctuation normalization.perl

4.1 Primary System description
Our primary NMT systems are based on attention-
based uni-directional RNN (Cho et al., 2014) for
Gujarati–English and bi-directional RNN (Cheng
et al., 2016) for English–Gujarati.

hyper-parameter Value

Model-type text
Model-dtype fp32
Attention-layer 2
Attention-Head/layer 8
Hidden-layers 500
Batch-Size 256
Training-steps 160,000
Source vocab-size 50,000
Target vocab-size 50,000
learning-rate warm-up+decay*
global-attention function softmax
tokenization-strategy wordpiece
RNN-type LSTM

Table 2: Hyper-parameter configurations for Gujarati–
English translation using unidirectional RNN (Cho
et al., 2014)), *learning-rate was initially set to 1.0.

Table 2 shows the hyper-parameter configura-
tions for our Gujarati–English translation system.
We initially trained our model with the cleaned
parallel corpus provided by WMT 2019 up to
100K training steps. Thereafter, we fine-tune our
generic model on domain specific corpus (con-
taining 219K sentences back-translated using Doc
Translator API) changing the learning rate to 0.5
and decay started from 130K training steps with a
decay factor of 0.5 and keeping the other hyper-
parameters same as mentioned in Table 2.

hyper-parameter Value
Model-type text
Model-dtype fp32
Encoder-type BRNN
Attention-layer 2
Attention-Head/layer 8
Hidden-layers 512
Batch-Size 256
Training-steps 135,000
Source vocab-size 26,859
Target vocab-size 50,000
learning-rate warm-up+decay
global-attention function softmax
tokenization-strategy Byte-pair Encoding
RNN-type LSTM

Table 3: Hyper-parameter configurations for English–
Gujarati translation using bi-directional RNN (Cheng
et al., 2016).

To build our English–Gujarati translation sys-
tem, we initially trained a generic model like our
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Gujarati–English translation system. However, in
this case we use different hyper-parameter con-
figurations as mentioned in Table 3. Addition-
ally, here, we use byte-pair encoding on the En-
glish side with 32K merge operations. We do
not perform BPE operation on the Gujarati cor-
pus; we keep the original word format for Gu-
jrati. Our generic model was trained with up to
100K training steps and then fine-tuned our model
on domain specific parallel corpus having English
side as BPE and Gujarati side as word level for-
mat. During fine-tuning, we reduce the learning
rate from 1.0 to 0.25 and started decaying from
120K training steps with a decay factor of 0.5.
The other hyper-parameter configurations remain
unchanged. The respective hyperparameters used
for the English–Gujarati task in our primary sys-
tem submission were also tested for the reverse di-
rection; however, it did not perform as good as the
primary system and hence the final system is mod-
ified accordingly.

4.2 Other Supporting Experiments

In this section we describe all the supporting ex-
periments that we performed for this shared task
starting from Statistical MT to NMT with both su-
pervised and unsupervised settings.

All the results and experiments discussed below
are tested on the released development set (consid-
ering this as the test set). These models were not
tested with the released test set as they provided
poor BLEU scores on the development set.

We used uni-directional RNN having LSTM
units trained on 64,346 pre-processed sentences
(cf. Section 3) with 120K training steps and learn-
ing rate of 1.0. For English–Gujarati where in-
put was space separated words for both sides,
we achieved highest BLEU score of 4.15 after
fine-tuning with 10K sentences selected from the
cleaned parallel corpus whose total number of to-
kens(words) was exceeding 8.The BLEU score
dropped to 3.56 while applying BPE on the both
sides. For the other direction (Gujarati–English)
of the language pair, we got highest BLEU scores
of 5.13 and 5.09 at word level and BPE level re-
spectively.

We also tried transformer-based NMT
model (Vaswani et al., 2017) which however
gave extremely poor results on similar experimen-
tal settings. The highest BLEU we achieved was
0.74 for Gujarati–English and 0.96 for English–

Gujarati. The transformer model was trained until
100K training steps, with 64 batch size in a single
GPU and positional encoding layers size was set
to 2.

Since the the training data size was not enough,
we used backtranslation to generate additional
synthetic sentence pairs from the monolingual cor-
pus released in WMT 2019. We initially used
monoses (Artetxe et al., 2018), which is based
on unsupervised statistical phrase based machine
translation, to translate the monolingual sentences
from English to Gujarati. We used 2M English
sentences to train the monoses system. The train-
ing process took around 6 days in our modest
64 GB server. However, the results were ex-
tremely poor with a BLEU score of 0.24 for
English–Gujarati and 0.01 for the opposite di-
rection, without using preprocessed parallel cor-
pus. Moreover, after adding preprocessed paral-
lel corpus, the BLEU score dropped significantly.
This motivated us to use online document transla-
tor, in our case Google translation API, for back-
translating sentence pairs from the released mono-
lingual dataset. The back-translated data was later
combined with our preprocessed parallel corpus
for our final model.

Additionally, we also tried a simple unidirec-
tional RNN model on character level, however,
this also fails to contribute in terms of improving
performance. We have compiled all the results in
table 4.

5 Primary System Results

Our primary submission for English–Gujarati us-
ing bidirectional RNN model with BPE at English
side (see Section 4.1) and word format at Gu-
jarati side gave the best result. On the other hand,
the Gujarati-English primary submission, based
on an uni-directional RNN model with both En-
glish and Gujarati in word format, gave the best
result. Before submission, we performed punc-
tuation normalization, unicode normalization, and
detokenization for each runs. Table 5 shows the
published results of our primary submissions on
WMT 2019 Test set. Table 6 shows our hands on
experimental results on the development set.

6 Conclusion and Future Work

In this paper, we applied NMT to one of the most
challenging language pair, English–Gujarati, as
the availability of parallel corpus is really scarce
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Language pair Model used Tokenization Strategy BLEU
EN-GU RNN Word 4.15
EN-GU RNN BPE 3.56
GU-EN RNN Word 5.13
GU-EN RNN BPE 5.09
EN-GU Transformer Word 0.96
GU-EN Transformer Word 0.74
EN-GU Monoses Word 0.24
GU-EN Monoses Word 0.01

Table 4: Results of supporting experiments.

Language pair BLEU BLEU-cased TER BEER2.0 characTER
EN-GU 21.9 21.9 0.688 0.529 0.647
GU-EN 12.8 11.8 0.796 0.422 0.891

Table 5: WMT 2019 evaluation for EN-GU and GU-EN on test set.

Language pair BLEU BLEU-cased
EN-GU 22.3 22.3
GU-EN 17.6 16.8

Table 6: WMT 2019 evaluation for EN-GU and GU-EN on development set released by WMT 2019.

for this language pair. In this scenario, collecting
and preprocessing of data play very crucial role
to increase the dataset as well as to obtain quality
result using NMT. In this paper we show how in-
creasing the parallel data through back-translation
via Google translation API can increase the over-
all performance. Our primary result also exceeded
Google translate (which gave a BLEU of 13.7)
by a margin of around 8.0 absolute BLEU points.
Our method is not just limited to English–Gujarati
translation task; it can also be useful in various
scarce-resource language pairs and domains.

We did not make use of any ensemble mech-
anism in this task, otherwise we could have
achieved higher BLEU scores. Therefore, in
future we will try to ensemble several mod-
els, increasing more useful back-translated data
using existing state-of-the-art model. In fu-
ture, we would also like to explore cross-lingual
BERT (Devlin et al., 2018) to enhance the perfor-
mance.
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Abstract

This paper describes Facebook FAIR’s sub-
mission to the WMT19 shared news trans-
lation task. We participate in four language
directions, English ↔ German and English
↔ Russian in both directions. Following our
submission from last year, our baseline sy-
stems are large BPE-based transformer mo-
dels trained with the FAIRSEQ sequence mo-
deling toolkit. This year we experiment with
different bitext data filtering schemes, as well
as with adding filtered back-translated data.
We also ensemble and fine-tune our models on
domain-specific data, then decode using noisy
channel model reranking. Our system impro-
ves on our previous system’s performance by
4.5 BLEU points and achieves the best case-
sensitive BLEU score for the translation direc-
tion English→Russian.

1 Introduction

We participate in the WMT19 shared news trans-
lation task in two language pairs and four lan-
guage directions, English→German (En→De),
German→English (De→En), English→Russian
(En→Ru), and Russian→English (Ru→En). Our
methods are based on techniques and approaches
used in our submission from last year (Edunov
et al., 2018), including the use of subword mo-
dels, (Sennrich et al., 2016), large-scale back-
translation, and model ensembling. We train all
models using the FAIRSEQ sequence modeling
toolkit (Ott et al., 2019). Although document le-
vel context for En→De is now available, all our
systems are pure sentence level systems. In the fu-
ture, we expect better results from leveraging this
additional context information.

Compared to our WMT18 submission, we al-
so decide to compete in the En↔Ru and De→En
translation directions. Although all four directions
are considered high resource settings where lar-

ge amounts of bitext data is available, we demon-
strate that leveraging high quality monolingual da-
ta through back-translation is still very important.
For all language directions, we back-translate the
Newscrawl dataset using a reverse direction bitext
system. In addition to back-translating the rela-
tively clean Newscrawl dataset, we also experi-
ment with back-translating portions of the much
larger and noisier Commoncrawl dataset. For our
final models, we apply a domain-specific fine-
tuning process and decode using noisy channel
model reranking (Anonymous, 2019).

Compared to our WMT18 submission in the
En→De direction, we observe substantial impro-
vements of 4.5 BLEU. Some of these gains can be
attributed to differences in dataset quality, but we
believe most of the improvement comes from lar-
ger models, larger scale back-translation, and noi-
sy channel model reranking with strong channel
and language models.

2 Data

For the En↔De language pair we use all available
bitext data including the bicleaner version of Pa-
racrawl. For our monolingual data we use English
and German Newscrawl. Although our language
models were trained on document level data, we
did not use document level boundaries in our final
decoding step, so all our systems are purely sen-
tence level systems.

For the En↔Ru language pair we also use all
available bitext data. For our monolingual data we
use English and Russian Newscrawl as well as
a filtered portion of Russian Commoncrawl. We
choose to use Russian Commoncrawl to augment
our monolingual data due to the relatively small
size of Russian Newscrawl compared to English
and German.
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2.1 Data Preprocessing

Similar to last year’s submission for En→De, we
normalize punctuation and tokenize all data with
the Moses tokenizer (Koehn et al., 2007). For
En↔De we use joint byte pair encodings (BPE)
with 32K split operations for subword segmenta-
tion (Sennrich et al., 2016). For En↔Ru, we learn
separate BPE encodings with 24K split operations
for each language. Systems trained with this sepa-
rate BPE encoding performed significantly better
than those trained with joint BPE.

2.2 Data Filtering

2.2.1 Bitext

Large datasets crawled from the internet are natu-
rally very noisy and can potentially decrease the
performance of a system if they are used in their
raw form. Cleaning these datasets is an important
step to achieving good performance on any down-
stream tasks.

We apply language identification filtering
(langid; Lui et al., 2012), keeping only sentence
pairs with correct languages on both sides. Alt-
hough not the most accurate method of language
identification (Joulin et al., 2016), one side effect
of using langid is the removal of very noisy sen-
tences consisting of mostly garbage tokens, which
are classified incorrectly and filtered out.

We also remove sentences longer than 250 to-
kens as well as sentence pairs with a source/target
length ratio exceeding 1.5. In total, we filter out
about 30% of the original bitext data. See Table 1
for details on the bitext dataset sizes.

2.2.2 Monolingual

For monolingual Newscrawl data we also ap-
ply langid filtering. Since the monolingual
Newscrawl corpus for Russian is significantly
smaller than that of German or English, we aug-
ment our monolingual Russian data with data from
the commoncrawl corpus. Commoncrawl is the
largest monolingual corpus available for training
but is also very noisy. In order to select a limited
amount of high quality, in-domain sentences from
the larger corpus, we adopt the method of Moo-
re and Lewis (2010) for selecting in-domain data
(§3.2.1).

En-De En-Ru

No filter 38.8M 38.5M
+ length filter 35.7M 33.4M
+ langid filter 27.7M 26.0M

Table 1: Number of sentences in bitext datasets for dif-
ferent filtering schemes

3 System Overview

3.1 Base System

Our base system is based on the big Transformer
architecture (Vaswani et al., 2017) as implemen-
ted in FAIRSEQ. We experiment with increasing
network capacity by increasing embed dimension,
FFN size, number of heads, and number of layers.
We find that using a larger FFN size (8192) gives
a reasonable improvement in performance while
maintaining a manageable network size. All sub-
sequent models, including ensembles, use this lar-
ger FFN Transformer architecture.

We trained all our models using FAIRSEQ (Ott
et al., 2019) on 128 Volta GPUs, following the se-
tup described in Ott et al. (2018)

3.2 Large-scale Back-translation

Back-translation is an effective and commonly
used data augmentation technique to incorporate
monolingual data into a translation system. Back-
translation first trains an intermediate target-to-
source system that is used to translate monolin-
gual target data into additional synthetic parallel
data. This data is used in conjunction with human
translated bitext data to train the desired source-
to-target system.

In this work we used back-translations obtai-
ned by sampling (Edunov et al., 2018) from an en-
semble of three target-to-source models. We found
that models trained on data back-translated using
an ensemble instead of a single model perfor-
med better (Table 2). Previous work also found
that upsampling the bitext data can improve back-
translation (Edunov et al., 2018). We adopt this
method to tune the amount of bitext and synthe-
tic data the model is trained on. We find a ratio of
1:1 synthetic to bitext data to perform the best.

3.2.1 Back-translating Commoncrawl
The amount of monolingual Russian data availa-
ble in the Newscrawl dataset is significantly smal-
ler than that of English and German (Table 3). In
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En→Ru
Single Model Ensemble

newstest15 35.98 36.32
newstest16 32.78 33.28
newstest17 36.57 36.77
newstest18 34.72 34.72

Table 2: SacreBLEU for English-Russian models trai-
ned with data back-translated using a single model vs.
an ensemble of two models

En De Ru

Newscrawl 434M 559M 80M
+ langid filter 424M 521M 76M

Commoncrawl - - 1.2B
+ KenLM filter - - 60M

Total 424M 521M 136M

Table 3: Number of sentences in monolingual datasets
available for back-translation

order to increase the amount of monolingual Rus-
sian data for back-translation, we experiment with
incorporating Commoncrawl data. Commoncrawl
is a much larger and noisier dataset compared to
Newscrawl, and is also non-domain specific. We
experiment with methods to identify a subset of
Commoncrawl that is most similar to Newscrawl.
Specifically, we use the in-domain filtering me-
thod described in Moore and Lewis (2010).

Given an in domain corpus I , in this case
Newscrawl, and a non-domain specific corpus N ,
in this case Commoncrawl, we would like the find
the subcorpus NI that is drawn from the same dis-
tribution as I . For any given sentence s, we can
calculate, using Bayes’ rule, the probability a sen-
tence s in N is drawn from NI

P (NI |s,N) =
P (s|NI)P (NI |N)

P (s|N)
(1)

We ignore the P (NI |N) term, since it will
be constant for any given I and N , and use
P (s|I) instead of P (s|NI), since I and NI are
drawn from the same distribution. Moving into
the log domain, we can calculate the probabili-
ty score for a sentence s by logP (NI |s,N) =
logP (s|I)− logP (s|N), or after normalizing for
length, HI(s)−HN (s), where HI(s) and HN (s)
are the word-normalized cross entropy scores for
a sentence s according to language models LI and

En-De De-En En-Ru Ru-En

newstest12 26.7 28.0 - -
newstest13 27.8 27.6 42.7 27.6
newstest14 21.4 24.0 32.3 22.4
newstest15 25.1 24.6 34.7 21.8
newstest16 24.5 22.0 35.5 19.4
newstest17 25.0 21.9 37.9 19.5
newstest18 25.1 26.0 39.3 20.0

Table 4: Perplexity scores for language models on bol-
ded target languages in all translation directions

LN trained on I and N respectively.
Our corpora are very large and we therefore

use an n-gram model (Heafield, 2011) rather than
a neural language model which would be much
slower to train and evaluate. We train two language
models LI and LN on Newscrawl and Common-
crawl respectively, then score every sentence s in
Commoncrawl byHI(s)−HN (s). We select a cu-
toff of 0.01, and use all sentences that score higher
than this value for back-translation, or about 5% of
the entire dataset.

3.3 Fine-tuning

Fine-tuning with domain-specific data is a com-
mon and effective method to improve translati-
on quality for a downstream task. After comple-
ting training on the bitext and back-translated da-
ta, we train for an additional epoch on a smal-
ler in-domain corpus. For De→En, we fine-tune
on test sets from previous years, including new-
stest2012, newstest2013, newstest2015, and new-
stest2017. For En→De, we fine-tune on previous
test sets as well as the News-Commentary data-
set. For En↔Ru we fine-tune on a combination of
News-Commentary, newstest2013, newstest2015,
and newstest2017. The other test sets are held out
for other tuning procedures and evaluation me-
trics.

3.4 Noisy Channel Model Reranking

N -best reranking is a method of improving trans-
lation quality by scoring and selecting a candidate
hypothesis from a list of n-best hypotheses gene-
rated by a source-to-target, or forward model. For
our submissions, we rerank using a noisy channel
model approach (Anonymous, 2019).

Given a target sequence y and a source sequence
x, the noisy channel approach applies Bayes’ rule
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to model

P (y|x) = P (x|y)P (y)
P (x)

(2)

Since P (x) is constant for a given source sequence
x, we can ignore it. We refer to the remaining
terms P (y|x), P (x|y), and P (y), as the forward
model, channel model, and language model re-
spectively. In order to combine these scores for
reranking, we calculate for every one of our n-best
hypotheses:

logP (y|x) + λ1 logP (x|y) + λ2 logP (y) (3)

The weights λ1 and λ2 are determined by tuning
them with a random search on a validation set and
selecting the weights that give the best performan-
ce. In addition, we also tune a length penalty.

For all translation directions, our forward mo-
dels are ensembles of fine-tuned and back-
translated models. Since we compete in both di-
rections for both language pairs, for any given
translation direction we can use the forward model
for the reverse direction as the channel model. Our
language models for each of the target languages
English, German, and Russian, are big Transfor-
mer decoder models with FFN 8192. We train the
language models on the monolingual Newscrawl
dataset, and use document level context for the
English and German models. Perplexity scores for
the language models on the bolded target langua-
ge of each translation direction are shown in table
4. With a smaller amount of monolingual Russi-
an data available, we observe that our Russian lan-
guage model performs worse than the German and
English language models.

To select the length penalty and weights, λ1 and
λ2, for decoding, we use random search, choosing
values in the range [0, 2) for the weights and va-
lues in the range [0, 1) for the length penalty. For
all language directions, we choose the weights that
give the highest BLEU score on a combined data-
set of newstest2014 and newstest2016.

To run our final decoding step, we first use the
forward model with beam size 50 to generate an
n-best list. We then use the channel and language
models to score each of these hypotheses, using
the weights and length penalty tuned previously.
Finally, we select the hypothesis with the highest
score as our output.

En→De
System news2017 news2018

baseline 30.90 45.40
+ langid filtering 30.78 46.43
+ ffn 8192 31.15 46.28
+ ensemble 31.55 47.09

+ BT 33.62 46.66
+ fine tuning - 47.61
+ ensemble - 49.27
+ reranking - 50.63
WMT’18 submission - 46.10

WMT’19 submission 42.7

Table 5: SacreBLEU scores on English→German.

3.5 Postprocessing

For En→De and En→Ru, we also change the stan-
dard English quotation marks (“ ... ”) to German-
style quotation marks (” ... “).

4 Results

Results and ablations for En→De are shown in Ta-
ble 5, De→En in Table 6, En→Ru in Table 7 and
Ru→En in Table 8. We report case-sensitive Sa-
creBLEU scores using SacreBLEU (Post, 2018)1,
using international tokenization for En→Ru. In
the final row of each table we also report the case-
sensitive BLEU score of our submitted system on
this year’s test set. All single models and indivi-
dual models within ensembles are averages of the
last 10 checkpoints of training. Our baseline sy-
stems are big Transformers as described in (Vas-
wani et al., 2017). The baselines were trained with
minimally filtered data, removing only those sen-
tences longer than 250 words and exceeding a
source/target length ratio of 1.5 This setup gave
us a reasonable baseline to evaluate data filtering.

4.1 English→German

For En→De, langid filtering, larger FFN, and
ensembling improve our baseline performance on
news2018 by about 1.5 BLEU. Note that our best

1SacreBLEU signatures:
BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+
test.wmt{17/18}+tok.13a+version.1.2.11,
BLEU+case.mixed+lang.de-en+numrefs.1+smooth.exp+
test.wmt{17/18}+tok.13a+version.1.2.11,
BLEU+case.mixed+lang.ru-en+numrefs.1+smooth.exp+
test.wmt{17/18}+tok.13a+version.1.2.11,
BLEU+case.mixed+lang.en-ru+numrefs.1+smooth.exp+
test.wmt{17/18}+tok.intl+version.1.2.11
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De→En
System news2017 news2018

baseline 37.28 45.32
+ langid and ffn 8192 38.45 46.16
+ ensemble 38.82 46.76

+ BT 41.08 48.78
+ fine tuning - 49.07
+ ensemble - 49.60
+ reranking - 51.13

WMT’19 submission 40.8

Table 6: SacreBLEU scores on German→English.

bitext only systems already outperforms our sy-
stem from last year by 1 BLEU point. This is
perhaps due to the addition of higher quality bi-
text data and improved data filtering techniques.
The addition of back-translated (BT) data impro-
ves single model performance by only 0.3 BLEU,
but combining this with fine-tuning and ensemb-
ling gives us a total of 3 BLEU. Finally, apply-
ing reranking on top of these strong ensembled sy-
stems gives another 1.4 BLEU.

4.2 German→English

For De→En, as with En→De, we see similar im-
provements with langid filtering, larger FFN,
and ensembling on the order of 1.4 BLEU. Com-
pared to En→De however, we also observe that
the addition of back-translated data is much more
significant, improving single model performance
by over 2.5 BLEU. Fine-tuning, ensembling, and
reranking add an additional 2.4 BLEU, with reran-
king contributing 1.5 BLEU, a majority of the im-
provement.

4.3 English→Russian

For En→Ru, we observe large improvements of
2.4 BLEU over a bitext-only model after applying
langid filtering, larger FFN, and ensembling.
Since we start with a lower quality initial En↔Ru
bitext dataset, we observe a large improvement of
3.5 BLEU by adding back-translated data. Aug-
menting this back-translated data with Common-
crawl adds an additional 0.2 BLEU. Finally, app-
lying fine-tuning, ensembling, and reranking adds
2.2 BLEU, with reranking contributing 1 BLEU.

En→Ru
System news2017 news2018

baseline 35.42 31.53
+ langid filtering 35.69 31.77
+ ffn 8192 36.66 33.49
+ ensemble 37.42 33.93

+ BT NC 40.09 37.07
+ BT NC + CC 40.42 37.3
+ fine tuning - 37.74
+ ensemble - 38.59
+ reranking - 39.53

WMT’19 submission 36.3

Table 7: SacreBLEU scores on English→Russian

Ru→En
System news2017 news2018

baseline 37.07 32.69
+ langid and ffn 8192 37.72 33.44
+ ensemble 38.69 34.29

+ BT 41.68 36.49
+ fine tuning - 38.54
+ ensemble - 38.96
+ reranking - 40.16

WMT’19 submission 40.0

Table 8: SacreBLEU scores on Russian→English

4.4 Russian→English

For Ru→En, we observe similar trends to
En↔De, with langid filtering, larger FFN, and
ensembling improving performance of a bitext-
only system by 1.6 BLEU. Backtranslation adds
3 BLEU, again most likely due to the lower qua-
lity bitext data available. Fine-tuning, ensembling,
and reranking add almost 4 BLEU, with reranking
contributing 1.2 BLEU.

4.5 Reranking

For every language direction, reranking gives a
significant improvement, even when applied on
top of an ensemble of very strong back-translated
models. We also observe that the biggest impro-
vement of 1.5 BLEU comes in the De→En lan-
guage direction, and the smallest improvement of
1 BLEU in the En→Ru direction. This is per-
haps due to the relatively weak Russian language
model, which is trained on significantly less data
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compared to English and German. Improving our
language models may lead to even greater impro-
vements with reranking.

5 Conclusions

This paper describes Facebook FAIR’s submission
to the WMT19 news translation task. For all four
translation directions, En↔De and En↔Ru, we
use the same strategy of filtering bitext data, back-
translating monolingual data, then training strong
individual models on a combination of this data.
Each of these models is fine-tuned and ensemb-
led into a final system that is used for decoding
with noisy channel model reranking. We demon-
strate the effectiveness of our reranking approach,
even when applied on top of very strong systems,
and achieve the best case-sensitive BLEU score
for En→Ru and competitive results in all other di-
rections.
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Abstract

This paper describes the submissions of the
eTranslation team to the WMT 2019 news
translation shared task. The systems have been
developed with the aim of identifying and fol-
lowing rather than establishing best practices,
under the constraints imposed by a low re-
source training and decoding environment nor-
mally used for our production systems. Thus
most of the findings and results are transfer-
able to systems used in the eTranslation ser-
vice. Evaluations suggest that this approach
is able to produce decent models with good
performance and speed without the overhead
of using prohibitively deep and complex archi-
tectures.

1 Introduction

The European Commission’s eTranslation1

project, a building block of the Connecting
Europe Facility (CEF), has been set up to help
European and national public administrations
exchange information across language barriers
in the EU. It provides secure access to machine
translation (both formatted documents and text
snippets) between all 26 official languages of
the EU and the EEA for translators and officials
in EU and national authorities. In addition it
enables multilinguality in all Digital Service
Infrastructures of CEF.

CEF eTranslation builds on the previous ma-
chine translation service of the European Com-
mission, MT@EC (Eisele, 2017), developed by
the Directorate-General for Translation (DGT)

1https://ec.europa.eu/cefdigital/wiki/
display/CEFDIGITAL/eTranslation

since 2010. MT@EC translation engines were
trained using the vast Euramis translation mem-
ories (Steinberger et al., 2014), comprising over 1
billion sentences in the 24 official EU languages,
produced by the translators of the EU institutions
over the past decades. While this large set of train-
ing data provides very good coverage of the type
of language used in official EU documents, recent
usage of the service is trending towards texts from
other domains. The eTranslation team is working
to widen the scope of the service and improve the
coverage in more general types of texts. Given
this background, the participation of eTranslation
in this year’s shared task on news translation is an
early, but important step on a longer path towards
a more generic MT service.

We participated in the task with 4 dif-
ferent language pairs: English→German,
French→German, English→Lithuanian and
Russian→English, in order to find best practices
that guarantee the production of a solid system in
a constrained resource environment.

2 Data Preparation

In this section we describe the data sets, the selec-
tion, and filtering methods that we applied to the
provided parallel and monolingual data in order to
increase the quality of trained models. We primar-
ily focused on constrained submissions and made
limited experiments with unconstrained resources,
which we briefly describe later in Section 4.5.

2.1 Data Selection and Filtering
In most cases we used all of the provided origi-
nal parallel data to build baseline models for back-
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Data set En→De Fr→De En→Lt Ru→En

Europarl v9 1.80M 1.72M 0.63M –
Common Crawl 2.32M 0.62M – 0.88M
News Commentary v14 0.32M 0.26M – 0.29M
Rapid Corpus 1.47M – 0.21M –
Wiki Titles v1 1.25M – 0.13M 1.00M
Yandex – – – 1.00M

Total (unique): 7.16M (6.85M) 2.60M (2.59M) 0.97M (0.84M) 3.2M (2.1M)

Table 1: Number of segments in the filtered parallel data used for baseline models.

translation as well as for cross-entropy based fil-
tering. The domain distribution of these data sets
is not uniform across language pairs, which had
some effect on the workflows we applied to spe-
cific language pairs. The basic procedure of data
cleaning, however, was similar in all cases.

As a general clean-up, we performed the fol-
lowing steps on the parallel data:

• language identification with Python’s
langid module,

• segment deduplication with masked numer-
als,

• deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1),

• deletion of segments longer than 110 tokens,

• exclusion of segments without alphabetic
characters.

The above steps reduced the data set by about
10%. However, we filtered out 65% of the Ru→En
Wiki Titles corpus with an additional rule of hav-
ing a minimum sum of 12 tokens in a segment pair.
The number of segments in the base filtered data
is shown in Table 1.

For the three language pairs2 where we used
monolingual data to build language models or cre-
ate synthetic parallel text, we chose the recent tar-
get language News Crawl data sets, except for the
2018 German set, which contained a large num-
ber of segments with suspiciously scrambled char-
acters in all words. Therefore, we discarded this
version and made use of the 2016 and 2017 sets.
In addition, for Fr→De we experimented with the
2014 and 2016 News Crawl as candidate data for

2Four minus Ru→En.

the topic modeling based data selection (see Sec-
tion 3.2). In the monolingual data used for back-
translation we performed some additional filter-
ing; we set a threshold on the maximum length
of a token (40) and the minimum ratio of letters to
digits in a segment (4).

We applied dual conditional cross-entropy fil-
tering (Junczys-Dowmunt, 2018a) to the provided
ParaCrawl and CommonCrawl parallel datasets
using the baseline translation models. This signif-
icantly reduced the size of these data sets without
a major decrease in BLEU score for the high re-
source language pairs. For En→De the reduction
in ParaCrawl was from 31M to 18M segments and
in CommonCrawl from 2.3M to 1.4M segments
with a drop of 0.2 BLEU points compared to us-
ing the full sets3. No additional cleaning was ap-
plied to the Fr→De and Ru→En Common Crawl
since these already contained fewer than 1M seg-
ments. Experiments with the filtered (7.5M) and
full (11M) ParaCrawl for Fr→De showed that the
scores on the development test set were also al-
most identical. Therefore, we worked with this
reduced data in the experiments to save time and
resources. The parallel data for En→Lt was very
small and we found that the unfiltered ParaCrawl
was more beneficial than the filtered one. For
Ru→En we used only the filtered ParaCrawl be-
cause we did not have time for more experiments.

Depending on data availability we opted for dif-
ferent ways of creating development and test data
sets. For En→De we used the 2017 test set as
validation set in the trainings and the 2018 test
set as the test set to evaluate the trained models.
For Fr→De we used the 2008–2014 test sets and

3This suggests that version 3 of the ParaCrawl is signifi-
cantly less noisy than previous versions: we did not experi-
ence any improvement from filtering contrary to some of last
year’s experiments (Pham et al., 2018; Junczys-Dowmunt,
2018b).
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randomly extracted 2000 segments for validation
and 3000 segments for test, while the rest (about
13000) was kept for fine-tuning. For En→Lt we
used a small random subset of the training data for
validation and the provided development test for
testing. For Ru→En we used the 2018 test set for
testing and for validation we randomly extracted
3000 segments from the 2016 and 2017 newstests.
The rest of the development data was used for fine-
tuning.

2.2 Pre- and Postprocessing

The in-house translation workflow in the MT envi-
ronment of eTranslation contains a fairly complex
pre- and postprocessing pipeline, where standard
steps (tokenization, normalization, placeholder re-
placement) are tailored to the Euramis data. It thus
does not altogether fit the more heterogenous do-
main of WMT news data. This was confirmed in
a few early baseline experiments on WMT 2018
parallel data where we simply used SentencePiece
(Kudo, 2018), which allows raw text input/output
within the the Marian toolkit (Junczys-Dowmunt
et al., 2018). Since it proved to be superior to other
(external) pre- and postprocessing workflows, we
opted for this approach4 in the 2019 experiments.

3 Trainings

Due to our low resource environment (no large-
scale computing facilities), we did not have much
room for experimenting with either a wide range
of scenarios or much tuning of hyperparameters.
Therefore, we decided to stick to simple setups
and training procedures. In all experiments we
used Marian, which is also the core of our stan-
dard NMT framework in the eTranslation service.
All trainings were run as multi-GPU trainings on
4 NVIDIA P100 GPUs with 16GB RAM.

3.1 NMT Models

We trained only base transformer models
(Vaswani et al., 2017) in all language pairs
except for Fr→De and En→Lt, where we also
tried experimenting with a big transformer.5 We
discarded the idea of building large ensembles

4We used default settings for Marian’s built-in Sentence-
Piece: unigram model, built-in normalization and no subword
regularization.

5However, the difference between the base and big tran-
former models for Fr→De and En→Lt was not significant.
We decided to submit the big models in the hope of their bet-
ter performance on the shared task test set.

of big transformers for high resource language
pairs in the beginning due to the constrained
environment. For most of the hyperparameters we
used the default settings for the base transformer
architecture in Marian6 with dynamic batching
and tying all embeddings. To save time and re-
sources we stopped the trainings if sentence-wise
normalized cross-entropy on the validation set
did not improve in 5 consecutive validation steps.
In the big transformer experiments, following
recommended settings for Marian, we doubled
the filter size and the number of heads, decreased
the learning rate from 0.0003 to 0.0002 and
halved the update value for --lr-warmup and
--lr-decay-inv-sqrt.

Based on the results of previous experiments
we set 30k joint SentencePiece vocabulary for
En→De. We did not run additional trainings to
test the effect of other vocabulary sizes, except for
Ru→En, where we ran a baseline model experi-
ment with separate 60k vocabularies. However,
this resulted in a loss of 0.7 BLEU points on the
2018 test set.7 Therefore, we kept the 30k joint
setting through all language pairs.

3.2 Improving Baseline Models

In this section we describe the methods we exper-
imented with to improve baseline models such as
building an additional synthetic data set with back-
translation (Sennrich et al., 2016), using the de-
velopment data (where available) to fine-tune con-
verged models with continued trainings and build-
ing ensembles out of a few variants of the best
models originally trained from different seeds. We
report the evaluation scores in Section 4.

3.2.1 Synthetic Data
Back-translation (Sennrich et al., 2016) has be-
come a widely used data augmenting technique in
NMT but at the same time significantly extends the
search space for best settings as far as the amount
of data, ratio of bitext to back-translation data or
methods to generate the synthetic source are con-
cerned (Edunov et al., 2018).

In the En→De system we experimented with
adding 10M and 20M back-translated segments
from the 2017 News Crawl to the available bitext.
The latter setting yielded no improvement, in ef-

6See eg. https://github.com/marian-nmt/
marian-examples/tree/master/transformer.

7Confirmed post-submission with a loss of 1.9 BLEU
points on the 2019 test set.
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fect it was slightly worse so for the final systems
the 10M data set was used. We had no time and re-
sources for more fine-grained experiments to find
the optimal setups with back-translation data.

For Fr→De we tuned our models towards the
topic defined in the task by making use of guided
topic modeling8. We manually created a seed
word list with around 100 tokens from a few Ger-
man news articles on elections, then we classified
the documents in the 2014 and 2016 German News
Crawl data sets into different topics.9 We finally
selected about 170k doc units from News Crawl
2014 and 186k doc units from News Crawl 2016
as candidate data for back-translation. We also
experimented with back-translation of 2.5M ran-
domly selected segments from News Crawl 2017.
This synthetic data brought some improvement but
not as much as the synthetic data obtained from
topic modeling.

For En→Lt we back-translated all of the pro-
vided monolingual data with the exception of
Common Crawl. We filtered Common Crawl
using a language model built on the only in-
domain resource for this language pair, 2018 News
Crawl. We took the top 500k segments and back-
translated them but this did not result in any im-
provement (we used, however, a transformer type
language model built on 2018 News Crawl for
later models (cf. Section 3.2.3)).

3.2.2 Fine-tuning with In-domain Data
For language pairs where a substantial amount of
test data from previous years’ tasks is available
a possible direction to improve performance is to
continue training with this data as domain adapta-
tion (Luong and Manning, 2015). For En→De we
used the 2008–2017 development sets (30k seg-
ments) in the experiments and for the final sub-
mission we extended it with the 2018 test set. For
Ru→En we used a set of about 18k segments from
the news test sets from 2012 onwards, with the ex-
ception of the data used for testing and validation.

In the Fr→De system we used a set of about 13k
segments (cf. Section 2.1). It yielded improve-
ments on our test set, which was selected ran-
domly rather than through topic modeling. Since
we tuned the system this way towards the more
general news domain it is not surprising that for
the 2019 test set this fine tuning proved to be harm-

8https://github.com/vi3k6i5/guidedlda
9We tokenized the text and used stopword list but no

lemmatization in creating the document-term matrices.

ful. Unfortunately, we submitted the fine-tuned
model, which, although it did not alter our posi-
tion in the rankings, still led to a loss of 0.8 BLEU
points (cf. Table 3 in Section 4.2).

3.2.3 Ensembles
For the final En→De submission we created a 3
model ensemble trained with the same (best) con-
figuration but with different seeds. We also built
an ensemble with a transformer type language
model from the 2016 and 2017 German News
Crawl (117M segments) which we trained for 2
epochs. We set the weight of the language model
to 0.1 and the weight of the translation models to
1.0 to get the largest improvement.10

For the Fr→De and En→Lt final submissions,
we also created ensembles from the best single
models trained from different seeds but here we
only had time to experiment with 2 models. For
En→Lt we added a transformer type language
model from filtered 2018 news (375k) to the en-
semble. Similarly to En→De, the translation mod-
els had a weight of 1.0, while the language model
had a weight of 0.1.

3.2.4 Ineffective Methods
We make a brief mention of the methods that we
tried but did not seem to work. In particular, for
En→De oversampling the original parallel data
did not yield any improvement so we stopped the
experiments in this direction. Since for Ru→En
the addition of the UN corpus did not increase
model quality, we left it out from the training
data.11 Another technique that seemed promising
but did not give any improvement was incremen-
tal iterative back-translation (Hoang et al., 2018;
Marie et al., 2018). For En→Lt, where the avail-
able data set was in general much smaller, we had
time to experiment with this technique but we did
not manage to generate better models.

4 Results

We submitted one model for each of the four lan-
guage pairs. In this section we provide evaluation
scores for models at important stages in the exper-
iments which reflect how the models got better as

10It might be worth noting that the ensemble of a single
translation model and the language model did not give any
improvement; a small increase in the final score could only
be obtained by adding the language model to the 3 member
ensemble.

11Some WMT 2018 participants had similar experience in
the En→Ru direction (Deng et al., 2018).
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we tried various methods for improvement. All re-
sults are reported in detokenized BLEU.12

4.1 English→German

System Parallel data 2018 2019

M1 Baseline 6.8M 41.3 38.1
M2 M1+PC 24M 44.6 39.9
M3 M2+BT 34M 45.4 38.7
M4 M3 ens. 34M 46.0 40.1
M5 M4+LM 34M 46.3 40.3

M6 M5+FT 34+0.03M 47.8 42.4

Table 2: Results for En→De models. The 2019 results
are post-submission.

Table 2 summarizes the scores for the En→De
models. Model 1 as our baseline used only the
original parallel data (Table 1). In Model 2 we ex-
tended this data with filtered ParaCrawl (PC) v3
data, which led to a substantial improvement (al-
though less so on the 2019 test set). For Model 3
we added the synthetic data (BT), which seemed
to improve the quality on the 2018 test set but to
our great surprise resulted in a performance drop
on the 2019 test set. This might suggest that the
synthetic data already introduces some unwanted
noise into the model that could have a detrimen-
tal effect depending on the input to be translated.
Model 4 is an ensemble of three Model 3 setups
and this proved to be a very efficient choice with
respect to the 2019 test set. Some small additional
improvement could be gained by adding the lan-
guage model (LM) to the ensemble (Model 5) but
the largest positive effect came from the fine tun-
ing (FT) as seen in Model 6.

4.2 French→German

Table 3 gives the scores for the Fr→De models.
The 2008-14D column contains the scores on our
development test set (cf. Section 2.1). The base-
line Model 1 is built from the original parallel data
(Table 1). In Model 2 we added a small amount
of back-translated data, which was generated from
the monolingual Europarl and News Commentary.
From this data set we filtered out the segments
that overlap with the original parallel data. This
step led to a moderate improvement. For Model 3

12sacreBLEU signatures: BLEU+case.mixed+
lang.en-de+numrefs.1+smooth.exp+tok.13a+
version.1.3.0

System Parallel data 2008-14D 2019

M1 Baseline 2.6M 20.8 26.1
M2 M1+BT1 3.2M 21.4 27.8
M3 M2+PC 6.9M 22.4 29.4
M4 M3+BT2 11.6 22.8 33.1
M5 M4+FT 11.6M+13k 23.8 32.4
M6 M4 ens. 11.6M 22.7 33.5

M7 M5 ens. 11.6+13k 24.3 32.7

Table 3: Results for Fr→De models. The 2019 results
are post-submission.

we added filtered ParaCrawl v3 data, again with a
moderate improvement. In Model 4 we included
the topic selected synthetic data, which improved
the quality minimally on the development set but
significantly on the 2019 test set. In Model 5 we
fine-tuned Model 4, which gave yet again a mod-
erate improvement on the development set but re-
sulted in a decrease on the 2019 test set (cf. Sec-
tion 3.2.2). At this stage, we decided to test big
transformers from Model 4. We only had time to
train 2 models and even they could not reach con-
vergence in time. Model 6 is an ensemble of the 2
big transformers, each with a weight of 1.0, while
for Model 7 we ensembled the fine-tuned models
of Model 6. Unsurprisingly, Model 7 was better
than Model 6 on the development set but worse
on the 2019 test data (cf. Section 3.2.2). For this
language pair, the most beneficial step was the ad-
dition of topic-selected back-translated data.

4.3 English→Lithuanian

System Parallel data 2019D 2019

M1 Baseline 0.84M 15.5 11.4
M2 M1+PC 2.2M 19.4 12.5
M3 M2+BT 4.7M 25.7 16.6
M4 M3+OS 5.9M 25.8 15.9
M5 M4+LM 5.9M 26.1 16.0

M6 M5 ens. 5.9M 27.0 17.1

Table 4: Results for En→Lt models. The 2019 results
are post-submission.

Table 4 presents the scores for En→Lt. The
2019D column is for the scores on the provided
development set (cf. Section 2.1). Model 1 is
the baseline with the original parallel data (Ta-
ble 1). In Model 2 we added the full ParaCrawl
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v3 data, which led to a substantial improvement
on the 2019 development set but just a moderate
one on the 2019 test set. In Model 3 we further
added the synthetic data (back-translation of all
monolingual data except Common Crawl). This
resulted in a big boost in the quality on both test
sets. For Model 4 we oversampled (OS) 2 times
the Rapid corpus from the parallel data and the
domain-relevant back-translated data (2018 News
Crawl). Model 5 is a (1, 0.1) ensemble of Model
4 with a transformer-type language model, with
a minimal improvement on the 2018 development
set but a drop of 0.6-0.7 BLEU points on the 2019
test set. Since this was unknown in the develop-
ment stage, we decided to build big transformer
models on the same training data as Model 4.
Model 6 is an ensemble of these 2 big transform-
ers and the language model. The improvement on
the 2019 test set was significant.

4.4 Russian→English

System Parallel data 2018 2019

M1 Baseline 2.1M 27.3 32.4
M2 M1+PC 5.9M 29.5 35.9

M3 M2+FT 5.9M+17.8k 32.9 37.4

Table 5: Results for Ru→En models. The 2019 results
are post-submission.

We made fewer experiments with the Ru→En
system. The scores in Table 5 give the outcome of
the evaluation of three simple single transformer
models: (i) Model 1 built on the original parallel
data (excluding the UN corpus); (ii) Model 2 with
filtered ParaCrawl added; (iii) Model 3, which is
fine-tuned on domain-specific data. This shows
that it is possible to produce reasonable models in
very constrained conditions.

4.5 Experiments with Unconstrained Models

We ran a few experiments with unconstrained
models making use of the Euramis (Steinberger
et al., 2014) data set. This data contains mil-
lions of segments for 3 of the 4 language pairs we
worked with and offers itself as a natural resource
to build unconstrained models from. At the same
time it is in general quite distant from the news
domain. Thus for the high resource language pairs
(En→De, Fr→De) we first tried to use only those
subsets which might be closer to the shared task

domain. We extracted additional training data us-
ing language models built from monolingual news
corpora as reference in-domain text with the XenC
toolkit (Rousseau, 2013). For Fr→De we built the
language model from the topic modeling based se-
lection and also experimented with extracting Eu-
ramis data using the same guided LDA process as
described in Section 3.2.1. We re-ran the train-
ings of the best constrained models by adding 2M
and later 3M Euramis segments to the training data
but as we cannot report on any improvement, we
stopped this line of experiments and did not sub-
mit the unconstrained systems.

For En→Lt, we trained 3 non-constrained mod-
els by adding to the best constrained system (i)
all our Euramis data, (ii) 1M and (iii) 2M seg-
ment subsets selected as described above. This
resulted in a very small improvement of less than
0.5 BLEU points for the models with selected Eu-
ramis subsets, while the model with the full Eu-
ramis data was almost 2 BLEU points worse. We
thus decided not to submit any of the 3 systems.

5 Conclusion

For the first participation in WMT 2019, the
eTranslation team submitted four systems to the
news translation shared task. We experimented
with different settings for each task but the de-
velopment of all systems shared the common
goal of maximizing efficiency in a relatively low-
resource production environment. For this rea-
son, our systems relied on simple architectures,
and we focused instead on finding the most ap-
propriate combination of standard techniques and
tools, which can thus directly be ported to pro-
duction systems. In particular, we could con-
firm that a careful selection of the training data,
back-translation and fine-tuning were generally
the most rewarding techniques, allowing all our
systems to perform decently and to end up in the
first half of the rankings, despite the limitations
imposed by our low resource environment.

References
Yongchao Deng, Shanbo Cheng, Jun Lu, Kai Song,

Jingang Wang, Shenglan Wu, Liang Yao, Guchun
Zhang, Haibo Zhang, Pei Zhang, Changfeng Zhu,
and Boxing Chen. 2018. Alibaba’s neural machine
translation systems for WMT18. In Proceedings of
the Third Conference on Machine Translation, pages
372–380, Belgium, Brussels. Association for Com-
putational Linguistics.

325



Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 489–500, Brussels, Belgium. Association
for Computational Linguistics.

Andreas Eisele. 2017. Machine translation at the Euro-
pean Commission. In Jörg Porsiel, editor, Machine
Translation: What Language Professionals Need to
Know, pages 209–220. BDÜ Fachverlag, Berlin.
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Abstract

The paper describes the development process
of Tilde’s NMT systems for the WMT 2019
shared task on news translation. We
trained systems for the English-Lithuanian
and Lithuanian-English translation directions
in constrained and unconstrained tracks. We
build upon the best methods of the previous
year’s competition and combine them with
recent advancements in the field. We also
present a new method to ensure source domain
adherence in back-translated data. Our sys-
tems achieved a shared first place in human
evaluation.

1 Introduction

Since the paradigm-shifting success of neural ma-
chine translation (NMT) systems at the 2016 Con-
ference on Machine Translation (WMT) (Bojar
et al., 2016), NMT methods and neural network
architectures applied in NMT have been annu-
ally improved. In 2016, the best-performing sys-
tems were based on recurrent neural networks with
gated recurrent units (GRU) (Sennrich et al., 2016;
Bojar et al., 2016). In 2017, deep GRU mod-
els (Sennrich et al.) and models based on shal-
low multiplicative long short-term memory units
(MLSTM; (Pinnis et al., 2017b)) allowed achiev-
ing the best results (Bojar et al., a). In 2018, the
majority of best-performing systems were based
on self-attentional (Vaswani et al., 2017) (Trans-
former) models (Bojar et al., b).

A year has passed, and the majority of best-
performing systems submitted to the shared task
on news translation of WMT 2019 are still based
on Transformer networks. However, improve-
ments are evident in other areas (e.g., usage of
document-level context, very deep models, distil-
lation by ensemble teachers, etc.)1. Quite a few of

1http://matrix.statmt.org

the submissions indicate that substantial amounts
of computational resources may have been utilised
in order to achieve such results. As we do not have
access to large GPU clusters, our strategy for par-
ticipating at the shared task on news translation
of the 2019 Conference on Machine Translation
was comprised of combining different methods
that showed promising results in scientific publi-
cations published in 2018, and analysing whether
the methods allowed increasing the overall qual-
ity of NMT systems when training NMT models
using just modest hardware (with access to one or
two graphical processing units) and with the goal
of producing models suitable for production.

In our experiments, we investigated methods for
corpora filtering (the Tilde MT parallel data filter-
ing (TMTF) and normalisation workflow (Pinnis,
2018) together with dual conditional cross-entropy
filtering (DCCEF) (Junczys-Dowmunt, 2018)),
training data pre-processing using the methods de-
scribed by Pinnis et al. (2018a), a new optimi-
sation method, the quasi-hyperbolic Adam, pro-
posed by Ma and Yarats (2018), back-translation
with sampling-based decoding (e.g., as done by
Edunov et al. (2018)) and by targeting rare words
(Fadaee and Monz, 2018) and in-domain subsets
of the monolingual data, and automatic linguisti-
cally informed post-editing of named entities and
non-translatable phrases.

This year, Tilde participated in the shared task
on news translation for the English↔Lithuanian
language pair. We trained constrained and uncon-
strained systems for both translation directions.

The paper is further structured as follows: Sec-
tion 2 describes the data used for training, Sec-
tion 3 describes the main NMT model training
experiments, Section 4 describes our experiments
on automatic post-editing of named entities, Sec-
tion 5 summarises our automatic evaluation re-
sults, and the paper is concluded in Section 6.
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2 Data

Similarly to the year before, we used both con-
strained data, which were provided by the organ-
isers of the shared task, as well as unconstrained
data, which comprised publicly available paral-
lel and monolingual corpora as well as propri-
etary data from the Tilde Data Library2. For lan-
guage model (LM) training and back-translation,
we used news data provided by the organisers. For
the unconstrained systems, we used a proprietary
news corpus. The raw statistics of data available
are provided in Table 1. For validation, we used
the first 1000 sentences of the NewsDev2019 data
set. Evaluation was performed on NewsTest 2019.

2.1 Data Filtering

For data filtering, we applied the parallel data fil-
tering methods of Tilde MT (Pinnis et al., 2018b;
Pinnis, 2018) for both constrained and uncon-
strained systems. The filters address potential is-
sues that arise from misalignment of parallel data ,
incomplete translation, various types of data cor-
ruption, and other types of data quality issues.
However, these filters do not perform data se-
lection. Therefore, we applied also data filter-
ing using DCCEF proposed by Junczys-Dowmunt
(2018). As it uses an in-domain LM to discard
out-of-domain sentence pairs, it performs the task
of data selection. Because for the constrained sys-
tems the data-set was not sufficiently large, we ap-
plied the filter with a threshold of > 0. For the
unconstrained systems, we set the threshold to 11
million3 highest scored sentence pairs.

For monolingual data, we filtered out all sen-
tences that: 1) were redundant, 2) exceeded 128
tokens or 1000 characters, 3) contained tokens
over 50 characters, and 4) contained corrupt char-
acters. See Table 1 for statistics of data filtering.

2.2 Data Pre-Processing

This year, we did not change the parallel and
monolingual data pre-processing workflows that
we used for our WMT 2018 submissions (Pinnis
et al., 2018a).

Similarly to last year, the training corpora were
supplemented with synthetic data where up to
three words in each sentence were replaced with

2www.tilde.com/products-and-services/data-library
3The threshold was empirically identified by training mul-

tiple models with thresholds set at 8 to 12 million.

unknown word identifiers on both source and tar-
get sides to ensure that the NMT models are able
to handle rare and unknown phenomena during
translation (Pinnis et al., 2017a). The statistics of
the parallel corpora after supplementing them with
synthetic data sets are provided in Table 1.

3 NMT Systems

We took an iterative approach to validating the
methods we selected for use in NMT system train-
ing. At each step, we either accepted or re-
jected a method for further use based on its per-
formance compared to a baseline. When moving
on, we would often use the previously selected
method as a baseline for the next method (which
we would combine with the previous method)
and so on. More specifically, we conducted
the experiments as follows: 1) Filtering (Sec-
tion 3.1), 2) ∼QHAdam (Section 3.2.1), 3) reg-
ular back-translation, 4) large batches (Section
3.3), 5.a) back-translation using beam search or
sampling (Section 3.4.2), 5.b) back-translation us-
ing rare or random data (Section 3.4.1, the re-
sults weren’t used further), 6) QHAdam (Section
3.2), 7) Source domain adherence (Section 3.4.3),
8) Transformer-big (Section 3.5). The outline of
this section loosely follows the above timeline.

As a result of the iterative approach, the eval-
uation of the training methods was mostly non-
exhaustive – meaning that it was usually done
only for a single translation direction (most of-
ten En → Lt) testing only a few possible config-
urations (e.g., different model hyper-parameters,
back-translated data-set size, etc.). Also, for some
experiments we did not methodically test the ef-
fect of each of the compounding changes to the
experiment’s configuration, e.g., in ∼QHAdam ex-
periments (in Section 3.2) along with adopting the
new optimiser we also selected a new learning-
rate and learning-rate schedule without confirming
that the baseline optimiser would not also benefit
from these changes. As a result, for some exper-
iments we cannot confirm with certainty that the
selected method is better than the baseline, only
that the selected method with a given set of hyper-
parameters is better. The above choices were pri-
marily motivated by resource and time constraints.

All NMT systems described further used the
Transformer architecture (Vaswani et al., 2017)
and were trained using the Marian NMT toolkit
(Junczys-Dowmunt et al., 2018). Unless noted
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Lang.
pair

Parallel data (sentence pairs) Monolingual data (sentences)
Raw

+TMTF
+Synth.

data
+DCCEF

Raw Filtered For LM
Total Unique Total Unique Unique

(U)
en-lt

42.9M 30.5M 15.0M 28.6M 11.0M
82.5M 61.3M 4.7M

lt-en 63.9M 61.0M 4.9M

(C)
en-lt

2.4M 2.3M 1.5M 3.0M 1.7M
103.5M 75.5M 0.7M

lt-en 63.5M 60.9M 2.0M

Table 1: Training data statistics (TMTF - Tilde MT filtering, DCCEF - dual conditional cross-entropy filtering)

otherwise, we used the base model configuration
for the model hyper-parameters.

3.1 Filtering
Since DCCEF achieved the best results in
the shared task on parallel corpus filtering at
WMT 2018 (Koehn et al., 2018), we decided to
test whether the combination of our filtering meth-
ods (i.e., TMTF) and DCCEF allows acquiring
better models. Therefore, we filtered the paral-
lel corpora using DCCEF. For this, we trained two
NMT models using the data that were already fil-
tered using TMTF and four language models (two
in-domain models that were trained on news cor-
pora and two models trained using the parallel
data), and trained several NMT systems. Figure 1
shows the training progress for En→ Lt. It is ev-
ident that the combination of the methods works
better only for the unconstrained systems. We sus-
pect that it is because the unconstrained data sets
are large enough to leave enough training data re-
maining in the filtered data sets. Further, all ex-
periments for unconstrained systems will be per-
formed using data filtered with TMTF and DCCEF
and for constrained systems – only TMTF.

Figure 1: En→ Lt systems trained on datasets filtered
using the TMTF and DCCEF methods

3.2 QHAdam
We used two versions of the Quasi-Hyperbolic
Adam (QHAdam) optimiser (Ma and Yarats,

2018) to train our systems – a version as de-
scribed in the original paper, and a modified ver-
sion (∼QHAdam) as described below. The mod-
ified version was due to an error in our initial
implementation of the optimiser but it performed
well enough for us to use it to train the majority of
the systems during the period of the competition.

3.2.1 ∼QHAdam

We define the ∼QHAdam’s update step in (1). The
definitions for g′t, s

′
t, v1 and v2 are the same as in

the original paper.
The comparison of ∼QHAdam and the baseline

system for the constrained En→ Lt track is given
in Figure 2. ∼QHAdam was tested with different
combinations of settings for the learning rate and
the number of warm-up steps used. In our ini-
tial experiments, we found that setting the learn-
ing rate to 5× 10−4 and using 48k warm-up steps
worked best. A workspace size of 9 GB on 2 GPUs
was used in Marian which resulted in an effective
batch-size of around 255 sentences.

3.3 Using Large Batches

As shown by Popel and Bojar (2018) and Ott
et al. (2018), using a large batch size in conjunc-
tion with increasing the learning rate allows to
train better-performing NMT systems. We con-
firm these findings. We trained the same system
described in Section 3.2.1 except training it with
a workspace size of 14 GB on 8 GPUs (simu-
lated using the --optimizer-delay option in Mar-
ian) which resulted in an effective batch size of
∼1263 sentences. Additionally we increased the
learning rate to 7.3× 10−4 roughly keeping to the
rule of scaling the learning rate by a factor of

√
n

when the batch size has increased by a factor of n
(Hoffer et al., 2017). The results are given in Fig-
ure 3. These experiments were done using back-
translated data (see Section 3.4). When using non-
back-translated data, we saw overfitting occur.
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θt+1 ← θt − α

(1− v1) · ∇L̂t(θt) +

v1 · g′t+1√
(1− v2)(∇L̂t(θt))2 + v2 · s′t+1 + ε


 (1)

Figure 2: Training progress for the baseline and
∼QHAdam systems in the En → Lt translation direc-
tion.

Figure 3: Training progress for ∼QHAdam systems
comparing effects of different batch sizes and learning
rates in the En→ Lt translation direction.

3.4 Experiments with Back-translation

We used NMT model adaptation through back-
translation (Sennrich et al., 2015) to adapt NMT
systems to the news domain. We applied two iter-
ations of back-translation and the subsequent sys-
tem training to incrementally improve the back-
translated data set (Rikters, 2018). We also anal-
ysed methods for selection of the data for back-
translation. The methods are discussed further. In
the figures further, if not specified in the name of
each system, the proportion between parallel and
back-translated data is 1-to-1.

3.4.1 Rare vs. Random Data for
Back-Translation

Fadaee and Monz (2018) showed that adaptation
through back-translation works better if the data
for back-translation can be considered rare or diffi-
cult. Therefore, we compared two types of data se-
lection - random selection and selection by target-

ing rare words (as proposed by Fadaee and Monz
(2018)), back-translated the data sets using beam
search, and trained NMT models. Figure 4 depicts
the training progress of the En→ Lt and Lt→ En
systems. The results suggest that targeting of sen-
tences containing rare words did not help. We be-
lieve that this is due to the fact that what is rare in
the target language may not be relevant for speak-
ers of the source language. Therefore, there is no
guarantee that the method will work. We stopped
here and did not pursue this method further.

Figure 4: Training progress of systems trained on ran-
domly selected data for back-translation and data se-
lected by targeting rare words

3.4.2 Beam vs. Sampling
As suggested by Edunov et al. (2018), when back-
translating data for domain adaptation, better-
performing models can be acquired when using
sampling instead of beam search. Therefore, we
trained several systems on different amounts of
back-translated data. The training progress of the
systems is depicted in Figure 5.

For the final training iteration, we used sam-
pling instead of beam-search during decoding for
all but one system.

3.4.3 Source Domain Adherence
When adapting a system to a specific domain, it
is important to use data from that specific do-
main. However, since we use a monolingual cor-
pus from the target language to adapt an NMT
system for source content, there may still be a
domain mismatch, because how people write and
what they write about in the target language may
be (to higher or lower extent) irrelevant for the
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Figure 5: Training progress of systems trained on back-
translated data that was acquired using beam search and
sampling.

people writing in the source language. Therefore,
we performed an experiment where we translated
the in-domain source data into the target side us-
ing an NMT system, trained a language model on
the translations, scored each sentence of the tar-
get side’s monolingual corpus, and used only the
top-scored sentences for back-translation. Com-
parison between systems trained on randomly se-
lected data for back-translation and data selected
using LMs (with sorted in the name) is given in
Figure 6.

Figure 6: Training progress of systems trained on ran-
domly selected data and data selected using LMs for
back-translation.

3.5 Transformer Big

When training the unconstrained systems on
the second iteration of back-translated data, we
trained a variant for both translation directions
using the transformer-big configuration (Vaswani
et al., 2017). While doing so, we also adjusted
the learning rate. Due to time constraints and
technical difficulties we were not able to run
these experiments to completion. Nonetheless,
the transformer-big configuration still managed to
surpass the baseline. For results see Figure 7.

Figure 7: Training progress for the transformer-big
systems comparing them to QHAdam baselines.

4 Automatic Named Entity Post-Editing

In our submissions for WMT 2018, we intro-
duced an automatic named entity (NE) post-
editing (ANEPE) workflow (Pinnis et al., 2018a),
which allowed to fix translations of NEs (con-
sisting of one word) and non-translatable words
after NMT decoding. The method depends on
the quality of word alignments. Because then
we did not have methods to extract reliable word
alignments from Transformer models, we had to
rely on external word alignment using fast align
(Dyer et al., 2013). This resulted in many mis-
alignments and unalignments, and incorrect post-
edits. This year, we trained all models using the
guided alignment method implemented in Mar-
ian (Junczys-Dowmunt et al., 2018). Although
we still had to pre-process training data using
fast align, the NMT models learned to produce
more reliable word alignments. We also extended
the ANEPE method to support multi-word NEs
and non-translatable phrases.

The method works as described further. Using
collections of NEs and non-translatable phrases,
we perform dictionary-based NE recognition in
the source text. Then, for each recognised unit,
we analyse whether the NMT translation contains
a valid translation of the source unit. In order
to support morphologically rich languages (as is
Lithuanian), stemming of tokens is performed.
However, NEs can already be included in surface
forms in the NE collections to account for possi-
ble stemming-related issues. If a valid translation
is not found, we analyse whether we can iden-
tify, which target words the source unit was trans-
lated into. If the words are next to each other (i.e.,
there is no gap between the target words), we re-
place the target words (except trailing stop-words)
with the most similar (according to Levenshtein
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distance (Levenshtein, 1966)) translation equiva-
lent (except trailing stop-words) found in the NE
collection. Stop-words are excluded as the word
alignment extracted from the NMT model com-
monly aligns stop-words to content words when
stop-words (dis)appear in the target language. Us-
ing ANEPE, we improved the translation quality
by 0.04 to 0.1 BLEU points for all submissions.
Statistics also show that out of 408 named enti-
ties and non-translatable phrases identified in the
Lithuanian validation set, 322 already had valid
translations, 26 were post-edited, and the remain-
ing 60 either had alignment issues or the target
words were too dissimilar from the entries in the
NE collection. We applied ANEPE for all our sub-
missions.

5 Results

Automatic evaluation results of our final systems
using BLEU4 (Papineni et al., 2002) are given in
Table 2. To acquire final translations, we per-
formed also ensembling of the best-performing in-
dividual models. For submission, we selected the
best-performing models for both translation direc-
tions and both scenarios. However, it is evident
that other models were able to translate the New-
sTest 2019 evaluation set better (for 3 out of 4 sub-
missions). Although this can be expected, when
deciding, which systems to submit, we did not ac-
count for the change of the evaluation strategy, i.e.,
the fact that the evaluation set contained only texts
originally written in the source language (which is
different from previous years). The results clearly
show that the models that are more source domain
adherent (e.g., the ‘(u) so-beam-∼qh-1-to-1’ un-
constrained system for Lt→ En) even surpass the
quality of our ensemble models.

6 Conclusion

The paper presented Tilde’s efforts on develop-
ing NMT systems for the WMT 2019 shared task
on news translation. We built upon our meth-
ods from the previous year and investigated other
novel methods proposed in 2018. Our experi-
ments showed that improvements in translation
quality could be achieved by using improved filter-
ing by combining TMTF and DCCEF, sampling-
based back-translation (although not for all sys-

4BLEU scores were obtained using SacreBLEU
(Post, 2018), checksum: BLEU+case.mixed+numrefs.1
+smooth.exp+tok.13a+version.1.2.7.

System
NewsDev
(2019a)

NewsTest
(2019)

English-Lithuanian
(u) best 4 ens. 27.18 18.84
(u) best 2 ens. 27.03 19.53
(c) best 5 ens. 26.70 17.86
(u) sa-∼qh-1-to-3 26.66 18.76
(u) sa-qh+-big-1-to-3 26.61 19.13
(c) best 3 ens. 26.54 18.59
(c) sa-qh+-1-to-3.3 26.42 18.14
(c) sa-∼qh-1-to-1.7 26.19 18.17
(c) sa-∼qh-1-to-1 26.16 17.83
Lithuanian-English
(u) best 5 ens. 30.41 31.55
(c) best 5 ens. 29.76 30.21
(u) so-beam-
∼qh-1-to-1

29.43 31.67

(u) so-sa-qh+-big-
l035-1-to-2

29.12 30.09

(u) so-sa-qh-1-to-2 28.99 29.60
(c) so-sa-∼qh-1-to-3.2 28.84 29.30
(c) so-sa-qh-1-to-3.2 28.66 28.93
(c) sa-1-to-3.3 28.17 28.94

Table 2: Evaluation results - BLEU scores (submit-
ted models are underlined, bold marks best results for
both scenarios, (c) - constrained scenario, (u) - uncon-
strained scenario, ‘ens.’ - ensembles of models, ‘sa’
- sampling-based back-translation, ‘so’ - source do-
main adherence, ‘qh’ - quasi-hyperbolic Adam, ‘∼qh’
- modified version of ‘qh’, ‘qh+’ - ‘qh’ with tuned
parameters, ‘M-to-N’ - the proportion of parallel and
back-translated data)

tems), and the quasi-hyperbolic Adam optimiser.
We also introduced a new method that allows to
boost the quality of back-translation by ensuring
source domain adherence of the data selected for
back-translation, as well as described improve-
ments upon our automatic named entity post-
editing method. Our systems achieved a shared
first place in human evaluation.
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Abstract

In this paper I describe a rule-based, bi-
directional machine translation system for the
Finnish—English language pair. The origi-
nal system is based on the existing data of
FinnWordNet, omorfi and apertium-eng. I
have built the disambiguation, lexical selec-
tion and translation rules by hand. The dic-
tionaries and rules have been developed based
on the shared task data. I describe in this arti-
cle the use of the shared task data as a kind of
a test-driven development workflow in RBMT
development and show that it suits perfectly
to a modern software engineering continuous
integration workflow of RBMT and yields big
increases to BLEU scores with minimal effort.
The system described in the article is mainly
developed during shared tasks.

1 Introduction

This paper describes our submission for Finnish—
English language pair to the machine translation
shared task of the Fourth conference on machine
translation (WMT19) at ACL 2019. Traditionally
rule-based machine translation (RBMT) is not in
the focus for WMT shared tasks, however, there
are two reasons I experimented with this system
this year. One is that we have had an extensively
large amount of lesser used resources for this pair:
omorfi1 (Pirinen, 2015) has well over 400,000 lex-
emes2, apertium-eng3 has over 40,000 lexemes
and apertium-fin-eng4 over 160,000 lexeme-to-
lexeme translations. One of our key interests in the
shared task like this is that it provides an ideal data
for test-driven development of lexical resources.

1https://github.com/flammie/omorfi
2https://flammie.github.io/omorfi/

statistics.html
3http://wiki.apertium.org/wiki/English
4https://github.com/apertium/

apertium-fin-eng

One concept I experimented with the shared
task is various degrees of automation—expert su-
pervision for the lexical data enrichment. In this
experiment I used automatic methods to refine the
lexical selection of the machine translation, and
semi-automatised workflows for the generation of
the lexical data, as well as some expert-driven
development of the more grammatical rules like
noun phrase chunking and determiner generation.
It might be noteworthy that this machine trans-
lator I describe in the article is not actively de-
veloped outside the shared tasks, so the article is
moreso motivated as an exploration of the work-
flow and methods on semi-automatically gener-
ated shallow RBMT than a description of a fully
developed RBMT.

The rest of the article is organised as follows: In
Section 2 I describe the components of our RBMT
pipeline, in Section 3 I describe the development
workflow and in Section 4 I show the shared task
results and I perform error analysis and discuss the
results and finally in Section 5 we summarise the
findings.

2 System description and setup

The morphological analyser for Finnish is based
on omorfi (Pirinen, 2015), a large morphological
lexical database for Finnish. Data from omorfi
has been converted into Apertium format and is
freely available in the apertium-style format in
the github repository apertium-fin5. For English
I have used Apertium’s standard English analyser
apertium-eng6. Both analysers were downloaded
from github in the beginning of the shared task
and we have updated and further developed them
based on the development data during the shared

5https://github.com/apertium/
apertium-fin

6https://github.com/apertium/
apertium-eng
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Dictionary Lexemes Manual rules

Finnish 426,425 143
English 40,185 187
Finnish-English 164,501 273

Table 1: Sizes of dictionaries. The numbers are num-
bers of unique word entries or translation entries as
defined in the dictionary, e.g., homonymy judgements
have been made by the dictionary writers. The rule
counts are combined counts of all sorts of linguistic
rules: disambiguation, lexical selection, transfer and so
forth.

task. I developed the Apertium’s Finnish-English7

dictionary initially based on the FinnWordNet’s
translated data, which was over 260,000 Wordnet-
style lexical items; of these I discarded most which
had multiple spaces in them or didn’t match any
source or target words in Finnish and English
dictionaries, ending with around 150,000 lexical
translations. The size of dictionaries at the time of
writing is summarized in Table 1, however more
up-to-date numbers can be found in Apertium’s
Wiki 8

The system is based on the Apertium9 ma-
chine translation platform (Forcada et al., 2011),
a shallow transfer rule-based machine translation
toolkit. For morphological analysis and genera-
tion, HFST10 (Lindn et al., 2011) is used and for
morphological disambiguation VISL CG-3 11 is
used. The whole platform as well as all the lin-
guistic data are licensed under the GNU General
Public Licence (GPL).

Apertium is a modular NLP system based on
UNIX command-line ideology. The source text
is processed step-by-step to form a shallow analy-
sis (morphological analysis), then translated (lex-
ical transfer) and re-arranged (structural transfer)
to target language analyses and finally generated
(morphological generation). Each of the steps
can be processed with arbitrary command-line tool
that transforms the input in expected formats. All
of the steps also involve ambiguity or one-to-many
mappings, that requires a decision, and while these

7https://github.com/apertium/
apertium-fin-eng

8http://wiki.apertium.org/wiki/List_
of_dictionaries

9https://github.com/apertium
10https://hfst.github.io
11http://visl.sdu.dk/cg3.html

decisions can be made using expert written rules,
the writing of the rules is also a demanding task,
and it is interesting to see how much can be
achieved by simply bootstrapping the rulesets us-
ing automatic rule acquisition.

To illuminate how apertium does RBMT in
Finnish—English, and the kinds of ambiguities I
resolve, I show in Table 3 examples of the am-
biguities with an example sentence. The ambi-
guity of source morphology is the true ambiguity
rate of the language (according to the morpholog-
ical analyser), i.e. how many potential interpreta-
tion each word has. It is no surprise that Finnish
has relatively high ambiguity rate, however, En-
glish is nearly unambiguous is more due to lim-
itation of apertium’s English dictionary than fea-
ture of English per se, given that English has a bit
of productive zero-derivations, e.g. verbing nouns
and vice versa. The lexical selection ambiguity
is the translation dictionary’s rate of choices per
source word, and FinnWordNet on average has 5
synonyms per word to suggest. The target mor-
phology ambiguity is the rate of allomorphy or
free variation, in Finnish as target language there’s
some systematic problems, such as plural geni-
tives and partitives, whereas English literally has
two incidents in the whole dev set: sown / sowed
and fish / fishes. Assuming a perfect RBMT sys-
tem would keep all options open, until final deci-
sion, the number of hypotheses at the end would
be at least MASL × LSSL→TL × MATL, where
MA is morphological ambiguity rate, LS is lexi-
cal selection ambiguity rate, SL is source language
and TL is target language. For Finnish—English I
show the example figures of the ambiguities based
on the development and test sets in Table 2.

The rule-based machine translation process as it
is performed by apertium is shown in Table 3. The
first step of the RBMT here is morphological anal-
ysis, in apertium this covers both tokenisation and
morphological analysis as seen here; in apertium-
eng the expression ‘in front of’ is considered to
be a single token and is packaged as a preposition
(we have also omitted an ambiguity between at-
tributive and nominal reading of the house, since
the distinction does not currently make difference
in English to Finnish translation, in order to fit the
table in the paper). The morphological analysis in
apertium is performed by finite-state morphologi-
cal analysis as defined in Beesley and Karttunen
(2003) and implemented in open source format
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Feature: Source Lexical Target Total
Corpus morphology selection morphology

Finnish dev set 1.68 5.04 1.0002 8.46
Finnish test set 1.69 4.80 1.0003 8.13

English dev set 1.04 1.15 1.0013 1.19
English test set 1.03 1.12 1.0006 1.15

Table 2: Ambiguity influencing RBMT Finnish-to-English and English-to-Finnish

by Lindn et al. (2011). After analysis, the next
step is to disambiguate, i.e. pick 1-best lists of
morphological analyses; in apertium this is done
by constraint grammar, as described by Karlsson
(1990) and implemented in open source by VISL
CG 3.12. In lexical translation phase, each lemma
is looked up from the translation dictionary, and in
lexical selection the translation that is most suit-
able by the context and statistics is selected. In the
structural transfer phase a number of things is per-
formed: the English morphological analyses are
rewritten into Finnish analyses, e.g. the adjective
and noun will receive a genitive case tag due to
the adposition, and the adposition is moved before
the noun phrase since it is a preposition in Finnish
and postposition in English, and the article is just
removed, as the use of articles is non-standard in
Finnish. Finally the Finnish analysis is generated
into a surface string using a finite-state morpho-
logical analyser, since they are inherently bidirec-
tional this needs no extra software or algorithms.

3 RBMT development workflow

I present here different levels of automation in the
RBMT workflow: in Subsection 3.1 I have auto-
mated the generation of rules, in Subsection 3.2
I have a semi-automated workflow and finally in
Subsection 3.3 I have an expert-driven develop-
ment workflow.

3.1 Lexical selection training

One of the key components of this experiment was
to try automatic rule-creation mechanisms for the
converted Wordnet dictionary refinement. A large
number of translation quality issues in the initial
converted Wordnet dictionary was a high number
of low-frequency ‘synonyms’ in translations. To
overcome this some automatic methods were used.
For automatic bootstrapping of the lexical selec-

12http://visl.sdu.dk/cg3.html

tion rules I used Europarl corpus (Koehn, 2005)
data and the methods demonstrated by Tyers et al.
(2012). Since the result of this training seemed
also insufficient, I experimented with another sys-
tem to generate more rules for lexical selection.13

On top of that, I have updated the lexical selec-
tion with some manual rules, that were either not
covered by Europarl hits or skewed wrongly for
the news domain, for example, the word ‘letter’
seemed to mainly have translations of kirje (a mes-
sage written on paper), while in the development
set all the sentences I sampled, a more suitable
translation would of been kirjain (a character of
alphabet). The resulting lexical selection rule sets
are summarised in the table 4. The first method
of creating rules is based on n-gram patterns, due
to restricted time and processing resources I have
only included bigrams into this model, and the sec-
ond model only considers unigrams. The results
are added up in the table lines + bigrams and +
unigrams respectively.

3.2 Lexicon development workflow
One of the key components of this experiment
is to show that a shared-task driven development
(STDD) is a usable workflow for the develop-
ment of the lexical data in rule-based machine
translation system. As such, a ‘training’ phase
in the RBMT development has been replaced by
a very simple semi-automated native speaker -
driven project workflow consisting of following:

1. Collect all lexemes unknown to source lan-
guage dictionary, and add them with neces-
sary morpholexical information

2. Collect all lexemes unknown to bilingual
translation dictionary, and add their transla-
tions

13https://svn.code.sf.net/p/apertium/
svn/trunk/apertium-swe-nor/dev/
lex-learn-unigram.sh
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Input: In front of the big house

Morphological analysis: In front of.PREP the.DET.DEF.SP big.ADJ house.N.SG

Morphological disambiguation: In front of.PREP the.DET.DEF.SP big.ADJ house.N.SG

Lexical translation: In front of.PREP→Edessä.POST the.DET.DEF.SP→se.DET.DEF.SP

big.ADJ→iso∼raju∼paha∼kova∼. . . jalomielinen.ADJ

house.N.SG→huone∼talo∼suku∼. . . edustajainhuone.N.SG

Lexical selection: Edessä.POST se.DET.DEF.SP iso.ADJ talo.N.SG

Structural transfer: iso.ADJ.POS.SG.GEN talo.N.SG.GEN Edessä.POST

Finnish translation: ison talon Edessä

Table 3: Translation process for the English phrase ‘In front of the big house’

Orig. Fin-Eng 18,066
+ bigrams 24,662
+ unigrams 30,049

Orig. Eng-Fin 22
+ bigrams 24,631
+ unigrams 25,748

Table 4: Lexical selection rules statistically generated

3. Collect all lexemes unknown to the target lan-
guage dictionary, and add them to the dictio-
nary with necessary morpholexical informa-
tion

The semi-automation that I have developed lies
in collecting the different unknown lexemes or
out-of-vocabulary items (OOVs), and guessing a
lexical entry or multiple plausible entries for them
and have the dictionary writer select and correct
them.

3.3 Grammar development

An expert-driven part of the RBMT workflow in
our current methodology is the grammar devel-
opment. This consists manually reading the sen-
tences produced by the MT system to spot system-
atic errors caused by grammatical differences be-
tween languages. For the purposes of this shared
task and the workshop, the linguistics or grammar
are not a central concept, so I will not detail it here
in detail. In practice this concerns of such gram-
matical rules as mapping between no articles in
Finnish to articles in English, mapping between
case or possessive suffixes and their correspond-
ing lexical representations in English and so forth.

Corpus BLEU-cased CharacTER

MSRA.NAO 27.4 0.515
HelsinkiNLP RBMT 8.9 0.650
apertium-eng-fin 4.3 0.756

USYD 33.0 0.494
apertium-fin-eng 7.6 0.736

Table 5: automatic scores from http://matrix.
statmt.org, we show our scores (boldfaced), the
highest ranking RBMT and the highest ranking NMT
for reference.

The details can be seen in the code that is available
in github.

4 Evaluation, error analysis and
discussion

The automatic measurements as used by the
shared task are given in the table 5. I show here
the BLEU (Papineni et al., 2002) and the Char-
acTER scores. BLEU, as it is a kind of industry
standard, and CharacTER (Wang et al., 2016) as
it is maybe more suited for morphologically com-
plex languages. As the automatic scores show, the
rule-based system has still room for improvement.

I find that a linguistic error analysis is one of
the most interesting part of this experiment. The
reason for this is is that the experiment’s scientific
contribution lies more in the extension of linguis-
tic resources and workflows than machine learn-
ing algorithm design. It is noteworthy, that in the
sustainable workflow I demonstrate in this article,
error analysis is a part of the workflow, namely,
adding of the lexical data and rules follows the
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Error count

OOVs in Finnish 763
OOVs in English 943
OOVs in FinEng 2696

Table 6: Classification of mainly lexical errors in
apertium-fin-eng submissions for 2019

Corpus BLEU-cased

apertium-eng-fin 2015 2.9
2017 3.5
2019 4.3

apertium-fin-eng 2015 6.9
2017 6.3
2019 7.6

Table 7: Progress of apertium-fin-eng over the years
using only the WMT shared task driven development
method.

layout given in Section 3 and is the same for de-
velopment and error analysis phase. I have, to that
effect, categorised the errors in translations along
the workflow:

1. OOV in source language dictionary (includ-
ing typos and non-words)

2. OOV in bilingual dictionary

3. OOV in target language dictionary

4. disambiguation or lexical selection fail

5. structural failure or higher level

The OOV’s can be calculated automatically
from the corpus data, but the higher level failures
need human annotation. A summary of the errors
can be seen in the table 6, this is based on the
errors that were fixed as a part of error analysis
process. As a result of this workflow, I have im-
proved the BLEU points of apertium-fin-eng over
the years, as can be seen in the table 7.

The OOV numbers might look moderately
large but a major part falls under proper nouns,
which are generally low frequency and do not
cause a large problem in translation pipeline, the
untranslated proper noun is recognisable and the
mapping of adpositions and case inflections will
fail where applicable. The task of adding proper
nouns to the dictionaries is also simplest, they are

easy to gather from the text, and for English and
bilingual dictionaries no further classification is
necessary; for the Finnish dictionary entry gener-
ation, paradigm guessing is necessary, although
the paradigms used in foreign names are much
more limited than with other parts-of-speech to
be added. In the newstest 2019 data there was a
number of words that I decided not to add to our
dictionaries, unlike our usual workflow where I
aim at virtual 100 % coverage with gold corpora.
The unadded words were for example words
like “Toimiluvanmuodossatoteutettavajulki-
senjayksityisensektorinkumppanuus”, which
seems to have a large number of missing spaces
and extra hyphen, these as well as extraneous
spaces were quite common in the data in our
error analysis as well as ‘words’ like ‘OIet’, ‘OIi’,
‘OIin’, ‘OIisi’, ‘OIIut’, i.e. forms of ‘olla’ (to
be) where lowercase L has been replaced with
uppercase I. While I do account for common
spelling mistakes in our dictionaries, these kind
of errors are probably more suited for robustness
testing and implemented with spelling correction
methods for specific problematic generated text,
such as OCR. We will look into implementing
spelling correction into our pipeline in the future.
Comparing the performance of RBMT to NMT,
it can be clearly seen that contemporary NMT is
better suited for error tolerance, in part because
it can be more character-based than token-based,
in part because any large training data set will
actually have some OCR errors and run-in tokens.

After OOV-errors one of the biggest easily solv-
able problems is ambiguity, so word sense dis-
ambiguation and lexical selection. For lexical se-
lection I found about 200 lexical translations that
were still badly wrong and could be solved with-
out coming up complex context conditions. For
disambiguation problems, a surprisingly common
problem was sentence-initial proper noun that is
a common noun as well, as a high frequency ex-
ample, for the word ‘trump’ meaning a winning
suit in card games (= Finnish ‘valtti’) would get
selected over the POTUS, plausibly when most of
the training and development before WMT 2019
did not contain so many proper noun Trumps.
Also rather common problem still is the ambiguity
in English verb forms, and between English zero
derivations.

In the structural transfer a large number of
errors are caused by long-distance re-ordering.
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For example for Finnish to English proper noun
phrases regardless of length of the phrase, the
Finnish shows case in last word or postposition
after the last word, English has preposition be-
fore the word, but when phrase gets chunked par-
tially the adpositions or case suffixes end up in the
middle with a rather jarring effect to the trans-
lated sentence. The same applies for other ef-
fects where generating correct language depends
on correct chunk detection, e.g. the article genera-
tion is very limited in the current code because the
articles need to be generated from nothing, when
translating from Finnish to English, only at the
very beginning of specific noun phrases.

Finally a number of problems were caused for
such grammatical differences between languages
that do not have a good solution in lexical rule-
based machine translation, such as difference be-
tween English noun phrases and corresponding
Finnish compound nouns or for example the com-
mon English class of -able suffixed adjectives that
does not have accurate lexical Finnish translation
at all.

In terms of where RBMT is perhaps more us-
able than NMT, one important factor is how pre-
dictable and systematic the errors are when they
appear. For example just looking at the first page
of the top-ranking system in Finnish-to-English14

one can see the Finnish “Aika nopeasti saatiin
hommat sovittua, Kouki sanoi” translated into
“Pretty quickly we got the gays agreed, Kouki
said.” whereas the correct translation is “We
reached a pretty quick agreement, Kouki said.”,
the big problem with the neural translation is that
it is deceptively fluent language but conveys some-
thing completely different, comparing to the rule-
based version: “Kinda swiftly let jobs agreed,
Kouki said.” which is not fluent at all, but doesn’t
hallucinate gays there so it may be more usable
for post-editing. For further research in the prob-
lems of NMT for real-world use, see for exam-
ple Moorkens et al. (2018).

In comparison to neural and statistical sys-
tems, the rule-based approach does not generally
fare well as measured with automatic metrics like
BLEU, for a human evaluation refer to (Bojar
et al., 2019). However, the experiment I describe
here is also not the most actively developed ma-
chine translators, rather I use the experiment to

14http://matrix.statmt.org/matrix/
output/1903?score_id=39757

gauge the effects the described workflow has to
quality of semi-automatically generated RBMT, to
see how more developed systems fare on the same
task you should also refer to (Hurskainen and
Tiedemann, 2017; Kolachina and Ranta, 2015).

5 Concluding remarks

In this article I’ve shown a workflow of shared task
driven development for rule-based machine trans-
lations, namely the lexicons and rules. I show
that a small effort to update lexical data based
on yearly released gold corpora increases BLEU
points and enlarges dictionaries as well as im-
proves rulesets sizes and qualities by a significant
amount. In future I aim to build more automati-
sation for the workflow to make it trivially usable
with continuous integration.

The systems are all available as free/libre open-
source software under the GNU GPL licence, and
can be downloaded from the internet.
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Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics,
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Abstract

We describe our NMT systems submitted to
the WMT19 shared task in English→Czech
news translation. Our systems are based on
the Transformer model implemented in either
Tensor2Tensor (T2T) or Marian framework.

We aimed at improving the adequacy and co-
herence of translated documents by enlarg-
ing the context of the source and target. In-
stead of translating each sentence indepen-
dently, we split the document into possibly
overlapping multi-sentence segments. In case
of the T2T implementation, this “document-
level”-trained system achieves a +0.6 BLEU
improvement (p < 0.05) relative to the same
system applied on isolated sentences. To as-
sess the potential effect document-level mod-
els might have on lexical coherence, we per-
formed a semi-automatic analysis, which re-
vealed only a few sentences improved in this
aspect. Thus, we cannot draw any conclusions
from this week evidence.

1 Introduction

Neural machine translation has reached a point,
where the quality of automatic translation mea-
sured on isolated sentences is similar on aver-
age to the quality of professional human trans-
lations. Hassan et al. (2018) report achieving a
“human parity” on Chinese→English news trans-
lation. Bojar et al. (2018, p. 291) report that our
last year’s English→Czech system (Popel, 2018)
was evaluated as significantly better (p < 0.05)
than the human reference. However, it has been
shown (Läubli et al., 2018; Toral et al., 2018) that
evaluating the quality of translation of news arti-
cles on isolated sentences without the context of
the whole document is not sufficient. It can bias
the evaluation results because systems that ignore
the context are not penalized in the evaluation for
these context-related errors; and vice versa: sys-

tems (or humans) that take the context into ac-
count may be unfairly penalized. Läubli et al.
(2018) show that while the difference between hu-
man and machine translation in adequacy is not
significant when evaluated on isolated sentences,
it is significant (humans are better) when evalu-
ated on whole documents. This suggests that there
are some inter-sentential phenomena where MT
applied on isolated sentences is lacking.

Since assessing the performance of document-
level systems is one of the goals of WMT19 (Bar-
rault et al., 2019), we decided to build NMT sys-
tems trained for translation of longer segments
than single sentences. In this paper, we describe
our five NMT systems submitted to WMT19
English→Czech news translation task (see Ta-
ble 1). They are based on the Transformer model
(Vaswani et al., 2017) and on our submission from
WMT18 (Popel, 2018). Our new contributions
are (i) adaptation of the baseline single-sentence
models to translate multiple adjacent sentences in
a document at once, so the Transformer can at-
tend to inter-sentence relations and achieve better
document-level translation quality, as was already
showed to be effective by Jean et al. (2017); and
(ii) reimplementation of our last year’s submis-
sion in the Marian framework (Junczys-Dowmunt
et al., 2018).

This paper is organized as follows: In Section 2,
we describe our training data and its augmenta-
tion to overlapping multi-sentence sequences. We
describe also the hyper-parameters of our models
in the two frameworks. Section 3 follows with a
description of the document-level decoding strate-
gies. Section 4 reports and discusses the results of
automatic (BLEU) evaluation.
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official name description

CUNI DocTransformer T2T Document level trained Transformer in T2T.
CUNI DocTransformer Marian Document level trained Transformer in Marian.
CUNI Transformer T2T 2019 Same model as CUNI DocTransformer T2T, but applied on single sentences (i.e. with no

cross-sentence context).
CUNI Transformer T2T 2018 Same model as in the last year (Popel, 2018).
CUNI Transformer Marian Reimplementation of the last year’s model in Marian.

Table 1: Brief descriptions of our WMT19 systems. In the rest of the paper, we omit the CUNI (Charles University)
prefix for brevity.

sentence words (k)data set
pairs (k) EN CS

CzEng 1.7 57 065 618 424 543 184
Europarl v7 647 15 625 13 000
News Commentary v12 211 4 544 4 057
CommonCrawl 162 3 349 2 927
WikiTitles 361 896 840
EN NewsCrawl 2016–17 47 483 934 981
CS NewsCrawl 2007–17 65 383 927 348
CS NewsCrawl 2018 12 983 181 004

total 184 295 1 577 819 1 672 360

Table 2: Training data sizes (in thousands).

2 Experimental Setup

2.1 Data sources

Our training data (see Table 2) are constrained to
the data allowed in the WMT2019 shared task.
“Transformer T2T 2018” and “Transformer Mar-
ian” use only the data allowed in WMT2018,
which does not include CS NewsCrawl 2018 and
WikiTitles. All the data were preprocessed, fil-
tered and backtranslated by the same process as in
Popel (2018). We selected the originally English
part of newstest2016 for validation, following the
idea of CZ/nonCZ tuning in Popel (2018), but ex-
cluding the CZ tuning because the WMT2019 test
set was announced to contain only original English
sentences and no translationese.

2.2 Training Data Context Augmentation

In WMT19, all the training data from Table 2
are available with document boundaries (and un-
like in previous years the sentences are not shuf-
fled).1 We extracted all sequences of consecu-
tive sentences with at most 1000 characters.2 Our

1 In WikiTitles, each pair of titles is considered a separate
document. We decided to upsample this source 23 times, but
we have not evaluated the effect of this on the final quality.

2 The limit of 1000 characters was chosen rather arbitrar-
ily. A 1000-characters long sequence from our training data
contains on average about 15 sentences (165 English and 144
Czech words).

context-augmented data consists of pairs of such
sequences, where the source sequence has always
the same number of sentences as the target sen-
tence. We separate the sentences in each sequence
with a special token,3 so that we can easily ex-
tract sentence alignment after decoding. We ran-
domly shuffle the augmented training sequences,
but we keep separately the authentic parallel and
synthetic (backtranslated) data, so that we can ap-
ply concat backtranslation (Popel, 2018).

Note that this particular way of context augmen-
tation implicitly upsamples sentences from longer
documents relative to sentences from shorter doc-
uments. We leave the analysis of this effect and
possible alternative samplings for future work.

2.3 Model Hyper-parameters

2.3.1 Tensor2Tensor
Our three systems with “T2T” in the name are
implemented in the Tensor2Tensor framework
(Vaswani et al., 2018), version 1.6.0. The model
and training parameters this year are identical
to our last year’s (WMT18) submission (Popel,
2018), with just two exceptions: First, we trained
on 10 GPUs instead of 8 GPUs, thus using the ef-
fective batch size of 29k subwords instead of 23k
subwords. Second, we used max_length=200
instead of 150. This means we discard all train-
ing sequences longer than 200 subwords. With
our 32k joint subword vocabulary, a word con-
tains on average 1.5 subwords. Thus effectively,
the sequence-length limit used in T2T training was
in most cases lower than 1000 characters – on av-
erage it was 785 characters.

2.3.2 Marian
Our two systems with “Marian” in the name use
the Marian framework (Junczys-Dowmunt et al.,
2018), in the latest stable version 1.7.6. We chose

3 Any token not present in the training data can be used,
but it should be included in the subword vocabulary.
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Marian for its fast and efficient training and de-
coding. Due to the good results of “CUNI Trans-
former” in WMT18 evaluation and lack of time
and resources for exhaustive parameter search, we
reconstructed all its hyperparameters in Marian
wherever possible. Therefore, we trained with the
following options:
--type transformer --enc-depth 6
--dec-depth 6 --dim-emb 1024
--transformer-dim-ffn 4096
--transformer-heads 16
--transformer-dropout 0.0
--transformer-dropout-attention 0.1
--transformer-dropout-ffn 0.1
--lr-warmup 20000
--lr-decay-inv-sqrt 20000
--optimizer-params 0.9 0.98 1e-09
--clip-norm 5 --label-smoothing 0.1
--learn-rate 0.0002
--exponential-smoothing

We used the same learning rate as T2T and esti-
mated the number of warmup training steps so the
model consumed approximately the same number
of sentences as T2T in warmup. Instead of T2T’s
default SubwordTextEncoder, we used Sentence-
Piece (Kudo and Richardson, 2018) with its de-
fault parameters to obtain a shared vocabulary of
32,000 entries from untokenized training data. We
set the maximal sentence length to 150 and de-
coded with beam size 4.

We could not use Adafactor (Shazeer and Stern,
2018) optimizer as in T2T, because it is not imple-
mented in Marian. We used Adam instead.

We did not set the batch size manually, but
used the --mini-batch-fit parameter to de-
termine the mini-batch size automatically based
on sentence lengths to fit the available memory.
We estimated the workspace memory to 13,900
MB as the largest possible on our hardware. We
shuffled the training data before training and did
not use any advanced reordering to fit more non-
padding tokens into a training batch as in T2T.

Another difference is the checkpoint averaging:
while our T2T models are (uniform) averages of
the last 8 checkpoints from the last 8 hours of
training, our Marian models use the exponential
moving average regularization method (--expo-
nential-smoothing) applied after each up-
date, as suggested by the Marian authors.

2.4 Training
The summary of hardware used for training is in
Table 3. First, we trained a non-document mod-
els on single sentences, on concatenation of out-
domain authentic data and in-domain synthetic

systems #GPUs GPU memory GPU type

T2T 2018 8 11GB GTX 1080 Ti
T2T 2019 10 11GB GTX 1080 Ti
Marian 8 16GB Quadro P5000

Table 3: Hardware used for our systems.

datasets. We trained “Transformer Marian” model
for 17 days until the epoch 18. We observed the
last improvement in validation BLEU at 15 days
and 18 hours of training, in step 1,266M, which we
selected as the final model “Transformer Marian”.
The “DocTransformer T2T” model was trained for
9 days (660k steps).

3 Document-Level Systems

Our document-level models were created by train-
ing on the context-augmented data described in
Section 2.2. We used different strategies for
document-level decoding in Marian and in T2T.

3.1 Decoding in Marian
For“DocTransformer Marian” decoding, we de-
cided to reduce the context to up to three consec-
utive sentences because decoding of longer con-
texts was time-consuming and our time was con-
strained. Each sentence appeared as the first,
second or third sentence in a 3-sentence con-
text (1st/3, 2nd/3, 3rd/3) if possible.4 We ex-
perimented also with a 2-sentence context (1st/2,
2nd/2) and no context (1st/1, i.e. the baseline).

We compared dev-set BLEU scores of these six
setups and selected the following strategy for the
selection of the final translation: For each sen-
tence, if possible and if the translation is “valid”,
use 2nd/3. If not possible or “valid”, use 1st/3,
followed by 2nd/2, 1st/2 and 1st/1.

We consider a translation “valid” if it contains
the same number of sentences (delimited by a
special sentence-boundary character) as the input.
We excluded translations containing a given word
more than 20 times and translations with a word
longer than 49 characters. This rule detected non-
meaningful outputs that we observed in validation.
We decided to not use 3rd/3 because these transla-
tions were the least accurate ones.

Based on the validation BLEU scores, we se-
lected two checkpoints for the final document-
level translation. The checkpoint at 2,044M steps

4 For the first sentence in a document only 1st/3 is possi-
ble, for the second sentence only 1st/3 or 2nd/3 is possible,
etc.
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was used for 1st/3, 2nd/3 and 2nd/2. The check-
point at 1,775M steps was used elsewhere (1st/2
and 1st/1).

3.2 Decoding in T2T

In an initial experiment, we split the test set into
non-overlapping sequences of sentences with at
most 1000 characters, following the maximum se-
quence length used in training. We realized that
the translation quality is very low, especially close
to the end of each translated sequence. Sometimes
the number of output sentences (detected based
on the special separator character) was different
than the number of input sentences. We hypothe-
sized that the reason of low quality is that there are
not enough 1000-character sequences in the train-
ing data (cf. Section 2.2). With non-overlapping
splits, we achieved the best dev-set BLEU, when
lowering the limit to about 700 characters.

We further experimented with overlapping
splits, where each sequence to be translated con-
sists of

• pre-context: sentences which are ignored in
the translation and serve only as a context for
better translation of the main content,

• main content: sentences which are used for
the final translation,

• post-context: sentences which are ignored,
similarly to the pre-context.

Based on a small dev-set BLEU hyper-
parameter search, we selected the following length
limits: pre-context of up to 200 characters (split-
ting on word boundaries), main content of up to
500 characters (whole sentences only) and post-
context of up to 900 characters minus the length
of the pre-context and main content (whole sen-
tences only). After the main decoding, we joined
together the translations of main contents of all se-
quences. In rare cases (8 sentences out of 3611),
when there were not enough sentences in the trans-
lated sequence, we used a single-sentence transla-
tion as a backup.

3.3 Post-processing

For T2T systems, we used the same post-
processing as last year (Popel, 2018): We deleted
the repetitions of phrases of one to four words ap-
pearing directly after each other more than two
times, and converted the quotation symbols to

BLEU BLEU chrF2
system uncased cased cased

DocTransformer T2T 31.03 29.94 0.5628
Transformer T2T 2018 30.93 29.86 0.5630

Transformer T2T 2019 30.42 29.39 0.5552

DocTransformer Marian 29.17 28.14 0.5466
Transformer Marian 29.20 28.13 0.5474
UEdin 29.00 27.89 0.5516

Table 4: Automatic evaluation on newstest2019.
Significantly different BLEU scores (p < 0.05 boot-
strap resampling) are separated by a horizontal line.

„lower and upper“. This is considered as stan-
dard in Czech formal texts. For Marian, we ap-
plied only the conversion of quotation symbols.

4 Results

4.1 Automatic Evaluation
Table 4 reports the automatic metrics of our
English→Czech systems submitted to WMT2019,
plus the best other system – UEdin (Marian sys-
tem trained by University of Edinburgh). The au-
tomatic metrics are calculated using sacreBLEU
1.3.2 (Post, 2018) and their signatures are:

• BLEU+case.mixed+lang.en-
cs+numrefs.1+smooth.exp+tok.13a,

• BLEU+case.lc+lang.en-
cs+numrefs.1+smooth.exp+tok.intl and

• chrF2+case.mixed+lang.en-
cs+numchars.6+numrefs.1+space.False.

4.2 Explaining the Difference of T2T and
Marian

The two comparable systems using the closest
possible settings we were able to achieve and
identical data, “Transformer Marian” and “Trans-
former T2T 2018”, did not perform equally. The
last year’s T2T system was around 1.73 BLEU
better at the point, where both systems had enough
training time to converge. We hypothesize this
was caused by the parameters, in which they dif-
fer: (i) Marian uses Adam optimizer, T2T Adafac-
tor; (ii) Marian had 8 16GB GPUs and T2T 8
11GB GPUs, it means 128GB vs 88GB in total.
We assume Marian is not as effective in memory
usage, or we used bigger than optimal memory
(and thus batch) size; (iii) Marian uses different
batch ordering; (iv) in Marian, we used the expo-
nential moving average, T2T used uniform aver-
aging of the last 8 checkpoints.

345



4.3 Doc-Level Evaluation
We hypothesized that by providing the translation
model with larger attendable context, the result-
ing translations display larger lexical consistency.
We could demonstrate it by finding less examples
where an English polysemous word is translated
to two or more Czech non-synonymous lemmata
within one document.

To evaluate the hypothesis, we word-aligned the
source and target sentences using fast_align
(Dyer et al., 2013).5 We then lemmatized the
aligned words (both English and Czech) using
MorphoDiTa (Straková et al., 2014) and consid-
ered all instances where a single English lemma
was aligned to at least two Czech lemmata in a
single document. Since our focus was on eval-
uating the difference between non-context and
document-level models, we selected only the En-
glish lemmata with different number of aligned
Czech lemmata in the two types of systems. Two
pairs of models were compared: “DocTransformer
T2T” vs. “Transformer T2T 2019” and “Doc-
Transformer Marian” vs. “Transformer Marian”.
The final pool of examples was evaluated manu-
ally.

We found only one and three instances for the
Marian and T2T models, respectively, where the
document-level variant performed better than the
non-context variant. The examples are shown
in Table 5. We also found a possible counter-
example where the document-level model per-
formed worse than the non-context model, but the
evaluation is not clear-cut. The example is shown
in Table 6.

Because there are too few examples for any
meaningful quantitative analysis, we conclude
more data is needed to evaluate the potential ben-
efit a document-level model could have on lexi-
cal consistency. By doing manual evaluation, we
found the cases where the inter-sentential context
is necessary for determining the correct meaning
of a polysemous word are rare.

5 Conclusion

We were not able to replicate our last year’s T2T
system in Marian, but we acknowledge several dif-
ferences in the setup. We were not able to im-

5 To improve the reliability of automatic word alignments,
we trained them on the translations together with the first
500k sentences of CzEng 1.7. Only the intersection of the
source-to-target and target-to-source alignments was consid-
ered.

prove the sentence-level Marian system BLEU by
adding a context of up to three sentences. Our
document-level trained T2T system achieved an
insignificant improvement (+0.1 BLEU) over our
last year’s sentence-level T2T system, but apply-
ing this system on sentences led to a significant
worsening (−0.6 BLEU).
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6 Appendix

source [...] to meet Craig Halkett’s header across goal. The hosts were content to let Rangers play in front of them,
knowing they could trouble the visitors at set pieces. And that was the manner in which the crucial goal came.
Rangers conceded a free-kick [...]

T2T A to byl způsob, jakým přišel rozhodující cíl (aim).
T2T-doc A to byl způsob, jakým přišel rozhodující gól (goal).

source Elizabeth Warren Will Take "Hard Look" At Running For President in 2020, Massachusetts Senator Says Mas-
sachusetts Senator Elizabeth Warren said on Saturday she would take a "hard look" at running for president
following the midterm elections. During a town hall in Holyoke, Massachusetts, Warren confirmed she’d con-
sider running. "It’s time for women to go to Washington and fix our broken government and that includes a
woman at the top," she said, according to The Hill. [...]

T2T Na radnici v Holyoke v Massachusetts Warrenová potvrdila, že uvažuje o útěku (escape).
T2T-doc Na radnici v Holyoke ve státě Massachusetts Warrenová potvrdila, že o kandidatuře (candidacy) uvažuje.

source At 6am, just as Gegard Mousasi and Rory MacDonald were preparing to face each other, viewers in the UK were
left stunned when the coverage changed to Peppa Pig. Some were unimpressed after they had stayed awake until
the early hours especially for the fight. [...]

T2T Na některé to neudělalo žádný dojem, když zůstali vzhůru až do časných ranních hodin, zvláště kvůli rvačce
(crawl).

T2T-doc Na některé to neudělalo žádný dojem, když zůstali vzhůru až do ranních hodin, zejména kvůli zápasu (match).

source [...] she felt "terrified of retaliation" and was worried about "being publicly humiliated." The 34-year-old says
she is now seeking to overturn the settlement as she continues to be traumatized by the alleged incident. [...]

Marian Čtyřiatřicetiletá žena tvrdí, že se nyní snaží o zrušení osady (village), protože je nadále traumatizována
údajným incidentem.

Marian-doc 34letá žena tvrdí, že nyní usiluje o zrušení vyrovnání (compensation), protože je nadále traumatizována údajným
incidentem.

Table 5: Examples of non-context model errors corrected by the document-level models.

source New cancer vaccine can teach the immune system to ’see’ rogue cells New cancer vaccine can teach the immune
system to ’see’ rogue cells and kill them Vaccine teaches immune system to recognise rogue cells as part of treatment
Method involves extracting immune cells from a patient, altering them in lab They can then ’see’ a protein common
to many cancers and then reinjected A trial vaccine is showing promising results in patients with a range of cancers.
One woman treated with the vaccine, which teaches the immune system to recognise rogue cells, saw her ovarian
cancer disappear for more than 18 months. The method involves extracting immune cells from a patient, altering
them in the laboratory so they can "see" a protein common to many cancers called HER2, and then reinjecting the
cells.

T2T Nová protinádorová vakcína může naučit imunitní systém „vidět“ zlovolné buňky Nová protinádorová vakcína
může naučit imunitní systém „vidět“ zlovolné buňky a zabít je. Vakcína učí imunitní systém rozpoznávat zlovolné
buňky jako součást léčby Metoda zahrnuje odebrání imunitních buněk z pacienta a jejich změnu v laboratoři. Pak
mohou vidět protein, který je společný mnoha nádorům, a znovu ho vstříknout. Zkušební vakcína vykazuje slibné
výsledky u pacientů s řadou nádorových onemocnění. Jedna žena léčená vakcínou, která učí imunitní systém
rozeznávat zlovolné buňky, byla svědkem vymizení rakoviny vaječníků na více než 18 měsíců. Metoda spočívá v
odebrání imunitních buněk z pacienta, jejich přeměně v laboratoři, aby mohli „vidět“ protein, který je společný
mnoha nádorům nazývaným HER2, a poté reinjekci buněk.

T2T-doc Nová protinádorová vakcína může naučit imunitní systém „vidět“ zlovolné buňky Nová protinádorová vakcína
může naučit imunitní systém „vidět“ zlovolné buňky a zabít je Vakcína učí imunitní systém rozpoznávat zlovolné
buňky jako součást léčby Metoda zahrnuje extrakci imunitních buněk z pacienta, jejich změnu v laboratoři Poté
mohou „vidět“ bílkovinu společnou mnoha nádorovým onemocněním a poté ji znovu nasadit Zkušební vakcína
vykazuje slibné výsledky u pacientů s řadou nádorových onemocnění. Jedna žena léčená touto vakcínou, která učí
imunitní systém rozpoznávat zlovolné buňky, byla svědkem vymizení rakoviny vaječníků na více než 18 měsíců.
Tato metoda zahrnuje odebrání imunitních buněk od pacientky (female patient), jejich změnu v laboratoři, aby
mohly „vidět“ bílkovinu, která je společná mnoha nádorům nazývaným HER2, a poté reinjekci buněk.

Table 6: The example of an error introduced by a document-level model.

348



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 349–355
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

The RWTH Aachen University
Machine Translation Systems for WMT 2019

Jan Rosendahl, Christian Herold, Yunsu Kim, Miguel Graça,
Weiyue Wang, Parnia Bahar, Yingbo Gao and Hermann Ney

Human Language Technology and Pattern Recognition Group
Computer Science Department

RWTH Aachen University
D-52056 Aachen, Germany

<surname>@i6.informatik.rwth-aachen.de

Abstract

This paper describes the neural machine
translation systems developed at the RWTH
Aachen University for the De→En, Zh→En
and Kk→En news translation tasks of the
Fourth Conference on Machine Translation
(WMT19). For all tasks, the final submitted
system is based on the Transformer architec-
ture. We focus on improving data filtering and
fine-tuning as well as systematically evaluat-
ing interesting approaches like unigram lan-
guage model segmentation and transfer learn-
ing. For the De→En task, none of the tested
methods gave a significant improvement over
last years winning system and we end up
with the same performance, resulting in 39.6%
BLEU on newstest2019. In the Zh→En
task, we show 1.3% BLEU improvement over
our last year’s submission, which we mostly
attribute to the splitting of long sentences dur-
ing translation. We further report results on the
Kk→En task where we gain improvements of
11.1% BLEU over our baseline system. On the
same task we present a recent transfer learning
approach, which uses half of the free parame-
ters of our submission system and performs on
par with it.

1 Introduction

The RWTH Aachen University developed
three systems for the German→English,
Chinese→English and Kazakh→English WMT19
news translation tasks.

For the language pairs De→En and Zh→En
there is a lot of training data available, however
it consists partially of low quality data. Therefore
we improve our data filtering techniques and the
preprocessing of the data. We also studied dif-
ferent settings for the fine-tuning and ensembling
steps of the final models.

For the low resource Kk→En task we further-
more make use of additional Ru−En/Kk parallel

data, exploiting the similarities between the Rus-
sian and Kazakh languages.

This paper is organized as follows: In Section 2,
we describe our data preprocessing. Our trans-
lation software and baseline setups are explained
in Section 3. The results of the experiments for
the various language pairs are summarized in Sec-
tion 4.

2 Preprocessing

For English, German and Kazakh data, we use a
simple preprocessing pipeline consisting of mi-
nor text normalization steps (such as removing
some special UTF-8 characters), followed by fre-
quent casing from the Jane toolkit (Vilar et al.,
2010). We remove all the spaces in the Chinese
data and applied a dictionary to convert traditional
to simplified Chinese characters (including quota-
tion marks). The Kk→En experiments also use the
Moses tokenizer (Koehn et al., 2007) as an inter-
mediate step.

In this work, we consider two variants of byte-
pair encoding (BPE): (i) the original approach as
proposed by Sennrich et al. (2016) (further de-
noted as pure BPE) and (ii) the unigram language
model (ULM) approach by Kudo (2018) (further
denoted as ULM-BPE). We apply the ULM im-
plementation from Kudo and Richardson (2018)
(SentencePiece) to segment words into subwords
for De→En and Zh→En (Kudo, 2018). The seg-
mentation model is trained jointly for the De→En
task with a vocabulary size of 50k, and it is trained
separately for the Zh→En task with a vocabu-
lary size of 32k. For De→En, we use data from
CommonCrawl, Europarl, NewsCommentary and
Rapid. For Zh→En, we use 12M out of the 25M
sentence pairs to train the segmentation model.
When applying the ULM-BPE model, we employ
a 30-best list for Chinese→English and try differ-
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ent n-best sizes for German→English explained in
Section 4. For Kk→En, we use joint pure BPE
with 50k operations unless otherwise stated.

3 MT Systems

The final systems submitted by RWTH Aachen
are based on the Transformer architecture im-
plemented in the Sockeye sequence-to-sequence
framework for neural machine translation (NMT)
(Hieber et al., 2017) which is built on top of
MXNet (Chen et al., 2015).

Our models resemble the ‘big’ architecture as
presented by Vaswani et al. (2017) consisting of
6 layers in both encoder and decoder with 16 heads
in all multi-head attention layers. We train our
models using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate ranging from 0.0001
and 0.0003. We employ a learning rate scheduling
scheme which scales down the learning rate if no
improvement in perplexity on the development set
has been observed for several consecutive evalua-
tion checkpoints. A warmup period with constant
or increasing learning rate was not used. During
training we apply dropout ranging from 0.1 to 0.3.
All batch sizes are specified on the token level and
are chosen to be as big as the memory of the GPUs
allows. In case of the utilization of multiple GPUs
we use synchronized training, i.e. we increase the
effective batch size. In the Kk→En scenarios, the
parameters of the word embeddings and output
layer projection are shared and 8 attention heads
are used throughout the model.

Our fine-tuning strategy involves re-starting
training with a lower learning rate on an in-domain
data set, using the optimal parameters from the
larger data set as initialization.

We perform experiments using the workflow
manager Sisyphus (Peter et al., 2018).

4 Experimental Evaluation

In this section, we present our results on the three
translation tasks in which we participated. We re-
port case-sensitive BLEU (Papineni et al., 2002)
scores as well as results on the TER (Snover et al.,
2006) and CTER (Wang et al., 2016) measures.
All reported scores are given in percentage and the
specific options of the tools are set to be consistent
with the calculations of the organizers.

newstest2015 (dev)
Segmentation n best vocab BLEU TER CTER

pure BPE - ≈ 50k 32.1 54.2 50.2

ULM-BPE

10 20k 32.2 54.1 49.5
10 30k 32.2 54.2 49.5
10 50k 32.2 54.3 49.7
30 50k 32.6 52.8 49.2

120 50k 32.2 54.2 49.4
+ not joint 10 50k 31.9 54.7 49.9

Table 1: Results in percentage of our comparison of
the ULM-BPE to pure BPE on the De→En task. If not
stated otherwise the operations are learned jointly.

4.1 German→English

For experiments on the De→En task we use the
Transformer architecture as described in Section 3
with newstest2015 as the development set.
We compare the performance of the SentencePiece
implementation of the ULM-BPE to that of pure
BPE. For these experiments, we train a system
using the same architecture as the ‘base’ Trans-
former (see Vaswani et al. (2017)), but without tied
embedding weights, on the data from Common-
Crawl, Europarl, NewsCommentary and Rapid i.e.
about 6M sentence pairs. We train a baseline with
50k pure joint BPE merge operations same as last
year’s winning system and try different vocabulary
and nbest sizes for the segmentation based on a un-
igram language model. As can be seen in Table 1,
there are only minor differences in performance.
For all follow-up experiments, we use a segmenta-
tion based on the unigram language model from
the SentencePiece segmenter with a vocabulary
size of 50k and unigram language model with a
30-best list since it performs best with an improve-
ment of 0.5% BLEU over the pure BPE baseline.

The main results of the De→En task are
presented in Table 2. We start with a
‘base’Transformer on all parallel data except the
ParaCrawl resulting in a BLEU score of 32.6% on
newstest2015.

We filter ParaCrawl based on the word-to-token
ratio, average-word-length, source-target-length
ratio, and source-target Levenshtein distance mea-
sures as presented in Rossenbach et al. (2018).
The remaining corpus of 23M sentence pairs is
scored using a count-based KenLM (Heafield,
2011) 5-gram language model on the target side
and we select the top 50% as described by Scham-
per et al. (2018).

We train a ‘big’ Transformer in the En→De
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direction and back-translate the deduplicated
NewsCrawl 2018 monolingual corpus. This back-
translation system is trained on CommonCrawl,
Europarl, NewsCommentary, Rapid and on the
23M sentence pairs from the filtered version of
ParaCrawl as well as on 18M synthetic sentence
pairs from a back-translated NewsCrawl 2017 cor-
pus. It achieves 31.3% BLEU and 29.9% BLEU

on the En→De task on newstest2015 and
newstest2017 respectively.

To filter out sentence pairs that were copied in-
stead of translated by the system, we apply a fil-
tering method based on the Levenshtein distance
between source and target sentences (Rossenbach
et al., 2018). This has further reduced the syn-
thetic corpus size to 15.9M sentence pairs which
are used to train our final systems.

We oversample CommonCrawl, Europarl,
NewsCommentary and Rapid by a factor of 3 and
end up with a corpus of roughly 47M lines (18M
oversampled, 1M Wikititles, 16M synthetic, 11M
ParaCrawl). Training a ’big’ Transformer on this
corpus leads to a performance of 36.3% BLEU

on the dev set as is shown in Table 2. Finetuning
on the test sets from previous years (excluding
only newstest2015 and newstest2017)
adds another 0.9% BLEU. We train two models
with this configuration and experiment with
different ensembles. For our final submission we
pick the 3 best checkpoints out of the 2 training
runs, apply finetuning to them and use a linear
ensemble of them for decoding with a beam size
of 12. The final performance of the ensemble is
37.4% BLEU on the dev set and 39.6% BLEU on
newstest2019.

4.2 Chinese→English

The original Chinese-English training set contains
25.8M sentence pairs. After applying the prepro-
cessing steps described in Section 2, we first fil-
ter out 1.1M sentence pairs which contain a large
number of illegal characters (on either side). This
step is performed using a Gaussian mixture model,
which uses UTF-8 blocks as feature vectors and is
trained on the Chinese and English development
data sets. Then we apply deduplication on both
sides, which further removes around 5.8M sen-
tence pairs. From the remaining 18.9M sentence
pairs we sampled 12M sentences from each side to
follow the SentencePiece approach as described in
Section 2. Note that we did not use any additional

tools to pre-segement the Chinese data.
We also use the provided Chinese and En-

glish monolingual data and apply the same pre-
proceesing procedure. After the filtering, the Chi-
nese and English monolingual data sets contain
27.5M and 52.9M sentences respectively. We train
LSTM-based Chinese and English language mod-
els on these monolingual data sets, as well as a
big Transformer-based Chinese→English transla-
tion model on the 18.9M bilingual data set. Note
that here the Chinese language model uses char-
acters and the English language model uses sub
words. The concatenation of the newsdev2017
and newstest2017 data sets are used as the de-
velopment set for training. Then we apply the lan-
guage models to score the Chinese and English
training sentence pairs. The translation model is
used to decode the entire training set and then we
calculate the CHRF score (Popović, 2015) of each
hypothesis. Then the remaining 18.9M sentence
pairs are further filtered according to the language
model perplexities and CHRF scores. Only sen-
tence pairs that satisfy the following three condi-
tions are retained:

• The CHRF score is higher than 0.55;

• The Chinese language model log-perplexity
is lower than 5;

• The English language model log-perplexity is
lower than 7.

Only about 13.7M parallel sentence pairs from the
training data is retained after this round of filter-
ing.

The English language model is also used to
score the English monoligual data. We randomly
sub-sample 10M English sentences from the fil-
tered monolingual data for back-translation. The
synthetic data is generated by a big Transformer-
based En→Zh translation model trained on the
18.9M sentence pairs, i.e. before the last round
of filtering.

We train the following Transformer-based trans-
lation models on the final 23.7M parallel sentences
(each batch contains 4k tokens if not stated):

1. Transformer big architecture (Vaswani et al.,
2017);

2. Transformer big architecture with 7 encoder
and 7 decoder layers, gradient accumulation
of 2 batches, which yields an effective batch
size of 8k tokens;
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newstest2015 (dev) newstest2017 newstest2019
Systems BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 Transformer Base 32.6 53.7 49.2 33.8 53.0 49.9 35.7 52.2 49.9
2 Transformer Big + Paracrawl + BT 36.3 50.2 45.5 38.3 48.9 45.8 37.5 50.7 46.6
3 + fine-tuning 37.2 49.4 45.0 39.5 47.8 44.8 38.9 49.2 45.3
4 Ensemble† 37.4 49.1 44.7 39.9 47.4 44.6 39.6 48.4 44.7

Table 2: Main results for the German→English task measured in BLEU [%], TER [%] and CTER [%] †: Submitted
system.

3. Transformer big architecture with gradient
accumulation of 4 batches, which yields an
effective batch size of 16k tokens;

4. Transformer big architecture with BLEU as
metric for the learning rate reduction scheme;

5. Self-attentive encoder + LSTM decoder net-
work (Chen et al., 2018).

All models are trained for around 14 epochs and
during decoding we use a beam size of 16. As
can be seen in Table 3 the first four systems show
about equal performance while the LSTM decoder
stays 0.4% BLEU behind the baseline on the dev
set and 0.7% BLEU on newstest2018. Ensem-
bling of the four strongest models provides 1.3%
BLEU improvement over the baseline on the dev
set.

In addition, we found that there are many long
source samples in the test set. As during train-
ing we eliminate all samples which are longer than
100 subwords, our system does not perform well
in the translation of longer samples. To tackle
this problem, we first split all samples, which in-
clude ’.’, ‘!’, ‘?’ or ‘;’ characters, into shorter
sentences. If there are still sentences which con-
tain more than 80 subwords, we split them on
‘,’ once, in a way that keeps the lengths of
the two separated sentences as equal as possible.
This splitting brings up to 1.1% BLEU improve-
ments on newstest2018. The final submit-
ted system achieves a BLEU score of 31.7% on
newstest2019.

4.3 Kazakh→English

We tackle the low-resource Kazakh→English task
by leveraging additional mono- and bilingual data
via back-translation, language modeling and trans-
fer learning. Our main results are summarized in
Table 4 and we deviate from the system described
in Section 3 by using model dimensions of 512 and

internal projections 2,048, which we further de-
note as the base model. A larger variant is used for
Systems 4-7 with a model dimension of 1,024. A
batch size of 10k words or 8k subwords is used for
the smaller and larger models, respectively. This is
achieved by accumulating gradients over 4 smaller
batches.

In total, we leverage 24M synthetic sentence
pairs and over-sample all available Kk−En data to
obtain a ratio of 1:4 (authentic:synthetic) for sys-
tems 2-3 and 1:2 for systems 4-7. The Kk→En
data consists of 224k training samples. For the
synthetic data, we make use of the Ru-En bilingual
data: the Yandex and News Commentary corpora
plus 10M sentences from the UN corpus. Further,
the organizers supply a crawled Kk-Ru corpus,
from which we remove redundant sentences by us-
ing the technique described by Rossenbach et al.
(2018). Finally, 10M sentences are sub-sampled
from News Crawl 2017 for back-translation. As
in-domain data, we make use of the 2014-2018
Ru-En test sets of past competitions.

The Russian side of the Kk-Ru corpus is trans-
lated to English using the small model variant and
50k joint pure BPE operations. The Russian side
of the Ru-En corpus is translated to Kazakh by
the former setup on the crawled corpus. Back-
translations are generated using a bilingual base
model (System 1), i.e. that shares parameters be-
tween both translation directions, trained with 20k
joint pure BPE operations. The model itself in-
cludes 4M back-translated sentences from News
Crawl 2017 and is fine-tuned on the News Com-
mentary corpus of the Kk-Ru corpus.

We also experiment with transfer learning as
presented by Kim et al. (2019). In this framework,
we train a Ru→En model with non-joint pure BPE
vocabularies1 on the corresponding WMT 2018
translation task. Kazakh word embeddings are
then trained on all available monolingual data,

120k operations for Russian, 50k operations for English
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dev newstest2018
Systems BLEU TER CTER BLEU CTER

1 Transformer ‘big’ 25.2 65.8 60.6 25.8 63.3
2 + 7th layer + grad-acc 2 25.4 65.6 60.2 25.8 62.7
3 + grad-acc 4 25.5 65.0 60.0 25.9 62.6
4 + optimize on BLEU 25.4 65.6 60.6 26.0 63.3
5 + LSTM decoder 24.8 66.3 61.4 25.5 63.5
6 Ensemble [1,2,3,4] 26.5 64.2 58.9 26.9 61.4
7 + Split long sentences† - - - 28.0 60.4

Table 3: Results for Zh→En measured in BLEU [%], TER [%] and CTER [%]. The development set is the concate-
nation of newsdev2017 and newstest2017. TER computation fails on newstest2018.
†: Submitted systems.

newsdev2019 newstest2019
Systems Size BLEU TER CTER BLEU TER CTER

1 Baseline base 15.9 75.8 74.8 12.8 78.6 76.7
2 Transfer base 21.6 72.8 64.1 23.6 69.0 62.5
3 + fine-tuning 22.0 72.2 63.9 23.9 67.9 60.5
4 Scratch large 21.5 72.9 64.8 23.2 68.9 62.7
5 + fine-tuning 22.2 72.0 63.9 23.3 68.8 61.2
6 + search tuning† 22.8 71.1 64.9 24.2 66.8 61.2
7 + LM† 23.6 71.2 67.2 23.1 69.9 66.2

Table 4: Results measured in BLEU [%], TER [%] and CTER [%] for Kk→En. †: Submitted systems.

processed with 20k pure BPE operations, and are
mapped to the same distribution as the Russian
embeddings via an unsupervised mapping (Con-
neau et al., 2017). Finally, training is initialized
with the replaced parameters and fine-tuned on the
Kk-En task (System 2+3). We expect a bigger
model to perform better on the Ru→En task and
therefore transfer better to this task, but time con-
straints prohibited this.

Fine-tuning on the translated news test sets
from the Ru→En task (System 5) improves per-
formance by 0.7% BLEU on the development set
but does not generalize to test set improvements.
The length penalty and beam size hyperparameters
were tuned to maximize the difference of BLEU

and TER on newsdev2019 (System 6). Finally,
we experiment with adding a 5-gram modified
Kneser-Ney language model (Chen and Goodman,
1999) during inference using KenLM (Heafield,
2011) (System 7). We perform a log-linear com-
bination and re-run the optimization grid search as
before with the additional language model scaling
factor. This improves the development set perfor-
mance but considerably decreases the test set per-
formance. In hindsight, our experimental setup

was flawed due to not having unseen test data
and therefore overfitting on the development set,
clearly seen by comparing Systems 6 and 7.

5 Conclusion

This paper describes the RWTH Aachen Univer-
sity’s submission to the WMT 2019 news trans-
lation task. For all language pairs we use the
Transformer architecture. Different methods for
data filtering, preprocessing and synthetic data
creation were tested. We experiment with dif-
ferent segmentation schemes, model depth, lan-
guage modelling during search and transfer learn-
ing. Our De→En system performs on par with our
2018 submission and our Zh→En model shows
an 1.3% BLEU improvement over our last year’s
submission. For the Kk→En system we gain
improvements of 11.4% BLEU over a standard
semi-supervised baseline resulting in a final per-
formance of 24.2% BLEU on newstest2019.
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Abstract

This paper describes the two submissions
of Universitat d’Alacant to the English-to-
Kazakh news translation task at WMT 2019.
Our submissions take advantage of monolin-
gual data and parallel data from other lan-
guage pairs by means of iterative backtransla-
tion, pivot backtranslation and transfer learn-
ing. They also use linguistic information
in two ways: morphological segmentation of
Kazakh text, and integration of the output of
a rule-based machine translation system. Our
systems were ranked 2nd in terms of chrF++
despite being built from an ensemble of only 2
independent training runs.

1 Introduction

This paper describes the Universitat d’Alacant sub-
missions to the WMT 2019 news translation task.
Our two submissions address the low-resource
English-to-Kazakh language pair, for which only
a few thousand in-domain parallel sentences are
available.

In order to build competitive neural machine
translation (NMT) systems, we generated synthetic
training data. We took advantage of the available
English–Russian (en-ru) and Kazakh–Russian
(kk-ru) parallel data by means of pivot backtrans-
lation and transfer learning, and integrated mono-
lingual data by means of iterative backtranslation.

In addition, we used linguistic information in
two different ways: we morphologically segmented
the Kazakh text to make the system generalize
better from the training data; and we built a hy-
brid system combining NMT and the Apertium
English-to-Kazakh rule-based machine translation
(RBMT) system (Forcada et al., 2011; Sundetova
et al., 2015).

The rest of the paper is organized as follows.
Section 2 describes how corpora were filtered and
preprocessed, and the steps followed to train NMT
systems from them. Section 3 outlines the process

corpus pair raw cleaned
News

en-kk 7.7k 7.4kCommentary
Wikititles en-kk 117k 113k
web crawled en-kk 97.6k 27.2k
web crawled kk-ru 4.5M 4.4M
concatenation

en-ru 31.7M 31.1Mof WMT19 data

Table 1: Number of segments in the parallel corpora
used for training.

followed to obtain synthetic training data. Sec-
tions 4 and 5 describe respectively morphologi-
cal segmentation and hybridization with Apertium.
The model ensembles we submitted are then pre-
sented in Section 6. The paper ends with some
concluding remarks.

2 Data preparation and training details

In our submissions, we only used the cor-
pora allowed in the constrained task. Par-
allel corpora were cleaned with the script
clean-corpus-n.perl shipped with
Moses (Koehn et al., 2007), that removes unbal-
anced sentence pairs and those with at least one
side longer than 80 tokens. Additional filtering
steps, described below, were applied to the web
crawled corpora. Tables 1 and 2 depict the number
of segments in the parallel and monolingual
corpora used, and their sizes after cleaning.

The English–Kazakh web crawled corpus al-
lowed in the constrained task presented a high
proportion of parallel segments that were not
translation of each other. We filtered it with Bi-
cleaner (Sánchez-Cartagena et al., 2018). We ap-
plied the hardrules and the detection of misaligned
sentences described by Sánchez-Cartagena et al.
(2018), but not the fluency filtering.1

1We extracted probabilistic bilingual dictionaries from the
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corpus lang. raw cleaned
News Crawl kk 783k 783k
Wiki dumps kk 1.7M 1.7M
Common Crawl kk 10.9M 5.4M
News Crawl en 200M 200M

Table 2: Number of segments in the monolingual cor-
pora used for training.

The Kazakh–Russian crawled corpus was
cleaned in a shallower way: we just removed those
sentence pairs that contained less than 50% of al-
phabetic characters in either side, as we did not
consider them fluent enough to be useful for NMT
training. The same filtering was applied to the
monolingual Kazakh Common Crawl corpus. In
addition, inspired by Iranzo-Sánchez et al. (2018),
we ranked its sentences by perplexity computed
by a character-based 7-gram language model and
discarded the half of the corpus with the highest
perplexity. The language model was trained2 on
the high-quality Kazakh monolingual News Com-
mentary corpus.

Training corpora were tokenized and truecased
with the Moses scripts. Truecaser models were
learned independently for each trained system from
the very same training parallel corpus. Unless oth-
erwise specified, for each trained system, words
were split with 50 000 byte pair encoding (BPE;
Sennrich et al., 2016c) operations learned from
the concatenation of the source-language (SL) and
target-language (TL) training corpora.

As described in Section 6, our submissions were
ensembles of Transformer (Vaswani et al., 2017)
and recurrent neural network (RNN; Bahdanau
et al., 2015) NMT models trained with the Mar-
ian toolkit (Junczys-Dowmunt et al., 2018). We
used the Transformer hyperparameters3 described
by Sennrich et al. (2017) and the RNN hyperparam-
eters4 described by Sennrich et al. (2016a). Early
stopping was based on perplexity and patience was
set to 5. We selected the checkpoint that obtained
the highest BLEU (Papineni et al., 2002) score on

Wikititles parallel corpus and extracted the positive and neg-
ative training examples from News Commentary. We kept
those sentences with a classifier score above 0.6.

2The language model was trained with KenLM (Heafield,
2011) with modified Kneser-Ney smoothing (Ney et al., 1994).

3https://github.com/marian-nmt/
marian-examples/tree/master/
wmt2017-transformer

4https://github.com/marian-nmt/
marian-examples/tree/master/
training-basics

the development set.
Since the only evaluation corpus made available

was newsdev2019, we split it in two halves, and
we respectively used them as development and test
set in all the training runs previous to the submis-
sion (those reported in all sections but Section 6).
Throughout the paper, we report BLEU (Papineni
et al., 2002) and chrF++ (Popović, 2017) scores.5

The latter is known to correlate better than BLEU
with human judgements when the TL is highly in-
flected (Bojar et al., 2017), as is the case. Where
reported, we assess whether differences between
systems’ outputs are statistically significant for
p < 0.05 with 1 000 iterations of paired bootstrap
resampling (Koehn, 2004).

3 Data augmentation

This section describes the process followed to se-
lect the best strategy to take advantage of parallel
corpora from other language pairs (Section 3.1)
and monolingual corpora (Section 3.2).

3.1 Data from other language pairs
In order to take advantage of the parallel corpora
listed in Table 1 for other language pairs, we
applied the transfer learning approach proposed
by Kocmi and Bojar (2018). We experimented
with the parent models listed next (models trained
on other high-resource language pairs) and used
the concatenation of the genuine English–Kazakh
parallel data as the child corpus (corpus of a low-
resource language pair used to continue training a
parent model):6

• A Russian-to-Kazakh model trained on the
crawled parallel corpus depicted in Table 1.

• An English-to-Russian model trained on all
the available parallel data for the English–
Russian language pair in this year’s news
translation task (depicted in Table 1).

• A multilingual system (Johnson et al., 2017)
trained on the concatenation of the corpora of
the two previous models. This strategy aims
at making the most of the data available for
related language pairs.

We also explored pivot backtranslation (Huck
and Ney, 2012): we translated the Russian side of
the crawled Kazakh–Russian parallel corpus with

5Following Popović (2017), we set β to 2.
6In the 3 set-ups evaluated, BPE models were trained from

the concatenation of the parent and the child corpora.
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a Russian-to-English NMT system to produce a
synthetic English–Kazakh parallel corpus. The
NMT system was a Transformer trained on the
English–Russian parallel data depicted in Table 1.
We concatenated the pivot-backtranslated corpus
to the genuine English–Kazakh parallel data and
fine-tuned the resulting system only on the latter.

The results of the evaluation of these strategies,
reported in the upper part of Table 3, show that
the multilingual/transfer learning strategy outper-
forms the pure transfer learning approaches, proba-
bly because it takes advantage of more resources.
Moreover, it performs similarly to pivot backtrans-
lation, which we chose for our submission. All
the strategies evaluated clearly outperformed the
system trained only on the genuine parallel data.

As a Kazakh-to-English MT system is needed
to backtranslate the Kazakh monolingual data (see
Section 3.2), we also explored the best strategy
for taking advantage of data from other language
pairs for that direction. We experimented only with
transfer learning and discarded pivot backtransla-
tion since we wanted to avoid training a system on
a parallel corpus with a synthetic TL side.

We evaluated the same parent-child configura-
tions as in the English-to-Kazakh experiments, but
we inverted their direction to ensure that either the
SL of the parent corpora is Kazakh or the TL is
English. Results are reported in the lower part of
Table 3 and show that, as in the opposite direction,
transfer learning brings a clear improvement over
training only on the genuine parallel data, and the
best parent model is the multilingual one.

3.2 Monolingual data: iterative
backtranslation

Backtranslation (Sennrich et al., 2016b) is a
widespread method for integrating TL monolingual
corpora into NMT systems. In order to integrate
the available Kazakh monolingual data into our
submission, we need a Kazakh-to-English MT sys-
tem as competitive as possible, since the quality
of a system trained on backtranslated data is usu-
ally correlated with the quality of the system that
perform the backtranslation (Hoang et al., 2018,
Sec. 3). We followed the iterative backtranslation
algorithm (Hoang et al., 2018) outlined below with
the aim of obtaining strong English-to-Kazakh and
Kazakh-to-English systems using monolingual En-
glish and monolingual Kazakh corpora:

1. The best strategies from Section 3.1 were ap-
plied to build systems in both directions with-
out backtranslated monolingual data.

2. English and Kazakh monolingual data were
backtranslated with the previous systems.

3. Systems in both directions were trained on the
combination of the backtranslated data and
the parallel data.

4. Steps 2–3 were re-executed 2 more times.
Backtranslation in step 2 was always carried
out with the systems built in the most recent
execution of step 3.

The Kazakh monolingual corpus used was the
concatenation of the corpora listed in Table 2, while
the English monolingual corpus was a subset of the
News Crawl corpus in the same table. The size of
the subset was duplicated after each backtransla-
tion and started at 5 million sentences in the first
one. The objective of the first 2 executions of steps
2–3 (from now on, iterations) was building a strong
Kazakh-to-English system. The remainder of this
section explains how MT systems were trained in
these 2 iterations. The objective of the 3rd iter-
ation, in which only English-to-Kazakh systems
were trained, was building the submissions, and the
corresponding details are described in Section 6.

We explored different ways of training NMT
systems with backtranslated data. First, we carried
out transfer learning from the multilingual models
described in Section 3.1. In this case, the child
model was trained on a parallel corpus built from
the concatenation of the genuine parallel data and
the backtranslated data. The genuine parallel data
was oversampled to match the size of the backtrans-
lated data (Chu et al., 2017).

As an alternative to transfer learning, we ex-
perimented with corpus concatenation and fine-
tuning. For the English-to-Kazakh direction, we
concatenated the backtranslated data to the pivot-
backtranslated corpus and the genuine parallel cor-
pora, trained a model from scratch, and fine-tuned
it only on the genuine parallel data. For the op-
posite direction, we trained a system only on the
concatenation of the backtranslated and the gen-
uine parallel data, and fine-tuned it on the latter
(note that in this set-up we dispensed with parallel
data from other language pairs).

Table 4 shows the automatic evaluation scores
obtained in the 1st iteration by the strategies being
evaluated. Only the best performing strategies in
the 1st iteration were used in the subsequent ones;
the scores obtained on the 2nd iteration are also de-
picted. The results show the positive impact of the
introduction of backtranslated data in both direc-
tions. Concatenation plus fine-tuning outperformed
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strategy BLEU chrF++
en→kk

only parallel en→kk 4.36 27.80
transfer from ru→kk 10.22 39.93
transfer from en→ru 9.66 39.67
transfer from en→ru,ru→kk 11.81 42.87
pivot backtranslation 11.80 42.86

kk→en

only parallel kk→en 8.15 30.43
transfer from kk→ru 17.03 42.90
transfer from ru→en 15.77 41.33
transfer from ru→en,kk→ru 20.58 46.24

Table 3: Results obtained by the different strategies
evaluated for combining the available parallel corpora.

strategy it. BLEU chrF++
en→kk

transfer learning 0 11.80 42.86
transfer learning 1 12.63 44.46
concatenate + fine-tune 1 13.46 44.99
concatenate + fine-tune 2 13.79 45.24

kk→en

transfer learning 0 20.58 46.24
transfer learning 1 21.58 47.65
concatenate + fine-tune 1 22.66 48.91
concatenate + fine-tune 2 23.28 49.45

Table 4: Results obtained by the different strategies
evaluated for combining parallel corpora and the back-
translated data.

transfer learning in both directions. This result is
surprising for Kazakh-to-English, where the trans-
fer learning strategy makes use of more resources.
One possible explanation could be that, with con-
catenation plus fine-tuning, the system is trained
mostly on data from the news domain, as the En-
glish monolingual data is extracted only from News
Crawl. Finally, the repetition of steps 2–3 helped
to further improve translation quality.

4 Morphological segmentation

Morphological segmentation is a strategy for seg-
meting words into sub-word units that consists in
splitting them into a stem, that carries out the mean-
ing of the word, and a suffix or sequence of suffixes
that contain morphological and syntatic informa-
tion. When that strategy has been followed to seg-
ment the training corpus for an NMT system, it
has been reported to outperform BPE for highly

inflected languages such as Finnish (Sánchez-
Cartagena and Toral, 2016), German (Huck et al.,
2017) or Basque (Sánchez-Cartagena, 2018).

In our submissions, we morphologically seg-
mented the Kazakh text with the Apertium Kazakh
morphological analyzer.7 For each word, the an-
alyzer provides a set of candidate analyses made
of a lemma and morphological information. Those
analyses in which the lemma is a prefix of the word
are considered valid analyses for segmentation and
involve that the word can be morphologically seg-
mented into the lemma and the remainder of the
word.8 When there are multiple valid analyses for
a word, they are disambiguated as explained below.
When a word has no valid analyses for segmenta-
tion, we generate as many segmentation candidates
as known suffixes match the word (plus the empty
suffix, since a possible option could be no segment-
ing at all). Known suffixes are extracted in advance
from those words with a single valid analysis.

Multiple segmentation candidates (either com-
ing from multiple valid analyses or from suffix
matching) are disambiguated by means of the strat-
egy described by Sánchez-Cartagena (2018), which
relies on the semi-supervised morphology learn-
ing method Morfessor (Virpioja et al., 2013). We
trained the Morfessor model on all the available
Kazakh corpora listed in Tables 1 and 2. Finally, as
suggested by Huck et al. (2017), we applied BPE
splitting with a model learned on the concatena-
tion of all training corpora after performing the
morphological segmentation.

Table 5 depicts some examples of Kazakh words,
their analyses and their morphological segmen-
tation. The first word is the genitive form of
университет (university). The morphological seg-
mentation allows the NMT system to generalize to
other inflected forms of the same word, while BPE
does not split it because it is a rather frequent term
in the corpus. The second word is an inflected form
of the verb жаса (to do), although it is also ana-
lyzed as a inflected form of жасал due to an error
in the analyzer. The Morfessor model preferred the
wrong analysis, but the plain BPE segmentation
made translation even more difficult for the MT
system by choosing the prefix жас, which means
young. BPE introduced more ambiguity, as the to-
ken жас can encode both the verb to do and the
adjective young.

7https://github.com/apertium/
apertium-eng-kaz

8 We can safely apply this strategy because in Kazakh the
stem usually corresponds to the lemma.
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word analyses morph. seg. plain BPE

университетiнiң университет- университет@@ iнiң университетiнiңn.px3sp.gen

жасалмайды жаса-v.tp.n.p3 жасал@@ майды жас@@ алмайдыжасал-v.i.n.p3*

Table 5: Examples of Kazakh words, their morphological analyses, and their segmentation.

system BLEU chrF++
RNN 10.13 40.54
hybrid RNN 10.53 41.03
Transformer 11.71 42.65
hybrid Transformer 11.20 42.23
Apertium 1.59 26.60

Table 6: Results obtained by the different strate-
gies evaluated for integrating the Apertium English-to-
Kazakh rule-based machine translation system into an
NMT system. Scores of hybrid systems are shown in
bold if they outperform the corresponding pure NMT
system by a statistically significant margin.

5 Hybridization with rule-based machine
translation

The Apertium platform contains an English-to-
Kazakh RBMT system (Sundetova et al., 2015) that
may encode knowledge that is not present in the cor-
pora available in the constrained task. In order to
take advantage of that knowledge, we built a hybrid
system by means of multi-source machine transla-
tion (Zoph and Knight, 2016). Our hybrid system
is a multi-source NMT system with two inputs:
the English sentence to be translated, and its trans-
lation into Kazakh provided by Apertium. This
very same set-up has been successfully followed
in the WMT automated post-editing task (Junczys-
Dowmunt and Grundkiewicz, 2018).

In order to assess the viability of this approach,
we trained and automatically evaluated multi-
source and single-source English-to-Kazakh sys-
tems on the concatenation of the genuine English–
Kazakh parallel corpora and the backtranslation of
the Kazakh monolingual corpora News Crawl and
Wiki dumps.9

Results, depicted in Table 6, show that the multi-
source system is able to outperform the single-
source one only with the RNN architecture (the
difference is statistically significant for chrF++).
Apertium output seems to be of very low quality

9We backtranslated with the best system from Section 3.1.

according to the scores reported in the table.10 De-
spite that, the multi-source RNN is able to extract
useful information from it. The poor performance
of the multi-source Transformer architecture could
be related to the low quality of the Apertium out-
put. In order to prevent that the errors in the Aper-
tium translation are propagated to the output, the
decoder should focus mostly on the SL input. How-
ever, according to the analysis of attention carried
out by Libovickỳ et al. (2018), in the serial multi-
source architecture of Marian the output seems to
be built with information from all inputs. We plan
to explore more multi-source architectures in the
future. Due to the poor performance of the Trans-
former multi-source architecture, we used only the
multi-source RNN in our submission, as explained
in the next section.

6 Final submissions

We submitted a constrained and an unconstrained
ensemble for the English-to-Kazakh direction. This
section describes how the individual models of the
ensembles were trained and selected, and presents
the results of an automatic evaluation.

Training details. All the ensembled models
were trained on the genuine parallel corpora, the
pivot-backtranslated corpus, and the backtranslated
corpus obtained in the 3rd iteration, in a similar way
to what has been described in Section 3.2. Prepro-
cessing steps and training parameters were those
described in Section 2, with the following excep-
tions: we applied morphological segmentation to
the Kazakh text as described in Section 4, we used
the full newsdev2019 as the development cor-
pus, and we oversampled the News Commentary
parallel corpus for fine-tuning to match the size of
the concatenation of all the other genuine English–
Kazakh parallel corpora.

Ensemble building. Our constrained submission
was an ensemble of 2 transformer models and 2
RNN models. For each architecture, the 2 models

10Sundetova et al. (2015) state that the system is only able
to translate simple sentences and questions.
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were checkpoints from the same training run, thus
our submission only contained models from 2 inde-
pendent training runs. In both cases, the first model
in the ensemble was the last saved checkpoint of the
main training run (that was carried out on the con-
catenation of all the corpora), after being fine-tuned
on the genuine parallel corpora. The second model
in the ensemble was the checkpoint of the main
training run which, after being fine-tuned on the
genuine parallel corpora and ensembled with the
first model, maximized chrF++ on the development
set. We gave the Transformer and RNN models dif-
ferent weights on the final ensemble, which were
also optimized on the development set. Our uncon-
strained submission was created in a similar way,
but the two RNN models were multi-source models
such as those described in Section 5. Additionally,
we built an ensemble of 5 independently trained
Transformer models that could not be submitted
due to time constraints.

Automatic evaluation. Table 7 shows the val-
ues of the BLEU and chrF++ automatic eval-
uation metrics obtained by our systems on the
newstest2019 test set. In order to assess the
impact of the enhancements applied, we also show
scores for single models, and for alternatives with-
out morphological segmentation and without the
additional RBMT input. We can observe that mor-
phological segmentation slightly improves the re-
sults. In line with the results in Section 5, adding
the additional Apertium input to a single model
also brings an improvement according to both eval-
uation metrics. However, that gain vanishes when
we compare the ensembles, probably because the
scores obtained by the RNN models are far be-
low those obtained by the Transformer models.
Moreover, the ensemble of 5 independently trained
Transformers outperforms our submitted systems,
which were ensembles of only 2 independent train-
ing runs.

Comparison with other teams. Table 7 also de-
picts the scores obtained by the top 3 constrained
systems submitted by other teams with the highest
chrF++. In comparison with them, our constrained
submission is ranked in 2nd position in terms of
chrF++ and 3rd in terms of BLEU. Our ensemble
of 5 Transformer models, built after the submis-
sion deadline, reaches the 1st position in terms of
chrF++. There are no statistically significant differ-
ences for any of the evaluation metrics between our
5-Transformer ensemble and the best performing
contestant.

system BLEU chrF++
single Transformer 9.25 39.48
+ morph. seg. 9.57 39.76
single RNN + morph. seg. 8.43 37.24
+ Apertium 8.68 37.99

constrained submission 9.97 40.28
unconstrained submission 9.90 40.31
ensemble 5 Transformer 10.65 41.00

NEU 11.11 40.78
CUNI-T2T-transfer-enkk 8.70 39.30
rug_enkk_bpe 10.30 37.65

Table 7: Results obtained by our submissions, single-
model alternatives, and systems submitted by other
teams, computed on newstest2019. There are no
statistically significant differences for any of the evalu-
ation metrics between our 5-Transformer ensemble and
the NEU submission.

7 Concluding remarks

We have presented the Universitat d’Alacant sub-
missions to the WMT 2019 news translation shared
task for the English-to-Kazakh language pair. As
it is a low-resource pair, we took advantage of par-
allel corpora from other language pairs via pivot
backtranslation and transfer learning. We also iter-
atively backtranslated monolingual data and made
the most of the noisy, crawled corpora after fil-
tering it with automatic classifiers and language
models. We morphologically segmented Kazakh
text to improve the generalization capacity of the
NMT system and successfully used multi-source
machine translation to build a hybrid system that
integrates the Apertium RBMT English-Kazakh
RBMT engine. Our constrained submission was
ranked 2nd in terms of chrF++.

We plan to continue exploring the hybridization
of NMT and RBMT. More multi-source Trans-
former architectures need to be evaluated to better
fit the nature of the RBMT input. Another research
line involves using RBMT to generate synthetic
training data.

Acknowledgments

We would like to thank Mikel L. Forcada for its
contribution to the morphological segmentation al-
gorithm, and Barry Haddow for the advice on iter-
ative backtranslation. This work has been funded
by European Union’s Horizon 2020 research and
innovation programme under grant agreement No
825299 (GoURMET project).

361



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
ICLR 2015, San Diego, CA, USA.
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Abstract

Two techniques provide the fabric of the Cam-
bridge University Engineering Department’s
(CUED) entry to the WMT19 evaluation cam-
paign: elastic weight consolidation (EWC)
and different forms of language modelling
(LMs). We report substantial gains by fine-
tuning very strong baselines on former WMT
test sets using a combination of checkpoint
averaging and EWC. A sentence-level Trans-
former LM and a document-level LM based on
a modified Transformer architecture yield fur-
ther gains. As in previous years, we also ex-
tract n-gram probabilities from SMT lattices
which can be seen as a source-conditioned n-
gram LM.

1 Introduction

Both fine-tuning and language modelling are tech-
niques widely used for NMT. Fine-tuning is of-
ten used to adapt a model to a new domain (Lu-
ong and Manning, 2015), while ensembling neu-
ral machine translation (NMT) with neural lan-
guage models (LMs) is an effective way to lever-
age monolingual data (Gulcehre et al., 2015, 2017;
Stahlberg et al., 2018a). Our submission to the
WMT19 news shared task relies on ideas from
these two lines of research, but applies and com-
bines them in novel ways. Our contributions are:

• Elastic weight consolidation (Kirkpatrick
et al., 2017, EWC) is a domain adaptation
technique that aims to avoid degradation in
performance on the original domain. We re-
port large gains from fine-tuning our mod-
els on former English-German WMT test
sets with EWC. We find that combining fine-
tuning with checkpoint averaging (Junczys-
Dowmunt et al., 2016b,a) yields further sig-
nificant gains. Fine-tuning is less effective
for German-English.

• Inspired by the shallow fusion technique
by Gulcehre et al. (2015, 2017) we ensemble
our neural translation models with neural lan-
guage models. While this technique is effec-
tive for single models, the gains are diminish-
ing under NMT ensembles trained with large
amounts of back-translated sentences.

• To incorporate document-level context in a
light-weight fashion, we propose a modifi-
cation to the Transformer (Vaswani et al.,
2017) that has separate attention layers for
inter- and intra-sentential context. We re-
port large perplexity reductions compared to
sentence-level LMs under the new architec-
ture. Our document-level LM yields small
BLEU gains on top of strong NMT ensem-
bles, and we hope to benefit even more from
it in document-level human evaluation.

• Even though the performance gap between
NMT and traditional statistical machine
translation (SMT) is growing rapidly on the
task at hand, SMT can still improve very
strong NMT ensembles. To combine NMT
and SMT we follow Stahlberg et al. (2017a,
2018b) and build a specialized n-gram LM
for each sentence that computes the risk of
hypotheses relative to SMT lattices.

• While data filtering was central in last year’s
evaluation (Koehn et al., 2018b; Junczys-
Dowmunt, 2018b), in our experiments this
year we found that a very simple filter-
ing approach based on a small number of
crude heuristics can perform as well as dual
conditional cross-entropy filtering (Junczys-
Dowmunt, 2018a,b).

• We confirm the effectiveness of source-side
noise for scaling up back-translation as pro-
posed by Edunov et al. (2018).
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2 Document-level Language Modelling

MT systems usually translate sentences in isola-
tion. However, there is evidence that humans
also take context into account, and judge trans-
lations from humans with access to the full doc-
ument higher than the output of a state-of-the-art
sentence-level machine translation system (Läubli
et al., 2018). Common examples of ambiguity
which can be resolved with cross-sentence con-
text are pronoun agreement or consistency in lex-
ical choice. This year’s WMT competition en-
couraged submissions of translation systems that
are sensitive to cross-sentence context. We ex-
plored the use of document-level language models
to enhance a sentence-level translation system. We
argue that this is a particularly light-weight way
of incorporating document-level context. First,
the LM can be trained independently on mono-
lingual target language documents, i.e. no parallel
or source language documents are needed. Sec-
ond, since our document-level decoder operates
on the n-best lists from a sentence-level trans-
lation system, existing translation infrastructure
does not have to be changed – we just add an-
other (document-level) decoding pass. On a prac-
tical note, this means that, by skipping the second
decoding pass, our system would work well even
for the translation of isolated sentences when no
document context is available.

Our document-level LMs are trained on the
concatenations of all sentences in target language
documents, separated by special sentence bound-
ary tokens. Training a standard Transformer
LM (Vaswani et al., 2017) on this data already
yields significant reductions in perplexity com-
pared to sentence-level LMs. However, the at-
tention layers have to capture two kinds of de-
pendencies – the long-range cross-sentence con-
text and the short-range context within the sen-
tence. Our modified Intra-Inter Transformer ar-
chitecture (Fig. 1) splits these two responsibili-
ties into two separate layers using masking. The
“Intra-Sentential Attention” layer only allows to
attend to the previous tokens in the current sen-
tence, i.e. the intra-sentential attention mask acti-
vates the tokens between the most recent sentence
boundary marker and the current symbol. The
“Inter-Sentential Attention” layer is restricted to
the tokens in all previous complete sentences, i.e.
the mask enables all tokens from the document
beginning to the most recent sentence boundary

Figure 1: Our modified Intra-Inter Transformer archi-
tecture with two separate attention layers.

marker. As usual (Vaswani et al., 2017), during
training the attention masks are also designed to
prevent attending to future tokens. Fig. 2 shows
an example of the different masks. Note that as
illustrated in Fig. 1, both attention layers are part
of the same layer stack which allows a tight inte-
gration of both types of context. An implication
of this design is that they also use the same posi-
tional embedding – the positional encoding for the
first unmasked item for intra-sentential attention
may not be zero. For example, ‘Lonely’ has the
position 10 in Fig. 2 although it is the first word in
the current sentence.

We use our document-level LMs to rerank n-
best lists from a sentence-level translation sys-
tem. Our initial document is the first-best sentence
hypotheses. We greedily replace individual sen-
tences with lower-ranked hypotheses (according
to the translation score) to drive up a combination
of translation and document LM scores. We start
with the sentence with the minimum difference be-
tween the first- and second-best translation scores.
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Vinyl destination : who is actually buying records ? < /s > Lonely , middle-aged men love ‘???’
Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Intra-sentential 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 -
Inter-sentential 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 -

Figure 2: Intra-sentential and inter-sentential attention masks for an English example from news-test2017.
Document-level context helps to predict the next word (‘vinyl’).

We stop when the translation score difference to
the first-best translation exceeds a threshold.1

3 Experimental Setup

Our experimental setup is essentially the same
as last year (Stahlberg et al., 2018b): Our pre-
processing includes Moses tokenization, punctu-
ation normalization, truecasing, and joint sub-
word segmentation using byte pair encoding (Sen-
nrich et al., 2016c) with 32K merge opera-
tions. We compute cased BLEU scores with
mteval-v13a.pl that are directly compara-
ble with the official WMT scores.2 Our mod-
els are trained with the TensorFlow (Abadi et al.,
2016) based Tensor2Tensor (Vaswani et al., 2018)
library and decoded with our SGNMT frame-
work (Stahlberg et al., 2017b, 2018c). We
delay SGD updates (Saunders et al., 2018) to
use larger training batch sizes than our tech-
nical infrastructure3 would normally allow with
vanilla SGD by using the MultistepAdam
optimizer in Tensor2Tensor. We use Trans-
former (Vaswani et al., 2017) models in two con-
figurations (Tab. 1). Preliminary experiments are
carried out with the ‘Base’ configuration while
we use the ‘Big’ models for our final system.
We use news-test2017 as development set to
tune model weights and select checkpoints and
news-test2018 as test set.

3.1 ParaCrawl Corpus Filtering
Junczys-Dowmunt (2018a,b) reported large gains
from filtering the ParaCrawl corpus. This year,
the WMT organizers made version 3 of the
ParaCrawl corpus available. We compared two
different filtering approaches on the new data
set. First, we implemented dual cross-entropy
filtering (Junczys-Dowmunt, 2018a,b), a sophis-
ticated data selection criterion based on neural

1Tensor2Tensor implementation: https://github.
com/fstahlberg/ucam-scripts/blob/master/
t2t/t2t_refine_with_glue_lm.py

2http://matrix.statmt.org/
3The Cambridge HPC service (http://www.hpc.

cam.ac.uk/) allows parallel training on up to four phys-
ical P100 GPUs.

Base Big
T2T HParams set trans. base trans. big
# physical GPUs 4 4
Batch size 4,192 2,048
SGD delay factor 2 4
# training iterations 300K 1M
Beam size 4 8

Table 1: Transformer setups.

language model and neural machine translation
model scores in both translation directions. In ad-
dition, we used the “naive” filtering heuristics pro-
posed by Stahlberg et al. (2018b):

• Language detection (Nakatani, 2010) in both
source and target language.

• No words contain more than 40 characters.

• Sentences must not contain HTML tags.

• The minimum sentence length is 4 words.

• The character ratio between source and target
must not exceed 1:3 or 3:1.

• Source and target sentences must be equal af-
ter stripping out non-numerical characters.

• Sentences must end with punctuation marks.

Tab. 2 indicates that our systems benefit from
ParaCrawl even without filtering (rows 1 vs. 2).
Our best ‘Base’ model uses both dual and naive fil-
tering. However, the difference between filtering
techniques diminishes under stronger ‘Big’ mod-
els with back-translation (rows 6 and 7).

4 Results

4.1 Back-translation
Back-translation (Sennrich et al., 2016b) is a well-
established technique to use monolingual target
language data for NMT. The idea is to automat-
ically generate translations into the source lan-
guage with an inverse translation model, and
add these synthetic sentence pairs to the train-
ing data. A major limitation of vanilla back-
translation is that the amount of synthetic data
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Model ParaCrawl Naive BLEU
filtering test15 test16 test17 test18

1 Base No 29.3 34.1 27.8 41.9
2 Base Full 30.0 35.3 28.2 43.1
3 Base Full X 30.3 35.6 28.6 43.5
4 Base Dual x-ent filtering 30.2 35.5 28.7 43.6
5 Base Dual x-ent filtering X 30.6 35.7 28.8 43.8
6 Big (with back-translation) Full X 32.4 38.5 31.2 46.6
7 Big (with back-translation) Dual x-ent filtering X 32.7 38.1 31.1 46.6

Table 2: Comparison of ParaCrawl filtering techniques. The rest of the training data is over-sampled to roughly
match the size of the filtered ParaCrawl corpus. In the ‘Dual x-ent filtering’ experiments we selected the 15M best
sentences according the dual cross-entropy filtering criterion of Junczys-Dowmunt (2018a).

news-2016 news-2017 news-2018 Noise BLEU
(35M sentences) (20M sentences) (37M sentences) test15 test16 test17 test18

1 30.2 35.7 28.7 43.8
2 X 30.8 36.2 29.8 44.3
3 X 30.4 35.8 29.4 43.2
4 X X 30.3 35.9 29.5 43.1
5 X X 31.0 36.6 29.7 44.8
6 X X 30.7 36.6 29.5 44.7
7 X X X 30.6 36.6 29.5 44.4
8 X X X 31.3 37.4 30.0 45.2
9 X X X X 31.3 37.3 30.3 45.2

Table 3: Using different corpora for back-translation. We back-translated with a ‘base’ model for news-2017
and the big single Transformer model of Stahlberg et al. (2018b) for news-2016 and news-2018.

Fine-tuning Checkpoint BLEU (test18)
averaging En-De De-En

1 No 46.7 46.5
2 No X 46.6 46.4
3 Cont’d train. 47.1 46.6
4 Cont’d train. X 47.3 46.8
5 EWC 47.1 46.4
6 EWC X 47.8 46.8

Table 4: Fine-tuning our models on former WMT test
sets using continued training and EWC.

has to be balanced with the amount of real par-
allel data (Sennrich et al., 2016b,a; Poncelas et al.,
2018). Edunov et al. (2018) had overcome this
limitation by adding random noise to the synthetic
source sentences. Tab. 3 shows that using noise
improves the BLEU score by between 0.5 and 1.5
points on the news-test2018 test set (rows 2-4
vs. 5-7).4 Our final model uses a very large num-
ber (92M) of (noisy) synthetic sentences (row 9),
although the same performance could already be
reached with fewer sentences (row 8).

4.2 Fine-tuning with EWC and Checkpoint
Averaging

Fine-tuning (Luong and Manning, 2015) is a do-
main adaptation technique that first trains a model

4We use Sergey Edunov’s addnoise.py script
available at https://gist.github.com/edunov/
d67d09a38e75409b8408ed86489645dd

until it converges on a training corpus A, and then
continues training on a usually much smaller cor-
pus B which is close to the target domain. Sim-
ilarly to Schamper et al. (2018); Koehn et al.
(2018a), we fine-tune our models on former WMT
test sets (2008-2016) to adapt them to the target
domain of high-quality news translations. Due
to the very small size of corpus B, much care
has to be taken to avoid over-fitting. We exper-
imented with different techniques that keep the
model parameters in the fine-tuning phase close to
the original ones. First, we fine-tuned our mod-
els for about 1K-2K iterations (depending on the
performance on the news-test2017 dev set)
and dumped checkpoints every 500 steps. Av-
eraging all fine-tuning checkpoints together with
the last unadapted checkpoint yields minor gains
over fine-tuning without averaging (rows 3 vs. 4
in Tab. 4). However, we obtain the best results
by combining checkpoint averaging with another
regularizer – elastic weight consolidation (Kirk-
patrick et al., 2017, EWC) – that explicitly pe-
nalizes the distance of the model parameters θ to
the optimized but unadapted model parameters θ∗A.
The regularized training objective according EWC
is:

L(θ) = LB(θ) + λ
∑

i

Fi(θi − θ∗A,i)
2 (1)
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Perplexity (per subword)
Model Context German English

test15 test16 test17 test18 test15 test16 test17 test18
Standard (Big) Sentence-level 36.23 35.69 36.17 34.77 39.94 37.19 35.34 42.38
Standard(Big) Document-level 26.63 27.85 25.43 28.36 43.37 34.55 31.27 39.74
Intra-Inter (Big) Document-level 23.54 22.39 22.05 22.56 34.25 31.16 29.31 34.47

Table 5: Language model perplexities of different neural language models. ‘Intra-Inter’ denotes our modified
Transformer architecture from Sec. 2. The standard model has 448M parameters, Intra-Inter has 549M parameters.

English-German German-English
Base Big (with EWC) Base Big (with EWC)

Single Single 4-Ensemble Single Single 4-Ensemble
1 Using back-translation? No Yes Yes No Yes Yes
2 NMT 43.8 47.8 48.8 40.7 47.4 48.3
3 + Sentence-level LM 44.7 47.8 48.8 41.4 47.6 48.3
4 + PBSMT (MBR-based) 45.1 48.0 49.1 42.1 47.6 48.5
5 + Document-level Intra-Inter LM 45.7 47.6 49.3 42.1 47.3 48.6

Table 6: Using different kinds of language models for translation on news-test2018. The PBSMT baseline
gets 26.7 BLEU on English-German and 27.5 BLEU on German-English.

where LB(θ) is the normal cross-entropy train-
ing loss on task B and Fi = E

[
∇2LA(θi)

]
is

an estimate of task A Fisher information, which
represents the importance of parameter θi to A.
On English-German, fine-tuning with EWC and
checkpoint averaging yields an 1.1 BLEU im-
provement (rows 1 vs. 6 in Tab. 4). Gains are gen-
erally smaller on German-English.

4.3 Language modelling
We introduced our new Intra-Inter Transformer
architecture for document-level language mod-
elling in Sec. 2. Tab. 5 shows that our architec-
ture achieves much better perplexity than both a
sentence-level language model and a document-
level vanilla Transformer model. Tab. 6 summa-
rizes our translation results with various kinds of
language models. Adding a Transformer sentence-
level LM to NMT helps for the single Base model
without back-translation, but is less effective on
top of (ensembles of) Big models with back-
translation (row 2 vs. 3). Extracting n-gram prob-
abilities from traditional PBSMT lattices as de-
scribed by Stahlberg et al. (2017a) and using them
as source-conditioned n-gram LMs yields gains
even on top of our ensembles (row 4). Our
document-level Intra-Inter language models im-
prove the ensembles and the single En-De Base
model, but hurt performance slightly for the single
Big models (row 5).

5 Related Work

Regularized fine-tuning Our approach to fine-
tuning is a combination of EWC (Kirkpatrick

et al., 2017) and checkpoint averaging (Junczys-
Dowmunt et al., 2016b,a). In our context,
both methods aim to avoid catastrophic forget-
ting5 (Goodfellow et al., 2013; French, 1999) and
over-fitting by keeping the adapted model close to
the original, and can thus be seen as regularized
fine-tuning techniques. Khayrallah et al. (2018);
Dakwale and Monz (2017) regularized the output
distributions during fine-tuning using techniques
inspired by knowledge distillation (Bucilu et al.,
2006; Hinton et al., 2014; Kim and Rush, 2016).
Barone et al. (2017) applied standard L2 regular-
ization and a variant of dropout to domain adap-
tation. EWC as generalization of L2 regulariza-
tion has been used for NMT domain adaptation
by Thompson et al. (2019); Saunders et al. (2019).
In particular, Saunders et al. (2019) showed that
EWC is not only more effective than L2 in reduc-
ing catastrophic forgetting but even yields gains on
the general domain when used for fine-tuning on a
related domain.

Document-level MT Various techniques have
been proposed to provide the translation system
with inter-sentential context, for example by ini-
tializing encoder or decoder states (Wang et al.,
2017a), using multi-source encoders (Bawden
et al., 2018; Jean et al., 2017), as additional de-
coder input (Wang et al., 2017a), with memory-
augmented neural networks (Tu et al., 2018; Maruf
and Haffari, 2018; Kuang et al., 2017), hierar-

5Catastrophic forgetting occurs when the performance on
the specific domain is improved after fine-tuning, but the per-
formance of the model on the general domain has decreased
drastically.
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chical attention (Miculicich et al., 2018; Maruf
et al., 2019), deliberation networks (Xiong et al.,
2018), or by simply concatenating multiple source
and/or target sentences (Tiedemann and Scherrer,
2017; Bawden et al., 2018). Context-aware exten-
sions to Transformer encoders have been proposed
by Voita et al. (2018); Zhang et al. (2018). Tech-
niques also differ in whether they use source con-
text only (Jean et al., 2017; Wang et al., 2017a;
Voita et al., 2018; Zhang et al., 2018), target con-
text only (Tu et al., 2018; Kuang et al., 2017),
or both (Bawden et al., 2018; Maruf and Haf-
fari, 2018; Miculicich et al., 2018; Tiedemann and
Scherrer, 2017; Maruf et al., 2019). Several stud-
ies on document-level NMT indicate that auto-
matic and human sentence-level evaluation met-
rics often do not correlate well with improvements
in discourse level phenomena (Bawden et al.,
2018; Läubli et al., 2018; Müller et al., 2018).
Our document-level LM approach is similar to the
work of Xiong et al. (2018) in that cross-sentence
context is only used in a second pass to improve
translations from a sentence-level MT system. Our
method is light-weight as, similarly to Tiedemann
and Scherrer (2017), we do not modify the archi-
tecture of the core NMT system.

NMT-SMT hybrid systems Popular examples
of combining a fully trained SMT system with
independently trained NMT are rescoring and
reranking methods (Neubig et al., 2015; Stahlberg
et al., 2016b; Khayrallah et al., 2017; Grund-
kiewicz and Junczys-Dowmunt, 2018; Avramidis
et al., 2016; Marie and Fujita, 2018; Zhang
et al., 2017), although these models may be
too constraining if the neural system is much
stronger than the SMT system. Loose combina-
tion schemes include the edit-distance-based sys-
tem of Stahlberg et al. (2016a) or the minimum
Bayes-risk approach of Stahlberg et al. (2017a) we
adopted in this work. NMT and SMT can also be
combined in a cascade, with SMT providing the
input to a post-processing NMT system (Niehues
et al., 2016; Zhou et al., 2017) or vice versa (Du
and Way, 2017). Wang et al. (2017b, 2018) in-
terpolated NMT posteriors with word recommen-
dations from SMT and jointly trained NMT to-
gether with a gating function which assigns the
weight between SMT and NMT scores dynami-
cally. The AMU-UEDIN submission to WMT16
let SMT take the lead and used NMT as a fea-
ture in phrase-based MT (Junczys-Dowmunt et al.,

English-German
Team BLEU
MSRA 44.9
Microsoft 43.9
NEU 43.5
UCAM 43.0
Facebook FAIR 42.7
JHU 42.5
eTranslation 41.9

8 more...

German-English
Team BLEU
MSRA 42.8
Facebook FAIR 40.8
NEU 40.5
UCAM 39.7
RWTH 39.6
MLLP-UPV 39.3
DFKI 38.8

4 more...

Table 7: English-German and German-English primary
submissions to the WMT19 shared task.

Year Best in This work ∆
competition

2017 28.3 32.8 +4.5
2018 48.3 49.3 +1.0
2019 44.9 43.0 -1.9

Table 8: Comparison of our English-German system
with the winning submissions over the past two years.

2016b). In contrast, Long et al. (2016) translated
most of the sentence with an NMT system, and
just used SMT to translate technical terms in a
post-processing step. Dahlmann et al. (2017) pro-
posed a hybrid search algorithm in which the neu-
ral decoder expands hypotheses with phrases from
an SMT system.

6 Conclusion

Our WMT19 submission focused on regular-
ized fine-tuning and language modelling. With
our novel Intra-Inter Transformer architecture for
document-level LMs we achieved significant re-
ductions in perplexity and minor improvements in
BLEU over very strong baselines. A combination
of checkpoint averaging and EWC proved to be an
effective way to regularize fine-tuning. Our sys-
tems are competitive on both English-German and
German-English (Tab. 7), especially considering
the immense speed with which our field has been
advancing in recent years (Tab. 8).
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Abstract
In this paper we introduce the systems Baidu
submitted for the WMT19 shared task on
Chinese↔English news translation. Our sys-
tems are based on the Transformer architec-
ture with some effective improvements. Data
selection, back translation, data augmenta-
tion, knowledge distillation, domain adap-
tation, model ensemble and re-ranking are
employed and proven effective in our ex-
periments. Our Chinese→English system
achieved the highest case-sensitive BLEU
score among all constrained submissions, and
our English→Chinese system ranked the sec-
ond in all submissions.

1 Introduction

The Transformer model (Vaswani et al., 2017),
which exploits self-attention mechanism both in
the encoder and decoder, has significantly im-
proved the translation quality in recent years. It
is also adopted by most participants as the ba-
sic Neural Machine Translation (NMT) system in
the previous translation campaigns (Bojar et al.,
2018; Niehues et al., 2018). In this year’s transla-
tion task, we focus on the improvement of single
system, and propose three novel Transformer vari-
ants:

• Pre-trained Transformer: We train a big
Transformer language model (Radford et al.,
2018; Devlin et al., 2018; Dai et al., 2019;
Sun et al., 2019) on monolingual corpora, and
use the language model as the encoder of the
Transformer model.

• Deeper Transformer: We increase the en-
coder layers to better learn the representation
of the source sentences. Specifically, we in-
crease the number of encoder layers from 6
to 30 for the base version, and from 6 to 15
layers for the big version.

• Bigger Transformer: According to the pre-
vious experiments, the performance of the
Transformer model is largely dependent on
the dimensions of feed forward network. To
further improve the performance, we increase
the inner dimension of feed-forward network
from 4,096 to 15,000 for big version.

In addition, we develop effective approaches to
exploit additional monolingual data and generate
augmented bilingual data. To use the monolingual
data, back translation (Sennrich et al., 2015a) is
employed on large corpora including News Cor-
pus and Gigaword. We also use an iterative ap-
proach (Zhang et al., 2018) to extend the back
translation method by jointly training source-to-
target and target-to-source NMT models. For
bilingual data augmentation, a target-to-source
baseline system is used to translate the target of the
bilingual corpus as the synthetic data. Moreover,
the sequence-level knowledge distillation (Hassan
et al., 2018) mechanism is employed to boost the
performance by means of using the model decod-
ing from right to left (Right-to-Left) and the afore-
mentioned Transformer variants to generate syn-
thetic data for training the NMT model (Wang
et al., 2018).

The remainder of paper is structured as follows:
Section 2 describes the detailed overview of our
training strategy. Section 3 shows the experimen-
tal settings and results. Finally, we conclude our
work in Section 4.

2 System Overview

Figure 1 depicts the overall process of our sub-
missions in this year’s evaluation task, in which
we train our advanced Transformer models on the
bilingual corpus together with synthetic corpora,
fine-tune them on the well-selected in-domain
data, and generate the ensemble model for the final
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Figure 1: Architecture of Baidu NMT system

re-ranking strategy. In this section, we will intro-
duce each step in details.

It is worth noting that our advanced Trans-
former model requires larger GPU memory to
train due to the large number of training parame-
ters. Hence we train our models on machines with
8 NVIDIA V100 GPUs each of which has 32 GB
memory, to avoid out-of-memory issues. In train-
ing phase, we limit the number of source and target
tokens per batch to 4,096 per GPU for deeper and
bigger Transformer models (at most 526,052,128
parameters), while the token batch size is 3,072 for
pre-trained Transformer model due to GPU mem-
ory limitation.

2.1 Pre-trained Transformer

Recent empirical improvements with language
models have showed that unsupervised pre-
training (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2018; Dai et al., 2019; Sun et al.,
2019) on very large corpora is an integral part
of many NLP tasks. We implement a big Trans-
former language model using PaddlePaddle1, an
end-to-end open source deep learning platform de-
veloped by Baidu. It provides a complete suite
of deep learning libraries, tools and service plat-
forms to make the research and development of
deep learning simple and reliable. The language
model is pre-trained only with masked language
model task (Taylor, 1953; Devlin et al., 2018; Sun
et al., 2019) on a monolingual corpus of the source
language.

We use all the available resources of WMT19 as
the pre-training corpus. For the Chinese language
model, we use the concatenation of Chinese Gi-
gaword, Chinese News Crawl, XMU and the Chi-
nese part of CWMT and UN corpus. For the En-

1https://github.com/paddlepaddle/
paddle

glish language model, we use the concatenation of
English Gigaword, English News Crawl and the
English part of CWMT and UN corpus. There are
45 million Chinese sentences and 170 million En-
glish sentences in our pre-training corpora.

To use the pre-trained language model as en-
coder of NMT and enable the open-vocabulary
translation, we learn a BPE (Sennrich et al.,
2015b) model with 30K merge operations. We
use Adam with learning rate of 1e-4, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.001, and learn-
ing rate warmup over the 10,000 steps. We train
the big Transformer language model with 24 lay-
ers, setting the hidden size to 1,024 and the num-
ber of self-attention heads to 16. Both Chinese and
English pre-training took 7 days to complete.

In the fine-tuning procedure of the translation
task, we employ a pre-trained language model as
encoder of NMT, and the parameters of decoders
are learned during fine-tuning. The decoder has 6
self-attention layers, and the hidden size is 1024,
which is same with the decoder of standard big
Transformer. During fine-tuning, we only fix the
parameters of the language model for the first
10,000 steps.

2.2 Deeper Transformer

According to the previous literatures, the model
tends to specialize in word sense disambiguation
and tends to focus on local dependencies in lower
layers but finds long dependencies on higher ones
while increasing the size of layers in the encoder
(Tang et al., 2018; Domhan, 2018; Raganato and
Tiedemann, 2018). Meanwhile, inspired by the
success of pre-trained Transformer, that transla-
tion results can benefit from very deep architec-
tures of encoder, we introduce the deeper Trans-
former. But vanishing-gradient problem is en-
countered by just increasing the encoder depth,
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the standard Transformer failed to train. To alle-
viate the vanishing-gradient problem, we design a
particular residual connections. Specificially, the
outputs of all preceding layers are used as inputs
for each layer, as opposed to the standard Trans-
former model in which the residual connection is
employed between two adjacent layers.

In our experiments, both the big Transformer
with 15 encoder layers and the base trans-
former with 30 encoder layers obtain signifi-
cant improvements compared with the standard
big Transformer on Chinese→English translation
task, whereas the improvement is not remarkable
on English→Chinese translation task.

2.3 Bigger Transformer
Motivated by the success of increasing the model
size on the language modeling (Devlin et al., 2018)
and NMT (Vaswani et al., 2017) tasks, we propose
bigger Transformer which has larger inner dimen-
sion of feed-forward network than the standard big
Transformer. Specifically, we increase the inner
dimension of feed-forward network from 4,096 to
15,000 constrained by the GPU memory capacity.
To overcome the overfitting problem, we set at-
tention dropout and relu dropout from 0.1 to 0.3,
increasing the value of label smoothing from 0.1
to 0.2. Note that the specific settings are only em-
ployed for the bigger Transformer.

In addition, we explore the effectiveness of in-
creasing hidden size with respect to the Trans-
former model. However, the results indicate that
the model with increased hidden size performs
worse than the model with big feed-forward net-
work. Nevertheless, we retain the model with dif-
ferent hidden size as one diverse system for the
generation of the final ensemble model, which has
shown effective performance in our further exper-
iments.

2.4 Large-scale Back-Translation
In recent work, Edunov et al. (2018) proposed
an effective approach to improve the translation
quality by exploiting back-translation mechanism
on the large-scale monolingual corpus. Follow-
ing their work, we also train our model on the
synthetic bilingual corpus to further improve the
performance. However, the provided monolingual
data contains a certain amount of noise and out-of-
domain data which may affect the translation qual-
ity implicitly. Therefore, we use a language model
to select high-quality and in-domain data from the

large amount of monolingual data according to the
perplexity score.

After training language models on different
types of monolingual data (i.e., News crawl, Giga-
word), we select 96M English sentences and 23M
Chinese sentences according to LM scores, since
Chinese monolingual corpus provided by WMT
19 is much less than that of English. The selected
English sentences are translated and divided into
12 portions. For the 23M Chinese sentences, we
translate and divide the sentences into 3 portions,
resulting in 8M synthetic parallel sentence pairs in
each portion. We further evaluate the performance
of the similar model training on a different bilin-
gual corpus which consists of the original bilin-
gual corpus and the generated synthetic bitext. Ac-
cording to the BLEU score of translation results
on the WMT 18 news translation dev set, we se-
lect the top 4 most effective portions for training
Chinese→English system and the top 2 portions
for training English→Chinese system. In the fi-
nal submission, the selected synthetic portions are
used to enhance individual baseline models by the
following joint training technique, respectively.

2.5 Joint Training and Data Augmentation

In the work of Zhang et al. (2018), they proposed a
novel method for better usage of monolingual data
from both source side and target side by jointly
optimizing a source-to-target (S2T) model and a
target-to-source (T2S) model, training with sev-
eral iterations. In each iteration, the T2S model is
responsible for generating synthetic parallel train-
ing data for S2T model using target-side monolin-
gual data, while S2T model is employed to gener-
ate synthetic parallel training data for T2S model
using source-side monolingual data. After train-
ing on the additional synthetic data, the perfor-
mance of both T2S model and S2T model can be
further improved. In the next iteration, the two im-
proved models can potentially generate better syn-
thetic parallel data. This procedure can be applied
in several iterations until no further improvement
can be obtained.

In addition, we also augment the training data
by exploring the bilingual corpus rather than the
monolingual corpus. Specifically, we translate
the sentences in the target language back into the
source language by diverse training models, such
as Left-to-right model and Right-to-left model.
This procedure can be viewed as one alternative
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solution for alleviating the exposure bias problem
(Ranzato et al., 2016).

2.6 Knowledge Distillation

The early adoption of knowledge distillation (Kim
and Rush, 2016) is for model compression, where
the goal is to deliver a compact student model that
matches the accuracy of a large teacher model or
the ensemble of models. In our knowledge dis-
tillation approach, we translate the source side of
the bilingual data with a Right-to-Left (R2L) (Liu
et al., 2016) model teacher and different architec-
ture NMT teachers to use the translations as addi-
tional training data for the student network. Con-
sidering that distillation from a bad teacher model
is likely to hurt the student model and thus result
in inferior accuracy, we selectively use distillation
in the training process. In particular, the sentences
generated by a teacher model are filtered if BLEU
scores are below a threshold τ . According to our
previous empirical results, we select English trans-
lations with BLEU score higher than 30 and Chi-
nese translations with BLEU score higher than 42.

There are two kinds of teacher models to help a
student model improve translation performance:

• R2L Teacher: The idea is to reverse the tar-
get sentences of bilingual corpus and train
a R2L model. Then we employ R2L model
to translate the source sentences of the bilin-
gual corpus and reverse the translated sen-
tences. The pseudo corpus is added to the
real bilingual corpus in order to enhance the
L2R model. The paradigm can be regarded as
a kind of knowledge transfer method which
provides complementary information for stu-
dent model to learn.

• Hybrid Heterogeneous Teacher: Pre-trained
Transformer, deeper Transformer and bigger
Transformer represent a source sentence at
different granularities, therefore it is intuitive
that each model can learn effective knowl-
edge from other models. For each individual
model, we use the other two models as the
teacher model to further improve the perfor-
mance.

2.7 Fine-tuning with In-domain Data

Domain adaptation plays an important role in im-
proving the performance towards given testing

Source Chn→En En→Chn
CWMT 6.7M 6.7M
UN 9M 3.5M
Wiki Titles - 0.6M
Total 15.7M 10.8M

Table 1: Statistics of the bilingual training data (Chn
indicates Chinese while En indicates English).

data. The dominant approach for domain adapta-
tion is training on large-scale out-of-domain data
and then fine-tuning on the in-domain data (Lu-
ong and Manning, 2015). Thus the effectiveness
of the domain adaptation depends on the selected
in-domain data.

According to our previous empirical results, us-
ing the WMT 18 dev set to fine-tune the models
straightforwardly achieves the best results. In our
final submission, we set the batch size to 1,024
and fine-tune the model for a few iterations on
the WMT 18 dev set. It is surprising to find a
gain of almost +2 BLEU improvement on WMT
18 Chinese→English test set. However, on WMT
18 English→Chinese test set, the improvement is
not significant.

In WMT 17 and 18, the source side of both
dev set and test set are composed of two parts:
documents created originally in Chinese and doc-
uments created originally in English. We split
both the dev set and test set into original Chi-
nese part and original English part according to
tag attributes of SGM files. Finally, we trans-
late each specific test part with the model fine-
tuned on the corresponding dev set. Experi-
ments show significant improvement with this
method, that is, 2.23 BLEU improvements on
Chinese→English test set and 0.5 BLEU improve-
ments on English→Chinese test set. This indi-
cates that the translation quality is affected by the
original sources of the language. Consider the
English→Chinese task, if the English sentences
are created from native English corpus, then the
corresponding Chinese sentences are translation
style, so the model fine-tuned on these parallel
sentences is more inclined to decode with transla-
tion style. Similarly, if the Chinese sentences are
created from native Chinese corpus, the fine-tuned
English→Chinese model decodes with more na-
tive style.

In the final submission, we take the following
steps to avoid overfitting: 1) We employ the en-
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Settings
Big

Transformer
Pre-trained

Transformer
Deeper

Transformer
Bigger

Transformer
Baseline 25.86 - - -
+ Back Translation 26.72 27.68 26.83 27.54
+ Joint Training 26.95 27.79 27.01 27.61
+ Knowledge Distillation 27.4 28.11 27.43 27.88
+ Fine-tuning 29.39 29.87 29.82 30.11
+ Ensemble 31.59
+ Re-ranking* 31.83

Table 2: BLEU evaluation results on the WMT 2018 Chinese→English test set (* denotes the submitted system).

semble models to translate the WMT 19 test set,
and use the translations as additional synthetic
fine-tuning corpus. 2) We fine-tune the final sys-
tem on the mixture of the additional synthetic cor-
pus and the selected in-domain corpus.

2.8 Model Ensemble
Model ensemble is a widely used technique to
boost the performance by combining the predic-
tions of several models at each decoding step. In
our previous experiments, we find that the im-
provement is slight while integrating the predic-
tions of multiple models with similar model archi-
tecture. Instead, we train our models with different
model architectures training on different versions
of training data, increasing the model diversity for
the model ensemble. The experimental results in-
dicate that this method achieves absolute improve-
ments over the single system (at most a 1.7 BLEU
point improvements).

2.9 Re-ranking
In order to get better translation results, we gener-
ate n-best hypotheses with an ensemble model and
then train a re-ranker using k-best MIRA (Cherry
and Foster, 2012) on the validation set. K-best
MIRA is a version of MIRA (Chiang et al., 2008)
that works with a batch tuning to learn a re-ranker
for the n-best hypotheses. The features we use for
re-ranking are:

• NMT Features: Ensemble model score and
Right-to-Left model score.

• Language Model Features: Multiple n-gram
language models and backward n-gram lan-
guage models.

• Length Features: Length ratio and length dif-
ference between source sentences and hy-
potheses.

• Weighted Voting Features: Average of BLEU
scores calculated between each hypothesis
and the other hypotheses.

3 Experiments and Results

All of our experiments are carried out on 32 ma-
chines with 8 NVIDIA V100 GPUs each of which
have 32 GB memory. For all models, we average
the last 20 checkpoints to avoid overfitting. We
use cased BLEU scores calculated with Moses2

mteval-v12a.pl script as evaluation metric. Fol-
lowing the organizers’ suggestion, News dev 2018
is used as the development set and News test 2018
as the test set.

3.1 Pre-processing and Post-processing
The Chinese data has been tokenized using the
Jieba tokenizer3. For English data, punctuation
normalization, aggressive tokenization and true-
casing are applied orderly to all sentences with the
scripts provided in Moses. We also filter the paral-
lel sentences which are duplicated or bad align-
ment scores obtained by fast-align (Dyer et al.,
2013), and then we have a preprocessed bilingual
training data consisting of 18M parallel sentences.

In post-processing phase, the English transla-
tions are true-cased and de-tokenized with the
scripts provided in Moses. We use simple rules
to normalize the punctuations and Arabic numer-
als in the Chinese translations.

3.2 Chinese→English
For Chinese→English task, we do not use all
of the 18M preprocessed parallel sentences, in
that there is much out-of-domain data in UN cor-
pus. Table 1 shows that the 6.7M CWMT cor-
pus and 9M UN corpus which are selected ran-

2http://www.statmt.org/moses/
3https://github.com/fxsjy/jieba
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Settings
Big

Transformer
Pre-trained

Transformer
Deeper

Transformer
Bigger

Transformer
Baseline 39.2 - - -
+ Back Translation 43.33 43.7 42.19 44
+ Joint Training 43.86 44.12 42.5 44.78
+ Knowledge Distillation 44.25 44.6 42.86 45.27
+ Fine-tuning 44.72 44.75 42.94 45.79
+ Ensemble 46.42
+ Re-ranking* 46.51

Table 3: BLEU evaluation results on the WMT 2018 English→Chinese test set (* denotes the submitted system).

domly are used as our bilingual training set for
Chinese→English task. We learn a BPE (Sen-
nrich et al., 2015b) model with 30K merge oper-
ations, in which 46.4K and 31K sub-word tokens
are adopted as Chinese and English vocabularies
separately. We set beam size to 12 and alpha to
1.1 during decoding.

12 portions of sentences are selected from huge
volumes of English monolingual data, and we
carry out a large number of experiments in which
the Transformer models are trained with each por-
tion. And then 4 most effective portions are se-
lected. Due to the extensive training time and the
approaching deadline for submissions, pre-trained
transformer, deep Transformer(base Transformer
with 30 encoder layers) and bigger Transformer
are trained on the combination of real bilingual
data and the synthetic data directly. For each dif-
ferent architecture model, we train 4 more sys-
tems with different portions of monolingual data
and different parameters in order to obtain more
diverse models. For comparison, we only report
results on the WMT 2018 test set with the same
portion of monolingual data.

Table 2 shows that the translation quality is
largely improved using proposed techniques. We
observe solid improvement of 0.86 BLEU for the
baseline system after back translation. Joint train-
ing and knowledge distillation yield improvements
over all the different architecture models, approx-
imating 0.34-0.68 BLEU improvements toward
single models. It is also clear that the fine-tuning
technique brings substantial improvements com-
pared with the baseline systems.

In our experiments, the ensemble models con-
sists of 8 single models: 1 Transformer, 2 pre-
trained Transformers, 2 deeper Transformers and
3 bigger Transformers. As shown in the Ta-
ble 2, the ensemble models also outperform the

best single model by 1.49 BLEU score. How-
ever, the improvement of re-ranking is relatively
slight, and we attribute this to the strong per-
formance of ensemble models. Our WMT 2019
Chinese→English submission achieves a cased
BLEU score of 38.0, winning the first place among
all submissions.

3.3 English→Chinese

As listed in the Table 1, the parallel training
data for English→Chinese translation task con-
sists of about 6.7M sentence pairs from the fil-
tered CWMT Corpus, 3.5M sentence pairs from
the UN Parallel Corpus, 0.6M sentence pairs from
the Wiki Titles Corpus. For the UN data, we train
a 5-gram KN language model on the Chinese sides
of the CWMT data and select 3.5M sentence pairs
according to their perplexities. The size of the En-
glish vocabulary and the Chinese vocabulary are
31K and 48.6K respectively after BPE operation.
We use beam search with a beam size of 12, and
set alpha 0.8.

From the Table 3, we can observe: 1) We obtain
+4.13 BLEU score when adding the synthetic par-
allel data to the training set of the Transformer. 2)
We further gain +0.92 BLEU score after applying
joint training and knowledge distillation for the
Transformer system. 3) The improvement from
the fine-tuning technique is relative slight for the
pre-trained Transformer and deeper Transformer,
whereas it is effective for the Transformer and big-
ger Transformer, with about 0.5 BLEU score im-
provements.

Notably, the ensemble models consist of pre-
trained Transformers and bigger Transformers.
We omit the deeper Transformer model due to its
worse performance on this translation task. On the
WMT 2019 English→Chinese task, our submis-
sion achieves 42.4 cased BLEU score, winning the
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second place in the translation task.

4 Conclusion

This paper presents the Baidu NMT systems for
WMT 2019 Chinese↔English news translation
tasks. We investigate various different architec-
tures of Transformer to build numerous strong sin-
gle systems. We exploit effective strategies to
better utilize parallel data as well as monolingual
data. We find significant gains from combining
multiple heterogeneous systems due to the diver-
sity. Finally, our submission of Chinese→English
news task achieves the highest cased BLEU score
and our submission of English→Chinese achieves
the second best cased BLEU score among all the
constrained submissions.
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Mauro Cettolo, Marco Turchi, and Marcello Fed-
erico. 2018. The iwslt 2018 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation (IWSLT) 2018.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

380



Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In International
Conference on Learning Representations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? a targeted eval-
uation of neural machine translation architectures.
arXiv preprint arXiv:1808.08946.

Wilson L Taylor. 1953. “cloze procedure”: A new
tool for measuring readability. Journalism Bulletin,
30(4):415–433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Mingxuan Wang, Li Gong, Wenhuan Zhu, Jun Xie, and
Chao Bian. 2018. Tencent neural machine trans-
lation systems for WMT18. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, pages 522–527, Belgium, Brussels. As-
sociation for Computational Linguistics.

Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and En-
hong Chen. 2018. Joint training for neural machine
translation models with monolingual data. In Thirty-
Second AAAI Conference on Artificial Intelligence.

381



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 382–385
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

University of Tartu’s Multilingual Multi-domain
WMT19 News Translation Shared Task Submission

Andre Tättar Elizaveta Korotkova Mark Fishel
Institute of Computer Science
University of Tartu, Estonia

{andre.tattar,elizaveta.korotkova,fishel}@ut.ee

Abstract

This paper describes the University of Tartu’s
submission to the news translation shared task
of WMT19, where the core idea was to train
a single multilingual system to cover several
language pairs of the shared task and submit
its results. We only used the constrained data
from the shared task. We describe our ap-
proach and its results and discuss the technical
issues we faced.

1 Introduction

Typically the majority of WMT news translation
shared task submissions are based on language
pair-specific machine translation (MT) systems
(Bojar et al., 2016, 2017, 2018). However, re-
cently several multilingual approaches to MT have
been proposed (e.g. Johnson et al., 2017; Vázquez
et al., 2018; Aharoni et al., 2019). With them as
inspiration, the goal of this paper is to describe
our submission to the WMT’2019 news transla-
tion shared task, where we trained a single mul-
tilingual translation system using the constrained
parallel and monolingual data for several language
pairs.

In addition to multilinguality we wanted to in-
corporate the multiple text domains that constitute
the constrained set of parallel corpora in the WMT
shared task. We approach multi-domain NMT us-
ing the method of (Tars and Fishel, 2018): namely,
by treating domains as separate languages, there-
fore creating a “double-multilingual” system.

In addition to multilinguality and multi-domain
NMT our submission has more common features,
like data filtering, ensembles of several models
and fine-tuning on back-translated monolingual
data.

Below we describe the architecture of our ap-
proach in Section 2, experimental setup in Sec-

tion 3, results and analysis in Section 4 and con-
clude the paper in Section 5.

2 Architecture

Our model is a neural MT system based on autore-
gressive self-attention in the encoder and decoder
(Vaswani et al., 2017). We achieve multilinguality
in a similar fashion to (Johnson et al., 2017): us-
ing an additional input specifying the output lan-
guage, so that the system would know which lan-
guage to generate. Differently from Johnson et al.
(2017), who include the output language into the
input segment itself, we use word factors (Hieber
et al., 2017) and specify the output language as a
factor of each input token.

In addition to multilinguality, our NMT system
also uses the information on which domain the
parallel or monolingual corpora come from. The
WMT data consist of a variety of text domains
(parliamentary speeches, crawled web and news
texts, press releases, Wikipedia titles, etc.) and it
has been shown (Tars and Fishel, 2018) that multi-
domain NMT can get much better results than the
default approach of mixing heterogeneous corpora
together, as well as yield more efficient solutions
than fine-tuning to each domain separately. Our
solution is to specify the output text domain as an-
other word factor.

One peculiarity of multilingual NMT is that the
model performs back-translation for itself, there-
fore avoiding the necessity of training more than
one translation system.

3 Experiments

3.1 Model Setup

We use the Sockeye (Hieber et al., 2017) machine
translation framework for our experiments. The
main reason behind this choice is that Sockeye
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CZ-EN DE-EN DE-FR EN-FI EN-LT TOTAL
NEWS 2534352 5985498 4372033 2656508 1803323 17351714
OFF 11462432 1797854 1687074 1725792 615219 17288371
SUBS 37251088 - - - - 37251088
OTHER 10932478 34457911 7585341 4012589 1290931 58279250
TOTAL 62180350 42241263 13644448 8394889 3709473 130170423

Table 1: Dataset sizes after filtering. Shown number of parallel sentences.

implements word factors together with the Trans-
former.

We use traditional transformer NMT architec-
ture with 6 layers for both encoder and decoder,
with the transformer model size 1024, transformer
attention heads 16, batch size 6000, with a shared
byte-pair encoded (BPE) (Sennrich et al., 2015)
vocabulary of size 90000. SentencePiece1 are
used to extract BPE vocabulary. The embedding
size for source factors is 8. There are 6 different
language factors and 4 different domain factors.
All other parameters were kept as default.

Models are trained on 4 Tesla V100 GPUs.

3.2 Data
All of the available WMT constrained data for all
languages was downloaded and then fed through
a data pipeline. The data pipeline consisted of 6
steps:

1. Filtering Data filtering included several
steps: it filtered out empty/too long sen-
tences, sentences with too many non-
alphanumeric characters, sentences where
the length difference was too big, and also
sentences automatically identified as a differ-
ent language than the expected one.

2. Tokenization The data was tokenized with
MosesTokenizer.

3. Truecasing A Truecasing model was trained
for every language separately, then applied
on all the data.

4. SentencePiece A SentencePiece model was
trained on one big text file which included all
data, low-resource language pairs like EN-LT
were upscaled and high-resource language
pairs like CZ-EN were downscaled. In to-
tal 50M lines of text were used for Senten-
cePiece model with vocabulary size 90K.

1https://github.com/google/
sentencepiece

5. Factoring Then the source factors for target
domain and target language were generated
for all data.

6. Sharding Sockeye uses shards to handle
massive datasets, which means that a big
dataset is divided into more manageable
dataset sizes. Each shard is of equal size. A
shard size of 1M was used.

Due to time constraints we deviated from the
original plan of including all WMT’2019 language
pairs and only included languages that use the
Latin script in our submissions. The final data set
sizes are shown in Table 1.

In order to generate the domain factors we
grouped some of the domains by the apparent sim-
ilarity of texts, additionally grouping smaller cor-
pora together:

• News - Rapid2019, Rapid2016, EESC, dev
dataset from previous years, EMEA2016,
ECB2017, news (from CzEng), News-
commentary

• Subs - Subtitles from the CzEng corpus

• Off - Parts of the CzEng corpus, Europarl

• Other - Everything else

Additionally, monolingual data was extracted
for back-translation and fine-tuning, mainly News
Crawl corpora was used. For every language
pair 3M sentences were extracted, with the excep-
tion of Lithuanian, where the news crawl size is
smaller, and thus other monolingual data like Wiki
dumps and Europarl were used.

4 Results and Analysis

Results are presented in Table 2. We separate
the results of our baseline system, trained on par-
allel data only, and the fine-tuned system that
was trained further on monolingual data, back-
translated by the baseline system.
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Baseline Fine-tune
EN-CS 22.8 -
DE-EN 29.9 -
EN-DE 39.6 -
DE-FR 32.4 30.7
EN-FI 18.6 -
EN-LT 12.7 -
FI-EN 22.1 24.8
FR-DE 25.9 -
LT-EN 24.5 25.3

Table 2: Results of our multilingual baseline model,
trained on parallel data and the fine-tuned model that
was further trained on back-translated monolingual
data.

Our baseline performed reasonably well, how-
ever the goal was to achieve state-of-the-art results
after doing fine-tuning on back-translated news
data. As a result of this second step unexpectedly
the model started confusing the output language
and generating the output in a different language
than requested: for example generating Czech or
English instead of Finnish. Automatic language
identification with FastText2 shows the baseline
model only produced output in the wrong lan-
guage in 1.22% of cases, whereas after just a day
of fine-tuning on in-domain data, the percentage
of translations our model got wrong jumped up to
60.24%. Mostly our ensemble model got English
right and other languages wrong. Our ensemble
model was done by using 2 snapshots of baseline
model and 2 snapshots of fine-tuned model.

For human evaluations published in (Bojar
et al., 2019) our model (called TartuNLP-c) per-
formed similarly to other multilingual systems
noted as Online-X in the findings paper. Online
systems are freely available online systems like
Google Translate, Bing Translate etc. Our models
performed worse than single language pair NMT
systems.

We suspect that the reason for the wrong lan-
guage output lies in two factors:

• wrong language segments in monolingual
crawled data. This mainly occurs in non-
English languages like Czech, Finnish and
Lithuanian and affects the output side of
back-translated data. Before the submission
deadline we did not have language-filtering

2https://github.com/facebookresearch/
fastText

#Sents
#Baseline
Wrong

#Ensemble
Wrong

DE-EN 33650 214 18596
DE-FR 1698 3 117
EN-CS 9917 256 10137
EN-DE 8853 85 6396
F EN-FI 2606 221 2799
EN-LT 1056 11 1066
FI-EN 4105 8 76
FR-DE 2705 6 843
Total 65684 809 40054
% 1.22 60.24

Table 3: Number of sentences which are classified as
having a wrong language after translation using the
FastText language classifier.

in the data preparation pipeline, which might
have caused this effect.

• wrong language output by our model. This
affects the input side of the back-translated
data. While this does not occur often, fil-
tering out the wrong-language translations
should still help learn a more precise trans-
lation model.

We are investigating alternative explanations to
this behavior further.

5 Conclusions and Future Work

We have described a multilingual multi-domain
neural machine translation approach that can be
trained on a mixture of different language pairs
and text domains.

Our results are modest, mainly due to failing to
properly fine-tune the systems on back-translated
news texts. Precise reasons for failing the fine-
tuning are under investigation.

Other future work includes including more
languages and domains, testing online continu-
ous back-translation and experimenting with other
ways of providing the output language and domain
information to the NMT model.
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Abstract

This paper presents the systems submitted by
the University of Groningen to the English–
Kazakh language pair (both translation direc-
tions) for the WMT 2019 news translation
task. We explore potential benefits from us-
ing (i) morphological segmentation (both un-
supervised and rule-based), given the agglu-
tinative nature of Kazakh, (ii) data from two
additional languages (Turkish and Russian),
given the scarcity of English–Kazakh data, and
(iii) synthetic data, both for the source and
for the target language. Our best submissions
ranked second for Kazakh→English and third
for English→Kazakh in terms of the BLEU
automatic evaluation metric.

1 Introduction

This paper presents the neural machine transla-
tion (NMT) systems submitted by the University
of Groningen to the WMT 2019 news translation
task.1 We participated in the English↔Kazakh
(henceforth referred to as EN↔KK) constrained
tasks.

Because of the inherent characteristics of this
language pair and the current state-of-the-art of re-
lated techniques, we focused on two main research
questions (RQs):

• RQ1. Does morphological segmentation
help? Recent research in NMT for agglu-
tinative languages found that morphological
segmentation outperforms the most widely
used segmentation technique, byte-pair en-
coding (BPE, using character sequence fre-
quencies) (Sennrich et al., 2016). Rule-based
segmentation improved English-to-Finnish
translation (Sánchez-Cartagena and Toral,

1http://www.statmt.org/wmt19/
translation-task.html

2016) and unsupervised segmentation im-
proved Turkish-to-English translation (Ata-
man et al., 2017). Because Kazakh belongs
to the same language family as Turkish, the
work by Ataman et al. (2017) is particularly
relevant. Their training data had fewer than
300,000 sentence pairs and they trained an
NMT system under the recurrent sequence-
to-sequence with attention paradigm (Bah-
danau et al., 2015). Our training data
is considerably bigger and we use a non-
recurrent attention-based system (Vaswani
et al., 2017). Does the advantage of morpho-
logical segmentation over BPE also hold in
our experimental setup?

• RQ2. Does the use of additional languages
improve outcomes? Due to the scarcity of
parallel data for EN–KK, we investigate if
using data from two additional languages is
useful, Russian (RU) and Turkish (TR). Even
though RU is not related to either EN or KK,
it seems a sensible choice due to the availabil-
ity of large amounts of EN–RU and RU–KK
parallel data. TR is related to KK and there
are limited amounts of EN–TR data avail-
able. Does this additional data improve the
performance, and is more data from an unre-
lated language (RU) better than less data from
a related language (TR)?

The rest of the paper is organized as follows.
Section 2 describes the datasets and tools used.
Then Section 3 details our experiments. Finally,
Section 4 outlines our conclusions and plans for
future work.

2 Datasets and Tools

We preprocessed all the corpora used (training,
validation and test sets) with scripts from the
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Moses toolkit (Koehn et al., 2007). The following
operations were performed sequentially: punctu-
ation normalisation, tokenisation,2 truecasing and
escaping of problematic characters. The truecaser
was lexicon-based and it was trained on all the
monolingual data available for each language. In
addition, we removed sentence pairs where either
side was empty or longer than 80 tokens from the
parallel corpora . Tables 1 to 4 show the parallel
datasets used for training for each translation di-
rection after preprocessing. The corpora Kazakhtv
(EN–KK) and crawl (KK–RU) were provided with
sentence-level scores; we sorted their files accord-
ing to these scores and a native KK speaker pro-
ficient in both EN and RU identified a threshold
where alignments were roughly 90% correct. This
led to discarding the bottom 27% of the data for
EN–KK’s Kazakhtv and the bottom 3% for KK–
RU’s crawl.

Words (M)
Corpus Sentences (k) EN KK
Kazakhtv 67.7 1.00 0.82
News-comm. 7.5 0.19 0.16
Wikititles 117.0 0.23 0.19

Table 1: Preprocessed EN–KK parallel training data.

Words (M)
Corpus Sentences (k) EN RU
Common crawl 871.8 20.82 19.97
News-comm. 278.2 7.17 6.86
Paracrawl 11,881.0 189.90 166.50
Yandex 997.3 24.06 22.00

Table 2: Preprocessed EN–RU parallel training data.

Words (M)
Corpus Sentences (k) KK RU
Crawl 4,861.5 99.34 105.16

Table 3: Preprocessed KK–RU parallel training data.

All our NMT systems are trained with Mar-
ian (Junczys-Dowmunt et al., 2018).3 We used the
transformermodel type (Vaswani et al., 2017)

2Moses does not contain a tokeniser for KK. KK texts
were tokenised with the RU model, as both languages are
written in the cyrillic alphabet. The resulting tokenisation
was inspected and validated by a KK native speaker.

3https://marian-nmt.github.io/

Words (M)
Corpus Sentences (k) EN TR
newstest2016-18 9.0 0.20 0.17
SETimes 207.4 5.12 4.61

Table 4: Preprocessed EN–TR parallel training data.

in all experiments, except for a few experiments
where the training data was very limited, where we
used the s2s model type (Bahdanau et al., 2015).

During development, we evaluated our systems
on the development sets provided. We used two
automatic evaluation metrics: BLEU (Papineni
et al., 2002) and CHRF (Popović, 2015). CHRF is
our primary evaluation metric for EN→KK, due to
the fact that this metric has been shown to correlate
better than BLEU with human evaluation when the
target language is agglutinative (Stanojević et al.,
2015). BLEU is our primary evaluation metric for
KK→EN systems, as the correlations with human
evaluation of BLEU and CHRF are roughly on par
for EN as the target language. Prior to evalua-
tion the MT output is detruecased and detokenized
with Moses’ scripts.

3 Experiments

3.1 Cyrilization and Turkish

Since KK is a low-resourced language, multilin-
gual NMT (Johnson et al., 2017) was used. Fol-
lowing Neubig and Hu (2018), we have chosen TR
as a helper source language, because it is related
to KK (both belong to the same language fam-
ily) and TR is higher-resourced than KK. How-
ever, TR uses a Latin-script alphabet, while KK
uses a Cyrillic-script alphabet, which means their
vocabularies do not match as they are. For this
reason, we decided to transliterate TR into Cyril-
lic (cyrillization). However, some characters in
KK’s alphabet are not present in existing translit-
erators. Therefore, we created a cyrillizer that
matches KK’s alphabet exactly.

We trained a {KK, TR}→EN system in two
steps. First, we use as training data the concate-
nation of the EN–KK and EN–TR corpora (Ta-
bles 1 and 4) and when the model converged, we
resume training using only the EN–KK dataset.
We compared models that used the original TR
versus cyrillized. These models were trained with
the s2s architecture using 32,000 joining opera-
tions in BPE and dropout of 0.05.
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Training data BLEU
EN–KK 6.61
+ EN–TR 11.15
+ cyrillizer 10.34

Table 5: BLEU scores on the development set for
KK→EN using additional EN–TR data.

As it is shown in Table 5, the addition of EN–
TR data proves very beneficial (absolute improve-
ment of 4.5 BLEU points), which is not surprising
since the amount of training data more than dou-
bles (cf. Tables 1 and 4). However, cyrillising TR
decreases the BLEU score by 0.8 points.

3.2 Backtranslation and Russian
Given the small amount of EN–KK parallel data
(see Table 1) and the large amount of EN–RU and
KK–RU datasets, we introduced RU as a pivot
language, using backtranslation (Sennrich et al.,
2015) to derive bigger datasets where the source
side is synthetic. For KK→EN, we trained a
RU→KK auxiliary system on the available KK–
RU data (Table 3), and used this to translate the RU
portion of the EN–RU (Table 2) data into KK, cre-
ating a synthetic EN–KK’ dataset. This was then
used, along the original EN–KK data (Table 1) to
train the KK→EN model.

For EN→KK, we trained a RU→EN auxiliary
model on the available EN–RU data, and used
this model to translate the RU portion of the KK–
RU data into EN, creating a synthetic EN’–KK
dataset. This synthetic dataset, alongside the orig-
inal EN–KK data, was then used to train the
EN→KK model.

Table 6 shows the results for EN→KK and
KK→EN without and with the backtranslated
data. The addition of backtranslated data results
in massive improvements: +17.9 CHRF points for
EN→KK and +14.2 BLEU points for KK→EN.
This is expected given the very small size of EN–
KK data and the much larger EN–RU and KK–
RU datasets. The improvements are considerably
larger than those obtained with additional EN–TR
data (see Table 5).

Backtranslation EN→KK KK→EN
No 27.75 6.61
Yes 45.67 20.17

Table 6: Performance of MT systems with and without
backtranslation for EN→KK (CHRF) and KK→EN
(BLEU).

3.3 Corpus Filtering and Target Synthetic
Data

Since most of our training data is crawled, we
applied corpus filtering to remove noisy sentence
pairs. Following Artetxe and Schwenk (2018a),
we removed sentences shorter than 3 words and
longer than 80 words, and sentence pairs where ei-
ther sentence is classified as another language us-
ing the FastText language identifier (Joulin et al.,
2016a,b).4 We also removed sentence pairs with a
token overlap of 50% or higher.

We identify and remove misaligned sentence
pairs (where the meanings of the source and tar-
get sentences do not match), using the LASER sys-
tem, a 93-language BiLSTM encoder (Artetxe and
Schwenk, 2018b).5 This encodes the sentences in
each side, and uses the cosine similarity between
the embeddings of the two sentences as a filter-
ing threshold (where sentences below the thresh-
old are removed).

This filtering is applied after backtranslation
(see Section 3.2). For KK→EN, we filter the EN–
KK’ data, i.e. the EN–RU corpora whose RU
side had been translated into KK. The thresholds
(determined manually, as previously mentioned in
Section 2) and number of sentence pairs kept are
shown in Table 7.

Corpus Threshold Pairs left (k)
CommonCrawl 0.7323 568.50
News Comm. 0.7314 254.79
ParaCrawl 0.8031 4056.28
Yandex 0.7220 887.76

Table 7: Cosine similarity thresholds used to filter out
EN–RU corpora and resulting corpus sizes after all fil-
tering steps are applied.

We quantify the impact on translation perfor-
mance of each filtering step, cumulatively, in Table
8. Each filtering step improves the BLEU score,
corroborating previous research, e.g. (Koehn et al.,
2018), that has shown that noisy sentence pairs in-
deed cause a drop in translation performance.

4https://fasttext.cc/docs/en/language-identification.html
5https://github.com/facebookresearch/LASER
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Filtering BLEU # sent. pairs
none 20.17 15.1
language identification 20.76 9.8
+cosine 21.60 6.9
+3-80 & overlap 22.26 5.4

Table 8: BLEU scores for KK→EN systems adding
one filtering mechanism at a time. The table also shows
the number of sentence pairs (millions) that make up
the training data for each system.

In the opposite direction, EN→KK, we filter the
EN’–KK data, i.e. the RU–KK corpora whose RU
side has been translated into EN. The threshold
and number of sentence pairs kept are shown in
Table 9.

Corpus Threshold Pairs left (k)
Crawl 0.1463 4494.10

Table 9: Sentence pairs left in the EN’–KK dataset after
filtering.

By manual inspection, we noticed that the
biggest dataset used for EN→KK (the KK–RU
crawl corpus, see Table 3) is domain-specific and
rather unrelated to the domain of the test set
(news). Due to this, we decided to experiment
with target synthetic data by translating the EN–
RU corpora, which are not domain-specific, into
KK and adding a subset of the resulting EN–KK’
data to our EN→KK system. We experimented
with two similarity thresholds: a more conserva-
tive one (0.8) and a less conservative one (0.75).
The thresholds and number of sentence pairs kept
are shown in Table 10.

Pairs left (k)
Corpus sim ≥ 0.75 sim ≥ 0.80

CommonCrawl 80.49 30.47
News Comm. 15.41 3.71
ParaCrawl 739.16 320.98
Yandex 83.16 31.65

Table 10: Sentence pairs left in the EN–KK’ dataset
after filtering using the similarity thresholds 0.75 and
0.8.

Table 11 shows the impact of adding target syn-
thetic data on translation performance. Adding a
small amount using a conservative threshold (0.8)
results in an absolute improvement of 1.15 CHRF
points. Adding more data using a less conservative
threshold (0.75) results in a bigger improvement of

1.6 points. An even lower threshold was not tested
due to time constraints.

Target synthetic data CHRF
None 45.67
similarity>0.80 46.82
similarity>0.75 47.27

Table 11: Impact of adding target synthetic data on
translation performance (CHRF) for the translation di-
rection EN→KK

3.4 Segmentation
Data is segmented with BPE (Sennrich et al.,
2016) on all the languages involved in our experi-
ments (EN, KK, RU and TR). In addition, we per-
form two types of morphological segmentation on
KK: unsupervised and rule-based.

Unsupervised morphological segmentation is
performed with LMVR (Ataman et al., 2017),6 a
variant of Morfessor (Virpioja et al., 2013) that al-
lows a fixed vocabulary size to be defined. LMVR
was trained on the KK side of the RU–KK paral-
lel data as well as on the monolingual KK data.
We experimented using vocabulary sizes of 8, 16,
24, and 32 thousand. The trained LMVR models
are used to segment the KK portion of the RU–
KK data and the synthetic KK derived from the
EN-RU data created with a RU-KK system (see
Section 3.2).

For rule-based segmentation,
Apertium-kaz (Washington et al., 2014)
was used.7 A transducer that provides multiple
segmentation variants was set up four our pur-
pose,8 from these variants we decided to pick the
one that segments into the smallest units, because
this one, as observed by manual inspection, tends
to be correct more often. Some segmentations do
not correspond to the original word when joined,
which we attribute to the fact that Apertium is not
doing pure segmentation but also analysis. We
do not pick these variants. We also observed that
some words were out-of-vocabulary (OOV), i.e.
not found in Apertium’s transducer, so those were
left unsegmented.

As can be seen in Table 12, Apertium segmenter
leads to lower automatic metric scores, while BPE
and LVMR are on par. This could be attributed

6https://github.com/d-ataman/lmvr
7http://wiki.apertium.org/wiki/Apertium-kaz
8This is a version of the regular transducer that does not

delete the morpheme boundary in the morphophonological
rules, and is therefore more suitable for segmentation.
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to the morphological ambiguity issues described
above and to the fact that some words were not
segmented (OOV).

Segmentation EN→KK KK→EN
BPE 45.67 22.26
LVMR 45.47 22.36
Apertium 42.21 -

Table 12: Performance of MT systems using differ-
ent segmentations (BPE, LVMR and Apertium) for
EN→KK (CHRF) and KK→EN (BLEU). Apertium
was not used for the KK→EN due to time constraints.

Besides these quantitative results, we also per-
formed qualitative analyses of the segmentations.
Table 13 shows examples of words that result
in ambiguous segmentations with Apertium. Ta-
ble 14 shows a KK sentence segmented with BPE
and LVMR. Morphological segmentation results
in a better segmentation, which has a direct impact
on the quality of the resulting EN translation.

3.5 Final Submissions

We took the best performing systems from previ-
ous experiments and carried out fine-tuning by re-
suming training after convergence using solely the
EN–KK data (i.e. without any data whose source
or target is synthetic). Finally, we ran ensembles
of the best performing systems (with and without
fine-tuning) and chose those that perform best on
the development set. Those constitute our submis-
sions to the shared task.

For KK→EN, we consider systems segmented
with BPE and with LVMR since their BLEU
scores are roughly on par: 22.26 and 22.36, re-
spectively. The fine-tuned KK→EN system with
BPE segmentation reaches 23.11. We built an en-
semble on four BPE-based models, the two top
performing ones without fine tuning (21.9 and
22.26) and the two top performing ones with fine
tuning (22.99 and 23.11). The ensemble attains
23.37. We then tried different length-penalty val-
ues for the decoder (parameter normalize in
Marian), using 0.9 (instead of the default 0.6) we
reach 23.47.

The fine-tuned KK→EN with LVMR reaches a
BLEU score of 23.26, thus slightly outperforming
the fine-tuned system with BPE (23.11). We also
performed fine-tuning including the synthetic data
but including the non-synthetic data four times
(i.e. synthetic to non-synthetic ratio of 1:4). This

system reaches 22.65. We built an ensemble of the
two fine-tuned models. This ensemble achieves a
BLEU score of 23.71, which using a length nor-
malisation penalty of 0.9 increases to 23.84.

For EN→KK we submitted systems based on
BPE segmentation only. Our best of these systems
achieves 47.27 CHRF while the best LVMR-based
system yields 45.27.9 We build an ensemble made
of five models: the two top performing ones us-
ing target synthetic data with threshold 0.8 (CHRF
scores 46.48 and 46.79), the two top perform-
ing ones using target synthetic data with thresh-
old 0.75 (CHRF scores 47.07 and 47.27), and the
top performing fine-tuned model with threshold
0.75 (CHRF score 47.57). The ensemble attains
a CHRF score of 48.43.

4 Conclusions

This paper has reported on the systems sub-
mitted by the University of Groningen to the
English↔Kazakh translation directions of the
news shared task at WMT 2019.

Our results show quantitative evidence that, for
an agglutinative language such as Kazakh, mor-
phological segmentation is on par with segmen-
tation based on the frequency of character se-
quences (in terms of automatic evaluation met-
rics) and qualitative evidence that it can result in
better translations due to segmenting at the right
morpheme boundaries. In addition, we show that
the addition of data from an additional language,
be it related or not, improves the performance no-
tably, corroborating previous results. Finally, the
use of synthetic data (both for the source and tar-
get languages), filtered with a state-of-the-art sys-
tem based on language-independent similarity, im-
proved the performance of our systems further.

As for future work, we plan to work along three
lines. First, related to morphological segmenta-
tion, we note that Kazakh uses vowel harmony,
which should be useful to model as part of the seg-
mentation. Second, we would like to explore the
contribution of synthetic target data in further de-
tail. Third, given the unexpected negative results
of cyrillization, we plan to analyse cyrillization’s
effects in detail.

9The BPE-based system uses target synthetic data while
the LVMR-based system does not. The BPE-based system
without target synthetic data reaches 45.67 CHRF, thus on
par with the LVMR-based system (45.27 CHRF). We did not
build a LVMR-based system with target synthetic data due to
time constraints.
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Original word Segmentations
îñûäàí îñûäàí | îñûíàí
òiðêåëìåãåí òiðêåëìåãåí | òiðêåë→ãåí åìåñ
©´æàòòàðäû ê´æàò→òàð→äû | ©´æàòòà→ð→äû
°íåðií °íåð→ií | °í→åð→ií

Table 13: Examples of morphological ambiguity challenges faced using Apertium’s segmenter. The segmentation
variants shown include those that when joined do not match the original word (underlined).

Segmentation Sentence and System output

None
�àóiïòi àëäûí àëó¡à æºðäåìäåñåòií ì´íäàé ©´ðûë¡ûëàðäû ê°ïòåï äàéûíäàó¡à
îáëûñ ºêiìäiãi ìåí �îð©ûò àòà àòûíäà¡û �ûçûëîðäà Ìåìëåêåòòiê óíèâåðñèòåòiíi
áàñøûëû¡û ´ñûíûñ áiëäiðiïòi.

BPE

�àóiï→òi àëäûí àëó¡à æºðäåìäå→ñåòií ì´íäàé ©´ðûë¡ûëàðäû ê°ïòå→ï
äàéûíäàó¡à îáëûñ ºêiìäiãi ìåí �îð©û→ò àòà àòûíäà¡û �ûçûëîðäà Ìåìëåêåòòiê
óíè→âåðñè→òå→òiíi áàñøûë→û¡û ´ñûíûñ áiëäið→iï→òi.

In addition, the regional administration and the Kyzylorda State Universum named after the
Fund named after the President of the Republic of Kazakhstan are ready to provide assistance in
the prevention of the threat.

LVMR

�àóiï→òi àëäû→í àë→ó¡à æºðäåìäå→ñåòií ì´í→äàé ©´ð→ûë¡û→ëàðäû
ê°ï→òåï äàéûí äà→ó¡à îáëûñ ºêiì→äiãi ìåí �îð©ûò àòà àò→ûíäà¡û �ûçûë→îðäà
Ìåìëåêå→òòiê óíè→âåðñèòåò→iíi áàñøûëû¡û ´ñûíûñ áiëäið→iïòi.
According to the Governor’s Office of the region and the leadership of the Kyzylorda State
University named after the Foundation of the First President of Kazakhstan, such devices are
ready to help in the prevention of the threat.

English reference
Regional Akimat and Management of Kyzylorda State University named after Korkyt ata
proposed to fabricate such safety devices assisting in prevention of danger in large quantities.

Table 14: Segmentation examples of BPE and unsupervised morphological segmentation (LVMR) systems for
KK→EN. Arrows represent boundaries between the morphs in which a word is split. Note that the word
"óíèâåðñèòåòiíi" is segmented differently in both systems. The MT system with LVMR segmentation trans-
lates it correctly as "University", while the MT system with BPE segmentation produces "Universum" because of
incorrect segmentation. This word, its segmentations and its translations are underlined.
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Abstract

We describe LMU Munich’s machine trans-
lation system for German→Czech translation
which was used to participate in the WMT19
shared task on unsupervised news translation.
We train our model using monolingual data
only from both languages. The final model
is an unsupervised neural model using estab-
lished techniques for unsupervised translation
such as denoising autoencoding and online
back-translation. We bootstrap the model with
masked language model pretraining and en-
hance it with back-translations from an un-
supervised phrase-based system which is it-
self bootstrapped using unsupervised bilingual
word embeddings.

1 Introduction

In this paper we describe the system we developed
at the LMU Munich Center for Information and
Language Processing, which we used to partici-
pate in the unsupervised track of the news transla-
tion task at WMT19. The system builds on our last
year’s submission to the unsupervised shared task
(Stojanovski et al., 2018) and previous work on
unsupervised machine translation (Lample et al.,
2018a; Artetxe et al., 2018c; Lample et al., 2018b;
Lample and Conneau, 2019). We submitted sys-
tem runs for the German→Czech translation di-
rection. The goal of the unsupervised track is to
train machine translation models without access to
any bilingual or comparable monolingual data.

Supervised neural machine translation (NMT)
has achieved state-of-the-art results (Bahdanau
et al., 2015). With the introduction of the Trans-
former (Vaswani et al., 2017) the quality of auto-
matic translations has been significantly improved.
However, a prerequisite for high performance has
been access to large scale bilingual data. Nat-
urally, this is not available for many language
pairs and specific domains. Moreover, Koehn and

Knowles (2017) also show that in low-resource se-
tups neural models fail to match traditional phrase-
based systems in terms of quality. This is the mo-
tivation for the unsupervised track at WMT19.

The system we use to participate in the shared
task is multipart and borrows on existing tech-
niques for unsupervised learning. We make use of
bilingual word embeddings (BWE), phrase-based
translation (PBT), cross-lingual masked language
models (MLM) and NMT models, all trained in
an unsupervised way. Lample et al. (2018a) and
Artetxe et al. (2018c) showed that, given proper
bootstrapping, it is possible to train unsupervised
NMT models by making use of two general tech-
niques, denoising autoencoding and online back-
translation. Lample et al. (2018b) and Artetxe
et al. (2018b) further showed that this is also pos-
sible for phrase-based statistical machine transla-
tion. A key technique that enables this is obtaining
word-by-word translations by utilizing unsuper-
vised bilingual word embeddings. Lample et al.
(2018b) further simplified the bootstrapping step
by showing that jointly trained BPE-level (Sen-
nrich et al., 2016) embeddings are a better al-
ternative, assuming closely related languages that
potentially share surface forms. Lample et al.
(2018b) also showed that a single shared encoder
and decoder are sufficient for learning both trans-
lation directions. A general trend in NLP recently
has been unsupervised masked language model
pretraining. Devlin et al. (2018) showed that a
wide range of NLP tasks are significantly im-
proved by fine-tuning large MLM. They propose a
way to train a Transformer language model which
has access to left and right context as opposed to
traditional LM which only have left context ac-
cess. Lample and Conneau (2019) extended the
approach to a multilingual setting and showed that
this vastly outperforms the previous approaches
for bootstrapping NMT models.
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The model we used to participate in the shared
task makes use of several of the aforementioned
techniques. We train unsupervised BWEs and use
them to bootstrap an unsupervised PBT model.
We use large scale German and Czech mono-
lingual NewsCrawl data to train a cross-lingual
masked language model in order to bootstrap our
unsupervised NMT model which itself is trained
using denoising autoencoding and online back-
translation. We combine all of these techniques
and obtain competitive results in the shared task.

2 Bilingual Word Embeddings

Recently, many works showed that good quality
bilingual word embeddings can be produced by
using only monolingual resources (Conneau et al.,
2017; Artetxe et al., 2018a; Dou et al., 2018).
Most of these techniques follow a two-step ap-
proach involving (i) training monolingual vector
spaces for both languages using large amount of
monolingual data and (ii) projecting them to a
shared bilingual space. We use the approach of
(Conneau et al., 2017) which employs adversarial
training to build bilingual word embeddings for
the initialization of the phrase table used by our
PBT system.

A general approach to measure word similar-
ity in embedding spaces is to calculate their co-
sine similarity. A disadvantage of this approach is
caused by the so called hubness problem of high
dimensional spaces (Dinu et al., 2015), i.e., some
words are similar to a high proportion of other
words although their meaning is not necessarily
close. To overcome the problem, the cosine simi-
larity based Cross-Domain Similarity Local Scal-
ing (CSLS) metric was proposed (Conneau et al.,
2017). In short, this metric adjusts the similarity
values of a word based on the density of the area
where it lies, i.e., it increases similarity values for
a word lying in a sparse area and decreases val-
ues for a word in a dense area. We use CSLS to
create a dictionary of the 100 nearest target words
for each source language word with their similari-
ties which we convert to a phrase table. For more
details on phrase-table creation see Section 3.

One problem with the approach arises when
translating German compound words which are
combinations of two or more words that func-
tion as a single unit of meaning. In most of the
cases, these words should be translated into mul-
tiple Czech words, but our generated dictionary

contains only 1-to-1 translations. In our previous
work (Stojanovski et al., 2018), we experimented
with bigrams in addition to unigrams in order to
overcome this issue. We looked for frequent bi-
grams in the non-German side of the monolingual
input data and trained separate embeddings for bi-
grams. Similarly, in the system of Artetxe et al.
(2018c) embeddings for word n-grams are learned.
The disadvantage of this approach is the lack of
ability to represent previously unseen n-grams. It
also significantly increases the size of the vocabu-
lary. Since new compounds are constantly created
in the German language, this could cause prob-
lems when using the system in the long run. To
tackle the problem we applied the inverse of the
approach and used compound splitting on all the
German data. In this way we kept the vocabu-
lary size relatively low and our system can handle
novel compound words. A negative aspect of our
approach is that non-compositional nouns could
be incorrectly translated.

3 Unsupervised Phrase-based
Translation

We build on the BWEs to create an unsupervised
phrase-based translation system using the Moses
decoder (Koehn et al., 2007).

In an initial step (iteration 0), a bilingual word-
based translation lexicon is obtained from the em-
beddings space and stored in a format compatible
with Moses’ phrase table. The BWE cosine sim-
ilarities serve as translation feature scores. We
include multiple single-word target-side transla-
tion candidates per source-side token, given as
the nearest neighbors in the bilingual embeddings
space. An n-gram language model trained on
target-side monolingual data is provided to Moses
as another feature function. Moses then decodes
with a variant of a beam search algorithm. We tune
scaling factors to combine the feature functions.1

In a next step (iteration 1), synthetic parallel
data is produced in order to acquire multi-word
phrase table entries and improve over the initial
simple word-based Moses translation system. To
this end, we prepare an iteration 0 Moses setup for
the inverse translation direction (cs→de) as well
and use it to translate a larger-sized Czech mono-
lingual corpus (NewsCrawl 2018) into German.
The Czech side of the resulting synthetic bitext is

1Note that a small parallel corpus (newstest2009) is uti-
lized to tune the scaling factors.
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original human-created data, whereas the German
side is noisy machine translation output from our
iteration 0 Czech→German unsupervised PBT en-
gine. When machine-translating the monolingual
corpus, we let the Moses decoder also write out
the word alignment information. From this syn-
thetic German-Czech bitext, a phrase table for the
German→Czech translation direction can be ex-
tracted and a new German→Czech Moses PBT
system can be built in the usual manner. We opted
to switch off reordering in the iteration 0 setup, but
now allow for reordering in iteration 1. We also
add word penalty, phrase penalty, and distance-
based distortion cost feature functions and tune the
scaling factors again.

The process of producing synthetic parallel
data can be repeated, which we do for one
more step (iteration 2). The idea here is to
also improve the inverse translation system by
means of building an iteration 1 system for
the Czech→German direction as well through
machine-translating German monolingual train-
ing data (the German NewsCrawl 2018 corpus)
to Czech using the initial German→Czech un-
supervised PBT engine. The improved inverse-
direction system is then applied to back-translate
the Czech monolingual training corpus once again
and achieve better quality of the synthetic bitext.
The iteration 2 German→Czech is trained with
a phrase table extracted from that higher-quality
synthetic bitext. The systems in the two trans-
lation directions can benefit from each other in
the course of the reciprocal re-training procedure.
Translation quality in both directions is gradually
improved.

4 Unsupervised Neural Translation

4.1 Masked Language Model Pretraining

We use the MLM approach proposed in Lample
and Conneau (2019) to pretrain our NMT model.
The MLM is trained by masking a percentage of
the tokens which then the model is tasked to pre-
dict. Lample and Conneau (2019) extend MLM
in a multilingual context by adding language-
specific embeddings and using monolingual data
from multiple languages. We train a MLM with
German and Czech monolingual data. We ran-
domly sample 15% of the input tokens and mask
80% of those with [MASK], swap 10% with a ran-
dom token and in 10% of cases we keep the orig-
inal token. We train a 6-layer Transformer with

8 attention heads, and an embedding and layer
size of 1024. The size of the position-wise feed-
forward neural network is 4096. We use dropout
of 0.1, GELU activations (Hendrycks and Gimpel,
2017) and learned positional embeddings. The
model is trained with batches of 32 streams of con-
tinuous sentences composed of 256 tokens. For
further details, we refer to Lample and Conneau
(2019). The model was trained for 7 days and
subsequently used to initialize the encoder and de-
coder of the NMT model.

4.2 Denosing Autoencoding and Online
Back-translation

As with previous work (Artetxe et al., 2018c;
Lample et al., 2018a,b; Lample and Conneau,
2019) we train an unsupervised NMT model
with denoising autoencoding and online back-
translation. It is important to properly bootstrap
this model in order to enable the model to get off
the ground. In previous work this was made possi-
ble by using word-by-word translations or jointly
trained BPE-level word embeddings. We boot-
strap the model with the pretrained cross-lingual
MLM as in Lample and Conneau (2019).

Although we initialize the model with a pre-
trained cross-lingual MLM, it is still necessary
to use denoising autoencoding. Since the LM is
trained with the masked LM objective, it is rea-
sonable to assume that it has not learned language-
specific reorderings which are key for machine
translation. The denoising autoencoding is trained
by feeding in a noisy version of a sentence and
trying to reconstruct the original version. The
noisy sentences are created by dropping words
with probability of 0.1, shuffling words within a
range of 3 and masking them with a probability of
0.1. In this way, the model is trained to produce
fluent output. Furthermore, denoising autoencod-
ing enables the model to learn important reorder-
ings, insertions and deletions.

The translation component of the network is
trained by first using the model in inference
mode to produce back-translations. The back-
translations are coupled with the original sen-
tences to create pseudo-parallel data and train the
model in a traditional fashion.

We train a single joint model using both tech-
niques on both language directions. The goal is
to end up with a model capable of translating from
German into Czech. However, since the model de-
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pends on having quality German→Czech transla-
tions, it is important to be able to produce German
back-translations from Czech. As a result, we train
the model in both language directions.

The model has a single shared encoder and de-
coder, each equipped with 6 layers and 8 attention
heads per layer. The batch size is 1600 tokens. We
apply dropout of 0.1. We share the source, target
and output embeddings and also share them across
the two languages.

4.3 Incorporating PBT Synthetic Data

The training curriculum to enable this model to
work is to first pretrain a cross-lingual MLM.
Subsequently, one can further bootstrap this
model with back-translations from an unsuper-
vised phrase-based system and finally, fine-tune
this model with the unsupervised neural criteria.
However, due to time constraints we first fine-tune
the pretrained MLM with the NMT system. After
several iterations of training, we include additional
back-translations from the phrase-based system.
We only used pseudo-parallel German→Czech
translations. We continue using online back-
translation during this fine-tuning stage, but not
denoising autoencoding. For the primary submis-
sion at WMT19, we used back-translations from
iteration 0 from the phrase-based system. In sub-
sequent experiments, we also trained a model with
data from iteration 1.

5 Experiments and Empirical Evaluation

5.1 Data and Preprocessing

As monolingual data in this work we used Ger-
man and Czech NewsCrawl articles from 2007 to
2018. In the case of both languages the corpora
contained a small set of sentences coming from
foreign languages which we filtered out using a
language detection tool2. The datasets were to-
kenized and truecased with the standard scripts
from the Moses toolkit (Koehn et al., 2007).

For the bilingual word embeddings used by our
PBT system we compound split the German cor-
pus using compound-splitter.perl from
the Moses toolkit with the following parameters:
minimum word size 4; minimum count 5; max-
imum count 1000. To train monolingual word
embeddings we used fasttext (Bojanowski et al.,
2017), instead of word2vec (Mikolov et al., 2013),

2https://github.com/indix/whatthelang

which performs better on morphological rich lan-
guages by employing subword information. We
used 300 dimensional embeddings and default val-
ues for the rest of the parameters. For the unsu-
pervised mapping we used MUSE (Conneau et al.,
2017) with default parameters, but restricting the
vocabulary size for both source and target lan-
guages to the most frequent 200K words due to
memory considerations.

We used BPE segments in the case of our neural
system. The segmentation was computed jointly
on all the NewsCrawl data available for both lan-
guages using 32K merge operations. We train
the cross-lingual MLM with German NewsCrawl
2017-2018, and Czech NewsCrawl 2007-2018
monolingual data. For the unsupervised NMT
model, we use NewsCrawl 2018 for German
and NewsCrawl 2013-2018 for Czech. In this
way, both models are trained with roughly equal
amounts of German and Czech data. Details on
the training data is in Table 1. For the NMT exper-
iments, we use the code from (Lample and Con-
neau, 2019)3.

In the following we perform evaluation for both
our unsupervised phrase-based and neural ma-
chine translation systems. We report BLEU scores
on the detokenized translations of newstest2013
and newstest2019 using sacreBLEU4 (Post, 2018).

model de cs
BWE 270M 67M
MLM 75M 67M
PBT 270M 67M
NMT 37M 41M

Table 1: Training data sizes in number of sentences.

5.2 PBT Experiments

As mentioned earlier we initialize our PBT system
with BWEs trained on compound split data. In Ta-
ble 2 we show baseline word-by-word (wbw) re-
sults, i.e., we greedily translate each source word
independently of the others using the most similar
target word, according to the BWE-based dictio-
nary, without any reordering. We compare BWEs
trained with and without compound split data. The
results of both approaches are low, which is due
to the morphological richness of the target lan-

3https://github.com/facebookresearch/
XLM

4https://github.com/mjpost/sacreBLEU

396



newstest2013
de→cs

wbw 4.2
wbw+comp. split 4.3

unsup. PBT iter. 0 6.0
unsup. PBT iter. 1 7.9
unsup. PBT iter. 2 8.4

Table 2: Baseline results (BLEU) with word-by-
word translations (wbw) and unsupervised phrase-
based translations (PBT) on newstest2013. We com-
pare wbw results with and without compound splitting
on the German language side. For the unsupervised
PBT experiments, German is compound-split.

guage. On one hand, based on manual investiga-
tion5 of the BWE-based dictionary and the sen-
tence translations, we conclude that the various
inflected forms of the correct Czech stems are of-
ten the most similar translations of given German
words. On the other hand, without the context
it is much harder to pick the right form as op-
posed to some other language pairs such as Ger-
man and English. Compound splitting resulted in
performance increase of the system which is due
to the translation of German compounds to multi-
ple Czech words. In addition, it also helped low-
ering the number of Out-Of-Vocabulary (OOV)
words which is partly due to limiting the size of
the vocabulary.

Table 2 also presents the results from our PBT
system. At iteration 0 the model obtains 6.0
BLEU on newstest2013. The score increased to
7.9 BLEU at iteration 1 and to 8.4 at iteration 2.

5.3 NMT Experiments

We show the results from our unsupervised neu-
ral model and the combination with synthetic data
from the phrase-based system. Our primary sub-
mission at WMT19 has achieved competitive re-
sults despite using a single model with no ensem-
bling. The model for the primary submission was
trained for ∼12h due to time constraints. For the
contrastive experiments we present in Table 3 we
further trained this model for ∼62h overall. We
train the models on 8 Nvidia GTX 1080 Ti with
12 GB RAM.

We present results on newstest2013. For model
selection we used newstest2009. The first row in
Table 3 shows our baseline unsupervised neural

5Note that none of the authors speak the target language.

newstest2013
de→cs

unsup. NMT 17.0
unsup. NMT + PBT iter. 0 18.5

+ fine-tune no PBT 18.3
+ fine-tune PBT iter. 1 18.8

unsup. NMT + PBT iter. 1 19.1

Table 3: BLEU scores with the unsupervised NMT sys-
tems on newstest2013.

newstest2019
de→cs

unsup. NMT 16.2
*unsup. NMT + PBT iter. 0 17.0
‡unsup. NMT + PBT iter. 0 17.6

+ fine-tune no PBT 17.4
+ fine-tune PBT iter. 1 17.8

unsup. NMT + PBT iter. 1 17.8

Table 4: BLEU scores with the unsupervised NMT sys-
tems on newstest2019. * - primary submission, trained
for ∼12h. ‡- trained for ∼62h.

system. This model achieves significant improve-
ments over the word-by-word approach and PBT
system. All results except for the unsup. NMT
baseline are obtained by applying compound split-
ting to the German input from newstest2013. We
present the result for the baseline without com-
pound splitting because the initial cross-lingual
MLM and unsupervised NMT system were trained
with German monolingual data which was not
compound split. However, the BWEs and PBT
system were trained with compound split Ger-
man monolingual data and as a result the Ger-
man back-translations we obtain from the PBT
system were compound split. Consequently, all
contrastive models where we fine-tune the original
unsupervised NMT system are trained with com-
pound split German monolingual data. However,
we do not observe any adverse effects on trans-
lation quality. Furthermore, the results from the
fine-tuned models show that very similar results
are obtained with both versions of the test set.

When fine-tuning our model with PBT synthetic
data, we disable denoising autoencoding, but con-
tinue to do online back-translation. Even though
we used PBT synthetic data from iteration 0, we
observe significant improvements. We fine-tune
the model for ∼62h and BLEU score was im-
proved from 17.0 to 18.5. We use this model for
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the primary submission, but a version which was
trained for ∼12h only. We intuitively assumed
that removing this data and continuing training
with online back-translation only would further
improve performance. However, we observe that
BLEU score decreased to 18.3.

We also experimented with adding PBT syn-
thetic data from iteration 1. We tried adding this
data as we did with the back-translations from iter-
ation 0. Furthermore, we also tried fine-tuning the
model trained on iteration 0 data with data from
iteration 1. For this setup, the data from itera-
tion 0 was removed. It is interesting that fine-
tuning the initial unsupervised NMT obtains bet-
ter performance than fine-tuning the model trained
with iteration 0 data. The best score we managed
to obtain was 19.1 by fine-tuning the initial unsu-
pervised NMT with iteration 1 data and translating
a compound split version of newstest2013.

In Table 4 we show the results on newstest2019.
Our primary submission obtained 17.0 BLEU.
Further training and including synthetic data from
iteration 1 increased the score to 17.8 BLEU.

6 Conclusion

In this work, we present LMU Munich’s unsuper-
vised system for German→Czech news transla-
tions. We developed unsupervised BWEs, phrase-
based and neural systems and studied different
ways of combining them. We show that an unsu-
pervised neural model pretrained with large cross-
lingual masked language model is superior to un-
supervised phrase-based model for this language
pair. Despite working on a Germanic-Slavic lan-
guage pair, the unsupervised methods for machine
translation work well and provide for a relatively
good translation quality.
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Abstract

We describe LMU Munich’s machine transla-
tion system for English→German translation
which was used to participate in the WMT19
shared task on supervised news translation.
We specifically participated in the document-
level MT track. The system used as a primary
submission is a context-aware Transformer ca-
pable of both rich modeling of limited contex-
tual information and integration of large-scale
document-level context with a less rich repre-
sentation. We train this model by fine-tuning
a big Transformer baseline. Our experimen-
tal results show that document-level context
provides for large improvements in translation
quality, and adding a rich representation of the
previous sentence provides a small additional
gain.

1 Introduction

In this paper we describe the system we developed
at the LMU Munich Center for Information and
Language Processing, which we used to partici-
pate in the news translation task at WMT19. We
submitted system runs for the English→German
translation direction and specifically focus on the
document-level translation track. The goal of the
document-level track is to train machine transla-
tion models capable of taking into account larger
context or even entire documents when translating
sentences.

Supervised NMT has achieved state-of-the-art
results (Bahdanau et al., 2015; Vaswani et al.,
2017). Several works have claimed translation
quality on a level similar to human translation. Wu
et al. (2016) report translation quality on par with
average bilingual human translators and Hassan
et al. (2018) argue for parity to professional hu-
man translators on news translation from Chinese
to English. However, these claims have been chal-
lenged in several ways with recent work (Läubli

et al., 2018; Toral et al., 2018). One challenge
is that these evaluations were done without giv-
ing evaluators access to the whole document-level
context. They further show that human transla-
tions are preferred over automatic ones if evalua-
tors are given document-level context. This is pre-
cisely the motivation for the document-level MT
track in this year’s WMT19.

One of the reasons for the failure of NMT in
these context-dependent cases is not being able to
model discourse-level phenomena. The straight-
forward reason for this is that traditional NMT
does not have access to the context. As a result,
it fails to account for several discourse-level phe-
nomena, prominent ones being coreference reso-
lution and coherence.

Coreference resolution has a particular impact
on English→German translation, specifically for
pronoun translation. English has only one third
person singular pronoun that is routinely used for
non-human references (“it”), while German has
three, each representing a specific gender: mas-
culine, feminine and neuter. Consider the follow-
ing sentence: We know it won’t change students’
behaviour instantly. The translation of it into Ger-
man can be, er, sie or es depending on the gender
of the noun the English it is referencing. Since
traditional NMT is working on the sentence-level,
it has no way of ascertaining the appropriate gen-
der and usually falls back to the data-driven prior,
which is the neuter es.

Coherence is important in order to provide co-
herent translations across the whole given docu-
ment. It is usually undesirable to produce transla-
tions with different meanings within a single doc-
ument for the same ambiguous word.

Taking into account the whole document when
generating translations will address some of the
relevant discourse-level phenomena. An implicit
effect that one could expect by modeling the whole
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document is also modeling the underlying domain.
On an abstract level, one can presume that this
is happening in sentence-level models as well,
however access to larger context is likely to im-
prove the ability to implicitly identify the domain.
Domain adaptation and multi-domain NMT have
been extensively studied (Kobus et al., 2017; Fre-
itag and Al-Onaizan, 2016; Farajian et al., 2017;
Sajjad et al., 2017; Zhang and Xiong, 2018; Chen
et al., 2017; Tars and Fishel, 2018). However,
most previous works assume that the domain of
each sentence is known at training time, which is
often not the case.

Taking into consideration different discourse-
level phenomena, we develop a Transformer
(Vaswani et al., 2017) which can richly model
the previous sentence, but also takes advantage
of larger context. We borrow on previous work
on context-aware NMT (Stojanovski and Fraser,
2018; Voita et al., 2018; Miculicich et al., 2018;
Zhang et al., 2018) and add additional parameters
in the encoder and decoder to account for the pre-
vious sentence. We limit the context since we want
this part of the model to be able to do coreference
resolution which very often can be addressed by
looking at the first previous sentence. We addi-
tionally take the 10 previous sentences and cre-
ate a simple document representation by averag-
ing their embeddings. This embedding is subse-
quently added to each source token in the sentence
to be translated in the same fashion as positional
embeddings are added to the token-level embed-
dings in the Transformer. We assume that this rep-
resentation can help provide a clear domain signal.

The remainder of the paper outlines the model
in detail, and presents the experimental setup and
obtained results.

2 Related Work

There are large number of works in NMT focus-
ing on integrating document-level information into
otherwise sentence-level models (Jean et al., 2017;
Wang et al., 2017; Tiedemann and Scherrer, 2017;
Bawden et al., 2018; Voita et al., 2018; Zhang
et al., 2018; Stojanovski and Fraser, 2018; Mi-
culicich et al., 2018; Tu et al., 2018; Maruf and
Haffari, 2018). These works have shown that im-
provements in pronoun translation are achieved by
better handling coreference resolution. Smaller
improvements are observed for coherence and co-
hesion. The main intuition behind the models in

these works is that they employ an additional en-
coder for contextual sentences and integrate the
information in the encoder or decoder using a
gating mechanism. Our model is similar to the
context-aware Transformer models proposed in
these works with some specifics which we discuss
in Section 3.

We also extend the Transformer model with a
simple document representation which we assume
provides for a domain signal. This could be useful
for domain disambiguation and improved coher-
ence and cohesion. This model is similar to previ-
ous work on domain adaptation for NMT (Kobus
et al., 2017; Tars and Fishel, 2018) where special
domain tokens are either added to the beginning of
the sentence or concatenated as additional features
to the token-level embeddings. However, they as-
sume a set of known domains in advance which is
not the case in our work. We model the domain
implicitly.

3 Model

In this work we develop two models: a
previous-sentence and document-level context-
aware Transformer. For our primary submission,
we use a joint model combining both approaches
into a single model. We use source side context
only, both at training and testing time.

3.1 Previous-sentence context-aware
Transformer

This context-aware model is in line with previous
works on context-aware NMT (Voita et al., 2018;
Stojanovski and Fraser, 2018; Miculicich et al.,
2018; Zhang et al., 2018). The standard Trans-
former is extended to be able to receive an ad-
ditional sentence as input. In this work we only
use the first previous sentence. We feed this con-
text sentence through the Transformer encoder. As
suggested in Voita et al. (2018), we share the en-
coder for the main and context sentence. In or-
der to provide information as to what is being en-
coded, we add a special token at the beginning of
the context sentence. We share the encoder layers
up to and including the penultimate layer. Unlike
Voita et al. (2018), we do not integrate the con-
text in the encoder, but rather in the decoder. As a
result, the last encoder layer is the standard Trans-
former encoder, but it is not shared across the main
and context sentence.

We modify the decoder by adding an additional
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multi-head attention (MHA) sublayer on the con-
text representation. As in the standard Trans-
former decoder layer, at training time, we first
compute self-attention over the target sentence and
use this to compute the MHA representation ci
over the main sentence. The output of this step
is used to condition the MHA cci over the context.
Subsequently, the outputs of the MHA over the
main and context representations, ci and cci , are
merged using a gated sum. The use of the gate is
similar to previous work (Wang et al., 2017; Voita
et al., 2018). It is conditioned on ci and cci . The
output is computed as follows:

si = gi ⊗ ci + (1− gi)⊗ cci
and the gate is computed as:

gi = σ(Weci +Wcc
c
i )

where σ represents sigmoid activation and ⊗
element-wise multiplication. The gate enables the
model to control how much information should be
used from the main sentence and from the context
sentence. Finally, the output of the gated sum is
passed through a feed-forward neural network.

3.2 Document-level context-aware
Transformer

We also extend the model with the ability to con-
sume larger context. Miculicich et al. (2018) pro-
posed a model capable of using large context us-
ing hierarchical attention. They tackle the mem-
ory requirements of such models by reusing al-
ready computed sentence representations. This in-
troduces limitations as to how the random batch-
ing usually used to train NMT works, since it is
necessary to have the previous sentences of a given
sentence in a document already processed. Fur-
thermore, Miculicich et al. (2018) report that they
fail to obtain significant improvements as the con-
text increases. They do not improve results beyond
context sizes of 2 or 3 sentences.

As a result, we make a simple modification to
the Transformer which enables it to handle large
context sizes. In this work we use up to 10 sen-
tences of context, all of which are previous sen-
tences (but it would also be possible to use the
following sentences as well). We take the em-
beddings of all tokens within the context and sim-
ply average them. This averaged document rep-
resentation is then passed through a feed-forward
network. The final document-level representation

is then added to all token-level source embed-
dings in the sentence to be translated in the same
manner as the positional embeddings are added
in the Transformer. A similar approach was pro-
posed by Kobus et al. (2017) for domain adapta-
tion in RNN-based NMT. The work differs since
they have special tokens which indicate the do-
main and they concatenate them instead of adding
them to the token-level embeddings. Our approach
is more flexible since it only relies on having ac-
cess to contextual information and does not re-
quire explicit domain knowledge. Our intuition
with this approach is that the document represen-
tation should be informative of the type or domain
of the document being translated.

We share all source, target, output and context
embeddings. We freeze them in the continued
training phase with the context-aware model in or-
der for the model to be more memory efficient.

4 Experimental Setup

4.1 Preprocessing
The data is preprocessed by normalizing punctu-
ation, tokenizing and truecasing with the scripts
from Moses. We apply BPE splitting (Sennrich
et al., 2016b) with 32K merge operations. BPE is
computed jointly on both languages.

Corpus sentences
CommonCrawl 2.1M x2
Europarl 1.5M x2
NewsCommentary 0.3M x2
Rapid 1.4M x2
WikiTitles 1.3M x2
ParaCrawl 13.5M
NewsCrawl 9.3M
NewsCrawl v2 16.9M

Table 1: Training data sizes after filtering. x2 - over-
sampling factor.

4.2 Data filtering
Samples where the length of the source, target
or first previous sentence before BPE-splitting is
over 50 tokens are removed. For the purposes of
our document-level model, we also use larger con-
text. In our experiments, we restrict the model
to access only the 10 previous sentences at most.
Samples where the total length of these sentences
exceeds 500 are also removed. After applying
BPE splitting, an additional length filtering step
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is applied with a maximum length allowed of 100
for the source, target and first previous sentence.
Document-level context is limited to 800.

WMT provides the large ParaCrawl corpus
which is very noisy. In previous years at WMT,
high scoring systems showed that it is necessary
to perform aggressive filtering. We reuse some
of the data selection steps proposed in Stahlberg
et al. (2018). We run language identification and
remove non-English and non-German sentences.
Furthermore, all sentences are removed where one
of the following conditions is met: a word is
over 40 characters long, HTML tags in text, sen-
tence length less than 4 words, character ratio be-
tween source and target sentence is over 1:3 or
3:1, source or target sentence is not identical after
removing non-numerical characters and sentence
does not end in a punctuation mark. As a result,
the size of the ParaCrawl corpus was reduced from
30M to 13.5M sentences. Unfortunately, due to
time constraints, we were not able to reproduce
the data filtering and data selection suggested by
Junczys-Dowmunt (2018) which obtained the top
BLEU scores at WMT18. They showed that the
optimal number of sentences is 8M. We assume
that the higher number of presumably noisy sen-
tences is affecting our initial baseline.

4.3 Backtranslation
As shown in previous years, using backtransla-
tions (Sennrich et al., 2016a) is essential for strong
translation quality. We train a German→English
small Transformer and use it to backtranslate
NewsCrawl data. Due to time constraints, we were
not able to use the backtranslated data in the initial
training of the English→German model. As a re-
sult, we fine-tune the already trained baseline with
the backtranslated data mixed in with the parallel
WMT data.

4.4 Hyperparameters
We train a big Transformer as a baseline. Em-
bedding and hidden dimension size in the encoder
and decoder is 1024. All attention sublayers use
dot product attention and have 16 attention heads.
The size of the feed-forward neural networks is
4096. The hidden dimension size of the context-
aware encoder and context attention sublayer in
the decoder is 512. All context-related atten-
tion sublayers have 8 attention heads. All mod-
els have 6 encoder and decoder layers. We use
sinusoidal positional embeddings which are added

to the token-level embeddings. In the case of the
document-level model, we further add the average
of all large-context embeddings. We apply resid-
ual dropout of 0.1 as in (Vaswani et al., 2017). Ad-
ditionally, dropout of 0.1 is applied to the multi-
head attention and feed-forward network. We also
use label smoothing of value 0.1.

4.5 Training
We train the Transformer baseline with a warmup
period and a learning rate of 10−4. In all cases of
continued training in the paper, we set the learn-
ing rate to 10−5. We train the models with early-
stopping based on the perplexity on the develop-
ment set. We checkpoint the model every 4000
updates. The learning rate is reduced by a fac-
tor of 0.7 if no improvements are observed for 8
checkpoints. Training converges if no improve-
ments are observed after 32 checkpoints. We train
our context-aware models by continued training
on the converged baseline. All parameters relating
only to the context-aware parts of the architecture
are randomly initialized. The batch size is set to
4096 tokens.

Model parameters
baseline 217M
previous-sentence context 253M
document-level context 225M
joint model 261M

Table 2: Number of model parameters. All models are
big Transformer models.

The number of parameters for all models are
presented in Table 2. We train the models on 4
GTX 1080 Ti GPUs with 12GB RAM. We use
Sockeye1 (Hieber et al., 2018) to train the baseline
and our context-aware models.

5 Empirical Evaluation

We present the results we obtain with our mod-
els in Table 3. We report results on the
English→German newstest2017, newstest2018
and newstest2019. We report BLEU scores us-
ing sacreBLEU2 (Post, 2018) on detokenized text.
For the final submission, we processed quotation
marks to match the German style.

We train our baseline on the data presented
in Table 1. We initially train on the ParaCrawl

1https://github.com/awslabs/sockeye
2https://github.com/mjpost/sacreBLEU
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dataset and an oversampled version of the other
datasets. We train this baseline until convergence
with early-stopping based on the perplexity on the
development set. As a development set, we use
newstest2018. After convergence, we fine-tune
with 9.3M NewsCrawl backtranslations in addi-
tion to the dataset we used for the initial base-
line. This baseline is used to initialize all the
other context-aware models. It is interesting to ob-
serve that fine-tuning with NewsCrawl backtrans-
lations and WMT data improves on newstest2017
and newstest2018, but significantly decreases the
BLEU score on newstest2019.

en→de
Model nt17 nt18 nt19
baseline 29.8 45.3 39.5
baseline* 30.3 45.6 38.5
previous-sentence* 30.5 46.0 38.6
document-level* 30.5 45.7 39.3
document-level 31.1 47.0 40.0
joint 31.1 47.1 40.3

Table 3: BLEU scores on newstest2017, newstest2018
and newstest2019. * - model trained with NewsCrawl
backtranslations. All context-aware models fine-tuned
on baseline*.

For training the context-aware models, we ig-
nore the ParaCrawl data and use the remaining
datasets. Depending on the setup, we either
use the 16.9M NewsCrawl backtranslations with
document boundaries or completely ignore them.
Our previous sentence context-aware Transformer
trained with NewsCrawl backtranslations do not
provide for significant improvements. It increases
the BLEU score from 38.5 to 38.6. However, the
document-level model with averaging context em-
beddings obtains a BLEU score of 39.3.

We also remove the NewsCrawl backtransla-
tions when fine-tuning our average context embed-
ding Transformer. This proves to be very helpful
and we manage to obtain 40.0 BLEU. It is interest-
ing that this model also substantially improves the
BLEU score on newstest2017 and newstest2018.
One possible explanation of the adverse effect of
using backtranslations is that our document-level
model is more sensitive to noisy input. We leave a
further examination of the issue for future work.

Finally, we train a joint model where we com-
bine the average context embedding approach with
the previous-sentence context-aware Transformer
where we employ a separate encoder and modify

the decoder. This further pushes the BLEU score
to 40.3 on newstest2019 and slightly improves re-
sults on the other test sets. This is the system we
used for the primary submission.

We also tried ensembling context-aware joint
models. However, due to time constraints we only
managed to train a single baseline. Therefore, all
context-aware models were trained by fine-tuning
on top of the single baseline. As a result, these
models were not diverse enough and ensembling
did not help. After the evaluation period, we also
tried averaging the last 5 checkpoints of a single
run of the joint model. This improved the score on
newstest2019 to 40.8 BLEU.

6 Conclusion

In this work, we presented our system which we
used to participate in the English→German news
translation task at WMT19. We proposed two
modifications to the standard Transformer archi-
tecture. We propose a context-aware Transformer
which has a separate encoder and a modified de-
coder in order to provide for a fine-grained ac-
cess to a limited context. We further extend this
model by proposing to average the context token-
level embeddings and add them to the main sen-
tence embeddings. This enables access to large
scale context. We show that the latter modifica-
tion provides for large improvements with regards
to a baseline and that combining both approaches
leads to a further performance increase.
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Abstract

We describe our submission to WMT 2019
News translation shared task for Gujarati-
English language pair. We submit con-
strained systems, i.e, we rely on the data
provided for this language pair and do not
use any external data. We train Transformer
based subword-level neural machine transla-
tion (NMT) system using original parallel cor-
pus along with synthetic parallel corpus ob-
tained through back-translation of monolin-
gual data. Our primary systems achieve BLEU
scores of 10.4 and 8.1 for Gujarati→English
and English→Gujarati, respectively. We ob-
serve that incorporating monolingual data
through back-translation improves the BLEU
score significantly over baseline NMT and
SMT systems for this language pair.

1 Introduction

In this paper, we describe the system that we
submit to the WMT 20191 news translation
shared task (Bojar et al., 2019). We par-
ticipate in Gujarati-English language pair and
submit two systems: English→Gujarati and
Gujarati→English. Gujarati language belongs to
Indo-Aryan language family and is spoken pre-
dominantly in the Indian state of Gujarat. It
is a low-resource language as only a few thou-
sands parallel sentences are available, which are
not enough to train a neural machine translation
(NMT) system as well statistical machine trans-
lation (SMT) system. Gujarati-English is a dis-
tant language pair and they have different linguis-
tic properties including syntax, morphology, word
order etc. English follows subject-verb-object or-
der while Gujarati follows subject-object-verb or-
der.

1http://www.statmt.org/wmt19/
translation-task.html

NMT (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has recently become dominant paradigm
for machine translation (MT) achieving state-of-
the-art on standard benchmark data sets for many
language pairs. As opposed to SMT, NMT sys-
tems are trained in an end-to-end manner. Train-
ing an effective NMT requires a huge amount of
high-quality parallel corpus and in absence of that,
an NMT system tends to perform poorly (Koehn
and Knowles, 2017). However, back-translation
(Sennrich et al., 2016) has been shown to im-
prove NMT systems in such a situation. In this
work, we train a SMT system and an NMT system
for both English→Gujarati and Gujarati→English
using the original training data. SMT systems
are also used to generate synthetic parallel cor-
pora through back-translation of monolingual data
from English news crawl and Gujarati Wikipedia
dumps. These corpora along with the original
training corpora are used to improve the baseline
NMT systems. All the SMT and NMT systems are
trained at subword level.

Our SMT systems are standard phrase-based
SMT systems (Koehn et al., 2003), and NMT sys-
tems are based on Transformer (Vaswani et al.,
2017) architecture. Experiments show that NMT
systems achieve BLEU (Papineni et al., 2002)
scores of 10.4 and 8.1 for Gujarati→English
and English→Gujarati, respectively, outperform-
ing the baseline SMT systems even in the absence
of enough-sized parallel data.

Rest of the paper is arranged in following man-
ner: Section 2 gives brief introduction of the
Transformer architecture that we used for NMT
training, Section 3 describes the task, Section 4 de-
scribes the submitted systems, Section 5 gives var-
ious evaluation scores for English-Gujarati trans-
lation pair, and finally, Section 6 concludes the
work.
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2 Transformer Architecture

Recurrent neural network based encoder-decoder
NMT architecture (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015) deals with in-
put/output sentences word-by-word sequentially,
which prevents the model from parallel com-
putation. Vaswani et al. (2017) came up with
a highly parallelizable architecture called Trans-
former which uses the self-attention to better en-
code a sequences. Self-attention is used in the ar-
chitecture to calculate attention between a word
and the other words in the sentence itself. En-
coder and decoder both are stack of 6 identical lay-
ers. Each layer in encoder has two sub-layers: i.
multi-head self attention mechanism and ii. posi-
tion wise feed forward network. Each sub-layer
is associated with residual connections, followed
by layer normalization. Multi-head attention com-
putes the attention multiple times for each word.
Since their is no sequence to sequence encoding,
positional encoding is used to encode the sequence
information.

3 Task Description

This task focuses on translating news domain cor-
pus and this year, Gujarati language is introduced
for the first time in a WMT shared task. Gujarati
is a low-resource language and not many results
have been reported in machine translation involv-
ing this language. Also, there was no standard test
set for this language pair. So introduction of this
language pair will help in further research for this
language pair.

As Gujarati does not have enough parallel
data, the data that are provided for this shared
task are mainly from WikiTitles which con-
sists of only 11,671 parallel titles. Apart from
that, few publicly available domain specific par-
allel data that are provided are: Bible corpus
(Christodouloupoulos and Steedman, 2015); a lo-
calization extracted from OPUS2; parallel corpus
extracted from Wikipedia; crawled corpus pro-
duced for this task; and monolingual Wikipedia
dumps.

4 System Description

We participated in Gujarati-English pair only and
we submit for both directions: English→Gujarati

2http://opus.nlpl.eu

and Gujarati→English. As Gujarati is a low-
resource language and only a little amount of
parallel data is available, we explore the back-
translation technique for this pair. Also our mod-
els are based on Transformer as it has become state
of the art for machine translation for many lan-
guage pairs. We train systems at subword level.
For back-translation, we train a phrase-based SMT
(Koehn et al., 2003) system for each system in re-
verse direction. Using these SMT systems, mono-
lingual sentences (for both Gujarati and English)
are translated to create synthetic parallel data hav-
ing original monolingual sentences at target and
translated sentences at source side. These syn-
thetic parallel data, along with the original paral-
lel data are used to train a transformer based NMT
system for each direction.

4.1 Dataset

Sources #Sentences
Parallel

Bible 7,807
govin-clean.gu-en.tsv 10,650
opus.gu-en.tsv 107,637
wikipedia.gu-en.tsv 18,033
wikititles-v1.gu-en.tsv 11,671
Total 155,798

Monolingual
Gujarati (Wikipedia dump) 382,881
English (News crawl) 1,000,000

Table 1: Training data sources and number of sen-
tences.

The datasets that we use for training are
shown in the Table 1, which combine to a to-
tal of 155,798 parallel sentences. These par-
allel data are compiled from different sources.
The compiled datasets are Bible3, govin-clean.gu-
en.tsv4, opus.gu-en.tsv5, wikipedia.gu-en.tsv6 and
wikititles-v1.gu-en.tsv7. We use newsdev2019 for
tuning the model, which has 1,998 parallel sen-
tences.

3http://data.statmt.org/wmt19/translation-task/bible.gu-
en.tsv.gz

4http://data.statmt.org/wmt19/translation-task/govin-
raw.gu-en.tsv.gz

5http://data.statmt.org/wmt19/translation-task/opus.gu-
en.tsv.gz

6http://data.statmt.org/wmt19/translation-
task/wikipedia.gu-en.tsv.gz

7http://data.statmt.org/wikititles/v1/wikititles-v1.gu-
en.tsv.gz
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System BLEU BLEU-cased TER CharactTER
English→Gujarati

PBSMT 5.2 5.2 0.987 0.782
Transformer 4.0 4.0 1.005 0.884
Transformer + Synth 8.1 8.1 0.919 0.763

Gujarati→English
PBSMT 7.3 6.3 0.883 0.817
Transformer 5.5 5.1 0.905 0.859
Transformer + Synth 10.4 9.4 0.828 0.774

Table 2: BLEU scores of different SMT and NMT based systems. Synth: Synthetic data

Apart from these parallel data, we use
monolingual English (news crawl) and Gujarati
(Wikipedia dumps) sentences for synthetic par-
allel data creation. After training two models
i.e. English→Gujarati and Gujarati→English us-
ing the parallel data mentioned in Table 1, En-
glish and Gujarati monolingual sentences are back
translated respectively.

4.2 Experimental Setup

We train phrase based statistical system (PB-
SMT) (Koehn et al., 2003) as well as Transformer
(Vaswani et al., 2017) based neural system for
comparing their performance under low-resource
conditions. In addition to that, PBSMT are used to
genrate synthetic parallel data. PBSMT systems
are trained only on original training data, while
neural based models are trained on original train-
ing data (Transfomer in Table 2), and also with
synthetic parallel data in addition to original data
(Transfomer+Synth in Table 2). Synthetic paral-
lel data are obtained through back-translation of a
target monolingual corpus into source using PB-
SMT system. We use Moses (Koehn et al., 2007)
toolkit for PBSMT training and Sockeye (Hieber
et al., 2017) toolkit for NMT training. Some pre-
processing of data is required before using it for
experiment. English data is tokenized using moses
tokenizer, and truecased. For tokenizing Gujarati
data, we use indic nlp library8. After tokeninza-
tion and truecasing, we subword (Sennrich et al.,
2015) all original data. We apply 10,000 BPE
merge operations over English and Gujarati data
independently.

For back-translation of monolingual data,
two PBSMT models English→Gujarati and
Gujarati→English are trained over original avail-
able parallel subworded corpora. 4-gram lan-

8https://github.com/anoopkunchukuttan/indic nlp library

guage model is trained using KenLM (Heafield,
2011). For word alignment, we use GIZA++ (Och
and Ney, 2003) with grow-diag-final-and heuris-
tics. Model is tuned with Minimum Error Rate
Training (Och, 2003). After these two models
are trained, monolingual subworded data from
both English and Gujarati are back-translated us-
ing English→Gujarati and Gujarati→English PB-
SMT model, respectively. We merge the back
translated data with original parallel data to have
larger parallel corpora for Gujarati→English and
English→Gujarati translation directions.

Finally, with the augmented parallel corpora,
we train one Transformer based NMT model for
each direction. We use the following hyper-
parameters values of Sockeye toolkit: 6 layers in
both encoder and decoder, word embedding size of
512, hidden size of 512, maximum input length of
50 tokens, Adam optimizer, word batch size 1000,
attention type is dot, learning rate of 0.0002. The
rest of the hyper-parameters are set to the default
values in Sockeye. We use early stopping criteria
for terminating the training on the validation set of
1,998 parallel sentences.

5 Results

The official automatic evaluation uses the follow-
ing metrics: BLEU (Papineni et al., 2002), TER
(Snover et al., 2006), CharactTER (Wang et al.,
2016). The official scores are shown in the Ta-
ble 2. Phrase-base SMT (PBSMT) obtains BLEU
scores of 5.2 and 7.3 for English→Gujarati and
Gujarati→Englsih, respectively. Whereas, base-
line NMT (Transformer) obtains lower BLEU
scores of 4.0 and 5.5 for the same directions.
Though, SMT systems outperforms baseline NMT
systems trained using small amount of original
parallel data only. We observe from the Table 2
that Transformer with synthetic (Transformer +
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English→German
Ave. Ave. z System
90.3 0.347 Facebook-FAIR
93.0 0.311 Microsoft-WMT19-sent-doc
92.6 0.296 Microsoft-WMT19-doc-level
90.3 0.240 HUMAN
87.6 0.214 MSRA-MADL
88.7 0.213 UCAM
89.6 0.208 NEU
87.5 0.189 MLLP-UPV
87.5 0.130 eTranslation
86.8 0.119 dfki-nmt
84.2 0.094 online-B
86.6 0.094 Microsoft-WMT19-sent-level
87.3 0.081 JHU
84.4 0.077 Helsinki-NLP
84.2 0.038 online-Y
83.7 0.010 lmu-ctx-tf-single
84.1 0.001 PROMT-NMT
82.8 −0.072 online-A
82.7 −0.119 online-G
80.3 −0.129 UdS-DFKI
82.4 −0.132 TartuNLP-c
76.3 −0.400 online-X
43.3 −1.769 en-de-task

Gujarati→English
Ave. Ave. z System
64.8 0.210 NEU
61.7 0.126 UEDIN
59.4 0.100 GTCOM-Primary
60.8 0.090 CUNI-T2T-transfer
59.4 0.066 aylien-mt-multilingual
59.3 0.044 NICT
51.3 −0.189 online-G
50.9 −0.192 IITP-MT
48.0 −0.277 UdS-DFKI
47.4 −0.296 IIITH-MT
41.1 −0.598 Ju-Saarland

English→Gujarati
Ave. Ave. z System
73.1 0.701 HUMAN
72.2 0.663 online-B
66.8 0.597 GTCOM-Primary
60.2 0.318 MSRA-CrossBERT
58.3 0.305 UEDIN
55.9 0.254 CUNI-T2T-transfer
52.7 −0.079 Ju-Saarland-clean-num-135-bpe
35.2 −0.458 IITP-MT
38.8 −0.465 NICT
39.1 −0.490 online-G
33.1 −0.502 online-X
33.2 −0.718 UdS-DFKI

Kazakh→English
Ave. Ave. z System
72.2 0.270 online-B
70.1 0.218 NEU
69.7 0.189 rug-morfessor
68.1 0.133 online-G
67.1 0.113 talp-upc-2019
67.0 0.092 NRC-CNRC
65.8 0.066 Frank-s-MT
65.6 0.064 NICT
64.5 0.003 CUNI-T2T-transfer
48.9 −0.477 UMD
32.1 −1.058 DBMS-KU

Lithuanian→English
Ave. Ave. z System
77.4 0.234 GTCOM-Primary
77.5 0.216 tilde-nc-nmt
77.0 0.213 NEU
76.4 0.206 MSRA-MASS
76.4 0.202 tilde-c-nmt
73.8 0.107 online-B
69.4 −0.056 online-A
69.2 −0.059 TartuNLP-c
62.8 −0.284 online-G
62.4 −0.337 JUMT
59.1 −0.396 online-X

German→English
Ave. Ave. z System
81.6 0.146 Facebook-FAIR
81.5 0.136 RWTH-Aachen
79.0 0.136 MSRA-MADL
79.9 0.121 online-B
79.0 0.086 JHU
80.1 0.067 MLLP-UPV
79.0 0.066 dfki-nmt
78.0 0.066 UCAM
76.6 0.050 online-A
78.4 0.039 NEU
79.0 0.027 HUMAN
77.4 0.011 uedin
77.9 0.009 online-Y
74.8 0.006 TartuNLP-c
72.9 −0.051 online-G
71.8 −0.128 PROMT-NMT
69.7 −0.192 online-X

English→Czech
Ave. Ave. z System
91.2 0.642 HUMAN
86.0 0.402 CUNI-DocTransformer-T2T
86.9 0.401 CUNI-Transformer-T2T-2018
85.4 0.388 CUNI-Transformer-T2T-2019
81.3 0.223 CUNI-DocTransformer-Marian
80.5 0.206 uedin
70.8 −0.156 online-Y
71.4 −0.195 TartuNLP-c
67.8 −0.300 online-G
68.0 −0.336 online-B
60.9 −0.594 online-A
59.3 −0.651 online-X

Finnish→English
Ave. Ave. z System
78.2 0.285 MSRA-NAO
77.8 0.265 online-Y
77.6 0.261 GTCOM-Primary
76.4 0.245 USYD
72.5 0.107 online-B
73.3 0.105 Helsinki-NLP
69.2 0.012 online-A
68.4 −0.044 online-G
68.0 −0.053 TartuNLP-c
67.3 −0.071 online-X
61.9 −0.209 parfda
53.3 −0.516 apertium-uc

English→Finnish
Ave. Ave. z System
94.8 1.007 HUMAN
82.6 0.586 GTCOM-Primary
80.2 0.570 MSRA-NAO
70.9 0.275 online-Y
65.8 0.199 NICT
65.7 0.09 Helsinki-NLP
63.1 0.072 online-G
63.0 0.037 online-B
54.5 −0.125 TartuNLP-c
48.3 −0.384 online-A
47.1 −0.398 online-X
47.9 −0.522 Helsinki-NLP-rule-based
16.9 −1.260 apertium-uc

English→Kazakh
Ave. Ave. z System
81.5 0.746 HUMAN
67.6 0.262 UAlacant-NMT
63.8 0.243 online-B
63.8 0.222 UAlacant-NM
63.8 0.222 RBMT
63.3 0.126 NEU
63.3 0.108 MSRA-CrossBERT
60.4 0.097 CUNI-T2T-transfer
61.7 0.078 online-G
55.2 −0.049 rug-bpe
49.0 −0.328 talp-upc-2019
41.4 −0.493 NICT
11.6 −1.395 DBMS-KU

English→Lithuanian
Ave. Ave. z System
90.5 1.017 HUMAN
72.8 0.388 tilde-nc-nmt
69.1 0.387 MSRA-MASS-uc
68.0 0.262 tilde-c-nmt
68.2 0.259 MSRA-MASS-c
67.7 0.155 GTCOM-Primary
62.7 0.036 eTranslation
59.6 −0.054 NEU
57.4 −0.061 online-B
47.8 −0.383 TartuNLP-c
38.4 −0.620 online-A
39.2 −0.666 online-X
32.6 −0.805 online-G

English→Russian
Ave. Ave. z System
89.5 0.536 HUMAN
88.5 0.506 Facebook-FAIR
83.6 0.332 USTC-MCC
82.0 0.279 online-G
80.4 0.269 online-B
79.0 0.223 NEU
80.2 0.219 PROMT-NMT
78.5 0.156 online-Y
71.7 −0.188 rerank-er
67.9 −0.268 online-A
68.8 −0.310 TartuNLP-u
62.1 −0.363 online-X
35.7 −1.270 NICT

English→Chinese
Ave. Ave. z System
82.5 0.368 HUMAN
83.0 0.306 KSAI
83.3 0.280 Baidu
80.5 0.209 NEU
80.3 0.052 online-A
79.9 0.042 xzl-nmt
79.0 0.017 UEDIN
77.8 0.009 BTRANS
76.9 0.000 NICT
74.6 −0.125 online-B
75.6 −0.218 online-Y
72.6 −0.262 online-G
69.5 −0.553 online-X

Russian→English
Ave. Ave. z System
81.4 0.156 Facebook-FAIR
80.7 0.134 online-G
80.4 0.122 eTranslation
80.1 0.121 online-B
81.4 0.115 NEU
80.4 0.102 MSRA-SCA
79.8 0.084 rerank-re
79.2 0.076 online-Y
79.0 0.029 online-A
76.8 0.012 afrl-syscomb19
76.8 −0.039 afrl-ewc
76.2 −0.040 TartuNLP-u
74.5 −0.097 online-X
69.3 −0.303 NICT

Chinese→English
Ave. Ave. z System
83.6 0.295 Baidu-system
82.7 0.266 KSAI-system
81.7 0.203 MSRA-MASS
81.5 0.195 MSRA-MASS
81.5 0.193 NEU
80.6 0.186 BTRANS
80.7 0.161 online-B
79.2 0.103 BTRANS-ensemble
77.9 0.054 UEDIN
78.0 0.049 online-Y
77.4 0.001 NICT
75.3 −0.065 online-A
72.4 −0.202 online-G
66.9 −0.483 online-X
56.4 −0.957 Apprentice-c

Table 8: Preliminary results of WMT19 News Translation Task. Systems ordered by DA score z-score; systems within a
cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05; grayed entry indicates
resources that fall outside the constraints provided.

Table 3: Preliminary official results of WMT 2019
news translation task for Gujarati-English pair. Sys-
tems ordered by DA score z-score; systems within a
cluster are considered tied; lines indicate clusters ac-
cording to Wilcoxon rank-sum test p < 0.05; grayed
entry indicates resources that fall outside the con-
straints provided.

Synth) data obtained through back-translation of
monolingual data, outperforms the baseline SMT
systems with a margin of 2.9 and 3.1 BELU
points. Also, as a result of augmenting back-
translated data with original training data, we ob-
tain improvement of of 4.7 and 5.3 BLEU points
over baseline NMT for English→Gujarati and
Gujarati→English, respectively. The official pre-
liminary human evaluation results are shown in the
Table 3.

6 Conclusion

In this paper, we described our submission to
the WMT 2019 News translation shared task for
Gujarati-English language pair. This is the first
time Gujarati language is introduced in a WMT
shared task. We submit Transformer based NMT
systems for English-Gujarati language pair. Since

the number of parallel sentences in training set
are very less and many sentences have length
of only 2-3 tokens, BLEU scores for English-
Gujarati pair using only available parallel corpus
are very low (4.0 and 5.1 for English→Gujarati
and Gujarati→English, respectively). So we
use monolingual sentences for both languages
to create synthetic parallel data through back-
translation, and merged them with original parallel
data. We obtained improved BLEU scores of 8.1
and 10.4, respectively.
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Abstract
In this paper, we present the University of
Helsinki submissions to the WMT 2019 shared
task on news translation in three language
pairs: English–German, English–Finnish and
Finnish–English. This year, we focused first
on cleaning and filtering the training data
using multiple data-filtering approaches, re-
sulting in much smaller and cleaner training
sets. For English–German, we trained both
sentence-level transformer models and com-
pared different document-level translation ap-
proaches. For Finnish–English and English–
Finnish we focused on different segmentation
approaches, and we also included a rule-based
system for English–Finnish.

1 Introduction

The University of Helsinki participated in the
WMT 2019 news translation task with four pri-
mary submissions. We submitted neural ma-
chine translation systems for English-to-Finnish,
Finnish-to-English and English-to-German, and
a rule-based machine translation system for
English-to-Finnish.

Most of our efforts for this year’s WMT focused
on data selection and pre-processing (Section 2),
sentence-level translation models for English-
to-German, English-to-Finnish and Finnish-to-
English (Section 3), document-level translation
models for English-to-German (Section 4), and
a comparison of different word segmentation ap-
proaches for Finnish (Section 3.3). The final sub-
mitted NMT systems are summarized in Section 5,
while the rule-based machine translation system is
described in Section 3.4.

2 Pre-processing, data filtering and
back-translation

It is well known that data pre-processing and se-
lection has a huge effect on translation quality in

neural machine translation. We spent substantial
effort on filtering data in order to reduce noise—
especially in the web-crawled data sets—and to
match the target domain of news data.

The resulting training sets, after applying the
steps described below, are for 15.7M sentence
pairs for English–German, 8.5M sentence pairs
for English–Finnish, and 12.3M–26.7M sentence
pairs (different samplings of back-translations) for
Finnish–English.

2.1 Pre-processing

For each language, we applied a series of pre-
processing steps using scripts available in the
Moses decoder (Philipp Koehn, 2007):

• replacing unicode punctuation,

• removing non-printing characters,

• normalizing punctuation,

• tokenization.

In addition to these steps, we replaced a number
of English contractions with the full form, e.g.
“They’re”→“They are”. After the above steps,
we applied a Moses truecaser model trained for in-
dividual languages, and finally a byte-pair encod-
ing (BPE) (Sennrich et al., 2016b) segmentation
using a set of codes for either language pair.

For English–German, we initially pre-processed
the data using only punctuation normalization and
tokenization. We subsequently trained an En-
glish truecaser model using all monolingual En-
glish data as well as the English side of all paral-
lel English–German datasets except the Rapid cor-
pus (in which non-English characters were miss-
ing from a substantial portion of the German sen-
tences). We also repeated the same for German.
Afterwards, we used a heuristic cleanup script1 in

1Shared by Marcin Junczys-Dowmunt. Retrieved
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order to filter suspicious samples out of Rapid, and
then truecased all parallel English–German data
(including the filtered Rapid) using these models.
Finally, we trained BPE codes with 35 000 sym-
bols jointly for English–German on the truecased
parallel sets. For all further experiments with
English–German data, we applied the full set of
tokenization steps as well as truecasing and BPE
segmentation.

For English–Finnish, we first applied the stan-
dard tokenization pipeline. For English and
Finnish respectively, we trained truecaser models
on all English and Finnish monolingual data as
well as the English and Finnish side of all paral-
lel English–Finnish datasets. As we had found to
be optimal in our previous year submission (Ra-
ganato et al., 2018), we trained a BPE model
using a vocabulary of 37 000 symbols, trained
jointly only on the parallel data. Furthermore, for
some experiments, we also used domain labeling.
We marked the datasets with 3 different labels:
〈NEWS〉 for the development and test data from
2015, 2016, 2017, 〈EP〉 for Europarl, and 〈WEB〉
for ParaCrawl and Wikititles.

2.2 Data filtering

For data filtering we applied four types of filters:
(i) rule-based heuristics, (ii) filters based on lan-
guage identification, (iii) filters based on word
alignment models, and (iv) language model filters.

Heuristic filters: The first step in cleaning the
data refers to a number of heuristics (largely in-
spired by (Stahlberg et al., 2018)) including:

• removing all sentence pairs with a length
difference ratio above a certain threshold:
for CommonCrawl, ParaCrawl and Rapid we
used a threshold of 3, for WikiTitles a thresh-
old of 2, and for all other data sets a threshold
of 9;

• removing pairs with short sentences: for
CommonCrawl, ParaCrawl and Rapid we re-
quired a minimum number of four words;

• removing pairs with very long sentences: we
restricted all data to a maximum length of
100 words;

from https://gist.github.com/emjotde/
4c5303e3b2fc501745ae016a8d1e8e49

• removing sentences with extremely long
words: We excluded all sentence pairs with
words of 40 or more characters;

• removing sentence pairs that include HTML
or XML tags;

• decoding common HTML/XML entities;

• removing empty alignments (while keeping
document boundaries intact);

• removing pairs where the sequences of non-
zero digits occurring in either sentence do not
match;

• removing pairs where one sentence is termi-
nated with a punctuation mark and the other
is either missing terminal punctuation or ter-
minated with another punctuation mark.

Language identifiers: There is a surprisingly
large amount of text segments in a wrong lan-
guage in the provided parallel training data. This
is especially true for the ParaCrawl and Rapid
data sets. This is rather unexpected as a basic
language identifier certainly must be part of the
crawling and extraction pipeline. Nevertheless, af-
ter some random inspection of the data, we found
it necessary to apply off-the-shelf language identi-
fiers to the data for removing additional erroneous
text from the training data. In particular, we ap-
plied the Compact Language Detector version 2
(CLD2) from the Google Chrome project (using
the Python interface from pycld22), and the widely
used langid.py package (Lui and Baldwin, 2012)
to classify each sentence in the ParaCrawl, Com-
monCrawl, Rapid and Wikititles data sets. We re-
moved all sentence pairs in which the language of
one of the aligned sentences was not reliably de-
tected. For this, we required the correct language
ID from both classifiers, the reliable-flag set to
“True” by CLD2 with a reliability score of 90 or
more, and the detection probability of langid.py to
be at least 0.9.

Word alignment filter: Statistical word align-
ment models implement a way of measuring the
likelihood of parallel sentences. IBM-style align-
ment models estimate the probability p(f | a, e)
of a foreign sentence f given an ”emitted” sen-
tence e and an alignment a between them. Train-
ing word alignment models and aligning large cor-
pora is very expensive using traditional methods

2https://github.com/aboSamoor/pycld2
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and implementations. Fortunately, we can rely on
eflomal3, an efficient word aligner based on Gibbs
sampling (Östling and Tiedemann, 2016). Re-
cently, the software has been updated to allow the
storage of model priors that makes it possible to
initialize the aligner with previously stored model
parameters. This is handy for our filtering needs
as we can now train a model on clean parallel data
and apply that model to estimate alignment proba-
bilities of noisy data sets.

We train the alignment model on Europarl and
news test sets from previous WMTs for English–
Finnish, and NewsCommentary for English–
German. For both language pairs, we train a
Bayesian HMM alignment model with fertilities
in both directions and estimate the model priors
from the symmetrized alignment. We then use
those priors to run the alignment of the noisy data
sets using only a single iteration of the final model
to avoid a strong influence of the noisy data on
alignment parameters. As it is intractable to esti-
mate a fully normalized conditional probability of
a sentence pair under the given higher-level word
alignment model, eflomal estimates a score based
on the maximum unnormalized log-probability of
links in the last sampling iteration. In practice, this
seems to work well, and we take that value to rank
sentence pairs by their alignment quality. In our
experiments, we set an arbitrary threshold of 7 for
that score, which seems to balance recall and pre-
cision well according to some superficial inspec-
tion of the ranked data. The word alignment filter
is applied to all web data as well as to the back-
translations of monolingual news.

Language model filter: The most traditional
data filtering method is probably to apply a lan-
guage model. The advantage of language mod-
els is that they can be estimated from monolin-
gual data, which may be available in sufficient
amounts even for the target domain. In our ap-
proach, we opted for a combination of source and
target language models and focused on the com-
parison between scores coming from both mod-
els. The idea is to prefer sentence pairs for which
not only the cross-entropy of the individual sen-
tences (H(S, qs) and H(T, qt)) is low with respect
to in-domain LMs, but also the absolute differ-
ence between the cross-entropies (abs(H(S, qs)−
H(T, qt))) for aligned source and target sentences

3Software available from https://github.com/
robertostling/eflomal

is low. The intuition is that both models should be
roughly similarly surprised when observing sen-
tences that are translations of each other. In order
to make the values comparable, we trained our lan-
guage models on parallel data sets.

For English–Finnish, we used news test data
from 2015-2017 as the only available in-domain
parallel training data, and for English–German
we added the NewsCommentary data set to the
news test sets from 2008-2018. As both data
sets are small, and we aimed for an efficient and
cheap filter, we opted for a traditional n-gram lan-
guage model in our experiments. To further avoid
data sparseness and to improve comparability be-
tween source and target language, we also based
our language models on BPE-segmented texts us-
ing the same BPE codes as for the rest of the
training data. VariKN (Siivola et al., 2007b,a)4

is the perfect toolkit for the purposes of estimat-
ing n-gram language models with subword units.
It implements Kneser-Ney growing and revised
Kneser-Ney pruning methods with the support of
n-grams of varying size and the estimation of
word likelihoods from text segmented in subword
units. In our case, we set the maximum n-gram
size to 20, and the pruning threshold to 0.002.
Finally, we computed cross-entropies for each
sentence in the noisy parallel training data and
stored 5 values as potential features for filtering:
H(S, qs), H(T, qt), avg(H(S, qs), H(T, qt)),
max(H(S, qs), H(T, qt)) and abs(H(S, qs) −
(T, qt)). Based on some random inspection, we
selected a threshold of 13 for the average cross-
entropy score, and a threshold of 4 for the cross-
entropy difference score. For English–Finnish, we
opted for a slightly more relaxed setup to increase
coverage, and set the average cross-entropy to 15
and the difference threshold to 5. We applied the
language model filter to all web data and to the
back-translations of monolingual news.

Applying the filter to WMT 2019 data: The
impact of our filters on the data provided by WMT
2019 is summarized in Tables 1, 2 and 3.

We can see that the ParaCrawl corpus is the
one that is the most affected by the filters. A lot
of noise can be removed, especially by the lan-
guage model filter. The strict punctuation filter
also has a strong impact on that data set. Natu-
rally, web data does not come with proper com-

4VariKN is available from https://vsiivola.
github.io/variKN/
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EN–DE EN–FI

CommonCrawl 3.2%
Europarl 0.8% 2.8%
News-Commentary 0.2%
ParaCrawl 0.6%
Rapid 13.2% 5.2%
WikiTitles 8.0% 4.0%

Table 1: Basic heuristics for filtering – percentage of
lines removed. For English–Finnish the statistics for
ParaCrawl are not available because the cleanup script
was applied after other filters.

% rejected

Filter CC ParaCrawl Rapid

LM average CE 31.9% 62.0% 12.7%
LM CE diff 19.0% 12.7% 6.9%
Source lang ID 4.0% 30.7% 7.3%
Target lang ID 8.0% 22.7% 6.2%
Wordalign 46.4% 3.1% 8.4%
Number 15.3% 16.0% 5.0%
Punct 0.0% 47.4% 18.7%

total 66.7% 74.7% 35.1%

Table 2: Percentage of lines rejected by each filter for
English–German data sets. Each line can be rejected
by several filters. The total of rejected lines is the last
row of the table.

% rejected

ParaCrawl Rapid

Filter strict relax strict relax

LM avg CE 62.5% 40.0% 50.7% 21.4%
LM CE diff 35.4% 25.7% 44.8% 31.1%
Src lang ID 37.2% 37.2% 11.9% 11.9%
Trg lang ID 29.1% 29.1% 8.5% 8.5%
Wordalign 8.3% 8.3% 8.3% 8.3%
Number 16.8% 16.8% 6.7% 6.7%
Punct 54.6% 3.3% 23.7% 7.6%

total 87.9% 64.2% 62.2% 54.8%

Table 3: Percentage of lines rejected by each filter for
English–Finnish data sets. The strict version is the
same as for English–German, and the relax version ap-
plies relaxed thresholds.

plete sentences that end with proper final punctu-
ation marks, and the filter might remove quite a
bit of the useful data examples. However, our fi-

nal translation scores reflect that we do not seem
to lose substantial amounts of performance even
with the strict filters. Nevertheless, for English–
Finnish, we still opted for a more relaxed setup
to increase coverage, as the strict version removed
over 87% of the ParaCrawl data.

It is also interesting to note the differences of
individual filters on different data sets. The word
alignment filter seems to reject a large portion of
the CommonCrawl data set whereas it does not af-
fect other data sets that much. The importance
of language identification can be seen with the
ParaCrawl data whereas other corpora seem to be
much cleaner with respect to language.

2.3 Back-translation

We furthermore created synthetic training data by
back-translating news data. We translated the
monolingual English news data from the years
2007–2018, from which we used a filtered and
sampled subset of 7M sentences for our Finnish–
English systems, and the Finnish data from years
2014–2018 using our WMT 2018 submissions.
We also used the back-translations we generated
for the WMT 2017 news translation task, where
we used an SMT model to create 5.5M sentences
of back-translated data from the Finnish news2014
and news2016 corpora (Östling et al., 2017).

For the English–German back-translations, we
trained a standard transformer model on all the
available parallel data and translated the monolin-
gual German data into English. The BLEU score
for our back-translation model is 44.24 on news-
test 2018. We applied our filtering pipeline to the
back-translated pairs, resulting in 10.3M sentence
pairs. In addition to the new back-translations, we
also included back-translations from the WMT16
data by Sennrich et al. (2016a).

3 Sentence-level approaches

In this section we describe our sentence-
level translation models and the experiments in
the English-to-German, English-to-Finnish and
Finnish-to-English translation directions.

3.1 Model architectures

We experimented with both NMT and rule-based
systems. All of our neural sentence-level models
are based on the transformer architecture (Vaswani
et al., 2017). We used both the OpenNMT-
py (Klein et al., 2017) and MarianNMT (Junczys-
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Dowmunt et al., 2018) frameworks. Our experi-
ments focused on the following:

• Ensemble models: using ensembles with a
combination of independent runs and save-
points from a single training run.

• Left-to-right and right-to-left models: Trans-
former models with decoding of the output in
left-to-right and right-to-left order.

The English-to-Finnish rule-based system is an
enhanced version of the WMT 2018 rule-based
system (Raganato et al., 2018).

3.2 English–German
Our sentence-level models for the English-to-
German direction are based on ensembles of in-
dependent runs and different save-points as well
as save-points fine-tuned on in-domain data. For
our submission, we used an ensemble of 9 models
containing:

• 4 save-points with the lowest development
perplexity taken from a model trained for
300 000 training steps.

• 5 independent models fine-tuned with in-
domain data.

All our sentence-level models for the English–
German language pair are trained on filtered
versions of Europarl, NewsCommentary, Rapid,
CommonCrawl, ParaCrawl, Wikititles, and back-
translations. For in-domain fine-tuning, we use
newstest 2011–2016. Our submission is com-
posed of transformer-big models implemented in
OpenNMT-py with 6 layers of hidden size 4096,
16 attention heads, and a dropout of 0.1. The dif-
ferences in development performance between the
best single model, an ensemble of save-points of
a single training run and our final submission are
reported in Table 4. We gain 2 BLEU points with
the ensemble of save-points, and an additional 0.8
points by adding in-domain fine-tuned models into
the ensemble. This highlights the well-known ef-
fectiveness of ensembling and domain adaptation
for translation quality.

Furthermore, we trained additional models us-
ing MarianNMT with the same training data and
fine-tuning method. In this case, we also included
right-to-left decoders that are used as a comple-
ment in the standard left-to-right decoders in re-
scoring approaches. In total, we also end up with
9 models including:

BLEU news2018

Single model 44.61
5 save-points 46.65
5 save-points + 4 fine-tuned 47.45

Table 4: English–German development results compar-
ing the best single model, an ensemble of 5 save-points,
and an ensemble of 5 save-points and 4 independent
runs fine-tuned on in-domain data.

• 3 independent models trained for left-to-right
decoding,

• 3 independent models trained for right-to-left
decoding,

• 3 save-points based on continued training of
one of the left-to-right decoding models.

The save-points were added later as we found
out that models kept on improving when using
larger mini-batches and less frequent validation in
early stopping. Table 5 lists the results of various
models on the development test data from 2018.

BLEU news2018
Model Basic Fine-tuned

L2R run 1 43.63 45.31
L2R run 2 43.52 45.14
L2R run 3 43.33 44.93
L2R run3 cont’d 1 43.65 45.11
L2R run3 cont’d 2 43.76 45.43
L2R run3 cont’d 3 43.53 45.67

Ensemble all L2R 44.61 46.34
Rescore all L2R 46.49

R2L run 1 42.14 43.80
R2L run 2 41.96 43.67
R2L run 3 42.17 43.91

Ensemble all R2L 43.03 44.70
Rescore all R2L 44.73

Rescore all L2R+R2L 46.98

Table 5: English–German results from individual Mar-
ianNMT transformer models and their combinations
(cased BLEU).

There are various trends that are interesting to
point out. First of all, fine-tuning gives a consis-
tent boost of 1.5 or more BLEU points. Our initial
runs were using a validation frequency of 5 000
steps and a single GPU with dynamic mini-batches
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that fit in 13G of memory. The stopping crite-
rion was set to 10 validation steps without improv-
ing cross-entropy on heldout data (newstest 2015
+ 2016). Later on, we switched to multi-GPU
training with two GPUs and early stopping of 20
validation steps. The dynamic batching method
of MarianNMT produces larger minibatches once
there is more memory available, and multi-GPU
settings simply multiply the working memory for
that purpose. We realized that this change enabled
the system to continue training substantially, and
Table 5 illustrates the gains of that process for the
third L2R model.

Another observation is that right-to-left decod-
ing models in general work less well compared
to the corresponding left-to-right models. This
is also apparent with the fine-tuned and ensemble
models that combine independent runs. The dif-
ference is significant with about 1.5 BLEU points
or more. Nevertheless, they still contribute to
the overall best score when re-scoring n-best lists
from all models in both decoding directions. In
this example, re-scoring is done by simply sum-
ming individual scores. Table 5 also shows that re-
scoring is better than ensembles for model combi-
nations with the same decoding direction because
they effectively increase the beam size as the hy-
potheses from different models are merged before
re-ranking the combined and re-scored n-best lists.

The positive effect of beam search is further il-
lustrated in Figure 1. All previous models were
run with a beam size of 12. As we can see, the
general trend is that larger beams lead to improved
performance, at least until the limit of 64 in our
experiments. Beam size 4 is an exception in the
left-to-right models.

3.3 English–Finnish and Finnish–English

The problem of open-vocabulary translation is
particularly acute for morphologically rich lan-
guages like Finnish. In recent NMT research,
the standard approach consists of applying a
word segmentation algorithm such as BPE (Sen-
nrich et al., 2016b) or SentencePiece (Kudo and
Richardson, 2018) during pre-processing. In re-
cent WMT editions, various alternative segmenta-
tion approaches were examined for Finnish: hy-
brid models that back off to character-level rep-
resentations (Östling et al., 2017), and variants
of the Morfessor unsupervised morphology algo-
rithm (Grönroos et al., 2018). This year, we exper-
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Figure 1: The effect of beam size on translation perfor-
mance. All results use model ensembles and the scores
are case-sensitive.

imented with rule-based word segmentation based
on Omorfi (Pirinen, 2015). Omorfi is a morpho-
logical analyzer for Finnish with a large-coverage
lexicon. Its segmentation tool5 splits a word form
into morphemes as defined by the morphological
rules. In particular, it distinguishes prefixes, in-
fixes and suffixes through different segmentation
markers:

Intia→
India

←n
GEN

ja
and

Japani→
Japan

←n
GEN

pää→
prime

←ministeri→
minister

←t
PL

tapaa→
meet

←vat
3PL

Tokio→
Tokyo

←ssa
INE

While Omorfi provides word segmentation
based on morphological principles, it does not rely
on any frequency cues. Therefore, the standard
BPE algorithm is run over the Omorfi-segmented
text in order to split low-frequency morphemes.

In this experiment, we compare two models for
each translation direction:

• One model segmented with the standard BPE
algorithm (joint vocabulary size of 50 000,
vocabulary frequency threshold of 50).

• One model where the Finnish side is pre-
segmented with Omorfi, and both the Omorfi-
segmented Finnish side and the English side
are segmented with BPE (same parameters as
above).

All models are trained on filtered versions of
Europarl, ParaCrawl, Rapid, Wikititles, news-
dev2015 and newstest2015 as well as back-
translations. Following our experiments at WMT

5https://flammie.github.io/
omorfi/pages/usage-examples.html#
morphological-segmentation
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2018 (Raganato et al., 2018), we also use domain
labels (〈EP〉 for Europarl, 〈Web〉 for ParaCrawl,
Rapid and Wikititles, and 〈NEWS〉 for newsdev,
newstest and the back-translations). We use new-
stest2016 for validation. All models are trained
with MarianNMT, using the standard Transformer
architecture.

Figures 2 and 3 show the evolution of BLEU
scores on news2016 during training. For English–
Finnish, the Omorfi-segmented system shows
slightly higher results during the first 40 000 train-
ing steps, but is then outperformed by the plain
BPE-segmented system. For Finnish–English, the
Omorfi-segmented system obtains higher BLEU
scores much longer, until both systems converge
after about 300 000 training steps.

0 100,000 200,000 300,000

0

5

10

15

20

25

Training steps

BPE
Omorfi+BPE

Figure 2: Evolution of English–Finnish BLEU scores
(on y-axis) during training.
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Figure 3: Evolution of Finnish–English BLEU scores
(on y-axis) during training.

Table 6 compares BLEU scores for the 2017 to
2019 test sets. The Omorfi-based system shows
consistent improvements when used on the source
side, i.e. from Finnish to English. However, due
to timing constraints, we were not able to integrate
the Omorfi-based segmentation into our final sub-
mission systems. In any case, the difference ob-
served in the news2019 set after submission dead-
line is within the bounds of random variation.

Data set ∆ BLEU ∆ BLEU
EN-FI FI-EN

news2017 −0.47 +0.36
news2018 −0.61 +0.38
news2019 +0.19 +0.04

Table 6: BLEU score differences between Omorfi-
segmented and BPE-segmented models. Positive val-
ues indicate that the Omorfi+BPE model is better, neg-
ative values indicate that the BPE model is better.

We tested additional transformer models seg-
mented with the SentencePiece toolkit, using a
shared vocabulary of 40k tokens trained only on
the parallel corpora. We do this with the pur-
pose of comparing the use of a software tailored
specifically for Finnish language (Omorfi) with a
more general segmentation one. These models
were trained with the same specifications as the
previous ones, including the transformer hyperpa-
rameters, the train and development data and the
domain-labeling. Since we used OpenNMT-py to
train these models, it is difficult to know whether
the differences come from the segmentation or the
toolkit. We, however, find it informative to present
these results. Table 7 presents the obtained BLEU
scores with both systems.

We notice that both systems yield similar scores
for both translation directions. SentencePiece
models are consistently ahead of Omorfi+BPE, but
this difference is so small that it cannot be consid-
ered convincing nor significant.

Our final models for English-to-Finnish are
standard transformer models with BPE-based seg-
mentation, trained using MarianNMT with the
same settings and hyper-parameters as the other
experiments. We used the filtered training data us-
ing the relaxed settings of the language model fil-
ter to obtain better coverage for this language pair.
The provided training data is much smaller and
we also have less back-translated data at our dis-
posal, which motivated us to lower the threshold
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Model news news
2017 2019

SentencePiece EN-FI 25.60 20.60
Omorfi+BPE EN-FI 25.50 20.13
SentencePiece EN-FI 31.50 25.00
Omorfi+BPE FI-EN 31.21 24.06

Table 7: BLEU scores comparison between Sentence-
Piece and Omorfi+BPE-segmented models.

of taking examples from web-crawled data. Do-
main fine-tuning is done as well using news test
sets from 2015, 2016 and 2018. The results on
development test data from 2017 are listed in Ta-
ble 8.

BLEU news2017
Model L2R R2L

Run 1 27.68 28.01
Run 2 28.64 28.77
Run 3 28.64 28.41

Ensemble 29.54 29.76
Rescored 29.60 29.72
– L2R+R2L 30.66

Top matrix 21.7

Table 8: Results from individual MarianNMT trans-
former models and their combinations for English to
Finnish (cased BLEU). The top matrix result refers to
the best system reported in the on-line evaluation ma-
trix (accessed on May 16, 2019).

A striking difference to English–German is that
right-to-left decoding models are on par with the
other direction. The scores are substantially higher
than the currently best (post-WMT 2017) sys-
tem reported in the on-line evaluation matrix for
this test set, even though this also refers to a
transformer with a similar architecture and back-
translated monolingual data. This system does not
contain data derived from ParaCrawl, which was
not available at the time, and the improvements we
achieve demonstrate the effectiveness of our data
filtering techniques from the noisy on-line data.

For Finnish-to-English, we trained MarianNMT
models using the same transformer architecture
as for the other language pairs. Table 9 shows
the scores of individual models and their com-
binations on the development test set of news
from WMT 2017. All models are trained on the

same filtered training data using the strict set-
tings of the language model filter including the
back-translations produced for English monolin-
gual news.

BLEU news2017
Model L2R R2L

Run 1 32.26 31.70
Run 2 31.91 31.83
Run 3 32.68 31.81

Ensemble 33.23 33.03
Rescored 33.34 32.98
– L2R+R2L 33.95

Top (with ParaCrawl) 34.6
Top (without ParaCrawl) 25.9

Table 9: Results from individual MarianNMT trans-
former models and their combinations for Finnish to
English (cased BLEU). Results denoted as top refer to
the top systems reported at the on-line evaluation ma-
trix (accessed on May 16, 2019), one trained with the
2019 data sets and one with 2017 data.

In contrast to English-to-German, models in the
two decoding directions are quite similar again
and the difference between left-to-right and right-
to-left models is rather small. The importance of
the new data sets from 2019 are visible again and
our system performs similarly, but still slightly be-
low the best system that has been submitted this
year to the on-line evaluation matrix on the 2017
test set.

3.4 The English–Finnish rule-based system
Since the WMT 2018 challenge, there has been
development in four areas of translation process in
the rule-based system for English–Finnish:

1. The standard method in handling English
noun compounds was to treat them as mul-
tiword expressions (MWE). This method al-
lows many kinds of translations, even mul-
tiple translation, which can be handled in
semantic disambiguation. However, be-
cause noun compounding is a common phe-
nomenon, also a default handling method was
developed for such cases, where two or more
consecutive nouns are individually translated
and glued together as a single word. The sys-
tem works so that if the noun combination is
not handled as MWE, the second strategy is
applied (Hurskainen, 2018a).

419



2. The translation of various types of questions
has been improved. Especially the transla-
tion of indirect questions was defective, be-
cause the use ofif in the role of initiating
the indirect question was not implemented.
The conjunctionif is ambiguous, because it
is used also for initiating the conditional
clause (Hurskainen, 2018b).

3. Substantial rule optimizing was carried out.
When rules are added in development pro-
cess, the result is often not optimal. There
are obsolete rules and the rules may need
new ordering. As a result, a substantial
number of rules (30%) were removed and
others were reordered. This has effect on
translation speed but not on translation re-
sult (Hurskainen, 2018c).

4. Temporal subordinate clauses, which start
with the conjunction when or while, can
be translated with corresponding subordinate
clauses in Finnish. However, such clauses are
often translated with participial phrase con-
structions. Translation with such construc-
tions was tested. The results show that al-
though they can be implemented, they are
prone to mistakes (Hurskainen, 2018d).

These improvements to the translation system
contribute to fluency and accuracy of translations.

4 Document-level approaches

To evaluate the effectiveness of various document-
level translation approaches for the English–
German language pair, we experimented with a
number of different approaches which are de-
scribed below. In order to test the ability of the
system to pick up document-level information, we
also created a shuffled version of the news data
from 2018. We then test our systems on both the
original test set with coherent test data divided
into short news documents and the shuffled test set
with broken coherence.

4.1 Concatenation models

Some of the previously published approaches use
concatenation of multiple source-side sentences in
order to extend the context of the currently trans-
lated sentence (Tiedemann and Scherrer, 2017). In
addition to the source-side concatenation model,
we also tested an approach where we concatenate

the previously translated sentence with the current
source sentence. The concatenation approaches
we tested are listed below.

• MT-concat-source: (2+1) Concatenating pre-
vious source sentence with the current source
sentence (Tiedemann and Scherrer, 2017).
(3+1a) Concatenating the previous two sen-
tences with the current source sentence.
(3+1b) Concatenating the previous, the cur-
rent and the next sentence in the source lan-
guages.

• MT-concat-target: (1t+1s+1) Concatenating
the previously translated (target) sentence
with the current source sentence.

• MT-concat-source-target: (2+2) Concatenat-
ing the previous with the current source sen-
tence and translate into the previous and
the current target sentence (Tiedemann and
Scherrer, 2017). Only the second sentence in
the translation will be kept for evaluation of
the translation quality.

Extended context models only make sense with
coherent training data. Therefore, we ran exper-
iments only with the training data that contain
translated documents, i.e. Europarl, NewsCom-
mentary, Rapid and the back-translations of the
German news from 2018. Hence, the baseline is
lower than a sentence-level model on the com-
plete data sets provided by WMT. Table 10 sum-
marizes the results on the development test data
(news 2018).

BLEU news2018
System Shuffled Coherent

Baseline 38.96 38.96
2+1 36.62 37.17
3+1a 33.90 34.30
3+1b 34.14 34.39
1t+1s+1 36.82 37.24
2+2 38.53 39.08

Table 10: Comparison of concatenation approaches for
English–German document-level translation.

The results overall are rather disappointing. All
but one of the concatenation models underperform
and cannot beat the sentence-level baseline. Note
that the concat-target model (1t+1s+1) even refers
to an oracle experiment in which the reference
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translation of the previous sentence is fed into the
translation model for translating the current source
sentence. As this is not very successful, we did
not even try to run a proper evaluation with sys-
tem output provided as target context during test-
ing. Besides the shortcomings, we can neverthe-
less see a consistent pattern that the extended con-
text models indeed pick up information from dis-
course. For all models we observe a gain of about
half a BLEU point when comparing the shuffled
to the non-shuffled versions of the test set. This is
interesting and encourages us to study these mod-
els further in future work, possibly with different
data sets, training procedures and slightly different
architectures.

4.2 Hierarchical attention models
A number of approaches have been developed
to utilize the attention mechanism to capture ex-
tended context for document-level translation. We
experimented with the two following models:

• NMT-HAN: Sentence-level transformer
model with a hierarchical attention network
to capture the document-level context (Mi-
culicich et al., 2018).

• selectAttn: Selective attention model for
context-aware neural machine transla-
tion (Maruf et al., 2019).

For testing the selectAttn model, we used the
same data with document-level information as we
applied in the concatenation models. For NMT-
HAN we had to use a smaller training set due to
lack of resources and due to the implementation
not supporting data shards. For NMT-HAN we
used only Europarl, NewsCommentary and Rapid
for training. Table 11 summarizes the results on
the development test data. Both of the tested mod-
els need to be trained on sentence-level first, be-
fore tuning the document-level components.

Model Sentence-level Document-level

NMT-HAN 35.03 31.73
selectAttn 35.26 34.75

Table 11: Results (case-sensitive BLEU) of the hierar-
chical attention models on the coherent newstest 2018
dataset.

The architecture of the selective attention model
is based on the general transformer model but with

quite a different setup in terms of hyperparame-
ters and dimensions of layer components etc. We
applied the basic settings following the documen-
tation of the software. In particular, the model
includes 4 layers and 8 attention heads, and the
dimensionality of the hidden layers is 512. We
applied a sublayer and attention dropout of 0.1
and trained the sentence-level model for about 3.5
epochs. We selected monolingual source-side con-
text for our experiments and hierarchical docu-
ment attention with sparse softmax. Otherwise,
we also apply the default parameters suggested
in the documentation with respect to optimizers,
learning rates and dropout. Unfortunately, the re-
sults do not look very promising as we can see
in Table 11. The document-level model does not
even reach the performance of the sentence-level
model even though we trained until convergence
on development data with patience of 10 reporting
steps, which is quite disappointing. Overall, the
scores are below the standard transformer models
of the other experiments, and hence, we did not try
to further optimize the results using that model.

For the NMT-HAN model we used the imple-
mentation of Miculicich et al. (2018) with the
recommended hyperparameter values and settings.
The system is based on the OpenNMT-py imple-
mentation of the transformer. The model includes
6 hidden layers on both the encoder and decoder
side with a dimensionality of 512 and the multi-
head attention has 8 attention heads. We applied
a sublayer and attention dropout of 0.1. The tar-
get and source vocabulary size is 30K. We trained
the sentence-level model for 20 epochs after which
we further fine-tuned the encoder side hierarchi-
cal attention for 1 epoch and the joint encoder-
decoder hierarchical attention for 1 epoch. The re-
sults for the NMT-HAN model are disappointing.
The document-level model performs significantly
worse than the sentence-level model.

5 Results from WMT 2019

Table 12 summarizes our results from the WMT
2019 news task. We list the official score from
the submitted systems and post-WMT scores that
come from models described above. For Finnish–
English and English–Finnish, the submitted sys-
tems correspond to premature single models that
did not converge yet. Our submitted English–
German model is the ensemble of 9 models de-
scribed in Section 3.2.
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Language pair Model BLEU

English–German submitted 41.4
L2R+R2L 42.95

Finnish–English submitted 26.7
L2R+R2L 27.80

English–Finnish submitted 20.8
rule-based 8.9
L2R+R2L 23.4

Table 12: Final results (case-sensitive BLEU scores)
on the 2019 news test set; partially obtained after the
deadline.

The ensemble results clearly outperform those
results but were not ready in time. We are still be-
low the best performing system from the official
participants of this year’s campaign but the final
models perform in the top-range of all the three
tasks. For English–Finnish, our final score would
end up on a third place (12 submissions from 8
participants), for Finnish–English it would be the
fourth-best participant (out of 9), and English–
German fifth-best participant (out of 19 with 28
submissions).

6 Conclusions

In this paper, we presented our submission for
the WMT 2019 news translation task in three lan-
guage pairs: English–German, English–Finnish
and Finnish–English.

For all the language pairs we spent considerable
time on cleaning and filtering the training data,
which resulted in a significant reduction of train-
ing examples without a negative impact on trans-
lation quality.

For English–German we focused both on
sentence-level neural machine translation models
as well as document-level models. For English–
Finnish, our submissions consists of an NMT
system as well as a rule-based system whereas
the Finnish–English system is an NMT system.
For the English–Finnish and Finnish–English lan-
guage pairs, we compared the impact of different
segmentation approaches. Our results show that
the different segmentation approaches do not sig-
nificantly impact BLEU scores. However, our ex-
periments highlight the well-known fact that en-
sembling and domain adaptation have a significant
positive impact on translation quality.

One surprising finding was that none of the

document-level approaches really worked, with
some even having a negative effect on translation
quality.
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Abstract

We Microsoft Research Asia made submis-
sions to 11 language directions in the WMT19
news translation tasks. We won the first
place for 8 of the 11 directions and the sec-
ond place for the other three. Our basic sys-
tems are built on Transformer, back transla-
tion and knowledge distillation. We integrate
several of our rececent techniques to enhance
the baseline systems: multi-agent dual learn-
ing (MADL), masked sequence-to-sequence
pre-training (MASS), neural architecture opti-
mization (NAO), and soft contextual data aug-
mentation (SCA).

1 Introduction

We participated in the WMT19 shared news
translation task in 11 translation direc-
tions. We achieved first place for 8 direc-
tions: German↔English, German↔French,
Chinese↔English, English→Lithuanian,
English→Finnish, and Russian→English, and
three other directions were placed second (ranked
by teams), which included Lithuanian→English,
Finnish→English, and English→Kazakh.

Our basic systems are based on Transformer,
back translation and knowledge distillation. We
experimented with several techniques we pro-
posed recently. In brief, the innovations we intro-
duced are:

Multi-agent dual learning (MADL) The core
idea of dual learning is to leverage the duality be-
tween the primal task (mapping from domain X to
domain Y) and dual task (mapping from domain
Y to X ) to boost the performances of both tasks.
MADL (Wang et al., 2019) extends the dual learn-
ing (He et al., 2016; Xia et al., 2017a) framework
by introducing multiple primal and dual models.
It was integrated into our submitted systems for

*Corresponding author. This work was conducted at Mi-
crosoft Research Asia.

German↔English and German↔French transla-
tions.

Masked sequence-to-sequence pretraining
(MASS) Pre-training and fine-tuning have
achieved great success in language understanding.
MASS (Song et al., 2019), a pre-training method
designed for language generation, adopts the
encoder-decoder framework to reconstruct a
sentence fragment given the remaining part of
the sentence: its encoder takes a sentence with
randomly masked fragment (several consecutive
tokens) as input, and its decoder tries to predict
this masked fragment. It was integrated into our
submitted systems for Chinese→English and
English→Lithuanian translations.

Neural architecture optimization (NAO) As
well known, the evolution of neural network ar-
chitecture plays a key role in advancing neural ma-
chine translation. Neural architecture optimization
(NAO), our newly proposed method (Luo et al.,
2018), leverages the power of a gradient-based
method to conduct optimization and guide the cre-
ation of better neural architecture in a continuous
and more compact space given the historically ob-
served architectures and their performances. It
was applied in English↔Finnish translations in
our submitted systems.

Soft contextual data augmentation (SCA)
While data augmentation is an important trick to
boost the accuracy of deep learning methods in
computer vision tasks, its study in natural lan-
guage tasks is relatively limited. SCA (Zhu et al.,
2019) softly augments a randomly chosen word in
a sentence by its contextual mixture of multiple re-
lated words, i.e., replacing the one-hot representa-
tion of a word by a distribution provided by a lan-
guage model over the vocabulary. It was applied
in Russian→English translation in our submitted
systems.
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2 Our Techniques

2.1 Multi-agent dual learning (MADL)

MADL is an enhanced version of dual learn-
ing (He et al., 2016; Wang et al., 2018). It lever-
ages N primal translation models fi and N dual
translation models gj for training, and eventually
outputs one f0 and one g0 for inference, where fi :
X 7→ Y, gj : Y 7→ X , i, j ∈ {0, 1, · · · , N − 1}.
All these models are pre-trained on bilingual data
. The i-th primal model fi has a non-negative
weight αi and the j-th dual model gi has a non-
negative weight βj . All the α·’s and β·’s are hyper-
parameters. Let Fα denote a combined translation
model from X to Y , and Gβ a combined transla-
tion model from Y to X ,

Fα =
N−1∑

i=0

αifi, Gβ =
N−1∑

j=0

βjgj ;

s.t.
N−1∑

i=0

αi = 1;
N−1∑

j=0

βj = 1.

(1)

Fα and Gβ work as follows: for any x ∈ X and
y ∈ Y ,

Fα(x) : ŷ = argmaxỹ∈Y

N−1∑

i=0

αi logP (ỹ|x; fi);

Gα(y) : x̂ = argmaxx̃∈X

N−1∑

j=0

βj logP (x̃|y; gj).

Let B denote the bilingual dataset. Let Mx and
My denote the monolingual data of X and Y . The
training objective function of MADL can be writ-
ten as follows:

min
f0, g0

− 1

|B|
∑

(x,y)∈B
logP (y|x; f0)

− 1

|B|
∑

(x,y)∈B
logP (x|y; g0)

− 1

|Mx|
∑

x∈Mx

logP (x|Gβ(Fα(x)))

− 1

|My|
∑

y∈My

logP (y|Fα(Gβ(y))).

(2)

Note that f>0 and g>0 will not be optimized dur-
ing training and we eventually output f0 and g0 for
translation. More details can be found in (Wang
et al., 2019).

2.2 Masked sequence-to-sequence
pre-training (MASS)

MASS is a pre-training method for language gen-
eration. For machine translation, it can leverage
monolingual data in two languages to pre-train a
translation model. Given a sentence x ∈ X , we
denote x\u:v as a modified version of x where
its fragment from position u to v are masked,
0 < u < v < m and m is the number of tokens of
sentence x. We denote k = v − u+ 1 as the num-
ber of tokens being masked from position u to v.
We replace each masked token by a special sym-
bol [M], and the length of the masked sentence is
not changed. xu:v denotes the sentence fragment
of x from u to v.

MASS pre-trains a sequence to sequence model
by predicting the sentence fragment xu:v taking
the masked sequence x\u:v as input. We use the
log likelihood as the objective function:

L(θ;X ) =
1

|X |Σx∈X logP (xu:v|x\u:v; θ),

L(θ;Y) =
1

|Y|Σy∈Y logP (yu:v|y\u:v; θ),
(3)

where X , Y denote the source and target domain.
We also extend MASS to supervised setting where
bilingual sentence pair (x, y) ∈ (X ,Y) can be
leveraged for pre-training. The log likelihood in
the supervised setting is as follows:

L(θ; (X ,Y)) = Σ(x,y)∈(X ,Y)(logP (y|x\u:v; θ)
+ logP (x|y\u:v; θ)
+ logP (xu:v|[x\u:v; y\u:v]; θ)
+ logP (yu:v|[x\u:v; y\u:v]; θ)
+ logP (yu:v|x\u:v; θ) + logP (xu:v|y\u:v; θ)).

(4)
where [·; ·] represents the concatenation oper-
ation. P (y|x\u:v; θ) and P (x|y\u:v; θ) denote
the probability of translating a masked sequence
to another language, which encourage the en-
coder to extract meaningful representations of
unmasked input tokens in order to predict the
masked output sequence. P (xu:v|[x\u:v; y\u:v]; θ)
and P (yu:v|[x\u:v; y\u:v]; θ) denote the probabil-
ity of generating the masked source/target seg-
ment given both the masked source and target se-
quences, which encourage the model to extract
cross-lingual information. P (yu:v|x\u:v; θ) and
P (xu:v|y\u:v; θ) denote the probability of gener-
ating the masked fragment given only the masked
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sequence in another language. More details about
MASS can be found in Song et al. (2019).

2.3 Neural architecture optimization (NAO)
NAO (Luo et al., 2018) is a gradient based neu-
ral architecture search (NAS) method. It contains
three key components: an encoder, an accuracy
predictor, and a decoder, and optimizes a network
architecture as follows. (1) The encoder maps a
network architecture x to an embedding vector ex
in a continuous space E . (2) The predictor, a func-
tion f , takes ex ∈ E as input and predicts the dev
set accuracy of the architecture x. We perform a
gradient ascent step, i.e., moving ex along the di-
rection specified via the gradient ∂f

∂ex
, and get a

new embedding vector ex′ :

ex′ = ex + η
∂f

∂ex
, (5)

where η is the step size. (3) The decoder is used to
map ex′ back to the corresponding architecture x′.
The new architecture x′ is assumed to have better
performance compared with the original one x due
to the property of gradient ascent. NAO repeats
the above three steps, and sequentially generates
better and better architectures.

To learn high-quality encoder, decoder and per-
formance prediction function, it is essential to
have a large quantity of paired training data in the
form of (x, y), where y is the dev set accuracy
of the architecture x. To reduce computational
cost, we share weights among different architec-
tures (Pham et al., 2018) to aid the generation of
such paired training data.

We use NAO to search powerful neural
sequence-to-sequence architectures. The search
space is illustrated in Fig. 1. Specifically, each
network is composed of N encoder layers and N
decoder layers. We set N = 6 in our experiments.
Each encoder layer further contains 2 nodes and
each decoder layer contains 3 nodes. The node
has two branches, respectively taking the output
of other node as input, and applies a particular
operator (OP), for example, identity, self-attention
and convolution, to generate the output. The out-
puts of the two branches are added together as the
output of the node. Each encoder layer contains
two nodes while each decoder layer has three. For
each layer, we search: 1) what is the operator at
each branch of every node. For a comprehen-
sive list of different OPs, please refer to the Ap-
pendix of this paper; 2) the topology of connection

between nodes within each layer. In the middle
part of Fig. 1, we plot possible connections within
the nodes of a layer specified by all candidate ar-
chitectures, with a particular highlight of Trans-
former (Vaswani et al., 2017).

To construct the final network, we do not adopt
the typically used way of stacking the same layer
multiple times. Instead we assume that layers in
encoder/decoder could have different architectures
and directly search such personalized architecture
for each layer. We found that such a design signif-
icantly improves the performance due to the more
flexibility.

2.4 Soft contextual data augmentation (SCA)
SCA is a data augmentation technology for NMT
(Zhu et al., 2019), which replaces a randomly cho-
sen word in a sentence with its soft version. For
any word w ∈ V , its soft version is a distribu-
tion over the vocabulary of |V | words: P (w) =
(p1(w), p2(w), ..., p|V |(w)), where pj(w) ≥ 0 and
∑|V |

j=1 pj(w) = 1.
Given the distribution P (w), one may simply

sample a word from this distribution to replace the
original word w. Different from this method, we
directly use this distribution vector to replace the
randomly chosen word w from the original sen-
tence. Suppose E is the embedding matrix of all
the |V | words. The embedding of the soft version
of w is

ew = P (w)E =

|V |∑

j=0

pj(w)Ej , (6)

which is the expectation of word embeddings over
the distribution.

In our systems, we leverage a pre-trained lan-
guage model to compute P (w) and condition on
all the words preceding w. That is, for the t-th
word xt in a sentence, we have

pj(xt) = LM(vj |x<t),
where LM(vj |x<t) denotes the probability of the
j-th word vj in the vocabulary appearing after the
sequence x1, x2, · · · , xt−1. The language model
is pre-trained using the monolingual data.

3 Submitted Systems

3.1 English↔German
We submit constrained systems to both English to
German and German to English translations, with
the same techniques.
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Figure 1: Visualization of different levels of the search space, from the network, to the layer, to the node. For
each of the different layers, we search its unique layer space. The lines in the middle part denote all possible
connections between the three nodes (constituting the layer space) as specified via each architecture, while among
them the deep black lines indicate the particular connection in Transformer. The right part similarly contains the
two branches used in Node2 of Transformer.

Dataset We concatenate “Europarl v9”, “News
Commentary v14”, “Common Crawl corpus”
and “Document-split Rapid corpus” as the ba-
sic bilingual dataset (denoted as B0). Since
“Paracrawl” data is noisy, we select 20M bilin-
gual data from this corpus using the script
filter interactive.py1. The two parts of
bilingual data are concatenated together (denoted
as B1). We clean B1 by normalizing the sentences,
removing non-printable characters, and tokeniza-
tion. We share a vocabulary for the two languages
and apply BPE for word segmentation with 35000
merge operations. (We tried different BPE merge
operations but found no significant differences.)
For monolingual data, we use 120M English sen-
tences (denoted asMen) and 120M German sen-
tences (denoted as Mde) from Newscrawl, and
preprocess them in the same way as bilingual data.
We use newstest 2016 and the validation set and
newstest 2018 as the test set.

Model Configuration We use the PyTorch im-
plementation of Transformer2. We choose the
Transformer big setting, in which both the en-
coder and decoder are of six layers. The dropout
rate is fixed as 0.2. We set the batchsize as 4096
and the parameter --update-freq as 16. We
apply Adam (Kingma and Ba, 2015) optimizer
with learning rate 5× 10−4.

Training Pipeline The pipeline consists of three
steps:

1. Pre-train two English→German trans-
lation models (denoted as f̄1 and f̄2) and

1Scripts at https://tinyurl.com/yx9fpoam
2https://github.com/pytorch/fairseq

two German→English translation models (de-
noted as ḡ1 and ḡ2) on B1; pre-train an-
other English→German (denoted as f̄3) and
German→English (denoted as ḡ3) on B0.

2. Apply back translation following (Sennrich
et al., 2016a; Edunov et al., 2018). We back-
translate Men and Mde using f̄3 and ḡ3 with
beam search, add noise to the translated sen-
tences (Edunov et al., 2018), merge the synthetic
data with B1, and train one English→German
model f0 and one German→English model g0 for
seven days on eight V100 GPUs.

3. Apply MADL to f0 and g0. That is, the
Fα in Eqn.(2) is specified as the combination of
f0, f̄1, f̄2 with equal weights; and Gβ consists of
g0, ḡ1, ḡ2. During training, we will only update f0
and g0. To speed up training, we randomly select
20M monolingual English and German sentences
fromMen andMde respectively instead of using
all monolingual sentences. The eventual output
models are denoted as f1 and g1 respectively. This
step takes 3 days on four P40 GPUs.

Table 1: Results of English↔German by sacreBLEU.

En→De De→En
news16 news18 news16 news18

baseline 37.4 45.6 41.9 44.9
BT 39.2 47.4 45 47.1

MADL 41.9 50.4 47.4 49.1

Results The results are summarized in Table 1,
which are evaluated by sacreBLEU3. The baseline

3https://github.com/mjpost/sacreBLEU
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is the average accuracy of models using only bi-
text, i.e., f̄1 and f̄2 for English→German transla-
tion and ḡ1 and ḡ2 for German→English, and BT
is the accuracy of the model after back-translation
training. As can be seen, back translation im-
proves accuracy. For example, back-translation
boosts the BLEU score from 45.6 to 47.4 on
news18 English→German translation, which is
1.8 point improvement. MADL further boosts
BLEU to 50.4, obtaining another 3-point im-
provement, demonstrating the effectiveness of our
method.

For the final submission, we accumulate many
translation models (trained using bitext, back
translation, and MADL, with different random
seeds) and do knowledge distillation on the source
sentences from WMT14 to WMT19 test sets. Take
English→German translation as an example. De-
note the English inputs as T = {si}NT

i=1, whereNT

is the size of the test set. For each s in T , we trans-
late s to d′ usingM English→German models and
eventually obtain

E = {(si, f (j)(si))|s ∈ T }i,j , i ∈ [NT ], j ∈ [M ],

where f (j) is the j-th translation model we ac-
cumulated, T is the combination of inputs from
WMT14 to WMT19. After obtaining E , we ran-
domly select NTM bitext pairs (denoted as B2)
from B1 and finetune model f1 on B2∪E . We stop
tuning when the BLEU scores of WMT16 (i.e., the
validation set) drops.

We eventually obtain 44.9 BLEU score for
English→German and 42.8 for German→English
on WMT19 test sets and are ranked in the first
place in these two translation tasks.

3.2 German↔French
For German↔French translation, we fol-
low a similar process as the one used to
English↔German tasks introduced in Section 3.1.
We merge the “commoncrawl”, “europarl-v7”
and part of “de-fr.bicleaner07” selected by
filter interactive.py as the bilingual
data. We collect 20M monolingual sentences for
French and 20M for German from newscrawl.
The data pre-processing rule and training pro-
cedure are the same as that used in Section 3.1.
We split 9k sentences from the “dev08 14” as the
validation set and use the remaining ones as the
test set.

The results of German↔French translation on
the test set are summarized in Table 2.

Table 2: Results of German↔French by sacreBLEU.

De→Fr Fr→De
baseline 29.5 23.4
MADL 31.5 24.9

Again, our method achieves significant im-
provement over the baselines. Specifically,
MADL boosts the baseline of German→French
and French→German by 2 and 1.5 points respec-
tively.

Our submitted German→French is a single sys-
tem trained by MADL, achieving 37.3 BLEU on
WMT19. The French→German is an ensemble
of three independently trained models, achiev-
ing 35.0 BLEU score. Our systems are ranked
in the first place for both German→French and
French→German in the leaderboard.

3.3 Chinese→English

Dataset For Chinese→English translation, we
use all the bilingual and monolingual data pro-
vided by the WMT official website, and also
extra bilingual and monolingual data crawled
from the web. We filter the total 24M
bilingual pairs from WMT using the script
filter interactive.py as described in
Section 3.1 and get 18M sentence pairs. We use
the Chinese monolingual data from XMU mono-
lingual corpus4 and English monolingual data
from News Crawl as well as the English sentences
from all English-XX language pairs in WMT.
We use 100M additional parallel sentences drawn
from UN data, Open Subtitles and Web crawled
data, which is filtered using the same filter rule
described above, as well as fast align and in/out-
domain filter. Finally we get 38M bilingual pairs.
We also crawled 80M additional Chinese mono-
lingual sentences from Sougou, China News, Xin-
hua News, Sina News, Ifeng News, and 2M En-
glish monolingual sentences from China News and
Reuters. We use newstest2017 and newstest2018
on Chinese-English as development datasets.

We normalize the Chinese sentence from SBC
case to DBC case, remove non-printable charac-
ters and tokenize with both Jieba5 and PKUSeg6

to increase diversity. For English sentences, we re-
move non-printable characters and tokenize with

4http://nlp.nju.edu.cn/cwmt-wmt/
5https://github.com/fxsjy/jieba
6https://github.com/lancopku/PKUSeg-python
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Moses tokenizer7. We follow previous prac-
tice (Hassan et al., 2018) and apply Byte-Pair En-
coding (BPE) (Sennrich et al., 2016b) separately
for Chinese and English, each with 40K vocabu-
lary.

MASS Pre-training We pre-train MASS
(Transfomer big) with both monolingual and
bilingual data. We use 100M Chinese and 300M
English monolingual sentences for the unsuper-
vised setting (Equation 3), and with a total of
56M bilingual sentence pairs for the supervised
setting (Equation 4). We share the encoder and
decoder for all the losses in Equation 3 and 4.
We then fine-tune the MASS pre-trained model
on both 18M and 56M bilingual sentence pairs
to get the baseline translation model for both
Chinese→English and English→Chinese.

Back Translation and Knowledge Distillation
We randomly choose 40M monolingual sentences
for Chinese and English respectively for back
translation following (Sennrich et al., 2016a; He
et al., 2016) and sequence-level knowledge distil-
lation following (Kim and Rush, 2016). We iterate
back translation and knowledge distillation multi-
ple times, to gradually boost the performance of
the model.

Results The results on newstest2017 and new-
stest2018 are shown in Table 3. We list two
baseline Transformer big systems which use 18M
bilingual data (constraint) and 56M bilingual data
(unconstraint) respectively. The pre-trained model
achieves about 1 BLEU point improvement after
fine-tuning on both 18M and 56M bilingual data.
After iterative back translation (BT) and knowl-
edge distillation (KD), as well as re-ranking, our
system achieves 30.8 and 30.9 BLEU points on
newstest2017 and newstest2018 respectively.

System newstest17 newstest18

Baseline (18M) 24.2 24.5
+ MASS (18M) 25.2 25.4
Baseline (56M) 26.9 27.0
+ MASS (56M) 28.0 27.8
+ Iterative BT/KD 30.4 30.5
+ Reranking 30.8 30.9

Table 3: BLEU scores on Chinese→English test sets.

7https://github.com/moses-smt/mosesdecoder/blob/maste
r/scripts/tokenizer/tokenizer.perl

WMT19 Submission For the WMT19 submis-
sion, we conduct fine-tuning and speculation to
further boost the accuracy by using the source sen-
tences in the WMT19 test set. We first filter the
bilingual as well as pseudo-generated data accord-
ing to the relevance to the source sentences. We
use the filter method in Deng et al. (2018) and
continue to train the model on the filtered data.
Second, we conduct speculation on the test source
sentences following the practice in Deng et al.
(2018). The final BLEU score of our submission
is 39.3, ranked in the first place in the leaderboard.

3.4 English↔Lithuanian

For English↔Lithuanian translation, we follow
the similar process as that for Chinese→English
task introduced in Section 3.3. We use all the
WMT bilingual data, which is 2.24M after filtra-
tion. We use the same English monolingual data as
used in Chinese-English. We select 100M Lithua-
nian monolingual data from official commoncrawl
and use all the wiki and news Lithuanian mono-
lingual data provided by WMT. In addition, we
crawl 5M Lithuanian news data from LRT web-
site8. We share the BPE vocabulary between En-
glish and Lithuanian, and the vocabulary size is
65K.

All the bilingual and monolingual data are used
for MASS pre-training, and all the bilingual data
are used for fine-tuning. For iterative back trans-
lation and knowledge distillation, we split 24M
English monolingual data as well as 12M Lithua-
nian monolingual data into 5 parts through sam-
pling with replacement, to get different models
independently so as to increase diversity in re-
ranking/ensemble. Each model uses 8M English
monolingual data and 6M Lithuanian monolingual
data. For our WMT19 submission, different from
zh-en, speculation technology is not used.

The BLEU scores on newsdev19 are
shown in Table 4. Our final submissions
for WMT19 achieves 20.1 BLEU points for
English→Lithuanian translation (ranked in the
first place) and 35.6 for Lithuanian→English
translation (ranked in the second place).

3.5 English↔Finnish

Preprocess We use the official English-Finnish
data from WMT19, including both bilingual data
and monolingual data. After de-duplicating, the

8https://www.lrt.lt/
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System En→Lt Lt→En

Baseline 20.7 28.2
MASS + Fine-tune 21.5 28.7
+ Iterative BT/KD 28.3 33.6
+ Reranking 29.1 34.2

Table 4: BLEU scores for English↔Lithuanian on the
newsdev19 set.

bilingual data contains 8.8M aligned sentence
pairs. We share the vocabulary for English and
Finnish with 46k BPE units. We use the WMT17
and WMT18 English-Finnish test sets as two de-
velopment datasets, and tune hyper-parameters
based on the concatenation of them.

Architecture search We use NAO to search
sequence-to-sequence architectures for English-
Finnish translation tasks, as introduced in subsec-
tion 2.3. We use PyTorch for our implementa-
tions. Due to time limitations, we are not targeting
at finding better neural architectures than Trans-
former; instead we target at models with com-
parable performance to Transformer, while pro-
viding diversity in the reranking process. The
whole search process takes 2.5 days on 16 P40
GPU cards and the discovered neural architecture,
named as NAONet, is visualized in the Appendix.

Train single models The final system for
English-Finnish is obtained through reranking of
three strong model checkpoints, respectively from
the Transformer model decoding from left to right
(L2R Transformer), the Transformer model de-
coding from right to left (R2L Transformer) and
NAONet decoding from left to right. All the mod-
els have 6-6 layers in encoder/decoder, and are ob-
tained using the same process which is detailed as
below.

Step 1: Base models. Train two models
P1(x|y) and P1(y|x) based on all the bilingual
dataset (8.8M), respectively for English→Finnish
and Finnish→English translations.

Step 2: Back translation. Do the normal back
translation (Sennrich et al., 2016a; He et al., 2016)
using P1 and P2. Specifically we choose 10M
monolingual English corpus, use P1(y|x) to gen-
erate the 10M pseudo bitext with beam search
(beam size is set to 5), and mix it with the bilin-
gual data to continue the training of P1(x|y). The
ratio of mixing is set as 1 : 1 through up-sampling.
The model obtained through such a process is de-

noted as P2(x|y). The same process is applied to
the opposite direction and the new model P2(y|x)
is attained.

Step 3: Back translation + knowledge distilla-
tion. In this step we generate more pseudo bi-
text by sequence level knowledge distillation (Kim
and Rush, 2016) apart from using back translation.
To be more concrete, as the first step, similar to
Step 2, we choose 15M monolingual English and
Finnish corpus, and generate the translations us-
ing P2(y|x) and P2(x|y), respectively. The result-
ing pseudo bitext is respectively denoted as Dx→y
and Dy→x. Then we concatenate all the bilingual
data, Dx→y and Dy→x, and use the whole corpus
to train a new English-Finnish model from scratch.
The attained model is denoted as P3(y|x).

Step 4: Finetune. In this step we try a very
simple data selection method to handle the do-
main mismatch problem in WMT. We remove
all the bilingual corpus from Paracrawl which is
generally assumed to be quite noisy (Junczys-
Dowmunt, 2018) and use the remaining bilingual
corpus (4.5M ) to finetune P3(y|x) for one epoch.
The resulting model is denoted as P4(y|x) which
is set as the final model checkpoint.

newstest17 newstest18
Baseline 26.09 16.07

+BT 28.84 18.54
+BT & KD 29.76 19.13
+Finetune 30.19 19.46

Table 5: BLEU scores of L2R Transformer on
English→Finnish test sets.

newstest17 newstest18
L2R Transformer 30.19 19.46
R2L Transformer 30.40 19.73

NAONet 30.54 19.58

Table 6: The final BLEU scores on English→Finnish
test sets, for the three models: L2R Transformer, R2L
Transformer and NAONet, after the four steps of train-
ing.

To investigate the effects of the four steps, we
record the resulting BLEU scores on WMT17 and
WMT18 test sets in Table 5, taking the L2R Trans-
former model as an example. Furthermore, we re-
port the final BLEU scores of the three models af-
ter the four steps in Table 6. All the results are
obtained via beam size 5 and length penalty 1.0.
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The similar results for Finnish-English translation
are shown in Table 7.

newstest17 newstest18
L2R Transformer 35.66 25.56
R2L Transformer 35.31 25.56

NAONet 36.18 26.38

Table 7: The final BLEU scores on Finnish→English
test sets, for the three models: L2R Transformer, R2L
Transformer and NAONet, after the four steps of train-
ing.

Re-ranking We use n-best re-ranking to deliver
the final translation results using the three model
checkpoints introduced in the last subsection. The
beam size is set as 12. The weights of the three
models, as well as the length penalty in generation,
are tuned on the WMT-18 test sets. The results are
shown in the second row of Table 8.

We would also like to investigate what is the
influence of the NAONet to the re-ranking re-
sults. To achieve that, in re-ranking we replace
NAONet with another model from L2R Trans-
former, trained with the same process in subsec-
tion 3.5 with the difference only in random seeds,
while maintain the other two models unchanged.
The results are illustrated in the last row of Ta-
ble 8. From the comparison of the two rows in
Table 8, we can see the new architecture NAONet
discovered via NAO brings more diversity in the
ranking, thus leading to better results. We also re-
port the similar results for Finnish-English tasks in
Table 9.

Our systems achieve 27.4 for and 31.9 for
English→Finnish and Finnish→English, ranked
in the first place and second place (by teams), re-
spectively.

3.6 Russian→English
Dataset We use the bitext data from the several
corpora: ParaCrawl, Common Crawl, News Com-
mentary, Yandex Corpus, and UN Parallel Corpus.

news17 news18 news19
Re-ranking
w/ NAONet

31.48 21.21 27.4

Re-ranking
w/o NAONet

30.82 20.79 /

Table 8: English→Finnish BLEU scores of re-ranking
using the three models. “news” is short for “newstest”.

news17 news18 news19
Re-ranking
w/ NAONet

37.54 27.51 31.9

Re-ranking
w/o NAONet

36.83 26.99 /

Table 9: Finnish→English BLEU scores of re-ranking
using the three models.

We also use News Crawl corpora as monolingual
data. The data is filtered by rules such as sentence
length, language identification, resulting a training
dataset with 16M bilingual pairs and 40M mono-
lingual sentences (20M for English and 20M for
Russian). We use WMT17 and WMT18 test set
as development data. The two languages use sep-
arate vocabularies, each with 50K BPE merge op-
erations.

Our system Our final system for
Russian→English translation is a combina-
tion of Transformer network (Vaswani et al.,
2017), back translation (Sennrich et al., 2016a),
knowledge distillation (Kim and Rush, 2016), soft
contextual data augmentation (Zhu et al., 2019),
and model ensemble. We use Transformer big as
network architecture. We first train two models,
English→Russian and Russian→English respec-
tively, on bilingual pairs as baseline model. Based
on these two models, we perform back translation
and knowledge distillation on monolingual data,
generating 40M synthetic data. Combining both
bilingual and synthetic data, we get a large train
corpus with 56M pairs in total. We upsample the
bilingual pairs and shuffle the combined corpus
to ensure the balance between bilingual and syn-
thetic data. Finally, we train the Russian→English
model from scratch. During the training, we
also use soft contextual data augmentation to
further enhance training. Following the above
procedures, 5 different models are trained and
ensembled for final submission.

Results Our final submission achieves 40.1
BLEU score, ranked first in the leaderboard. Table
10 reports the results of our system on the devel-
opment set.

3.7 English→Kazakh

Dataset We notice that most of the parallel data
are out of domain. Therefore, we crawl some ex-
ternal data:
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newstest17 newstest18
Baseline 36.5 32.6

+BT & KD 40.9 35.2
+SCA 41.7 35.6

Table 10: Russian→English BLEU scores.

(1) We crawl all news articles from inform.
kz, a Kazakh-English news website. Then we
match an English new article to a Kazakh one by
matching their images with image hashing. In this
way, we find 10K pairs of bilingual news articles.
We use their title as additional parallel data. These
data are in-domain and useful in training.

(2) We crawl 140K parallel sentence pairs from
glosbe.com. Although most of these sentences
are out-of-domain, they significantly extended the
size of our parallel dataset and lead to better re-
sults.

Because most of our parallel training data are
noisy, we filter these data with some rules: (1) For
the KazakhTV dataset, we remove any sentence
pair with an alignment score less than 0.05. (2)
For the Wiki Titles dataset, we remove any sen-
tence pair that starts with User or NGC. (3) For
all datasets, we remove any sentence pair in which
the English sentence contains no lowercase alpha-
bets. (4) For all datasets, we remove any sentence
pair where the length ratio is greater than 2.5:1.

We tokenize all our data using the Moses De-
coder. We learn a shared BPE (Sennrich et al.,
2016b) from all our data (including all WMT19
parallel data, WMT19 monolingual data9, glosbe,
inform.kz news titles, and inform.kz news con-
tents) and get a shared vocabulary of 49,152 to-
kens. Finally, our dataset consists of 300K bilin-
gual sentence pairs, 700K Kazakh monolingual
sentences, and many English monolingual sen-
tences.

Our system Our model is based on the Trans-
former (Vaswani et al., 2017). We vary the hyper-
parameters to increase the diversity of our model.
Our models usually have 6 encoder layers, 6/7 de-
coder layers, ReLU/GELU (Hendrycks and Gim-
pel, 2016) activation function, and an embedding
dimension of 640.

We train 4 English-Kazakh models and 4
Kazakh-English models with different random

9When we learn BPE, English monolingual data is down-
sampled to make the number of English sentences roughly
the same as the number of Kazakh sentences.

seeds and hyper-parameters. Then we apply back-
translation (Edunov et al., 2018) and knowledge
distillation (Kim and Rush, 2016) for 6 rounds. In
each round, we

1. Sample 4M sentences from English monolin-
gual data and back-translate them to Kazakh with
the best EN-KK model (on the dev set) in the pre-
vious round.

2. Back-translate all Kazakh monolingual data
to English with the best KK-EN model in the pre-
vious round.

3. Sample 200K sentences from English mono-
lingual data and translate them to Kazakh using
the ensemble of all EN-KK models in the previ-
ous round.

4. Train 4 English-Kazakh models with BT data
from step 2 and KD data from step 3. We up-
sample bilingual sentence pairs by 2x.

5. Train 4 Kazakh-English models with BT data
from step 1. We up-sample bilingual sentence
pairs by 3x.

Result Our final submission achieves 10.6
BLEU score, ranked second by teams in the
leaderboard.

4 Conclusions

This paper describes Microsoft Research Asia’s
neural machine translation systems for the
WMT19 shared news translation tasks. Our sys-
tems are built on Transformer, back translation
and knowledge distillation, enhanced with our
recently proposed techniques: multi-agent dual
learning (MADL), masked sequence-to-sequence
pre-training (MASS), neural architecture opti-
mization (NAO), and soft contextual data aug-
mentation (SCA). Due to time and GPU limita-
tions, we only apply each technique to a subset
of translation tasks. We believe combining them
together will further improve the translation accu-
racy and will conduct experiments in the future.
Furthermore, some other techniques such as de-
liberation learning (Xia et al., 2017b), adversar-
ial learning (Wu et al., 2018b), and reinforcement
learning (He et al., 2017; Wu et al., 2018a) could
also hep and are worthy of exploration.
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Abstract

Machine translation is one of the most popular
areas in natural language processing. WMT
is a conference to assess the level of ma-
chine translation capabilities of organization-
s around the world, which is the evaluation
activity we participated in. In this review
we participated in a two-way translation track
from Russian to English and English to Rus-
sian. We used official training data, 38 mil-
lion parallel corpora, and 10 million monolin-
gual corpora. The overall framework we use
is the Transformer(Vaswani et al., 2017) neu-
ral machine translation model, supplemented
by data filtering, post-processing, reordering
and other related processing methods. The
BLEU(Papineni et al., 2002) value of our final
translation result from Russian to English is
38.7, ranking 5th, while from English to Rus-
sian is 27.8, ranking 10th.

1 Introduction

Neural machine translation has been widely used
in the field of machine translation, because it is
more accurate than statistical machine translation
in most cases. The proposed attention mechanis-
m brought a new revolution in the neural machine
translation, making the overall effect of translation
much better than before. Then, the Transformer
that makes full use of the attention mechanism ,
both in terms of performance and effectiveness.
Up to now, most of the work has been carried out
on Transformer, and its superiority has been wide-
ly recognized.

From the beginning of machine translation re-
search, there has been the development of two-
way translation between Russian and English. As
early as 1954, Georgetown University in the U-
nited States under the IBM company completed
the English-Russian machine translation experi-
ment with IBM-701 computer, which opened the

prelude of machine translation research. Dur-
ing the period, there are three core technologies,
rule-based machine translation, statistical machine
translation(Koehn et al., 2007) and neural machine
translation(Bahdanau et al., 2014), which contin-
ue to develop. However, as the application field-
s of machine translation become more and more
complex, the limitations of different technologies
begin to appear. Because of the more application
scenarios and the higher requirements for accura-
cy, the problem of model optimization appeared.

The translation between Russian and English
is extremely difficult because their linguistic fea-
tures are distinguished and the lexical composition
and grammatical structure of Russian are more
complicated than English. Early statistical ma-
chine translations were hoped to be implemented
through phrase-based methods(Marcu and Wong,
2002), including rule-based lexical, phrase analy-
sis systems, and related techniques for language
models and translation models. These methods
have solved the translation problem between Rus-
sian and English to a certain extent. However, at
the same time, there is still a problem that the time
cost is long and the translation result is not good
enough.

Therefore, the emergence of neural machine
translation has brought a new dawn for the trans-
lation between Russian and English. The basic
modeling framework for neural machine transla-
tion is an end-to-end sequence generation model,
a framework and method for transforming input
sequences into output sequences. There are two
points in the core part. One is to represent the in-
put sequence through the encoder, and the other
is to obtain the output sequence through the de-
coder. In addition, for machine translation, neu-
ral machine translation not only includes encod-
ing and decoding, but also uses RNN(Sutskever
et al., 2014) or other methods to encode sentence
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pairs. It also introduces an additional mechanis-
m, the attention mechanism(Luong et al., 2015),
to help us to convert sequences. The translation
results thus obtained more expectations than be-
fore. Later, Transformer appeared, which great-
ly enhances neural machine translation in terms of
performance and effect.

This paper is based on Transformer, a neural
machine translation network structure, to develop
a two-way evaluation task between Russian and
English. Taking into account the language char-
acteristics of Russian and English, we have done
appropriate operations in data preprocessing, in-
cluding removing duplicates, deleting unreason-
able sentence pairs, lowercase and Latinization
operations, and judging sentence alignment prob-
lems, removing the parallel corpus with problems.
The filtered parallel corpus is then sent to the mod-
el for training and the training results are tested.
After getting the trained model, we start to consid-
er using the back-translation operation to augment
the data, continuing to filter the generated artificial
corpus, and put it into the model training together
with the original parallel corpus.

Finally, ensemble(Dietterich, 2000), average
and rerank(Shen et al., 2004) operations are imple-
mented on different models to improve the overall
performance of the translation system.

2 Background

Neural network machine translation is based on a
sequence-to-sequence overall structure consisting
of an encoder and a decoder. The encoder converts
the source language sentence into an intermediate
sequence result, and the decoder converts the in-
termediate sequence result into a target language
sentence. There is also the Attention mechanis-
m to help make the results perform better. In the
construction of the overall translation system, we
used a lot of excellent methods proposed by the
predecessors.

The basic model used here is Transformer. This
is a paper published by Google in 2017 titled At-
tention Is All You Need, an attention-based struc-
ture proposed to deal with sequence model relat-
ed issues, such as machine translation. Tradition-
al neural machine translation mostly uses RNN or
CNN as the model base of encoder-decoder, and
Google’s latest Attention-based Transformer mod-
el abandons the inherent formula and does not use
any CNN or RNN structure. The model works in

Figure 1: Transformer Structure

high-level parallel process, so training speed is al-
so extremely fast while improving translation per-
formance.

The structure of Transformer is shown in Fig-
ure 1. The model is divided into two parts: the
encoder and the decoder. The encoder is stacked
by six identical layers, each with two more sub-
layers. The first sub-layer is a long self-attention
mechanism, and the second sub-layer is a simple
fully connected feed forward network. A residu-
al connection is added outside the two layers, and
then layer normalization is performed. The output
dimensions of all sub-layers and embedding layers
of the model are dmodels; the decoder also stack-
s six identical layers. However, in addition to the
two layers in the encoder, the decoder also adds a
third sub-layer, as shown in the figure which also
uses the residual and layer normalization.

3 Experiment

For this evaluation task, we start from the data
preprocessing, through the data augmentation op-
eration, get the parallel corpus that needs to be
trained, input the Transformer model for training,
and test the training results, and finally ensemble
results according to the model generated by differ-
ent strategies, average and rerank operations, for
the best results. Next, the experimental content
will be elaborated separately. The overall experi-
mental process is shown in Figure 2.

3.1 Data Preprocessing

The first is data preprocessing, which is crucial for
the translation of the model. The sentences used
in this evaluation with data preprocessing method
to filter out include parallel sentence pairs with
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Figure 2: Project Process

high repetition rate, length mismatch and align-
ment problems. The amount of data given by
the official at the beginning was about 38 million
lines. After data filtering, 33 million lines were
left, and 5 million lines were deleted, accounting
for 0.13 of the original quantity. This result is in
line with expectations and acceptable.

The sentence with higher repetition rate has lit-
tle meaning in the training corpus, which increases
the burden of the model and affects the translation
effect, so it needs to perform deduplication opera-
tion. The method used here is to calculate the co-
sine distance of the SimHash value between each
row of data. When the difference is less than 0.2,
we believe it is repeated, and can be deleted. Be-
cause the amount of data is large and the global
deduplication time is too long, so here is a simple
calculation of three sentences before and after cur-
rent line, that is, using a window of size 7 to check
the sentence repetition, which also conforms to the
principle of local consistency.

From the practical experience and linguistic
knowledge, the length of sentences generated by
the two languages expressing the same meaning is
not too different, especially for Russian and En-
glish. So we also screened the length of the sen-
tence. In the experimental processing, we control
the ratio of the source language and the target lan-
guage length to 1/2-2/1, which means that the sen-
tence lengths of the two languages are not more
than twice as large. The length of the sentence is
calculated by the number of tokens. The parallel
sentence pairs thus obtained are also reasonable in
length ratio.

Sentence alignment is a very important factor
to measure the quality of parallel sentence pairs
from the perspective of sentence meaning. Dif-
ferent from the previous method, it needs to enter
sentences themselves and judge whether the data

pairs are reasonable according to the correspon-
dence between words in the two languages. The
gize++ tool(Gao and Vogel, 2008) is used here to
help check for data alignment issues. By reading
Russian-English vocabulary and Russian-English
parallel corpus information, creating a new dictio-
nary, building an IBM model 1, making EM algo-
rithm iteration, generating word alignment infor-
mation, and obtaining a calculated sentence pair
for each data. We generate alignment scores and
eliminate sentence pairs with scores less than the
threshold 10e-10 for better alignment data.

3.2 Back Translation

In the process of data augmentation, the back-
translation strategy(Edunov et al., 2018) plays a
crucial role. The auxiliary translation system from
the target language to the source language first
trains on the available parallel data and then us-
es to generate translations from the monolingual
corpus of the large target. The pairs of these trans-
lations and their corresponding reference targets
are then used as additional training data for the o-
riginal translation system. Using this strategy can
greatly increase the data required for training and
improve the translation effect of the model. In the
back-translation, we trained a translation model
from the target language to the source language
based on the existing corpus. By inputting the
target language corpus into the model, the corre-
sponding source language corpus can be obtained,
and the two are combined to obtain a new parallel
corpus.

The data set size of this trial is not too large and
it is stipulated that external parallel corpus expan-
sion cannot be used, so we use the back translation
method to increase the amount of training data.

Using back translation extended corpus in NMT
is a common data enhancement technique. We
trained a translation model from the target lan-
guage to the source language based on the existing
corpus. By inputting the target language corpus in-
to the model, the corresponding source language
corpus can be obtained and combined to get a new
parallel corpus.

External data is not allowed in this competition,
so we use the mono part of the original corpus to
generate para data. However, there is a problem
with this approach that there may be duplication
between the new parallel corpus and the original
corpus. To solve this problem, we added some
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random noise on the decoding side to avoid this
situation.

We selected 10 million Russian and English
sentences respectively from the official monolin-
gual corpus as raw data for back translation op-
erations. The model obtained through the train-
ing of the existing parallel corpus translated this
part of the monolingual corpus and obtained 10
million pseudo-parallel corpora. Then, we filter
this part of the data according to the data filtering
and noise strategy mentioned in the previous sec-
tion. Finally, 8 million individual parallel corpora
are obtained and the filtered parallel corpus input
model is used for training operations.

3.3 Model training

Considering the hardware cost and time cost of the
experiment, the model we selected for this experi-
ment is the basic version of Transformer. The en-
coder and decoder have 6 sub-layers and the multi-
head attention mechanism has 8 headers. The
word vector size is 512. Guaranteed to get the best
results in a limited time in a laboratory environ-
ment. The development environment for evalua-
tion is MXNET, which is the deep learning library
that Amazon chose.

The input model needs to be further processed
before training, including generating the corre-
sponding token for the sentence. The tool used
here is the commonly used tokenizer.perl, which
can separate the words and punctuation in English
and convert the special symbols to keep the same
symbol. Russian is the same. In addition, the
BPE method is needed to generate the subword
vocabulary to reduce the vocabulary size during
the model training and improve the performance
of the model.

After the above processing, the data can be di-
vided to obtain a training set, a test set and a verifi-
cation set, the training set is used for model train-
ing, the verification set is used for performance
detection in the training process, and the test set
is used for evaluating the result of model trained.

For the evaluation task, the following experi-
ment was designed:

1. Baseline Model
Use the official 38 million parallel corpus with-

out screening and direct it into the model for train-
ing and testing. The results of the base model are
used to compare with different strategy results and
generate reverse translation data to extend the cor-

pus and continue training. The purpose is to main-
tain the generalization ability and robustness of the
model to the greatest extent, and to provide refer-
ence for other model training results.

2. Filter Model
The data preprocessing operation is used to

screen the official data and the ideal training cor-
pus is obtained. The 33 million filtered paral-
lel sentences are trained to obtain a data filtering
model. Because the quality of the data used for
training is higher, the effect of model translation is
better than the basic model.

3. Back Model
10 million is extracted from the official mono-

lingual corpus as the source language input to the
baseline model for translation, and the artificial
parallel corpus based on the baseline model trans-
lation is obtained. Since the effect of the baseline
model is not good enough, the generated corpus
needs to be further filtered, and the method is also
the data preprocessing operation mentioned above.
After screening, we got about 8 million good qual-
ity artificial data and then combined the artificial
parallel corpus with the previously filtered official
parallel corpus and input them into the model for
training. Then we got the Back translation mod-
el. Because artificial corpus has been added, the
translation effect and the robustness is improved.

4. Fine-tuning Model
Fine-tuning a trained model using small-scale

corpus is a commonly used strategy in the field
of machine learning. It can make the model more
sensitive to specific domain scenarios, thus reflect-
ing better results. Here, we select a corpus with
much similarity to the test set from the training set
to fine-tune the trained model. The similarity s-
cores between the test corpus and the training cor-
pus are sorted and ranked. Then the parallel sen-
tence pairs with higher scores are found and the
corpus is extracted as a fine-tuning corpus. In this
way, about 5,000 pieces of data are obtained and
this part of the corpus is input into the previous-
ly trained model to obtain the result of fine-tuning
the model, so that it can perform better on the test
set.

5. Ensemble Model
Ensemble is a method that combines the results

of multiple models. The purpose of this is to com-
plement the advantages of different models, make
up for the problems that fall into the local opti-
mum and get the results of the machine translation
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model with better comprehensive effects. For the
sake of simplicity, only different initialization ran-
dom seed parameters are set for the same model.
So training of multiple models is performed, gen-
erally two or three models, and finally the results
of all models are subjected to ensemble operation.
By composing and complementing multiple mod-
els, we obtain the comprehensive optimal results
of data translation.

6. Average Model
The Average operation is similar in thought to

ensemble, but it operates on different training pa-
rameters of the same model. The parameters in
these training results are subjected to the average
operation, and a set of training results are com-
prehensively obtained from the best training pa-
rameters of the single model. Top 5 of the model
training results is selected for averaging to prevent
a certain result from falling into the local optimum
and a plurality of parameters are integrated to ob-
tain an averaged optimal solution. This results in
the best combination of different training parame-
ters in the same model, thereby improving the per-
formance of a single model.

7. Nbest and Rerank Model
Extracting only one of the highest-scoring state-

ments from the translation results of the model as
an output is not necessarily the best result. So this
strategy can be used to extract the best three from
each translation model result as a candidate set.
Then use some rules to rerank and get the best
one as the output result. The translated content
thus obtained is the comprehensive output of mul-
tiple results of each model, which is theoretical-
ly optimal. The rules used here include weighted
summation of beam search score and the language
model scores. The first one is based on the beam
score returned during decoding, but different mod-
els have different performances, so it is difficult to
sort under a uniform metric. So we introduced d-
ifferent weights for different models. Using beam
score weight as the final score for each transla-
tion result, the final result was obtained by screen-
ing. The second one gives scores of the generated
translations using the pre-trained language model.
They are judged from the linguistics itself and the
sentences with the highest scores are selected. The
final result is an output that combines the highest
scores of the two methods described above.

The above models also had different batch sizes,
comparison of the number of graphics cards and

Name Pair Bleu Improve
base-re RU-EN 34.8 0
filter-re RU-EN 36.1 +1.3
average-filter-re RU-EN 36.2 +1.4
rerank-re RU-EN 37.5 +2.7
vote-re RU-EN 36.1 +1.3
base-er EN-RU 25.6 0
filter-er EN-RU 26.6 +1.0
average-filter-er EN-RU 26.8 +1.2
rerank-er EN-RU 27.8 +2.2
vote-er EN-RU 26.5 +0.9

Table 1: Experiment Result.

vocabulary sizes in the training process. We ex-
tracted them for the optimal results. Finally, the
output is simply post-processed. In order to com-
ply with normal text habits. However, due to the
limitations of time and hardware resources, not ev-
ery experiment has been refined and detailed total-
ly, so there is still improvement of results in the
future.

3.4 Results Analysis
The above experimental results are presented in
the Table 1. It should be noted that only the bet-
ter and more complete results in the experiment
are given here. We can see that the BLEU values
of the Baseline Model form English to Russian is
25.9, while from Russian to English is 35.2, re-
spectively as a benchmark, to provide reference
for the following models. The results after filtra-
tion are 27.0 and 36.5, which has 1.0 or so im-
provement over baseline. The results obtained by
the Average strategy are 27.2 and 36.5, which is
basically no improvement. The strategy of obtain-
ing nbest for translation results and reranking ac-
cording to the reference rules worked very well,
which got 28.2 and 38.0, from 2 to 3 points higher
than baseline. Back Model, Fine-tuning and En-
semble strategies are not very completed in detail,
so they are not shown here.

4 Conclusion

In this evaluation task, we established a Russian-
English two-way machine translation system
based on Transformer. Through data preprocess-
ing, model training, data post-processing and other
optimization strategies, the evaluation results were
finally from English to Russian BLEU value 28.2,
while from Russian to English 38.0, which was
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about 3 points higher than the baseline result. In
the final list, we got 5th in Ru-En, and 10th in En-
Ru. Good results have been obtained in limited
time and hardware resources, which is also in line
with the industry’s demands for service construc-
tion. In the whole experiment process, we also
learned a lot of experience in data processing and
experimental design, which will be of great help in
later research and study. We will continue to im-
prove the previous experiments, strive to get better
results, and see what rankings can eventually be
achieved, in preparation for the next year.
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Abstract
This paper describes the DFKI-NMT submis-
sion to the WMT19 News translation task.
We participated in both English-to-German
and German-to-English directions. We trained
standard Transformer models and adopted
various techniques for effectively training
our models, including data selection, back-
translation, in-domain fine-tuning and model
ensemble. We show that these training
techniques improved the performance of our
Transformer models up to 5 BLEU points. We
give a detailed analysis of the performance of
our system.

1 Introduction

This paper describes the DFKI-NMT submission
to the WMT19 News translation task. We partici-
pated in both English-to-German and German-to-
English directions. We trained Transformer mod-
els (Vaswani et al., 2017) using Sockeye1 (Hieber
et al., 2017). Compared to RNN-based translation
models (Bahdanau et al., 2014), Transformer mod-
els can be trained very fast due to parallelizable
self-attention networks. We applied several very
useful techniques for effectively training our mod-
els.

Data Selection The parallel training data provided
for German-English is quite large (38M sentence
pairs). Most of the parallel data is crawled from
the Internet and is not in News domain. Out-of-
domain training data can hurt the translation per-
formance on News test sets (Wang et al., 2017) and
also significantly increase training time. There-
fore, we trained neural language models on a large
monolingual News corpus to perform data selec-
tion (Schamper et al., 2018).

Back-translation Large monolingual data in the
News domain is provided for both German and

1https://github.com/awslabs/sockeye

English, which can be back-translated as addi-
tional parallel training data for our system (Sen-
nrich et al., 2016a; Fadaee and Monz, 2018). The
back-translated parallel data is in the News do-
main, which is a big advantage compared to out-
of-domain parallel training data provided for the
News task.

In-domain Fine-tuning The Transformer models
were finally fine-tuned using the small in-domain
parallel data provided for the News task (Luong
and Manning, 2015; Schamper et al., 2018). Note
that the large back-translated parallel data is also
in-domain, but it has relatively low quality due to
translation errors.

Model Ensemble We trained two Transformer
models with different sizes, Transformer-base and
Transformer-big. Our final submission is an en-
semble of both models (Schamper et al., 2018).
The ensemble of both models outperformed a sin-
gle base or big model most likely because the two
models can capture somewhat different features
for the translation task.

2 System Details

2.1 Data Selection

The parallel data provided for the German-to-
English and English-to-German tasks includes Eu-
roparl v9, ParaCrawl v3, Common Crawl cor-
pus, News Commentary v14, Wiki Titles v1 and
Document-split Rapid corpus. We also used old
test sets (newstest2008 to newstest2017) for train-
ing our systems. We consider News Commen-
tary v14 and old test sets as in-domain data and
the rest as out-of-domain data. Compared to the
in-domain data (356k sentence pairs), the size of
the out-of-domain data (38M sentence pairs) is
quite large, which makes the training process rel-
atively slow and may also hurt the translation per-
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Figure 1: Structures of Transformer translation models and Transformer language models used in our experiments.

formance due to domain dismatch. Therefore, we
performed data selection on out-of-domain data.

Inspired by Schamper et al. (2018)’s work
which used KenLM (Heafield, 2011) for data se-
lection, we trained two neural language models
based on self-attention networks using the 2018
part of the large monolingual News crawl corpus
for English and German, respectively. Because
these neural language models are trained on the
News domain, we can use them to score out-of-
domain data. Sentences with higher probabilities
are more likely to be in News domain. Equation 1
is used to score each sentence pair in the out-of-
domain corpus. In Equation 1, Ps is the language
model probability of the source sentence; Ns is
the length of the source sentence; Pt is the lan-
guage model probability of the target sentence; Nt

is the length of the target sentence. We selected
the top 15M scored sentence pairs from out-of-
domain data for training our systems.

logPs

Ns
+

logPt

Nt
(1)

The neural language models trained for data

selection in our experiments are based on self-
attention networks which can be trained very fast.
Figure 1 (a) shows the structure of the standard
Transformer translation model (Vaswani et al.,
2017) and we removed the encoder and the at-
tention layer in the decoder from the Transformer
translation model to create our Transformer lan-
guage model as shown in Figure 1 (b). For train-
ing efficiency, we used byte pair encoding (Sen-
nrich et al., 2016b) to learn a vocabulary of 50k
for English and German respectively.

2.2 Back-translation

We back-translated the 2018 part of the large
monolingual in-domain News crawl data as ad-
ditional training data for our translation systems.
Fadaee and Monz (2018) showed that it is more
beneficial to back-translate sentences that contain
difficult words. In our experiments, we consider
words which occur less than 1000 times in the
bilingual training data as difficult words. Then
we randomly selected 10M sentences which con-
tain difficult words for back-translation. The mod-
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in-domain out-of-domain back-translated
356k 15M 10M

Stage 1 X X
Stage 2 X X X
Stage 3 X

Table 1: Training data used in different training stages.

en-de de-en
base big base big

Stage 1 7.3 7.6 6.6 6.8
Stage 2 0.3 0.4 0.8 1.4
Stage 3 18.5 18.5 12.4 12.4

Table 2: Training epochs for different training stages.

els used for back-translating monolingual data
are baseline Transformers (Vaswani et al., 2017)
trained on the bilingual data after data selection
as described before. During back-translation, we
used greedy search instead of beam search for ef-
ficiency.

2.3 Model and Training

We trained two Transformer models for each
translation task as Transformer-base and
Transformer-big. The settings of Transformer-
base is the same as the baseline Transformer in
Vaswani et al. (2017)’s work. For Transformer-
big, we changed word embedding size into 1024
and kept other parameters unchanged. A joint
vocabulary of 50k for German and English is
learned by byte pair encoding (BPE) (Sennrich
et al., 2016b).2 We set dropout to 0.1 for both
Transformer-base and Transformer-big. We used
adam (Kingma and Ba, 2014) for optimization.
We used newstest2018 as the validation set for
model training. The training processes for both
Transformer-base and Transformer-big consist of
three stages.

Stage 1 We first trained the Transformers using
bilingual training data, including all in-domain
data and selected out-of-domain data as described
in section 2.1. Note that the back-translated data
was not used in this stage. Each training batch
contains 8192 words and the validation frequency
is 2000 batches. We set the initial learning rate to
be 2.00e-04. We reduced the learning rate by a fac-
tor of 0.70 whenever the validation score does not

2 For preprocessing, we used Moses (Koehn et al., 2007)
scripts normalize-punctuation.perl, tokenizer.perl, lower-
case.perl. We trained a recaser using train-recaser.perl to
recase translations.

en-de de-en
base big base big

Stage 1 44.24 45.03 45.34 45.75
Stage 2 46.42 47.10 47.84 48.65
Stage 3 47.80 48.83 48.65 49.33
Ensemble 49.45 49.75

Table 3: Case-insensitive BLEU scores on new-
stest2018. “Ensemble” means ensemble both
Transformer-base and Transformer-big after Stage 3.

improve 8 times. We stopped the training process
after 5 times of learning rate reduction.

Stage 2 We used all bilingual training data used
in the first training stage together with the back-
translated monolingual data to continue training
the models which had converged in the first train-
ing stage. We kept the batch size to be 8192
words and changed the validation frequency to
1000 batches. We set the initial learning rate to
be 1.00e-05 and stopped the training process when
the validation score does not improve 8 times.

Stage 3 For fine-tuning, we used the small paral-
lel in-domain data as described in section 2.1 to
continue training the models which had converged
in the second training stage. We changed batch
size to be 1024 words and validation frequency to
be 100 batches. We set the initial learning rate to
be 1.00e-06 and stopped the training process when
the validation score does not improve 8 times.

Table 1 shows training data used in different
training stages. The models trained in the first
training stage were used to back-translate mono-
lingual data as described in section 2.2. In Stage 2,
we continued training the models which had con-
verged in Stage 1 instead of training models with
random initialization in order to reduce the train-
ing time of Stage 2.

2.4 Results and Analysis

Table 2 shows the numbers of training epochs
for different training stages and Table 3 shows
the performance of our systems after different
training stages. As we can see, back-translation
(Stage 2) and in-domain fine-tuning (Stage 3) both
improved the translation quality on a significant
level. An ensemble of Stage 3 Transformer-base
and Transformer-big achieved further improve-
ments. We also tried to ensemble different check-
points of Transformer-big, but achieved little im-
provement, likely because different checkpoints of
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Example 1
Src wei@@ dez@@ aun@@ projekt ist element@@ ar
Ref past@@ ure fence project is fundamental
Ours electric sound project is elementary
Example 2
Src jetzt nimmt sich das weiße haus von trump die freiheits@@ statue vor
Ref now trump &apos;s white house is targeting the statue of liberty
Ours now trump &apos;s white house takes the statue of liberty

Table 4: Translation examples. “@@” means segmented by byte pair encoding.

the same model are very similar.
In addition, we give some translation exam-

ples in Table 4 to analyze when and why our
translation system makes mistakes. The trans-
lations in Table 4 are produced by our best
system, i.e., ensemble of Transformer-base and
Transformer-big after training stage 3. In Exam-
ple 1, “wei@@ dez@@ aun@@ projekt” (pas-
ture fence project) is wrongly translated into “elec-
tric sound project”, likely because “weidezaun-
projekt” is a unknown word and does not oc-
cur in the training data. Although BPE can
help to relieve data sparsity by using smaller
and more frequent sub-word units, the automatic
BPE segmentation “wei@@ dez@@ aun@@
projekt” is a bad segmentation with linguistically
meaningless sub-word pieces. A better segmen-
tation “weide@@(pasture) zaun@@(fence) pro-
jekt” may help to reduce data sparsity and get bet-
ter translation. Example 2 does not contain rare
words, but “nimmt vor” is still wrongly translated
into “takes”. This is likely because “nimmt vor”
has different translations in the training data and
the correct translation here “targeting” is relatively
uncommon. We find many translation mistakes of
our system are caused by rare words or uncom-
mon usages of words as shown in Table 4, which
we will work on in the future.

3 Conclusion

This paper describes the DFKI-NMT submission
to the WMT19 English-to-German and German-
to-English News translation tasks. We trained
standard Transformer models and adopted vari-
ous techniques for effectively training our mod-
els, including data selection, back-translation, in-
domain fine-tuning and model ensemble. We show
that effective training techniques can improve the
performance of standard Transformer models up
to 5 BLEU points.
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Abstract
We present the results of the application of a
grammatical test suite for German→English
MT on the systems submitted at WMT19, with
a detailed analysis for 107 phenomena organi-
zed in 14 categories. The systems still transla-
te wrong one out of four test items in avera-
ge. Low performance is indicated for idioms,
modals, pseudo-clefts, multi-word expressions
and verb valency. When compared to last ye-
ar, there has been a improvement of function
words, non verbal agreement and punctuati-
on. More detailed conclusions about particular
systems and phenomena are also presented.

1 Introduction

For decades, the development of Machine Trans-
lation (MT) has been based on either automatic
metrics or human evaluation campaigns with the
main focus on producing scores or comparisons
(rankings) expressing a generic notion of quali-
ty. Through the years there have been few ex-
amples of more detailed analyses of the trans-
lation quality, both automatic (HTER (Snover
et al., 2009), Hjerson (Popović, 2011)) and human
(MQM Lommel et al., 2014). Nevertheless, the-
se efforts have not been systematic and they have
only focused on few shallow error categories (e.g.
morphology, lexical choice, reordering), whereas
the human evaluation campaigns have been limi-
ted by the requirement for manual human effort.
Additionally, previous work on MT evaluation fo-
cused mostly on the ability of the systems to trans-
late test sets sampled from generic text sources,
based on the assumption that this text is repre-
sentative of a common translation task (Callison-
Burch et al., 2007).

In order to provide more systematic methods to
evaluate MT in a more fine-grained level, recent
research has relied to the idea of test suites (Guil-
lou and Hardmeier, 2016; Isabelle et al., 2017).

The test suites are assembled in a way that allows
testing particular issues which are the focus of the
evaluation. The evaluation of the systems is not ba-
sed on generic text samples, but from the perspec-
tive of fulfilling a priori quality requirements.

In this paper we use the DFKI test suite for
German→English MT (Burchardt et al., 2017) in
order to analyze the performance of the 16 MT
Systems that took part at the translation task of
the Fourth Conference of Machine Translation.
The evaluation focuses on 107 mostly gramma-
tical phenomena organized in 14 categories. In
order to apply the test suite, we follow a semi-
automatic methodology that benefits from regu-
lar expressions, followed by minimal human re-
finement (Section 3). The application of the sui-
te allows us to form conclusions on the particular
grammatical performance of the systems and per-
form several comparisons (Section 4).

2 Related Work

Several test suites have been presented as part of
the Test Suite track of the Third Conference of
Machine Translation (Bojar et al., 2018a). Each
test suite focused on a particular phenomenon,
such as discourse (Bojar et al., 2018b), morpho-
logy (Burlot et al., 2018), grammatical contrasts
(Cinkova and Bojar, 2018), pronouns (Guillou
et al., 2018) and word sense disambiguation (Ri-
os et al., 2018). In contrast to the above test sui-
tes, our test suite is the only one that does such
a systematic evaluation of more than one hundred
phenomena. A direct comparison can be done with
the latter related paper, since it focuses at the sa-
me language direction. Its authors use automated
methods to extract text items, whereas in our test
suite the test items are created manually.
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3 Method

The test suite is a manually devised test set who-
se contents are chosen with the purpose to test the
performance of the MT system on specific pheno-
mena or requirements related to quality. For each
phenomenon a subset of relevant test sentences is
chosen manually. Then, each MT system is re-
quested to translate the given subset and the per-
formance of the system on the particular pheno-
menon is calculated based on the percentage of
the phenomenon instances that have been properly
translated.

For this paper we use the latest version of the
DFKI Test Suite for MT on German to English.
The test suite has been presented in (Burchardt
et al., 2017) and applied extensively in last year’s
shared task (Macketanz et al., 2018b). The cur-
rent version contains 5560 test sentences in order
to control 107 phenomena organised in 14 catego-
ries. It is similar to the method used last year, with
few minor corrections. The number of the test in-
stances per phenomenon varies, ranging between a
20 and 180 sentences. A full list of the phenome-
na and their categories can be seen as part of the
results in the Appendix. An example list of test
sentences with correct and incorrect translations is
available on GitHub1.

3.1 Construction and application of the test
suite

The construction and the application of the test
suite follows the steps below, also indicated in Fi-
gure 1:
(a) Produce paradigms: A person with good
knowledge of German and English grammar de-
vises or selects a set of source language sentences
that may trigger translation errors related to parti-
cular phenomena. These sentences may be written
from scratch, inspired from previous observations
on common MT errors or drawn from existing re-
sources (Lehmann et al., 1996).
(b) Fetch sample translations: The source sen-
tences are given as an input to easily accessible
MT systems and their outputs are fetched.
(c) Write regular expressions: By inspecting the
MT output for every given sentence, the annotator
writes rules that control whether the output con-
tains a correct translation regarding the respective
phenomenon. The rules are written as positive or

1https://github.com/DFKI-NLP/TQ_
AutoTest

Lexical Ambiguity
Das Gericht gestern Abend war lecker.
The court last night was delicious. fail
The dish last night was delicious. pass
Conditional
Er würde einkaufen gehen, wenn die Geschäfte
nicht geschlossen hätten.
He would go shopping if the stores didn’t close. fail
He would go shopping if the shops hadn’t closed. pass
Passive voice
Es wurde viel gefeiert und getanzt.
A lot was celebrated and danced. fail
There was a lot of celebration and dancing. pass

Table 1: Examples of passing and failing MT outputs

negative regular expressions, that signify a correct
or an incorrect translation respectively.

(d) Fetch more translations: When the test sui-
te contains a sufficient number of test items with
the respective control rules, the test suite is ready
for its broad application. The test items are conse-
quently given to a large number of MT systems.
This is done in contact with their developers or
through the submission process of a shared task,
as is the case described in this paper.

(e) Apply regular expressions: The control rules
are applied on the MT outputs in order to check
whether the relevant phenomena have been trans-
lated properly. When the MT output matches a po-
sitive regular expression, the translation is consi-
dered correct (pass) whereas when the MT output
matches a negative regular expression, the trans-
lation is considered incorrect (fail). Examples can
be seen in Table 1. In case an MT output does not
match either a positive or a negative regular ex-
pression, or in case these contradict to each other,
the automatic evaluation results in a uncertain de-
cision (warning).

(f) Resolve warnings and refine regular expres-
sions: The warnings are given to the annotator, so
that they manually resolve them and if possible re-
fine the rules to address similar cases in the future.
Through the iterative execution of steps (e) and (f)
(which are an extension of steps (c) and (d) respec-
tively) the rules get more robust and attain a bet-
ter coverage. If needed, the annotator can add full
sentences as rules, instead of regular expressions.

For every system we calculate the phenomenon-
specific translation accuracy as the the number of
the test sentences for the phenomenon which were
translated properly, divided by the number of all
test sentences for this phenomenon:
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Figure 1: Example of the preparation and application of the test suite for one test sentence

accuracy =
correct translations

sum of test sentences
When doing comparisons, the significance of

every comparison is confirmed with a one-tailed
Z-test with α = 0.95.

3.2 Experiment Setup

In the evaluation presented in the paper, MT out-
puts are obtained from the 16 systems that are part
of the news translation task of the Fourth Confe-
rence on Machine Translation (WMT19). Accor-
ding to the details that the developers have publis-
hed by the time this paper is written, 10 of the sys-
tems are declared to be Neural Machine Transla-
tion (NMT) systems and 9 of them confirm that
they follow the Transformer paradigm, whereas
for the rest 6 systems no details were given. For
the evaluation of the MT outputs the software TQ-
AutoTest (Macketanz et al., 2018a) was used.

After processing the MT output for the 5560
items of the test suite, the automatic application of
the regular expressions resulted to about 10% war-
nings. Consequently, one human annotator (stu-
dent of linguistics) committed about 70 hours of
work in order to reduce the warnings to 3%. The
final results were calculated using 5393 test items,
which, after the manual inspection, did not have
any warning for any of the respective MT-outputs.

Since we applied the same test suite as last year,
this year’s automatic evaluation is profiting from
the manual refinement of the regular expressions
that took place then. The first application of the
test suite in 2018 resulted in about 10-45% of war-
nings depending on the system, whereas after this
year’s application, we only had 8-28%. This year’s

results are therefore based on 16% more valid test
items, as compared to last year.

4 Results

The results of the test suite evaluation can be seen
in Tables 3 and 4, where the significantly best sys-
tems for every category or phenomenon are bold-
faced. The average accuracy per system is calcula-
ted either based on all test items (with the assump-
tion that all items have equal importance) or based
on the categories (with the assumption that all ca-
tegories have equal importance). In any case, since
the averages are calculated on an artificial test sui-
te and not on a sample test set, one must be careful
with their interpretation.

4.1 Linguistic categories
Despite the significant progress of NMT and the
recent claims for human parity, the results in terms
of the test suite are somewhat mediocre. The MT
systems achieve 75.6% accuracy in average for all
given test items, which indicates that one out of
four test items is not translated properly. If one
considers the categories separately, only five ca-
tegories have an accuracy of more than 80%: ne-
gation, where there are hardly any mistakes, fol-
lowed by composition, function word, subordi-
nation and non-verbal agreement. The lowest-
performing categories are the multi-word expres-
sions (MWE) and the verb valency with about
66% accuracy.

4.2 Linguistic phenomena
Most MT systems seem to struggle with idioms,
since they could only translate properly only
11.6% of the ones in our test set, whereas a similar
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situation can be observed with resultative predica-
tes (17.8%). Negated modal pluperfect and mo-
dal pluperfect have an accuracy of only 23-28%.
Some of the phenomena have an accuracy of about
50%, in particular the domain-specific terms, the
pseudo-cleft sentences and the modal of pluper-
fect subjunctive II (negated or not). We may assu-
me that these phenomena are not correctly transla-
ted because they do not occur often enough in the
training and development corpora.

On the other side, for quite a few phenomena
an accuracy of more than 90% has been achieved.
This includes several cases of verbs declination
concerning the transitive, intransitive and ditran-
sitive verbs mostly on perfect and future tenses,
the passive voice, the polar question, the infiniti-
ve clause, the conditional, the focus particles, the
location and the phrasal verbs.

4.3 Comparison between systems

As seen in Table 3, the system that significant-
ly wins most categories is Facebook with 11 ca-
tegories and an average of 87.5% (if all catego-
ries counted equally), followed by DFKI and RW-
TH which are in the best cluster for 10 catego-
ries. When it comes to averaging all test items,
the best systems are RWTH and Online-A. On
specific categories, the most clear results come in
punctuation where NEU has the best performan-
ce with 100% accuracy, whereas Online-X has the
worst with 31.7%. Concerning ambiguity, Face-
book has the highest performance with 92.6% ac-
curacy. In verb tense/aspect/mood, RWTH Aa-
chen and Online-A have the highest performan-
ce with 84% accuracy, whereas in this category,
MSRA.MADL has the lowest performance with
60.4%. For the rest of the categories there are
small differences between the systems, since mo-
re than five systems fall into the same significance
cluster of the best performance.

When looking into particular phenomena (Ta-
ble 4), Facebook has the higher accuracy con-
cerning lexical ambiguity with an accuracy of
93.7%. NEU and MSRA.MADL do best with mo-
re than 95% on quotation marks. The best system
for translating modal pluferect is online-A with
75.6%, whereas at the same category, Online-Y
and Online-G perform worse, with less than 2.2%.
On modal negated - preterite, the best systems
are RWTH and UCAM with more than 95%. On
the contrary, MSRA.MADL achieves the worst ac-

curacy, as compared to other systems, in pheno-
mena related to modals (perfect, present, preteri-
te, negated modal Future I), where it mistranslates
half of the test items. One system, Online-X, was
the worst on quotation marks, as it did not con-
vey properly any of them, compared to other sys-
tems that did relatively well. Online-Y also per-
forms significantly worse than the other systems
on domain-specific terms.

4.4 Comparison with last year’s systems

One can attempt to do a vague comparison of
the statistics between two consequent years (Ta-
ble 2). Here, the last column indicates the per-
centage of improvement from the average accura-
cy of all systems from last year’s shared task2 to
the average accuracy of all systems of this year.
Although this is not entirely accurate, since diffe-
rent systems participate, we assume that the lar-
ge amount of the test items allows some gene-
ralisations to this direction. When one compares
the overall accuracy, there has been an improve-
ment of about 6%. When focusing on particular
categories, the biggest improvements are seen at
function words (+12.5%), non-verbal agreement
(+9.7%) and punctuation (+8%). The smallest im-
provement is seen at named entity and terminolo-
gy (+0.3%).

We also attempt to perform comparisons of the
systems which were submitted with the same na-
me both years. Again, the comparison should be
done under the consideration that the MT systems
are different in many aspects, which are not pos-
sible to consider at the time this paper is writ-
ten. The highest improvement is shown by the
system Online-G, which has an average accura-
cy improvement of 18.7%, with most remarkable
the one concerning negation, function words and
non-verbal agreement. Online-A has also impro-
ved at composition, verb issues and non-verbal
agreement and RWTH and UEDIN at punctuation.
On the contrary, we can notice that UCAM dete-
riorated its accuracy for several categories, most-
ly for coordination and ellipsis (-13.1%), verb is-
sues (−7.6%) and composition (-4.7%). JHU and
Online-G and RWTH show some deterioration for
three categories each, whereas Online-A seems
to have worsened considerably regarding punc-
tuation (-21.6%) and UEDIN regarding negation
(−10.5%).

2unsupervised systems excluded
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category # JHU MLLP onlA onlB onlG onlY RWTH UCAM UEDIN avg

Ambiguity 74 -2.7 21.6 4.1 0.0 4.1 10.8 -1.3 2.7 12.1 6.9
Composition 42 4.8 0.0 14.3 0.0 9.5 2.4 -2.4 -4.7 7.1 5.2
Coordination and ellipsis 23 8.7 -4.4 0.0 0.0 13.1 0.0 0.0 -13.1 0.0 7.3
False friends 34 -3.0 5.8 0.0 3.0 -5.9 23.6 5.9 -5.8 14.7 6.8
Function word 41 -2.5 7.3 4.9 0.0 41.4 0.0 -7.4 -2.4 9.7 12.5
LDD & interrogatives 38 10.6 10.6 -2.7 0.0 5.3 0.0 0.0 5.3 7.9 5.6
MWE 53 5.6 7.5 5.7 0.0 1.9 1.9 3.8 -1.8 3.8 4.7
Named entity and terminology 34 5.9 3.0 5.9 0.0 -3.0 -5.9 8.9 0.0 5.9 0.3
Negation 19 0.0 0.0 0.0 0.0 42.1 0.0 0.0 0.0 -10.5 6.6
Non-verbal agreement 48 12.5 10.4 12.5 0.0 22.9 2.1 -2.1 0.0 12.5 9.7
Punctuation 51 5.9 2.0 -21.6 0.0 -7.9 1.9 27.5 0.0 23.5 8.0
Subordination 31 3.3 6.5 -6.5 3.2 19.4 3.2 6.5 0.0 0.0 5.0
Verb tense/aspect/mood 3995 -4.0 -5.9 12.9 0.2 19.8 1.6 5.6 -7.6 5.1 6.0
Verb valency 30 10.0 0.0 0.0 0.0 13.4 6.6 0.0 0.0 3.4 5.8

average (items) 4513 -3.1 -4.3 11.6 0.2 18.7 2.0 5.3 -6.8 5.4 6.1
average (categories) 3.9 4.6 2.1 0.5 12.6 3.4 3.2 -2.0 6.8 6.5

Table 2: Percentage (%) of accuracy improvement or deterioration between WMT18 and WMT19 for all the
systems submitted (averaged in last column) and the systems submitted with the same name

5 Conclusion and Further Work

The application of the test suite results in a mul-
titude of findings of minor or major importan-
ce. Despite the recent advances, state-of-the-art
German→English MT still translates erroneous-
ly one out of four test items of our test suite, in-
dicating that there is still room for improvement.
For instance, one can note the low performance on
MWE and verb valency, whereas there are issu-
es with idioms, resultative predicates and modals.
Function words, non verbal agreement and punc-
tuation on the other side have significantly impro-
ved.

One potential benefit of the test suite would be
to investigate the implication of particular deve-
lopment settings and design decisions on particu-
lar phenomena. For some superficial issues, such
as punctuation, this would be relatively easy, as
pre- and post-processing steps may be responsible.
But for more complex phenomena, further compa-
rative analysis of settings is needed. Unfortunate-
ly, this was hard to achieve for this shared task due
to the heterogeneity of the systems, but also due to
the fact that at the time this paper was written, no
exact details about the systems were known. We
aim at looking further on such an analysis in fu-
ture steps.
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Charles University, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
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Abstract

As the quality of machine translation rises and
neural machine translation (NMT) is moving
from sentence to document level translations,
it is becoming increasingly difficult to evaluate
the output of translation systems.

We provide a test suite for WMT19 aimed at
assessing discourse phenomena of MT sys-
tems participating in the News Translation
Task. We have manually checked the outputs
and identified types of translation errors that
are relevant to document-level translation.

1 Introduction

Currently, the level of machine translation sys-
tems can be very good or excellent. For some
languages, the systems are on par with humans
when evaluated at the level of individual sen-
tences, see Hassan et al. (2018) for Chinese-to-
English and Bojar et al. (2018) for English-to-
Czech translation at WMT18. The main criterion
for distinguishing MT systems’ quality thus has to
shift from evaluating individual sentences to larger
units. Ideally, the translated text should be now
evaluated as a whole.

We believe that the fundamental criterion of the
quality of manual or automatic translation is the
extent to which the translation is functional in hu-
man communication. These days, the critical ba-
sic level in this criterion has been already reached
by multiple machine translation systems covering
a wide range of language pairs. While the reader
of an automatically translated text may be grop-
ing at some points in the text, the overall quality
of the translation is already so high that the main
content of the text and the author’s communicative
intention is mostly conveyed.

Still, the reader of an MT output takes a higher
effort to understand the translated text. For ex-
ample, morphological errors, shortcomings in the

word order, incorrect syntactic relations, failure in
translating terminology, or the choice of inappro-
priate synonyms can hinder the speed and accu-
racy of text understanding.

In this paper, we first provide a test suite
for WMT19 aimed at assessing translation qual-
ity of English to Czech NMT systems regarding
document-level language phenomena. As qualita-
tive analyses of document-level errors in MT out-
puts are up-to-date quite rare, this paper further
aims at identification, manual annotation and lin-
guistic description of these types of errors relevant
to English-Czech NMT and a comparison of per-
formance of the submitted systems in the given ar-
eas. We compare NMT systems that translate one
sentence at a time with systems that have more
than one sentence on input and therefore have po-
tential to translate document-level phenomena bet-
ter.

After an overview of detected translation er-
rors from various levels of language description,
the paper zooms in on three document-level, or
coherence-related, phenomena: topic-focus artic-
ulation (information structure), discourse connec-
tives and alternative lexicalizations of connec-
tives.1 We assume that translation systems might
have difficulties with these phenomena, as they are
related to the previous context and go beyond (or
are affected by the phenomena across) the sen-
tence boundary. In this way, they contribute to
the overall coherence of the text that should (as a
whole) function as an independent unit of human
communication.

1This work does not address in detail errors in corefer-
ence, pronoun and gender translation, as these phenomena
have been already widely accounted for, e.g. Guillou et al.
(2016); Novák (2016).
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2 Data

The evaluations in this paper are conducted on
a selection of 101 documents from the paral-
lel Prague Czech-English Dependency Treebank
(PCEDT, Hajič et al. (2012)), and we also used
discourse annotations of the same texts in the Penn
Discourse Treebank 3.0 (PDTB, for details see
Webber et al. (2019)).

2.1 Prague Czech-English Dependency
Treebank

The Prague Czech-English Dependency Treebank
is a parallel corpus consisting of English original
texts and their Czech translations. The PCEDT
contains 1.2 million running words in almost
50,000 sentences in each part.

The English texts come from the Penn Tree-
bank (Wall Street Journal Section; Marcus et al.,
1993). They were manually translated into Czech
by trained linguists without any support of MT
and proofread. The PCEDT is manually an-
notated on the tectogrammatical (deep-syntactic)
layer in both languages. The sentences are repre-
sented by dependency structures of content words.
The nodes in the tree structures are provided
with syntactico-semantic labels as, e.g., predi-
cate, actor, patiens, addressee or locative. Also,
the valency frames of verbs (argument structure)
are captured, as well as elliptical structures and
anaphoric relations.

In addition, the Czech part is automatically
tagged and parsed as surface-syntactic depen-
dency trees on the analytical layer. The English
part also preserves the original phrase-structure
annotation of the Penn Treebank. Also, the anno-
tation of discourse relations, connectives and Al-
tlexes from the Penn Discourse Treebank was ex-
tracted and added to our PCEDT dataset.

3 NMT Systems

We evaluated 5 NMT systems from those partic-
ipating in WMT19 in English-to-Czech transla-
tion. In particular, we selected those of the highest
quality as estimated by automatic scoring at ma-
trix.statmt.org.2

CUNI-Transf-2018 is last year submission
by Popel (2018). It is a neural machine transla-
tion model based on the Transformer architecture

2http://matrix.statmt.org/matrix/
systems_list/1896

and trained on parallel and back-translated mono-
lingual data. It translates one sentence at a time.
CUNI-DocTransf-T2T is a Transformer

model following Popel (2018), but trained on
WMT19 document-level parallel and monolin-
gual data. During decoding, each document
was split into overlapping multi-sentence seg-
ments, where only the “middle” sentences in
each segment are used for the final transla-
tion. CUNI-Transf-T2T is the same system as
CUNI-DocTransf-T2T, just applied on sepa-
rate sentences during decoding.
CUNI-DocTransf-Marian is document-

level trained Transformer in Marian frame-
work following Popel (2018), but finetuned on
document-level parallel and monolingual data by
translating triples of adjacent sentences at once.
If possible, only the middle sentence is consid-
ered for the final translation hypothesis, otherwise
a double or single sentence context is used.
Online-B is an anonymized online system

which we know also from several previous years
of WMT.
Reference is the Czech side of the PCEDT

corpus.

4 Annotation Design

The 101 PCEDT documents selected for transla-
tion and manual evaluation belong to the “essay”
and “letter” genre labels according to the classifi-
cation of PDTB given in Webber (2009). At the
same time, the selected texts have a length of 20–
50 sentences. These documents were submitted
as an additional test suite for Machine Transla-
tion of News shared task at the WMT 2019. Be-
cause we are interested in document-level transla-
tion and the effect of context on the translation, we
only selected documents with cross-sentence dis-
course relations.

We have created a simple annotation interface
(see Figure 1), which allows the annotator to mark
the items that were translated correctly.

Specifically, several types of cross-sentence dis-
course relations are considered on the source side
(reusing the annotations available in the Penn Dis-
course Treebank 3.0).

The target side was validated by trained lin-
guists. For each of the observed connectives / Al-
tLex, the annotators indicated whether:
(1) the given expression/phrase in the source ful-
fills the function of a connective – according to the
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Figure 1: Screenshot of the annotation interface.

annotator, or the function of AltLex – according to
the original English annotation displayed. If yes,
then whether its Czech translation is (2):

• adequate and correctly placed,3

• adequate but incorrectly placed,
• omitted and it does not harm the output
• omitted and it harms the output
• not adequate.

The questionnaire for word order annotation is
analogous, compare the description of tables with
results below in Section 7. The original translation
into Czech from PCEDT could serve as a reference
translation but similarly to Bojar et al. (2018), we
opted for a bilingual evaluation, showing the anno-
tators always the source and the candidate transla-
tion. The benefit is that the human translation can
be evaluated using the same criteria as the MT sys-
tem outputs.

There were 6 annotators, all of them students
of linguistics. Each annotator evaluated 8 docu-
ments in the first round. For each document, they

3for Altlexes: and preserves the original discourse mean-
ing

evaluated the output of one MT system (without
knowing which MT system produced the output).
To measure the inter-annotator agreement, we or-
ganized a second round of evaluation, where each
annotator was given documents and systems com-
bination that was in the first round evaluated by
another annotator. Details on the IAA are given in
Section 7.

5 Linguistic Analysis of Translations
Errors across Language Levels

We carried out a complex linguistic analysis of
a sample of the translated texts and revealed that
even the best translations contained cca 15–20 lin-
guistic issues (per text of 35 sentences). This
means that although the content reliability and lin-
guistic level of (the best) MT systems is very high,
they still do not reach communication skills of hu-
mans. This fact may be challenging for their au-
thors, as there are still possibilities for improve-
ment. However, a systematic improvement of MT
systems is rather difficult due to non-systematic
nature of language errors found in the analysis –
e.g. if there appeared an untypical word order in a

457



sentence, it does not mean that word order errors
are also present in the rest of the translated text. It
turned out, on the contrary, that the errors / prob-
lematic issues appear individually, as singularities.

In the following part, we discuss the problem-
atic places in a sample of translated texts. We tried
to select the best or (at least) good MT systems to
demonstrate that even in such an advanced transla-
tion, there are still issues requiring improvement.

5.1 Morphology
We were able to detect errors from various lev-
els of language description. Some problematic
issues concerned even such basic phenomena as
e.g. the use of a verbal mood or other morpholog-
ical issues (It’s as if France decided to give only
French history questions to students in a Euro-
pean history class, and when everybody aces the
test, they say their kids are good in European his-
tory – Je to, jako by se Francie rozhodla dávat
studentům evropských hodin dějepisu jen otázky
z francouzštiny, a když všichni v testu excelujı́,
řı́kajı́, že jejich děti jsou v evropských dějinách
dobré; the Czech translation is not consistent
in maintaining potentiality: the intended content
should be translated into Czech as: jako kdyby se
Francie..., a až by všichni v textu excelovali, řekli
by...) with the obligatory conditional morpheme
by, also as a part of the conjunction kdyby, used in
past (unreal) conditions.

5.2 Lexicon
Other issues concerned the choice of vocabulary.
The individual translations included e.g. inap-
propriate repetition of the same word (ie. the
MT systems produced a non-natural output by
not attempting to use a synonym, cf. in test-
coaching workbooks and worksheets — v pra-
covnı́ch sešitech a pracovnı́ch sešitech “in test-
coaching workbooks and in test-coaching work-
books”). In some of them, there also appeared in-
correct literal translations of terms (cf. a joint ven-
ture of McGraw-Hill Inc. and Macmillan’s par-
entt, Britain’s Maxwell Communication Corp –
společným podnikem McGraw-Hill Inc. a Macmil-
lanovým rodičem, britskou společnostı́ Maxwell
Communication Corp).

Another lexical issue was the use of an inac-
curate synonym in a given context (cf. but he
doesn’t deny that some items are similar – ale
nepopı́rá, že některé předměty jsou podobné; the
word předměty may be a synonym to the original

items but not in this context, the Czech word here
means rather tangible objects).

Generally, the MT systems succeed in translat-
ing basic words or phrases but sometimes they fail
in translating terms or technical words and in lex-
ical variety (often resulting in word repetition and
failure to use an appropriate synonym).

5.3 Syntax
The translations also exhibit signs of incorrect
syntactic relations, e.g. excessive genitive ac-
cumulation, which is untypical for Czech (cf.
About 20,000 sets of Learning Materials teachers’
binders have also been sold in the past four years.
– Asi 20 000 souborů (Noun in Gen) učebnı́ch
materiálů (NP in Gen) učitelských pořadačů (NP
in Gen) bylo také prodáno v poslednı́ch čtyřech
letech.). Another typical syntactic error appears
in translation of syntactically potentially homony-
mous phrases, as in the example above in 5.1 the
phrase European history class, translated wrongly
as evropských hodin dějepisu (European classes of
history).

Also, a large problematic area was revealed
in word order configurations. Some translations
contained the word order adopted from English,
where it is untypical or even incorrect in Czech.
This issue is related to sentence information struc-
ture or topic-focus articulation, as the word or-
der is connected with contextual boundness (cf.
. . . says ”well over 10 million” of its Scoring High
test-preparation books have been sold since their
introduction 10 years ago – uvádı́, že “vı́ce než
10 milionů” jeho testovacı́ch knih Scoring High
se prodalo od jejich zavedenı́ před 10 lety; the
expression “vı́ce než 10 milionů” is the focus of
the sentence and therefore it should be placed in
the final position in Czech). Similar issue (con-
cerning topic-focus articulation) may be observed
in the sentence Scoring High and Learning Ma-
terials are the best-selling preparation tests. –
Scoring High and Learning Materials jsou ne-
jprodávanějšı́ přı́pravné testy. Again, the expres-
sion Scoring High and Learning Materials should
be (as focus proper of the sentence) placed in the
final sentence position in Czech.

5.4 Semantics
Semantic issues (to a certain extent) are already
partly included in the incorrect translations of
terms as discussed above. Other are related es-
pecially to factual inaccuracy, e.g. the expression
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French history questions was incorrectly trans-
lated as otázky z francouzštiny “questions from
French”.

In some cases, even a whole part of the orig-
inal text was completely omitted in the transla-
tion – the meaning of the sentence was thus nega-
tively affected (. . . and Harcourt Brace Jovanovich
Inc.’s Metropolitan Achievement Test and Stan-
ford Achievement Test – . . . a Harcourt Brace Jo-
vanovich).

5.5 Discourse

Further issues in translations also appeared on
higher levels of language description, crossing
the sentence boundary and mostly affecting text
understanding as a whole. These discourse-
related phenomena include especially corefer-
ence and discourse (semantico-pragmatic) rela-
tions, largely expressed by discourse connectives
or their paraphrases (AltLexes). A detailed analy-
sis of discourse-related translation errors is given
below in Section 6.1.

6 Linguistic Analysis of Selected
Document-Level Errors

6.1 Selected coherence phenomena

A comprehensive linguistic analysis of a sample
of translated texts showed that even the best trans-
lations are not completely error-free (the best ones
contained about 15–20 errors per text). These er-
rors were further analyzed – they appear across
individual levels of language description. Unfor-
tunately, the main common feature of the errors
seems to be the fact that they are not systematic.
The key to a good distinction of translation qual-
ity is thus their complex linguistic analysis. For
the annotation, we have chosen three document-
level types of the errors discovered in the output
analysis, namely those concerning topic-focus ar-
ticulation, discourse connectives and the mean-
ings they convey and alternative lexicalizations
of connectives (AltLexes). The annotators then
assessed them on a larger sample of translated data
from all the systems and the reference translation.
The finding are analyzed linguistically in the rest
of this Section and quantitatively below in Sec-
tion 7.

6.1.1 Topic-focus articulation and word
order

First, we observed the phenomenon of topic-focus
articulation (we follow this phenomenon as pre-
sented within the Functional Generative Descrip-
tion, see Sgall (1967) or Sgall et al. (1986)). In our
experiment, we took advantage of the fact that En-
glish and Czech have a different word order sys-
tem in combination with topic-focus articulation
and contextual boundness.4 While English has a
fixed word order, strongly influenced by grammar,
Czech has a free word order mainly influenced by
the contextual boundness of individual sentence
constituents. It is thus necessary to harmonize the
word order in a Czech sentence always with re-
spect to the previous (con)text.

In the annotation of the translated texts, we fo-
cused on the word order of the subject. While the
subject is typically at the beginning of the sen-
tence in English, it can occupy various positions
in Czech, depending on whether it is contextually
bound or not. We were wondering how individual
MT-systems reflect this word order issue.

We automatically selected English original sen-
tences from the PCEDT that contained a noun
used with an indefinite article in the subject posi-
tion and its Czech counterparts in evaluated trans-
lated texts. It is assumed that this subject is con-
textually non-bound (not deductible from the pre-
vious context, it is “new” information) and is thus
expected elsewhere than at the beginning of the
sentence, most likely to follow the predicate in
Czech. Moreover, this subject (or the constituent
corresponding to it in Czech) could be also so-
called focus proper standing at the very end of the
Czech sentence in written texts.

For Czech translations, it was necessary to
check whether the Czech equivalent of the
English subject was retained as a contextually
non-bound sentence constituent and whether it
was appropriately located in the Czech sentence,
see the following example.

English text: What is the best-selling prepa-
ration test? A NEW LANGUAGE TEST is the
best-selling preparation test.

Expected Czech translation: Co je ne-
jprodávanějšı́m přı́pravným testem? Ne-

4For definitions of terms related to topic-focus articulation
and contextual boundness see Hajičová et al. (1998).

459



jprodávanějšı́m přı́pravným testem je NEW
LANGUAGE TEST.

6.1.2 Discourse connectives and their
sentence positions

The second phenomenon assessed in the anno-
tation were discourse connectives. Discourse
connectives are rather short function words (e.g.
but, therefore, nevertheless, because, or and)
that connect two text units while expressing a
discourse (semantico-pragmatic) relation between
them, thus ensuring text to a large extent text co-
herence and cohesion. Here, the problematic is-
sues included the use of a wrong Czech equiv-
alent – both from the semantic and grammati-
cal point of view (e.g. the positions of connec-
tives in a sentence etc.). An example of a wrong
connective translation is as follows. Since chalk
first touched slate, schoolchildren have wanted to
know: What’s on the test? – *Protože se křı́da
poprvé dotkla břidlice, žáci chtěli vědět: Co je na
testu?

The English connective since is homonymous
and its meaning may be causal or temporal. In
the example, it was translated as causal (by the
Czech connective protože – because) in a temporal
context (the correct Czech translation here would
be od okamžiku, kdy (from the moment when...).
Such an incorrect translation of a discourse con-
nective demonstrates nicely the potential huge im-
pact on overall comprehensibility.

From the word order perspective, even these
cohesive devices have their typical positions in a
clause – according to their part-of-speech classifi-
cation. Coordinating conjunctions typically stand
between two discourse units (I play the flute and
I dance. / Hraju na flétnu a tančı́m.) both in En-
glish and Czech. Subordinating conjunctions typi-
cally occur at the beginning of the discourse unit to
which they belong syntactically (Because it rains,
I’m not going out. I won’t go out because it rains.
/ Protože pršı́, nepůjdu ven. Nepůjdu ven, protože
pršı́.). Connectives of adverbial origin have looser
positions in some cases;5 they can occur e.g. in
the first and second position in the sentence (For
me it is easier to not lose a game than to win it,
thus I produce better results in stronger tourna-
ments. Both umpires claimed that they were un-
sighted, and were thus forced to give Somny the
benefit of the doubt. / Pro mě je snazšı́ neztratit

5For more information see Rysová and Rysová (2018).

hru, než ji vyhrát, proto dosahuji lepšı́ch výsledků
v silnějšı́ch turnajı́ch. Oba rozhodčı́ tvrdili, že
neviděli, byli proto nuceni dát Somnymu výhodu
pochybovat.).

In some word-order positions of discourse con-
nectives, English and Czech differ. In other words,
a Czech translation should not copy the connec-
tive ordering from an English original. In English,
some discourse connectives can occur e.g. at the
very end of the sentence (cf. too, as well, instead,
nevertheless etc.), which is not typical for Czech.

To better compare the quality of the individual
translations, we observed especially the transla-
tion equivalents of multi-word connectives like as
long as or as much as that could be problematic
due to their idiomatic character.

6.1.3 Alternative lexicalizations of discourse
connectives (AltLexes)

In addition to discourse connectives, discourse re-
lations can also be expressed by their alternatives
called AltLexes, see Prasad et al. (2010). Alterna-
tive lexicalizations of connectives are often multi-
word phrases such as for this reason. Since these
cohesive structures often have an idiomatic char-
acter and they generally do not achieve such de-
gree of grammaticalization as connectives, their
forms in languages may vary to a large extent.

For example, the AltLex for this reason is not
translated into Czech literary as pro tento důvod
‘lit. for this reason’, but as z tohoto důvodu ‘lit.
from this reason’. Other examples of English Al-
tLexes are that’s all, that’s largely due to, at-
tributed that to, it will cause etc. A list of Al-
tLexes in English is given in Prasad et al. (2007),
multi-word connective expressions in Czech are
described and presented in Rysová (2018). Due
to their high lexical variety and lower degree of
grammaticalization, AltLexes were selected for
the annotation as potentially interesting expres-
sions for translation.

7 Results

In this section, we present the results of the evalu-
ation.

7.1 Inter-annotator agreement
The inter-annotator agreement was measured pair-
wise, it ranges from 66 % to 93 % with an average
of 80 %. The agreement was on average 69 % for
AltLexes, 87 % for connectives and 79 % for ques-
tions concerning word order.
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7.2 AltLexes

The annotation interface for alternative lexicaliza-
tions contained identical questions to those for
connective assessment (described above in Sec-
tion 4), with the exception of their (in)correct
placement, as this question is irrelevant for such
non-grammaticalized phrases. There were 23
queries in average for each of the evaluated trans-
lations. The results for adequacy of AltLex trans-
lations in each system output AND the reference
are summed up in Table 1.

A source AltLex was assessed as an appropri-
ate connecting device in accordance with the orig-
inal discourse annotation in 130 cases (Yes), and
inappropriate in 42 cases (No). The proportion
of negative answers is surprisingly high, but a
closer look on the data reveals that the annotators,
quite in unity (but in contrast to the PDTB no-
tion of AltLex), resist treating verbs as a specific
form of connecting devices. This mostly concerns
causative verbs like to explain, to strengthen or to
blame. They might be in fact right, these verbs are
mostly translated well and their role in discourse
coherence is a rather supplementary one. Apart
from this issue, Table 1 demonstrates that once an
AltLex is approved as a connecting device, it is in
vast majority of cases translated correctly (rarely
incorrectly), the original discourse meaning is pre-
served and it is not omitted in the translation. This
applies quite equally across all systems, with a
small decrease for CUNI-DocTransf-Marian sys-
tem and the reference (!). A potential explanation
is the typically looser human translation (and pos-
sibly the context-aware Marian system).

7.3 Connectives

As for connectives, there were 52 queries in av-
erage for each of the evaluated translations. The
results for adequacy of connective translations in
each system output and the reference are summed
up in Table 2. A source connective candidate
was assessed as an factual connecting device in
303 cases (Yes), and not a connective in 30 cases
(No). This proportion seems to be correct, the
non-connective readings of some expressions are
relevant, e.g. several times for as much as in the
function (and position) of a quantifier. Once a con-
nective candidate is approved as an actual connec-
tive, it translated always correctly (compare col-
umn “n” in Table 2), but it is possibly incorrectly
placed in the translation (column “ax”). The result

figures indicate that there are no significant differ-
ences across the systems in translating the traced
connectives.

7.4 Word order

The word order evaluation focused the translation
of contextually non-bound subjects (representing
a new information in the sentence). The annota-
tors first determined, which of the automatically
preselected sentences from the English source in-
deed contain a contextually non-bound subject (85
Yes, 10 No). If yes, they traced whether the sub-
ject in the Czech translation also contextually non-
bound. The results of manual annotation demon-
strate that MT systems in general preserve the con-
textual non-boundness of the subjects. The figures
are comparable across the systems, only the Mar-
ian system and the reference achieved a slightly
worse scores:

yes no
CUNI-Transf-2018 11 1
CUNI-DocTransf-Marian 17 3
online-B 6 1
CUNI-DocTransf-T2T 17 1
CUNI-Transf-2019 6 1
reference 19 4

In a second task, we observed whether the sub-
ject in the English original the focus proper of
the given sentence. Again, the annotators first fil-
tered out relevant sentences (10 Yes, 36 No). Then
they looked at whether the subject in the Czech
translation is also the focus proper of the sentence.
Similarly as in the previous task, the Marian sys-
tem’s performance is worse, and the performance
of CUNI-DocTransf-T2T drops. However, the re-
sults here are less significant, as there were only
few occurrences of the annotated tokens:

yes no
CUNI-Transf-2018 2 0
CUNI-DocTransf-Marian 5 3
online-B 0 1
CUNI-DocTransf-T2T 1 2
CUNI-Transf-2019 0 1
reference 1 6

Next, we followed the systems’ ability to place
the Czech equivalents of the original English sub-
jects correctly into the Czech output sentence.
Here, a correct placement according to the Czech
word order rules was mostly achieved by all sys-
tems. There was not enough data collected for the
online-B system, but the rest is comparable, with
both context-aware systems performing slightly
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adequate missing wrong
CUNI-Transf-2018 ����� ����� �����
CUNI-DocTransf-Marian ����� ����� �����
online-B ����� ����� �����
CUNI-DocTransf-T2T ����� ����� �����
CUNI-Transf-2019 ����� ����� �����
reference ����� ����� �����

Table 1: Results for AltLex annotations. Each F represents 20 % and the results are rounded to the nearest half-
star.

a ax m n
CUNI-Transf-2018 ����� ����� ����� �����
CUNI-DocTransf-Marian ����� ����� ����� �����
online-B ����� ����� ����� �����
CUNI-DocTransf-T2T ����� ����� ����� �����
CUNI-Transf-2019 ����� ����� ����� �����
reference ����� ����� ����� �����

Table 2: Results for connectives annotations. The columns are: (a) adequate and correctly placed, (ax) adequate
but incorrectly placed, (m) omitted and it does not harm the output, and (n) not adequate. Each F represents 20 %
and the results are rounded to the nearest half-star.

worse than others:
yes no

CUNI-Transf-2018 14 0
CUNI-DocTransf-Marian 14 5
online-B 3 1
CUNI-DocTransf-T2T 13 3
CUNI-Transf-2019 6 0
reference 19 3

8 Conclusion

In this paper, we have described a test suite of
parallel English-Czech texts provided for WMT19
with the aim to assess discourse phenomena in
output of MT systems participating in the News
Translation Task. We have carried out an exten-
sive manual annotation of the MT outputs and
identified types of translation errors relevant to
document-level translation. We also compared the
systems’ performance with respect to the observed
phenomena.

In general, the recent NMT systems have
achieved such a high level of translation quality
that it has become difficult to evaluate their output
in a systematic fashion. Most of the errors in the
translation cannot be found by a simple compari-
son with the reference translation, a bilingual eval-
uation is needed. Moreover, for the observed phe-
nomena, the systems performed with only a mi-
nor differences among each other and they reached

the quality of the reference. In fact, the refer-
ence translation was in some aspects evaluated
as worse, which is likely caused by the greater
literal adherence of the automatic translations to
the original and it does not mean that the refer-
ence is incorrect. Contrary to our assumptions,
the two context-aware systems did not outperform
the others in translating the followed document-
level phenomena. This can be attributed to the
fact that the systems perform good enough on this
task already, and also partly because the evalua-
tion can change a lot using just a slightly differ-
ent annotation setting, e.g. if we traced also other
(ambiguous) connective expressions or anaphoric
items. The actual errors are difficult to predict
from scratch and they occur randomly. More
specifically, while the translations of AltLexes and
discourse connectives showed quite satisfactory
(at least of those observed here), the most errors
(equally across systems) were detected in the area
of word order and contextual (non-)boundness of
the subjects. The systems prefer to keep the orig-
inal word also in the translations, not really ac-
counting for the impact of information structure.
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Abstract

We present a test set for evaluating an MT sys-
tem’s capability to translate ambiguous con-
junctions depending on the sentence struc-
ture. We concentrate on the English conjunc-
tion ”but” and its French equivalent ”mais”
which can be translated into two different Ger-
man conjunctions. We evaluate all English-to-
German and French-to-German submissions
to the WMT 2019 shared translation task. The
evaluation is done mainly automatically, with
additional fast manual inspection of unclear
cases.

All systems almost perfectly recognise the tar-
get conjunction ”aber”, whereas accuracies for
the other target conjunction ”sondern” range
from 78% to 97%, and the errors are mostly
caused by replacing it with the alternative con-
junction ”aber”. The best performing system
for both language pairs is a multilingual Trans-
former TartuNLP system trained on all WMT
2019 language pairs which use the Latin script,
indicating that the multilingual approach is
beneficial for conjunction disambiguation. As
for other system features, such as using syn-
thetic back-translated data, context-aware, hy-
brid, etc., no particular (dis)advantages can be
observed.

Qualitative manual inspection of translation
hypotheses shown that highly ranked systems
generally produce translations with high ade-
quacy and fluency, meaning that these systems
are not only capable of capturing the right con-
junction whereas the rest of the translation hy-
pothesis is poor. On the other hand, the low
ranked systems generally exhibit lower fluency
and poor adequacy.

1 Introduction

Ambiguous words are often difficult to translate
automatically, even by the current state-of-the-art
neural machine (NMT) systems. Whereas NMT
systems produce more fluent (grammatical and

natural) translations than the previous state-of-the-
art statistical phrase-based (PBMT) models, the
semantic faithfulness of the translation to the orig-
inal (adequacy) is still often problematic (Castilho
et al., 2017; Klubička et al., 2018). Adequacy
is even more problematic for ambiguous words
which have two or more meanings depending on
the context. Whereas the ambiguity of nouns,
verbs and pronouns has been evaluated extensively
in the recent years (Burchardt et al., 2017; Müller
et al., 2018; Rios Gonzales et al., 2017, 2018), no
results for conjunctions have been reported so far,
and conjunctions can be ambiguous, too. It should
be noted, though, that the conjunction ambiguity is
more structural than lexical: it is mainly related to
certain aspects of grammar involving the arrange-
ment of words and word types. Therefore, the con-
junction ambiguity is related more to fluency than
to adequacy. The only work dealing with conjunc-
tions and machine translation (Huang, 1983) ex-
plores conjunction scope for rule-based MT sys-
tems and does not address the ambiguity.

Our aim is to enable quantitative analysis of
translating ambiguous conjunctions in a repro-
ducible and semi-automatic way and to compare
different types of systems in this respect. Our
test sets for WMT 2019 are designed for the En-
glish ambiguous conjunction ”but” and its French
equivalent ”mais”, each of which can be translated
into two different German conjunctions, ”aber” or
”sondern”. The content is mainly based on gen-
eral domain from subtitles (Tiedemann, 2012). In-
stead of comparing the translation hypotheses with
a reference translation, we base the evaluation on
the presence or absence of the correct conjunction
in the target language. For unclear cases (about
1% of segments), manual inspection is carried out.
We report results on all English→German and
French→German submissions to the WMT 2019
shared translation task.
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In addition to German, the test sets can be used
for any target language which has these two vari-
ants of the conjunction ”but” (for example Spanish
or Croatian).

2 German equivalents of ”but”/”mais”

The English coordinating conjunction ”but” and
its French equivalent ”mais” are ambiguous when
translated into certain target languages such as
German. In German, there are two possible vari-
ants, ”aber” and ”sondern”. ”Aber” can be used
after either a positive or a negative clause. On the
other hand, ”sondern” is only used after a nega-
tive clause when expressing a contradiction. The
first clause in the sentence must contain a negation
marker, and the second part of the sentence must
contradict the first part of the sentence.

Three examples can be seen in Table 1. The
sentences on the left have the same context, same
or similar meanining, and contain similar words as
the sentences on the right. Nevertheless, the con-
junction ”but” in all sentences on the left should
be translated as ”aber” and in those on the right
as ”sondern”. This illustrates the statement from
the previous section about the structural nature of
conjunction ambiguity.

Generally, sentences with ”aber” can be found
more frequently in the data. Table 2 presents the
distribution of the two types of sentences in the
WMT 2019 News Commentary training corpus.
In addition, it can be noted that both types of sen-
tences occure rarely in the News corpus (less than
4% in total).

3 Test sets

3.1 Preparation

The test sets are generated semi-automatically us-
ing the bilingual subtitles corpora1 according to
the following requirements: (i) include only short
segments (up to 20 words) (ii) remove all noise
(iii) avoid complex words and rare name entities
which could introduce additional effects.

First step was to extract all short segments con-
taining the desired conjunctions in the source (En-
glish and French) and the target (German) lan-
guage, and the second step was manual elimina-
tion or rephrasing complex and noisy parts. In this
way, about 1000 sentences for each of the source

1http://opus.nlpl.eu/OpenSubtitles-v2018.php

languages were prepared, containing about 800 in-
stances of ”sondern” and 200 instances of ”aber”.
Since our preliminary experiments shown that the
sentences requiring ”aber” are less difficult for MT
systems, we concentrate more on the performance
for the conjunction ”sondern”.

A detailed corpus statistics is presented in Ta-
ble 3. It can be seen that the segments are rel-
atively short, and the vocabulary size relatively
low – the vocabulary size of the standard English
test set from WMT 2018 is more than double,
about 5000 distinct words, and the average sen-
tence length is 22.5. Apart from this, it can be
seen that the average segment length of the easier
”aber” instances is slightly lower.

It should be noted that, although the basis for
the generation of the test sets was a bilingual cor-
pus, the resulting test sets do not contain any ref-
erence translations. The reason for this is twofold:
on the one hand, bilingual manual filtering of
noisy and complex content would be very time
and resource consuming. On the other hand, ref-
erence translations are not really needed – since
we are interesting only in conjunction disambigua-
tion, checking the conjunction in the translation
hypothesis is sufficient and it can be carried out
without a reference translation.

3.2 Evaluation
The vast majority of checks is performed automat-
ically, however for a small number of sentences
(usually 1-2%) a manual inspection is needed. For
each sentence, there are four possible outcomes of
the automatic evaluation:

• only the correct conjunction is found

⇒ correct

• only the opposite conjunction is found

⇒ incorrect

• both conjunctions are found

⇒ manual inspection

• none of the two conjunctions is found

⇒ manual inspection

Manual inspection is carried out in the following
way: if the structure of a sentence with additional
or without any conjunctions is correct, then the
sentence is considered correct. All errors which
are not related to the conjunction are ignored, both
by automatic and by manual evaluation.
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”aber” ”sondern”
You’re apologizing to me, but you Don’t apologize to me, but to her.
should apologize to her.
The child wanted to go to the park, The child didn’t want to go home,
but we went home. but to the park.
You should never speak but you can write. You should never speak but only write.

Table 1: Examples of difference between the two German conjunctions.

lang. pair aber sondern
En-De 8230 (2.4%) 4389 (1.3%)
Fr-De 5498 (2.1%) 3369 (1.3%)

Table 2: Distribution of sentences requiring each of the
two German conjunctions in the News Commentary
training corpus for WMT 2019: number of sentences
and percentage in the whole corpus.

4 MT Systems

4.1 English-to-German
All English-to-German systems are trained on the
constraint data except en-de-task and PROMT-
NMT. For the en-de-task system, as well as the
Microsoft-doc/sent level systems, no additional in-
formation is available.

All other systems are based on the Transformer
architecture, and UCAM uses the phrase-based ap-
proach too, thus being the only hybrid system.

All systems used BPE2 segmentation except
eTranslation which used SentencePiece3 segmen-
tation.

MSRA.MADL, TartuNLP and UdS-DFKI were
trained only on natural parallel data, whereas all
other systems used synthetic back-translated data,
too. JHU, NEU and UCAM performed back-
translation more than once.

The LMU and UdS-DFKI systems are context
aware, UdS-DFKI being coreference aware.

MSRA.MADL used multi-agent dual learning
(MADL)4.

The only multilingual system is TartuNLP, one
and the same Transformer system trained on all
WMT language pairs which use Latin script.

4.2 French-to-German
All French-to-German systems are based on the
Transformer architecture and used the constrained
data.

2https://github.com/rsennrich/subword-nmt
3https://github.com/google/sentencepiece
4https://openreview.net/pdf?id=HyGhN2A5tm

All systems used BPE units except eTranslation
which used SentencePiece units.

MSRA.MADL and TartuNLP are trained only on
natural parallel data, whereas eTranslation, LIUM
and MLLP-UPV used additional synthetic back-
translated data.

MSRA.MADL again used multi-agent dual
learning (MADL).

TartuNLP is again the only multilingual system,
the same one used for the English-to-German task.

5 Results

The results are presented in Table 4 in the form of
percentage of sentences automatically identified as
correct (”aut.”), identified as correct after both au-
tomatic check and manual inspection (”full”), and
automatically identified as incorrect because the
source conjunction is translated into the opposite
conjunction (”opposite”). The systems are ranked
by the full accuracy of the conjunction ”sondern”.

5.1 General observations

Generally, the same tendencies are observed for
both language pairs.

First of all, in can be noted that the results of
our preliminary experiments mentioned in Sec-
tion 2 are confirmed on the large scale: translating
sentences requiring the conjunction ”aber” is not
problematic for any of the systems: the percent-
age of correct sentences is 100%, or in the worst
cases, close to 100%, for both language pairs and
all systems.

As for the ”difficult” conjunction ”sondern”, the
majority of the systems translates it correctly in
90-95% of cases, and the predominant problem for
the rest is translating it as ”aber” (5-10%). Other
types of errors are found in only very small num-
ber of cases (for example, parts of the sentences
left untranslated, or completely incorrect sentence
structure).

For the sentences with both conjunctions or
without any of the two conjunctions, manual in-
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source target number of number of vocabulary average
language conjunction sentences running words size sent. length
English all 1066 13655 2252 12.8

”sondern” 858 11058 2043 12.9
”aber” 208 2597 560 12.5

French all 1010 12963 2162 12.8
”sondern” 806 10478 1823 13.0
”aber” 98.1 2485 673 12.2

Table 3: Statistics of the test sets: number of sentences, number of running words, vocabulary size and average
sentence length.

”sondern” ”aber”
language correct opposite correct opposite
pair system aut. full (”aber”) aut. full (”sondern”)
En→De TartuNLP 97.2 97.3 2.7 98.6 99.0 1.0

NEU 96.1 96.1 3.8 100 100 0
HelsinkiNLP 95.3 95.6 4.3 99.0 99.5 0
MSRA.MADL 94.5 94.6 5.1 99.5 99.5 0
dfki-nmt 94.0 94.6 5.2 99.0 99.5 0.5
online-A 94.3 94.4 5.3 99.0 99.0 1.0
eTranslation 94.0 94.3 5.5 100 100 0
Microsoft-sent-level 93.8 93.9 6.1 99.5 100 0
Facebook-Fair 93.6 93.7 6.2 100 100 0
Microsoft-doc-level 93.6 93.6 6.3 100 100 0
UdS-DFKI 92.8 92.8 6.7 99.0 99.0 0
LMU 91.6 91.8 7.8 95.2 95.7 1.0
UCAM 91.7 91.7 8.2 99.0 99.0 1.0
JHU 91.4 91.7 8.2 100 100 0
MLLP-UPV 91.0 91.2 8.4 100 100 0
online-Y 90.3 90.3 9.6 99.5 99.5 0.5
PROMT-NMT 89.4 89.4 9.9 100 100 0
online-B 88.8 89.4 10.2 99.0 99.5 0
online-G 89.0 89.2 10.7 100 100 0
online-X 86.0 86.0 13.7 99.5 99.5 0.5
en-de-task 78.2 78.2 21.3 95.2 95.7 3.4

Fr→De TartuNLP 96.9 96.9 3.1 97.5 98.5 0.5
eTranslation 93.0 93.4 6.6 100 100 0
online-G 87.6 93.4 6.7 100 100 0
MSRA.MADL 93.2 93.3 6.7 100 100 0
online-A 88.5 92.8 6.7 100 100 0
MLLP-UPV 92.0 92.4 7.4 99.5 99.5 0.5
LIUM 91.3 91.7 8.3 100 100 0
online-B 87.3 89.7 10.5 100 100 0
online-Y 67.9 88.7 10.5 100 100 0
online-X 86.8 86.8 13.2 100 100 0

Table 4: Percentage of correct conjunctions retrieved automatically and by full evaluation, and percentage of
opposite conjunctions.
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source: However, this is not Agnes,
but her daughter.

output: Das ist aber nicht Agnes,
sondern ihre Tochter.

source: The time, however, is not thirty
years ago, but now.

output: Die Zeit is aber nicht dreissig
Jahre her, sondern jetzt.

Table 5: Examples of correct translations with both
German conjunctions.

spection is carried out. For English-to-German
systems, only a small number of sentences fall into
these two categories, so that manual inspection has
no or very little effect on ranking. For four ”on-
line” French-to-German systems, online-A, -B, -
G and -Y, however, a larger number of sentence
without conjunctions is found.

Both conjunctions: Manual inspection re-
vealed that this is not problematic: it can happen
if ”however”, ”yet” or similar word which can be
translated as ”aber” is present in the source sen-
tence. Two examples can be seen in Table 5.

No conjunctions: For the English source, it
can happen for a small number of sentences with
structure ”not only X, but Y, too”, whereas for the
French source a number of other sentence struc-
tures was paraphrased, too. Some of these para-
phrased translations are perfect, whereas some of
them are not as fluent as they would be if the con-
struction with conjunction were used, but are nev-
ertheless considered as correct. Two examples can
be seen in Table 6.

5.2 Differences between the systems

The first and very interesting observation is that
the best performing system for both language pairs
is the multilingual TartuNLP system. The advan-
tage of a multilingual system is probably its ability
to get a signal for different structures from many
languages, so that the information about differ-
ent variants of the target conjunction necessary for
different source sentence structures is better cap-
tured.

As for other system features, no particular dif-
ferences can be spotted. For example, the best
system TartuNLP is trained only on natural paral-
lel data, the other system without back-translation
MSRA.MADL performed very well, one system
using multiple back-translation NEU is ranked

source Ce n’est pas un robot,
mais un humain.

source (en gloss) It is not a robot,
but a human.

output Er ist kein Roboter,
er ist ein Mensch.

output (en gloss) He is not a robot,
he is a human.

source Ce n’taient pas des mots,
mais des actes.

source (gloss en) It were not the words,
but the deeds.

output Es waren keine Worte,
es waren Taten.

output (en gloss) It was not words,
it was deeds.

Table 6: Examples of correct translations without any
of the two German conjunctions (mostly occuring in
French-to-German systems).

as second and two other such systems JHU and
UCAM in the middle, so no (dis)advantage of
synthetic parallel data can be observed. Further-
more, two context-aware English-to-German sys-
tems LMU and UdS-DFKI as well as the hybrid
UCAM system are ranged in the middle, thus no
clear (dis)advangates of either of the approaches
can be noted.
Qualitative analysis of overall performance
In order to check whether the best ranked systems
maybe produce generally poor translations and
only capture the conjunctions correctly, as well as
other way round (maybe the lowest ranked sys-
tems produce fluent and adequate translations), we
carried out a manual qualitative inspection of five
highest and five lowest ranked hypotheses. The
most important finding is that the best ranked sys-
tems produce decent translations both in terms of
adequacy and fluency, meaning that these systems
are not only capable of choosing the right conjunc-
tion while generating poor translations. As for the
low ranked systems, they all have much lower flu-
ency and adequacy, especially the lowest ranked
en-de-task system with very low adequacy and a
number of non-existing words.

Of course, to draw stabler conclusions, a
systematic quantitative analysis of correlation
between conjunction disambiguation and ade-
quacy/fluency should be carried out in future
work.
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6 Conclusions

We present a targeted evaluation of 21 English-
to-German and 10 French-to-German MT systems
regarding their performance in lexical choice for
ambiguous source conjunction ”but”/”mais”. We
observe that all systems almost perfectly recog-
nise the target conjunction ”aber”, whereas accu-
racies for the other target conjunction ”sondern”
range from 78% to 97%, and the errors are mostly
caused by replacing it with the alternative conjunc-
tion ”aber”.

The best performing system on the ”difficult”
target variant ”sondern” for both source languages
is based on the multilingual transformer model
trained on all WMT language pairs using Latin
script. The advantage of a multilingual system
might be a better ability to learn the relation
between different sentence structures and corre-
sponding conjunctions. Apart of this, there are no
other clear differences between the systems.

Qualitative analysis of translation hypotheses
shown that highly ranked systems generally pro-
duce translations with high adequacy and fluency,
meaning that they are not only capable of captur-
ing the right conjunction whereas the rest of the
translation hypothesis is poor. On the other hand,
the low ranked systems generally exhibit lower
fluency and poor adequacy. Quantitative analy-
sis of correlation between the conjunction disam-
biguation and overall performance should be a part
of future work.

The current study is focused on only one am-
biguous conjunction and only one target language.
In future, we plan to extend the test set with more
conjunctions (and variants), and possibly, to more
language pairs.
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Abstract

Supervised Neural Machine Translation
(NMT) systems currently achieve impres-
sive translation quality for many language
pairs. One of the key features of a correct
translation is the ability to perform word
sense disambiguation (WSD), i.e., to translate
an ambiguous word with its correct sense.
Existing evaluation benchmarks on WSD
capabilities of translation systems rely heavily
on manual work and cover only few language
pairs and few word types. We present MU-
COW, a multilingual contrastive test suite
that covers 16 language pairs with more than
200 000 contrastive sentence pairs, automati-
cally built from word-aligned parallel corpora
and the wide-coverage multilingual sense in-
ventory of BabelNet. We evaluate the quality
of the ambiguity lexicons and of the resulting
test suite on all submissions from 9 language
pairs presented in the WMT19 news shared
translation task, plus on other 5 language pairs
using pretrained NMT models. The MUCOW
test suite is available at http://github.
com/Helsinki-NLP/MuCoW.

1 Introduction

Neural Machine Translation (NMT) has provided
impressive advances in translation quality, lead-
ing to a discussion whether translations produced
by professional human translators can still be
distinguished from the output of NMT systems,
and to what extent automatic evaluation measures
can reliably account for these differences (Has-
san Awadalla et al., 2018; Läubli et al., 2018; Toral
et al., 2018). One answer to this question lies in
the development of so-called test suites (Burchardt
et al., 2017) or challenge sets (Isabelle et al., 2017)
that focus on particular linguistic phenomena that
are known to be difficult to evaluate with simple
reference-based metrics such as BLEU. Existing
test suites focus e.g. on morphosyntactic and syn-

tactic divergences between source and target lan-
guage (Burchardt et al., 2017; Burlot and Yvon,
2017; Isabelle et al., 2017; Sennrich, 2017; Bur-
lot et al., 2018; Macketanz et al., 2018) or on dis-
course phenomena (Guillou and Hardmeier, 2016;
Bawden et al., 2018; Müller et al., 2018; Guillou
et al., 2018).

Another linguistic phenomenon that is challeng-
ing for translation is lexical ambiguity (Liu et al.,
2018; Marvin and Koehn, 2018), i.e., words of the
source language that have multiple translations in
the target language representing different mean-
ings. Recently, Rios Gonzales et al. (2017) intro-
duced a lexical ambiguity benchmark called Con-
traWSD that is based on contrastive translation
pairs: a sentence containing an ambiguous source
word is paired with the correct reference transla-
tion and with a modified translation in which the
ambiguous word has been replaced by a word of a
different sense. Contrastive evaluation makes use
of the ability of NMT systems to score given trans-
lations: a contrast is considered successfully de-
tected if the reference translation obtains a higher
score than an artificially modified translation.

However, all these test suites require significant
amounts of expert knowledge and manual work for
identifying the divergences and compiling the ex-
amples, which typically limits their coverage to
a small number of language pairs and directions.
For example, the test sets built by Rios Gonzales
et al. (2017) cover only 65 ambiguous words for
two language pair directions.

In this paper, we present a language-
independent method for automatically building
ContraWSD-style test suites. It involves the
following steps: (1) identify ambiguous source
words and their translations; (2) cluster the
translations into senses; (3) select sentences with
ambiguous words and create contrast pairs.

The setup proposed by Rios Gonzales et al.
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177 input 26 documents 9 system
50 typing 21 petition 8 entered
29 entering 17 data 8 command
28 entry 14 submission 7 display
27 loading 13 the 7 to
26 enter 11 inputting . . .

Table 1: English words aligned with the German word
Eingabe and their alignment frequencies. Words with
frequency < 10 are discarded from further processing.

(2017) has shown a certain number of drawbacks.
First, it cannot be used in conjunction with online
systems (which do not provide an API for scor-
ing) or with rule-based systems. Second, it is un-
clear to what extent the score of an MT system
reflects its quality, as it might never have gener-
ated that particular sentence. Third, it requires
the explicit construction of contrastive sentences,
which is not trivial, especially for morphologically
rich languages. For these reasons, the WMT test
suite calls focus on translation test suites, where
the participants are asked to produce translations
of the source sentence instead of scoring given hy-
potheses. Following Rios et al. (2018) and Macke-
tanz et al. (2018), who proposed small-scale trans-
lation test suites targeting WSD, we participated
at WMT with modified versions of MUCOW. The
modifications only concern step (3).

As a result, we make available two variants of
MUCOW, a multilingual contrastive word sense
disambiguation test suite for machine translation.
The scoring variant covers 11 language pairs with
a total of almost 240 000 sentence pairs. The
translation variant covers 9 language pairs with
a total of 15 600 sentences. The data and scor-
ing scripts are available at https://github.
com/Helsinki-NLP/MuCoW.

2 Building MUCOW

In this section, we describe the three steps needed
to create a MUCOW test suite and illustrate them
with some German→English examples.

2.1 Step 1: Identify ambiguous source words
and their translations

We first compile a list of source language words
that have a large number of distinct translations.
For this, we apply the eflomal word alignment tool
(Östling and Tiedemann, 2016) on a collection of
parallel corpora, keeping only those source words

Petition, Antrag,
Gesuch, Eingabe

petition, request,
postulation

Produktionsfaktor,
Ressource, Eingabe

factors of production,
input, resource

Eingabe (Computer),
Dateneingabe, Input

input, data entry

Table 2: Three bilingual German–English clusters for
the German word Eingabe, as obtained from BabelNet.
Intersected words with Table 1 are displayed in bold.
The second and third clusters are merged because of
the shared English word input.

that were aligned at least 10 times each with at
least two distinct target words. We use parallel
corpora from the OPUS collection (Tiedemann,
2012),1 counting only one-to-one word alignment
links. Table 1 provides an example.

2.2 Step 2a: Cluster target words via
BabelNet

For each source word of the previous step, those
target words that potentially share the same mean-
ing (for example synonyms) are clustered to-
gether. To this end, we exploit BabelNet (Nav-
igli and Ponzetto, 2012), a wide-coverage mul-
tilingual encyclopedic dictionary obtained auto-
matically from various resources (WordNet and
Wikipedia, among others). BabelNet 4.0 cov-
ers 284 languages with almost 16 million entries,
called Babel synsets. Each entry represents a
given meaning and includes a set of synonyms
(synset) in different languages. Conveniently, it
provides inter-resource mappings in multiple lan-
guages, which enables us to translate words and
senses between several languages.

We query BabelNet with each source word and
take the intersection of the alignment-inferred tar-
get words and the BabelNet-inferred target words.
Crucially, we group the remaining target words ac-
cording to the BabelNet sense clusters. Finally, we
combine those clusters that share at least one com-
mon target word. Table 2 shows an example.

1We use the following corpora: Books v1, EU Book-
shop Corpus v2, Europarl v7 (Koehn, 2005), MultiUN v1
(Eisele and Chen, 2010), News-Commentary v11, OpenSub-
titles v2018 (Lison and Tiedemann, 2016), SETIMES v2 (Ty-
ers and Alperen, 2010), Tatoeba v2, TED2013 v1.1 (Cettolo
et al., 2013).
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Figure 1: Precision (dashed) and recall (solid lines) val-
ues for different sense embeddings and thresholds.

2.3 Step 2b: Refine sense clusters with sense
embeddings

It is known that lexical resources such as Babel-
Net tend to suffer from overly fine granularity of
their sense inventory (Navigli, 2006; Palmer et al.,
2007). We therefore introduce an additional merg-
ing step: i) we associate each Babel synset with an
embedding, ii) compute pairwise cosine similari-
ties between synsets, iii) and merge them if their
embedding similarity is higher than a threshold γ.

Choosing a good Babel synset embedding and
an optimal threshold is a difficult task. We eval-
uated three Babel synset vector representations,
using the existing German→English ContraWSD
test suite as gold standard:

Nasari (Camacho-Collados et al., 2016) is a vec-
tor representation built by combining the
knowledge from Wikipedia and WordNet
with word embeddings.

SW2V (Mancini et al., 2017) is a neural model
that learns word and synset embeddings in
a shared vector space exploiting a shallow
graph-based disambiguation algorithm.

FastText-Centroid (FT-C): We also include a
synset embedding representation by look-
ing up the FastText word embeddings (Bo-
janowski et al., 2017) for all words in a synset
and computing their centroid.

Note that Nasari and SW2V embeddings
are tied to the (language-independent) BabelNet
synset IDs and can therefore be applied in a

0.2 0.3 0.4 0.5 0.6

20

30

40

50

60

Threshold

F
1

sc
or

e
(%

)
F
0
.5

sc
or

e
(%

)

Baseline
Nasari
SW2V
FT-C

Figure 2: F1-scores (dashed) and F0.5-scores (solid
lines) for different sense embeddings and thresholds.

straightforward way to non-English target lan-
guages.2 As a baseline, we use the synset clusters
obtained from Section 2.2.

We compute precision and recall scores for all
three embedding methods with γ threshold values
ranging from 0.15 to 0.65 with a 0.05 step size.
An inferred synset was considered correct if all
its lexicalisations (if present) occurred in a single
gold synset, and no lexicalisations of a gold synset
were found in a different inferred synset. In other
words, an inferred synset was considered wrong
if it had been falsely merged or if it had falsely
been kept separate from another one. Figure 1
shows the precision and recall curves. All refine-
ment methods improve precision, whereas recall
only decreases at low thresholds. Figure 2 shows
F1 and F0.5 scores; we deem the latter more sensi-
ble in the present setting as high precision is more
important to us than high recall. The FT-C and
SW2V methods perform best at lower thresholds,
while Nasari works best at high thresholds.

An additional manual evaluation was carried
out with 50 random German words3 and four set-
tings that obtained high F1 or F0.5 scores. As
shown in Table 3, the SW2V method with a thresh-
old set at 0.3 obtained the highest precision value
by a large margin and therefore also the best F0.5

score. We chose this setting for all languages.
Source words that end up with a single synset as a
result of this step are discarded.

2For both embeddings, we use the pre-trained 300-
dimensional Babel synset representation trained on the
UMBC corpus.

3All words were associated with at least two synsets by
the baseline model, but only 18 out of them (36%) contained
two or more synsets according to a human annotator.
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Method Threshold Prec. Rec. F1 F0.5

Baseline 33% 48% 39% 35%
Nasari 0.55 54% 31% 39% 47%
SW2V 0.3 67% 28% 40% 52%

0.5 46% 42% 44% 45%
FT-C 0.35 54% 27% 36% 45%

0.45 50% 35% 41% 46%

Table 3: Manual evaluation results for selected param-
eter settings.

2.4 Step 3: Selecting sentences and creating
contrast pairs (Scoring variant only)

We use the synset lexicon built in the previous step
to guide the creation of contrast pairs. We extract
sentence pairs from the parallel corpora and group
them by source word and target word sense. We
restrict the extraction process to sentences longer
than 10 words and skip sentences in which the
source or target item occurs more than once. From
this set, we randomly choose 20 instances of each
sense from various corpus sources.

For each extracted sentence pair, a contrastive
sentence pair is produced by keeping the source
sentence identical, but replacing the target word in
the target sentence by another lexicalisation from
a different synset.

While this entirely automatic setup could give
rise to inconsistencies which would require man-
ual correction as in Rios Gonzales et al. (2017),
we argue that BabelNet constraints already pro-
vide some filtering (for example mostly keeping
number constant). Given our aim to scale up to a
large number of languages, the need for human in-
tervention would make the creation of a large scale
multilingual benchmark difficult and costly.

2.5 Statistics

We apply the three steps presented above to all to-
English translation directions that were part of the
Conference of Machine Translation (WMT) news
translation task over the last years. Table 4 sum-
marizes the statistics of these resources. The av-
erage number of senses per source word ranges
between 2.0 and 2.11 (2.36–2.4 for ContraWSD).
The lexicons for the Baltic languages are small due
to the small size of available parallel corpora.

3 Measuring machine translation WSD
capability with MUCOW

The aim of MUCOW is to examine the ability of
current machine translation systems to choose the

Corpus Lexicon Test suite

Language Sentence Source Target Target Sentence
pair pairs words synsets words pairs

CS–EN 44M 107 223 412 11470
DE–EN 35M 259 548 1086 33077
ES–EN 81M 515 1090 2398 72295
ET–EN 14M 34 68 89 2500
FI–EN 31M 176 367 610 16326
FR–EN 68M 456 963 2152 64369
LT–EN 2.5M 10 20 31 922
LV–EN 1.6M 5 10 12 318
RO–EN 52M 129 263 496 14258
RU–EN 38M 113 234 396 12378
TR–EN 46M 107 220 420 11795

Table 4: Sizes of the parallel corpora used for lexicon
extraction, the inferred and filtered ambiguity lexicons,
and the resulting test suite corpora.

Lg. pair Model ContraWSD MUCOW BLEU

DE–EN LSTM 77.55 60.50 30.3
Transformer 86.42 66.98 33.3
Nematus 86.72 68.80 35.1

CS–EN Nematus 78.77 30.9
RO–EN Nematus 62.86 33.3
RU–EN Nematus 72.36 30.8
TR–EN Nematus 62.69 20.1

Table 5: Comparison of MUCOW and ContraWSD ac-
curacy scores and BLEU scores computed on the WMT
news2017 test set (news2016 for RO–EN).

correct target sense of ambiguous source words.
Here, we give some baseline results obtained with
supervised NMT systems. Following Rios Gon-
zales et al. (2017), we score both reference and
contrastive translations with the same NMT sys-
tem. A correct decision is detected when the score
of the reference is higher than the scores from all
contrastive translations. The final test suite score
corresponds to the accuracy over all decisions.

Three models are examined for
German→English: a 6-layer bi-LSTM model and
a Transformer model4 trained on the provided
training data from WMT17 plus backtranslations
from Sennrich et al. (2016b), and the University
of Edinburgh’s WMT17 submission, a deep
LSTM model with additional synthetic data
trained with Nematus (Sennrich et al., 2017b).5

The upper half of Table 5 reports ContraWSD

4Sentences are encoded using Byte-Pair Encoding (Sen-
nrich et al., 2016c), with 32,000 merge operations for each
language. For the Bi-LSTM model we use embedding layers
and hidden units of 512 dimensions. For the Transformer, we
use the base version (Vaswani et al., 2017).

5data.statmt.org/wmt17_systems/
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and MUCOW accuracy scores as well as BLEU
scores computed on the WMT17 test set. The
ranking of the three models is consistent across
the three tasks. Interestingly, the Transformer
model (trained on far less data than the Nematus
model) scores much better on the two test suites
than the BLEU score would suggest, confirming
the findings by Tang et al. (2018).

The University of Edinburgh also makes avail-
able their NMT models for other WMT16 and
WMT17 language pairs.6 MUCOW accuracy
scores of these models are shown in the lower half
of Table 5 together with the WMT test set BLEU
scores reported by the authors (Sennrich et al.,
2016a, 2017a).

Even though we only assess the confidence of
an NMT system in detecting the right sense of a
single word within a sentence, the results show
that WSD is still an issue in MT – even in state-
of-the-art-systems – that requires further study.

4 Translation test suites for WMT 2019

As mentioned in Section 1, the WMT test suite
call requires a different setup that does not rely on
scoring capabilities of the participating systems.
Therefore, we modified step (3) of our method
to conform with these requirements, analogously
to the modification of ContraWSD by Rios et al.
(2018). As a beneficial side effect, we were also
able to include language pairs with non-English
target languages.7 The changes to step (3) are the
following:

• The sentence pairs were filtered more aggres-
sively. We only kept sentence pairs in which
both the source and target words were tagged
as NOUNs by the respective UDPipe part-of-
speech tagger (Straka and Straková, 2017).

• Source sentences stemming from one of
the WMT training corpora were excluded.
We only used sentences from the following
OPUS corpora: Books, Tatoeba, TED2013,
EUBookstore and OpenSubtitles2018.

• We only kept synsets for which we found at
least 4 example sentences, and we retained at
most 10 example sentences per sense.

6data.statmt.org/wmt{16,17}_systems/
7We limited our work to from-English language pairs

due to time restrictions, but the method would be generic
enough to also work for French–German, German–French,
and German–Czech.

Language Source Target In-dom Out-dom Sen-
pair words synsets synsets synsets tences

DE–EN 217 461 329 132 4268
FI–EN 109 231 91 140 2117
LT–EN 6 12 5 7 99
RU–EN 67 138 59 79 1223

EN–CS 98 200 29 171 1843
EN–DE 176 362 220 142 3337
EN–FI 48 97 22 75 830
EN–LT 4 8 3 5 69
EN–RU 97 199 40 163 1814

Table 6: Sizes of the MUCOW data sets compiled for
WMT19.

• If as a result of the above filters, all but one
senses of a source word were removed, we
removed the source word entirely.

• We distinguished between in-domain and
out-of-domain synsets. A synset is consid-
ered out-of-domain if more than half of its
example sentences come from OpenSubti-
tles2018. The intuition behind this distinc-
tion is that most participating systems will be
tuned towards the news domain and thus will
not handle features of colloquial speech reli-
ably.

• We disregarded the automatically generated
contrastive sentences.

We built the translation variant of MUCOW for
9 translation directions of the news task. Table 6
shows some statistics.

The resulting test suites contain sentences of the
source language together with the following meta-
data: the ambiguous source word, the list of cor-
rect target words (the correct target synset), the
list of incorrect target words (the incorrect target
synset), and information about the domain of the
synsets. Table 7 shows an example. The source
language sentences were sent (without metadata)
to the WMT participants as part of the test set, and
we received the translations for evaluation.

5 WMT 2019 test suite results

In order to assess the translation output of the
WMT participants, we check whether any of the
correct or incorrect target words listed in the meta-
data file can be identified in the tokenized and low-
ercased translation output.

Although the sentences have been selected to
contain the uninflected base form both in the
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Example containing ambiguous word Correct translations Incorrect translations

It occurred to me that my watch might be broken. Armbanduhr, Uhr Wache
I hope you didn’t get distracted during your watch. Wache Armbanduhr, Uhr

In winter, the dry leaves fly around in the air. Luft, Luftraum, Aura Miene, Ausdruck
He remained silent for a moment, with a thoughtful but contented air. Miene, Ausdruck Luft, Luftraum, Aura

Harry had to back out of the competition because of a broken arm. Arm Waffe
So does the cop who left his side arm in a subway bathroom. Waffe Arm

Drain the pasta and return the pasta to the pot. Blumentopf, Kochtopf,
Topf, Nachttopf

Marihuana, Gras

Where did those idiots get all of this pot anyhow? Marihuana, Gras Blumentopf, Kochtopf,
Topf, Nachttopf

Table 7: Examples of test suite instances of the English–German WMT test suite. The ambiguous (English) source
word is highlighted in bold, and correct and incorrect (German) translations – as inferred by the MuCoW procedure
– are given. Senses classified as out-of-domain are shown in italics. Note that some example sentences may further
restrict the set of correct translations.

Language Average coverage Average coverage
pair (tokenized) (with lemma backoff)

DE–EN 83.06% 84.51%
FI–EN 81.52% 82.14%
LT–EN 92.75% 93.48%
RU–EN 82.23% 82.85%

EN–CS 61.77% 74.87%
EN–DE 66.52% 69.26%
EN–FI 52.27% 67.55%
EN–LT 64.86% 79.71%
EN–RU 58.88% 73.29%

Table 8: Average coverage of target words among
WMT19 primary submissions.

source and target languages, we cannot assume
that all translation systems will output base forms.
Hence, if neither correct nor incorrect target words
can be identified, we lemmatize the translation
output and search the target words again in the
lemmatized version.8 Depending on the target lan-
guage, lemmatization allowed us to substantially
increase the coverage (see Table 8).

We report precision, recall and F1-score for in-
domain senses and out-of-domain senses, except
for Lithuanian, where not enough examples are
available. Precision and recall are computed as
follows:9

Precision =
# examples with correct target words

# examples with either correct
or incorrect target words

8We used the Turku neural lemmatizer with pretrained
models (Kanerva et al., 2019). For Lithuanian, as no pre-
trained model was available, we trained one using the respec-
tive available data from the Universal Dependencies project.

9Examples that contained both correct and incorrect target
words were counted as incorrect.

Recall =
# examples with correct target words

# total examples

For each language pair, EN→CS, EN↔DE,
EN↔FI, EN↔RU and EN↔LT, results are shown
respectively in Tables 9 to 13. Overall, we observe
that systems perform quite well in WSD, achiev-
ing high precision overall. For some translation
directions, there is a big gap between in-domain
and out-of-domain synsets, showing clearly that
systems tuned towards news translation struggle
to identify the right sense when tested on a differ-
ent domain. At the same time, online systems are
more robust to domain mismatch, which is likely
due to their use of a much larger variety of training
data. Interestingly, the Czech–English task shows
opposite results, with online systems performing
better on in-domain synsets than research systems.

Interestingly enough, having English as source
side yields better overall precision comparing with
English as target side. One possible explanation
could be found in the difficulty to obtain better
encoder representations for morphologically rich
languages. Recall is better with English on the tar-
get side due to higher coverage (Table 8).

It would have been instructive to compare the
MUCOW results with automatic or manual evalu-
ation scores on the official WMT19 test set, but
unfortunately, such scores were not available in
time for all systems.

6 Conclusion

In this paper, we have presented MUCOW, an au-
tomatically built WSD test suite for machine trans-
lation that relies on large parallel corpora, the mul-
tilingual lexical resource BabelNet and language-
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independent synset embeddings. We used the pro-
posed benchmark to assess the WSD ability of
NMT systems following two evaluation protocols:
scoring both reference and contrastive translations
with pretrained NMT models, and as translation
test suite for the WMT19 news shared task.

We find that state-of-the-art and fine-tuned
NMT systems still present some drawbacks on
handling ambiguous words, especially when eval-
uated on out-of-domain data and when the encoder
has to deal with a morphologically rich language.
It will be particularly instructive to see how well
the WSD test suite results correlate with human
evaluation scores and with recently proposed eval-
uation metrics that are based on semantic repre-
sentations of the translations (Gupta et al., 2015;
Shimanaka et al., 2018).

As future work we plan to further extend the test
suite including more languages and parallel data,
and make use of the contrastive sentences as ad-
versarial examples during training.

Acknowledgments

This work is part of the FoTran project,
funded by the European Research Council
(ERC) under the European Union’s Hori-
zon 2020 research and innovation pro-
gramme (grant agreement No 771113).

The authors gratefully acknowledge the support
of the Academy of Finland through project 314062
from the ICT 2023 call on Computation, Machine
Learning and Artificial Intelligence. Finally, We
would also like to acknowledge NVIDIA and their
GPU grant.

References
Rachel Bawden, Rico Sennrich, Alexandra Birch, and

Barry Haddow. 2018. Evaluating discourse phe-
nomena in neural machine translation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1304–1313. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Aljoscha Burchardt, Vivien Macketanz, Jon De-
hdari, Georg Heigold, Jan-Thorsten Peter, and
Philip Williams. 2017. A linguistic evaluation of
rule-based, phrase-based, and neural MT engines.

The Prague Bulletin of Mathematical Linguistics,
108:159–170.

Franck Burlot, Yves Scherrer, Vinit Ravishankar,
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In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

CUNI-Trf-T2T-2018 96.76 84.75 90.36 79.85 71.71 75.56 82.77 74.01 78.15
CUNI-Trf-T2T-2019 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTrf-T2T 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTrf-Marian 96.00 85.71 90.57 72.45 68.51 70.42 76.61 71.69 74.07
uedin 96.30 83.27 89.31 72.96 67.85 70.31 77.02 70.70 73.72
online-Y 97.57 84.86 90.77 61.57 63.73 62.63 67.93 68.03 67.98
parfda 95.02 75.27 84.00 68.16 58.44 62.93 72.85 61.57 66.74
online-X 95.70 87.81 91.59 57.35 58.89 58.11 64.54 64.83 64.68
online-A 95.88 83.21 89.10 58.36 58.25 58.30 65.17 63.33 64.24
online-B 97.93 83.16 89.94 57.02 57.24 57.13 64.46 62.63 63.53

Table 9: Results for English–Czech.

In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

German–English:
Facebook FAIR 80.78 85.80 83.21 52.77 72.56 61.10 73.55 82.99 77.99
online-B 77.88 83.81 80.73 45.50 66.51 54.04 69.58 80.31 74.56
online-G 77.62 83.76 80.57 45.62 65.43 53.76 69.48 80.02 74.38
online-Y 76.82 84.51 80.48 41.93 61.71 49.93 68.10 79.97 73.56
dfki-nmt 77.64 83.35 80.39 41.08 63.02 49.74 68.31 79.42 73.45
RWTH Aachen 77.62 84.30 80.83 36.96 60.92 46.01 67.30 80.02 73.11
MSRA.MADL 77.95 84.36 81.03 36.73 56.26 44.44 67.78 79.08 73.00
UCAM 76.79 84.04 80.25 35.38 55.71 43.28 66.54 78.77 72.14
MLLP-UPV 77.26 83.24 80.14 35.85 54.92 43.38 67.02 77.93 72.06
online-A 75.77 83.08 79.26 37.47 63.15 47.04 65.87 79.40 72.00
NEU 75.26 83.50 79.16 32.49 55.93 41.11 64.49 78.58 70.84
JHU 74.94 83.68 79.07 31.56 51.38 39.10 64.31 77.79 70.41
uedin 74.26 81.62 77.77 32.21 45.89 37.85 64.28 74.70 69.10
PROMT NMT 70.05 81.34 75.27 32.02 43.94 37.05 61.20 73.70 66.87
online-X 67.04 80.29 73.07 31.98 62.47 42.31 57.77 77.07 66.04
TartuNLP-c 71.11 77.22 74.04 29.29 46.31 35.88 60.68 71.48 65.64

English–German:
Facebook FAIR 83.43 76.99 80.08 56.29 55.10 55.69 74.48 70.05 72.19
Microsoft-sentence-level 83.18 77.14 80.05 52.81 51.92 52.36 73.31 69.27 71.23
online-B 83.37 74.78 78.85 51.92 50.66 51.28 73.04 67.30 70.05
Microsoft-document-level 81.76 75.68 78.60 47.21 48.11 47.65 70.54 67.29 68.88
online-Y 81.29 75.30 78.18 46.37 48.21 47.27 69.87 67.12 68.47
online-G 81.44 73.76 77.41 46.61 45.44 46.02 70.21 65.09 67.55
dfki-nmt 80.70 74.37 77.41 44.95 42.04 43.44 69.54 64.39 66.87
MLLP-UPV 79.90 73.60 76.62 44.03 39.63 41.72 68.90 63.01 65.82
lmu-ctx-tf-single 79.55 72.51 75.86 43.93 41.99 42.94 68.23 63.13 65.58
NEU 78.39 73.50 75.86 41.91 41.53 41.72 66.83 63.75 65.25
eTranslation 80.44 71.00 75.43 43.47 40.48 41.92 68.69 61.65 64.98
MSRA.MADL 80.53 71.97 76.01 41.79 35.63 38.46 68.88 60.67 64.51
UCAM 78.21 72.70 75.35 40.41 37.28 38.78 66.61 61.77 64.10
online-A 79.21 72.05 75.46 40.48 36.44 38.35 67.37 61.09 64.07
Helsinki-NLP 78.34 72.52 75.32 39.06 36.65 37.82 66.24 61.57 63.82
PROMT NMT 78.08 72.40 75.13 36.99 34.16 35.52 65.61 60.77 63.10
JHU 77.80 71.48 74.50 37.77 29.35 33.04 66.47 58.08 61.99
UdS-DFKI 78.27 70.54 74.21 35.68 30.16 32.69 65.72 58.10 61.68
online-X 71.01 72.71 71.85 34.36 40.47 37.17 59.07 63.16 61.05
TartuNLP-c 77.32 66.29 71.38 33.02 26.13 29.17 64.34 53.85 58.63
en de task 64.54 23.14 34.06 38.41 5.64 9.84 59.43 16.62 25.97

Table 10: Results for German–English and English–German.
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In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Finnish–English:
online-G 78.00 84.17 80.97 71.47 81.65 76.22 74.14 82.71 78.19
online-Y 79.30 82.89 81.05 63.40 81.73 71.41 69.78 82.25 75.51
GTCOM-Primary 81.87 84.81 83.31 57.28 77.64 65.92 67.36 81.05 73.57
MSRA.NAO 82.21 83.79 82.99 57.26 77.86 65.99 67.42 80.70 73.46
USYD 80.05 83.43 81.71 56.18 71.50 62.92 66.20 77.09 71.23
parfda 77.89 78.66 78.27 55.16 66.01 60.10 64.71 71.86 68.10
online-B 77.55 82.01 79.72 52.10 66.97 58.61 62.88 74.07 68.02
online-A 76.16 78.70 77.41 52.85 69.02 59.87 62.46 73.57 67.56
Helsinki-NLP 76.65 78.53 77.58 48.52 62.86 54.77 60.37 70.37 64.99
online-X 68.92 76.68 72.59 51.39 67.75 58.45 58.63 71.81 64.56
TartuNLP-c 75.35 79.77 77.49 45.32 53.13 48.92 58.70 65.68 61.99
apertium-unconstrained 63.97 67.15 65.52 38.46 52.86 44.53 48.96 59.69 53.80

English–Finnish:
online-G 93.71 75.25 83.47 80.62 68.54 74.09 84.01 70.36 76.58
online-Y 94.74 72.00 81.82 75.06 66.08 70.28 80.03 67.75 73.38
MSRA.NAO 95.62 76.12 84.76 68.47 66.60 67.52 75.44 69.42 72.31
GTCOM-Primary 94.81 73.00 82.49 66.24 67.97 67.09 73.25 69.49 71.32
online-X 84.14 65.95 73.94 62.22 61.95 62.08 67.56 63.11 65.26
NICT 90.32 72.54 80.46 57.62 59.35 58.48 66.06 63.42 64.71
online-B 88.75 74.74 81.14 59.02 56.38 57.67 67.12 61.85 64.38
Aalto-ORMFC 88.81 66.15 75.82 64.94 54.79 59.44 71.17 58.04 63.93
Helsinki-NLP 84.56 61.50 71.21 59.65 52.51 55.85 65.93 55.11 60.03
online-A 86.75 77.42 81.82 52.31 46.79 49.39 62.59 55.95 59.08
TartuNLP-c 93.29 70.20 80.12 53.83 43.49 48.11 65.24 51.61 57.63
Helsinki-NLP-rule-based 71.60 75.62 73.56 48.88 47.36 48.11 55.59 55.21 55.40
apertium-unconstrained 81.71 34.72 48.73 45.61 20.88 28.65 55.16 24.75 34.17

Table 11: Results for Finnish–English and English–Finnish.

In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Russian–English:
online-G 92.15 89.63 90.87 66.95 80.87 73.26 78.57 85.38 81.84
Facebook FAIR 89.98 89.80 89.89 56.67 77.30 65.40 72.12 84.07 77.64
online-B 89.55 87.58 88.55 56.41 74.07 64.04 71.81 81.34 76.28
online-A 87.93 87.58 87.76 50.97 73.16 60.08 68.09 81.15 74.05
online-Y 88.68 87.07 87.87 50.90 70.75 59.21 68.52 79.78 73.72
MSRA.SCA 86.22 85.33 85.77 50.27 72.45 59.35 66.76 79.57 72.60
NEU 87.19 86.48 86.83 47.89 72.15 57.57 65.97 80.23 72.40
afrl-syscomb19 86.85 85.42 86.13 44.40 65.41 52.90 64.26 76.78 69.96
eTranslation 87.71 84.15 85.89 43.82 62.73 51.60 64.41 74.91 69.27
rerank-re 87.71 84.15 85.89 43.23 61.99 50.94 64.14 74.62 68.99
online-X 82.39 87.90 85.06 35.99 65.06 46.35 57.66 78.71 66.56
TartuNLP-u 84.11 87.50 85.77 37.35 53.09 43.85 60.38 72.71 65.97
afrl-ewc 87.04 82.24 84.58 33.75 45.63 38.80 59.92 66.86 63.20
NICT 78.62 69.11 73.56 30.17 24.42 26.99 56.29 47.59 51.58

English–Russian:
online-G 95.56 89.58 92.47 75.11 74.85 74.98 80.05 78.58 79.31
Facebook FAIR 95.49 88.28 91.75 67.68 71.54 69.56 74.40 76.01 75.20
online-B 95.08 91.10 93.05 62.12 69.05 65.40 70.31 75.16 72.66
USTC-MCC 95.30 90.08 92.62 59.35 71.08 64.69 68.02 76.54 72.03
NEU 94.43 89.21 91.75 59.31 70.98 64.62 67.74 76.18 71.71
online-Y 95.37 91.38 93.33 57.47 69.02 62.72 66.80 75.51 70.89
online-A 91.14 89.40 90.26 55.29 68.28 61.10 64.00 74.35 68.79
PROMT NMT 93.48 91.49 92.47 56.78 63.76 60.07 66.18 71.61 68.79
online-X 93.65 89.92 91.75 52.53 67.35 59.02 62.53 74.12 67.83
TartuNLP-u 90.91 84.01 87.32 51.44 56.17 53.70 61.41 64.11 62.73
rerank-er 94.98 78.91 86.20 55.54 33.78 42.01 68.17 45.36 54.47
NICT 89.19 25.52 39.68 46.99 5.88 10.46 63.90 10.33 17.78

Table 12: Results for Russian–English and English–Russian.
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All synsets All synsets

Submission Prec. Recall F1 Submission Prec. Recall F1

Lithuanian–English: English–Lithuanian:
tilde-c-nmt 80.41 97.50 88.14 MSRA.MASS 78.69 85.71 82.05
NEU 79.59 98.73 88.14 online-B 79.31 80.70 80.00
tilde-nc-nmt 79.38 97.47 87.50 tilde-nc-nmt 80.70 79.31 80.00
GTCOM-Primary 77.32 97.40 86.21 tilde-c-nmt 81.82 76.27 78.95
online-B 75.51 98.67 85.55 MSRA.MASS 78.95 78.95 78.95
MSRA.MASS 73.47 98.63 84.21 online-A 83.02 73.33 77.88
online-A 73.96 95.95 83.53 GTCOM-Primary 78.57 77.19 77.88
online-G 72.92 95.89 82.84 NEU 76.79 76.79 76.79
online-X 60.22 90.32 72.26 eTranslation 79.25 72.41 75.68
JUMT 71.62 67.95 69.74 TartuNLP-c 81.25 65.00 72.22
TartuNLP-c 64.86 65.75 65.31 online-X 70.37 71.70 71.03

online-G 71.15 68.52 69.81

Table 13: Results for Lithuanian–English and English–Lithuanian.
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Abstract

This paper describes a machine translation test
set of documents from the auditing domain
and its use as one of the “test suites” in the
WMT19 News Translation Task for translation
directions involving Czech, English and Ger-
man.

Our evaluation suggests that current MT sys-
tems optimized for the general news domain
can perform quite well even in the particular
domain of audit reports. The detailed man-
ual evaluation however indicates that deep fac-
tual knowledge of the domain is necessary.
For the naked eye of a non-expert, translations
by many systems seem almost perfect and au-
tomatic MT evaluation with one reference is
practically useless for considering these de-
tails.

Furthermore, we show on a sample document
from the domain of agreements that even the
best systems completely fail in preserving the
semantics of the agreement, namely the iden-
tity of the parties.

1 Introduction

Domain mismatch is often the main sources of ma-
chine translation errors. At the same time, it has
been suggested in the speech recognition area that
models trained on extremely large data can per-
form well across domains, i.e. without any partic-
ular domain adaptation (Narayanan et al., 2018).

We believe that for some of the language pairs
annually tested in the WMT shared translation
task, the best machine translation systems may
have grown to sizes where the domain dependence
may be less critical. At the same time, we know
that most of current MT systems still operate at the
level of individual sentences and therefore have
no control over document-level coherence e.g. in
terms of lexical choice.

To investigate the two questions, domain in-
dependence and document-level coherence, we
cleaned and prepared a dedicated set of docu-
ments from the auditing domain and submitted it
as one of the “test suites” to this year’s WMT
News Translation Task. The collection is called
“SAO WMT19 Test Suite” after the Supreme Au-
dit Office of the Czech Republic (SAO) who pro-
vided the original audit reports created in coopera-
tion with other national supreme audit institutions
(SAIs).1

This paper is organized as follows: In Sec-
tion 2 we describe the source and our processing of
the test documents. Section 3 provides automatic
scores of WMT19 MT systems on the test suite
and Section 4 presents the manual evaluation. One
more document type, namely a sublease agree-
ment, was evaluated separately, see Section 5. We
release the test suite for public use, see Section 6,
and we conclude in Section 7.

2 Composition of SAO Test Suite

The SAO Test Suite consists of 10 multi-language
audit reports issued by the SAO. The reports de-
scribe investigations carried out jointly by SAO
and one or more other national auditing institu-
tions between the years 2004 and 2015. The re-
ports were published in multiple language ver-
sions or as multilingual documents. They were
created jointly by the co-operating SAIs in English
and later on, they were translated by translation
agencies and finally corrected by the authorized
auditors from the respective countries. The end
effect of this careful procedure is that from time to
time, the different language versions slightly de-
part in the exact wording, including minor shifts
of the conveyed meanings.

1We adhere to the convention that “SAO” refers solely to
the Supreme Audit Office of the Czech Republic. For other
supreme audit institutions, we use the acronym SAI.
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Language Count
Czech 10
English 10
Slovak 5
German 4
Polish 1
Total documents 30

Table 1: Number of languages in SAO Test Suite. Lan-
guages in bold were used in WMT19 Shared Transla-
tion Task.

All the reports come in 3 different languages.
All of them include Czech and English, the third
used language differs. See Table 1 for a summary.

2.1 Creation of the SAO Test Suite
The audit reports were collected primarily from
the website of SAO. It is important to note that
while being publicly available, these documents
did not make it to any of WMT19 constrained
training data, probably because the texts appear on
the web only in the form of PDFs. We double-
checked that there is no overlap by searching the
data for exact and near sentence matches. Very
short segments like generic titles or section num-
bers were naturally present in the training data but
we did not find any longer sentences, let alone
more sentences from a test document.

First, we converted the documents from the
PDF format to plain text. We note that some of
the documents were bitmap PDFs (scans) and we
had to use OCR to obtain the text. This was partic-
ularly tedious for multi-language documents with
texts side by side in two or three columns.

The rest of the processing was applied only to
Czech, English and German versions of the docu-
ments, because other languages were not consid-
ered in WMT19 News Translation Task.

The plain text versions were automatically seg-
mented into sentences using the trainable tok-
enizer TrTok by Maršík and Bojar (2012). We
then automatically aligned sentences in English
and Czech versions using hunalign (Varga et al.,
2005) and manually revised this alignment.

During the manual revision of sentence align-
ments, we removed footnotes, tables and graph
captions, as well as occasional paragraphs not
present in one of the languages. Sometimes, sen-
tence segmentation had to be fixed as well.

In the final stage, we added the German side to
the already sentence-aligned English-Czech files,

Language Pair Documents MT Systems
en-cs 11 11
en-de 4 22
de-en 4 16
cs-de 4 7
de-cs 4 11

Table 2: Evaluated language pairs, documents and MT
systems.

creating a tri-parallel test set. In some cases, the
segmentation into sentences was not exactly paral-
lel and we had to break primarily the German sen-
tences into clauses, or introduce blank segments in
some of the files to allow for a better match. Once
or twice even the order of the clauses in German
was swapped compared to the aligned Czech and
English.

2.2 SAO Test Suite in WMT19 Shared Task

We submitted our files as a “test suite” comple-
menting the WMT19 News Translation Task. This
means that all primary MT systems participating
in the News Translation Task also translated our
files.

The English→Czech and German↔English
systems were supervised, i.e. trained on genuine
parallel texts (and target-side monolingual data).
The Czech↔German research systems were unsu-
pervised, i.e. trained only on monolingual source
and target texts, optionally using a small parallel
development set of a few thousand sentence pairs.
Our evaluation also includes several anonymized
online systems (“online-. . . ”) the internals of
which are not known. These online systems could
in principle include our test suite as part of their
training data.

The number of evaluated documents and MT
systems for each examined language pair is in Ta-
ble 2.

3 Automatic Evaluation

For automatic evaluation, we use several of com-
mon MT evaluation metrics (Papineni et al., 2002;
Popović, 2015; Leusch and Ney, 2008; Wang
et al., 2016; Snover et al., 2006). Metrics listed
with the prefix “n” are reversed (1− score) so that
higher numbers indicate a better translation in all
the figures we report.

We calculate the score for each of the docu-
ments in our test suite separately and report the
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average score and the standard deviation.
The scores are detailed in Tables 3 to 7. In the

subsequent tables, we sometimes abbreviate sys-
tem names for typesetting reasons.

The main observation across the tables is that
all the scores heavily vary across individual doc-
uments. The typical standard deviation is 3–5 for
BLEU and similarly for other metrics.

The metrics do not always agree on the overall
ranking of the systems, as indicated by “o” in the
tables, but these differences are much smaller that
the variance due to the particular documents.

A big caveat should be taken when interpreting
all automatic scores as an estimate of real transla-
tion quality, because they are all based on the sin-
gle reference translation. See also the discussion
in Section 4.2 below.

4 Manual Evaluation

Due to the specific terminology in the documents
and domain knowledge needed to verify transla-
tion quality, we asked the SAO’s employees serve
as the annotators.2 All of them were native Czech
speakers with a high level of English and/or Ger-
man proficiency.

We also attempted to find native German
auditors but we were not successful so far.
English→German and German→English transla-
tion was thus evaluated by a single SAO employee,
a native Czech speaker with a great command of
both English and German, including the specific
auditing domain.

4.1 Establishing Evaluation Criteria

Our manual evaluation criteria are based on the
criteria used for the scoring of essays in the Czech
GCSE counterpart (“maturita”) for the Czech lan-
guage.

After a short test session with our prospective
annotators, we realized how very narrow this spe-
cific field is and we simplified the original set of
7 criteria with 6 levels each to only 5 criteria and
4 levels each. This simplification definitely saved
some annotation time and we also believe that it
increased the inter-annotator agreement, although

2 Relying on purely linguistic expertise proved insuffi-
cient after a discussion with SAO employees. While for the
best systems, we could hardly notice any errors, the knowl-
edge experts discussed term choice and even among them-
selves, they were carefully considering the logical implica-
tions of the particular terms.

we did not collect enough annotations to reliably
measure it.

The final criteria to be used in the evaluation are
as follows:

1) Language Resources – Spelling and Mor-
phology
• 0 points: 10 or more spelling or morphology

errors.
• 1 point: 9-6 spelling or morphology errors.
• 2 points: 5-3 spelling or morphology errors.
• 3 points: 2-0 spelling or morphology errors.

2) Vocabulary – Adequacy of Terms Used
• 0 points: Frequently, used terms are inappropri-

ately chosen.
• 1 point: Sometimes, used terms are inappropri-

ately chosen.
• 2 points: Rarely, used terms are inappropriately

chosen.
• 3 points: There are no terms, which would be

inappropriately chosen.

3) Vocabulary – Clarity of the Text in Terms of
Used Words
• 0 points: The choice of words and phrases

fundamentally impairs the understanding of the
text.
• 1 point: The choice of words and phrases some-

times impairs the understanding of the text.
• 2 points: The choice of words and phrases

rarely impairs the understanding of the text.
• 3 points: The choice of words and phrases does

not impair the understanding of the text.

4) Syntax and Word Order
• 0 points: Syntactic shortcomings are high in the

text.
• 1 point: Syntactic shortcomings occur in the

text.
• 2 points: Syntactic shortcomings are rare in the

text.
• 3 points: Syntactic shortcomings are almost ab-

sent from the text.

5) Coherence and Overall Understanding of the
Text
• 0 points: The recipient is completely lost in

the text. The text is incoherent and fails to
fulfil its communication purpose (the addressee
has completely misunderstood what the text ex-
presses).
• 1 point: The orientation in the text is completely

uncomfortable for the addressee, the text is at
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BLEU chrF3 nCDER nCharacTER nPER nTER nWER
CUNI-Transformer-T2T-2018 30.21±6.22 58.49±4.14 50.69±6.48 50.27±9.47 58.04±7.70 46.20±9.04 44.11±8.79
CUNI-Transformer-T2T-2019 29.16±6.16 57.40±3.96 49.61±6.54 47.75±8.97 56.76±7.93 44.64±9.21 42.48±8.99
CUNI-DocTransformer-T2T 29.15±6.04 57.33±3.87 49.57±6.61 o 48.38±9.31 56.34±7.53 44.53±8.93 42.45±8.78
uedin 29.15±5.94 57.31±3.84 o 49.87±6.29 o 48.73±8.25 o 57.02±7.06 o 45.53±8.53 o 43.49±8.20
online-B 29.14±5.57 o 57.36±3.39 49.74±5.78 48.44±8.23 o 57.47±7.18 45.46±8.22 43.15±7.88
online-Y 28.53±5.57 57.34±3.56 49.44±6.10 45.00±7.78 56.89±7.48 45.04±8.47 42.92±8.14
CUNI-DocTransformer-Marian 25.86±4.57 54.65±3.11 46.73±5.45 -6.50±110.46 53.60±6.64 41.15±7.74 39.07±7.46
TartuNLP-c 25.12±4.94 54.57±3.00 46.21±5.80 o 44.71±7.40 53.02±7.92 40.40±8.44 38.31±8.11
online-A 24.01±5.72 53.59±3.58 45.19±6.45 o 44.80±8.27 52.84±7.52 40.27±9.03 38.19±8.74
online-G 23.84±4.64 o 54.21±3.40 44.78±5.79 o 45.91±9.40 52.83±7.02 40.16±7.88 38.02±7.58
online-X 19.61±3.43 50.42±2.69 41.07±4.22 41.39±6.72 47.54±6.78 34.62±6.81 32.79±6.65

Table 3: Automatic scores for English→Czech. “o” marks scores out of sequence.

BLEU chrF3 nCDER nCharacTER nPER nTER nWER
Microsoft-sent-level 22.06±3.61 55.57±2.24 42.62±4.68 38.22±4.08 44.83±5.04 30.23±5.91 28.37±5.89
Microsoft-doc-level 21.91±3.57 o 55.84±2.07 42.52±4.50 o 38.63±3.89 44.18±5.42 29.67±6.37 27.72±6.30
online-B 21.70±3.73 54.55±2.35 41.48±4.47 34.63±6.04 o 46.25±5.41 o 30.44±6.15 o 28.61±6.17
Facebook_FAIR 21.52±4.21 o 55.20±2.72 o 42.24±5.17 o 37.65±4.34 43.49±6.16 29.35±7.23 27.36±7.21
lmu-ctx-tf-single 21.52±3.77 54.72±2.11 41.91±4.42 37.50±4.86 o 45.40±5.41 o 30.20±6.11 o 28.24±5.98
NEU 21.29±3.61 54.63±1.97 o 42.11±4.62 o 38.36±4.45 44.73±5.34 30.01±6.52 28.16±6.40
MSRA.MADL 21.23±3.82 53.96±2.07 41.20±4.65 37.14±3.24 44.07±5.99 29.07±6.68 27.29±6.59
Helsinki-NLP 20.57±3.39 53.35±1.84 41.09±4.56 36.16±3.96 o 44.76±5.00 o 29.51±5.99 o 27.65±5.95
UCAM 20.52±4.00 53.14±2.37 41.02±4.96 35.72±4.07 44.67±5.47 29.32±6.52 27.38±6.42
online-Y 20.46±3.42 o 53.72±1.79 o 41.14±4.47 o 37.22±4.83 44.53±5.48 o 29.65±6.33 o 27.75±6.14
dfki-nmt 20.30±3.11 o 53.74±1.75 40.96±4.18 36.92±4.65 43.67±4.81 28.88±5.98 26.97±5.78
MLLP-UPV 20.30±3.47 53.45±2.00 40.75±4.57 36.75±4.49 o 43.80±4.99 28.81±6.12 26.84±5.98
PROMT_NMT 20.16±2.88 53.27±1.26 40.46±3.69 36.41±4.84 o 43.88±4.85 28.76±5.44 26.73±5.45
eTranslation 20.12±3.47 o 53.45±2.00 o 40.73±4.42 36.22±4.26 43.45±4.90 28.17±5.89 26.15±5.63
UdS-DFKI 20.05±3.31 51.41±1.40 39.39±3.89 33.37±8.07 o 45.36±4.99 o 28.80±5.62 o 26.97±5.59
JHU 19.89±3.02 o 52.93±1.64 o 40.53±4.23 o 36.20±5.19 44.09±4.83 o 28.92±5.92 26.95±5.81
TartuNLP-c 19.67±3.33 52.72±1.31 39.93±4.11 36.15±5.01 o 44.18±5.86 28.56±6.11 26.58±6.03
online-A 19.36±3.71 52.47±2.15 39.73±4.68 34.63±3.52 42.36±5.39 27.17±6.66 25.23±6.49
online-G 18.80±3.41 52.26±1.35 38.97±3.86 o 34.89±4.93 o 44.69±5.34 o 28.53±5.84 o 26.73±5.88
online-X 13.66±2.22 48.06±1.12 33.85±3.67 31.48±5.69 30.69±5.80 17.04±6.51 15.42±6.24
en_de_task 10.44±1.93 42.22±1.25 28.15±2.92 22.23±6.98 o 34.90±5.05 16.85±5.52 15.15±5.50
Microsoft-sent_doc 0.00±0.00 0.12±0.02 0.00±0.00 -3408.43±471.13 0.00±0.00 0.00±0.00 0.00±0.00

Table 4: Automatic scores for English→German. “o” marks scores out of sequence.

times incoherent and barely serves its commu-
nication purpose (but the addressee believes that
he or she understands the main content of the
text more or less).
• 2 points: The recipient navigates the text,

though not entirely comfortably. The text is
coherent and more or less fulfils its communi-
cation purpose (the addressee is sure he under-
stands the text as a whole).
• 3 points: The recipient is fully oriented in the

text. The text is completely coherent, it serves
its communication purpose excellently (the ad-
dressee fully and without difficulty understands
the text as a whole).

4.2 Reference Effectively Useless
One observation that emerged from our consulta-
tion with the experts in the auditing field was that
precise choice of terms is extremely important but
that detailed knowledge of the respective legisla-
tion and practice is necessary to evaluate the trans-
lations. We, highly proficient speakers of English,
but lacking any substantial information on taxa-
tion and other topics discussed in the documents,
often could not see any lexical errors, because at

the general level, the choice of words seemed ac-
ceptable. The experts discussed at length the var-
ious factual implications of using one of the near-
synonyms over another.

Anecdotally, voting among our three consul-
tants would not always work either. Without a
chance to discuss a particular term, two of the con-
sultants would label the choice of an MT system
as wrong, but the third consultant, the most expe-
rienced expert in the very field actually approved
it.

The reference translations proved effectively
useless for these fine distinctions, because the par-
ticular term used in the single reference was of-
ten not the only possible one. As already men-
tioned, the careful revision applied to the refer-
ence translations has sometimes slightly shifted
the meaning, preferring a better match with the
factual knowledge over the literality of the trans-
lation.

4.3 Execution of Evaluation
As was mentioned above, the annotators were the
employees of the SAO.

We decided to score not the complete docu-
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BLEU chrF3 nCDER nCharacTER nPER nTER nWER
Facebook_FAIR 26.81±2.95 52.76±2.38 46.17±3.07 35.78±3.89 57.82±2.70 39.59±4.03 36.73±4.04
RWTH_Aachen 26.02±3.01 51.74±2.52 45.53±3.16 35.61±3.66 57.09±3.29 39.16±4.29 36.41±4.34
online-B 25.62±3.06 51.30±2.57 45.30±3.44 33.97±4.02 56.42±3.65 o 39.70±4.30 o 36.99±4.21
NEU 25.45±2.84 o 51.55±2.27 45.19±2.85 o 35.27±3.97 o 57.04±3.10 38.83±3.80 36.09±3.81
online-Y 25.27±3.26 51.30±2.40 o 45.38±3.34 35.01±3.58 56.52±3.46 o 39.77±4.20 o 36.93±4.11
dfki-nmt 25.00±2.90 50.89±2.18 44.64±2.89 34.67±3.47 56.21±3.18 38.34±3.96 35.65±3.94
UCAM 24.95±3.37 50.44±2.60 44.64±3.25 33.83±4.38 56.21±3.57 38.30±4.03 35.51±3.95
MSRA.MADL 24.86±3.59 o 50.73±2.65 44.38±3.32 33.17±4.24 55.73±4.53 36.23±5.93 33.37±5.83
JHU 24.82±2.97 50.56±1.94 44.38±2.84 o 33.98±3.74 o 55.92±2.83 o 36.90±3.62 o 34.14±3.61
MLLP-UPV 24.39±3.30 50.20±2.13 44.20±3.07 32.97±4.24 55.91±3.18 o 37.72±4.04 o 34.89±3.98
online-A 24.13±3.41 50.03±2.57 44.06±3.64 32.95±3.73 55.34±3.72 o 37.87±4.62 o 35.26±4.66
online-G 24.11±3.38 o 50.52±2.08 43.80±3.07 o 34.19±4.50 o 55.55±3.10 36.49±4.09 33.75±4.10
TartuNLP-c 23.82±2.80 50.46±2.27 o 43.83±3.15 33.30±3.31 54.88±3.31 o 38.45±3.50 o 35.56±3.57
PROMT_NMT 22.58±2.29 49.29±2.12 42.48±2.46 32.80±3.65 53.98±2.95 36.02±3.56 33.31±3.31
uedin 21.37±3.34 47.22±3.04 41.30±3.68 25.52±7.74 50.68±4.07 o 37.55±4.00 o 35.16±3.87
online-X 17.95±2.09 44.93±2.26 38.38±2.42 o 26.69±4.34 49.95±2.76 32.69±3.06 30.23±3.03

Table 5: Automatic scores for German→English. “o” marks scores out of sequence.

BLEU chrF3 nCDER nCharacTER nPER nTER nWER
online-B 15.67±4.40 47.16±4.21 33.60±5.83 28.12±4.94 42.24±5.92 23.10±7.18 21.22±6.96
online-Y 15.55±4.20 o 47.71±3.97 o 34.32±6.06 o 31.75±5.20 39.59±6.17 21.96±7.47 20.22±7.17
online-A 13.15±3.38 45.45±3.65 31.95±5.28 27.51±4.77 35.61±5.13 18.19±6.39 16.57±6.07
online-G 12.69±3.25 45.36±3.34 31.29±4.92 o 28.96±4.62 o 36.98±5.60 o 18.80±6.67 o 17.01±6.39
NICT 10.61±2.39 43.24±2.48 29.49±4.24 27.46±3.84 27.13±4.75 11.51±5.88 10.04±5.58
NEU_KingSoft 9.34±2.80 40.09±2.04 27.38±4.87 22.78±3.86 26.39±6.29 10.11±7.21 8.71±6.93
Nanjing 6.85±2.15 35.73±2.20 24.02±4.17 19.40±5.42 23.37±5.10 6.68±5.63 5.41±5.24

Table 6: Automatic scores for Czech→German. “o” marks scores out of sequence. Note that online systems use
parallel data while the others use only monolingual data.

ments but rather selected segments of about 15
consecutive sentences. Each such segment takes
something between a half and a full A4 page when
printed.

For each evaluated page, the annotators were
provided with another such page—the correspond-
ing 15 sentences in the source language. We de-
liberately avoided providing reference translations
for two reasons: (1) we included the reference as
if it was one of the competing MT systems, (2) we
know that the source and the reference occasion-
ally departed from each other; judging MT sys-
tems based on the references would thus not be a
fair comparison even if carried out by humans and
not an automatic metric.

In a small probe, we estimated that the annota-
tion of one such segment will take about 15 min-
utes.

Table 8 summarizes the number of annotated
document segments and annotators providing the
scores.

The actual evaluation of each segment was sub-
mitted by the annotators through a simple web in-
terface, which recorded:
• the segment ID;
• points assigned to the evaluated categories;
• a free-form description of the most serious er-

ror(s);
• a free-form field for further comments;

• a check-box indicating whether the annotator is
an expert in the given field of the segment (e.g.
in the field of value-added tax, VAT).

4.4 Results of Manual Evaluation

We did not have enough human capacity to calcu-
late an full-fledged inter-annotator agreement. To
have at least some idea of how annotators agree,
we let three of all segments be assessed by two
different annotators. Comparison of the scores re-
veals that annotators often differ in their assess-
ment, even though the assigned points are almost
always neighbouring.

Somewhat surprisingly, except for a single seg-
ment, the annotators did not consider themselves
experts in the field of the documents presented to
them, even though they all should be professionals
in the auditing field.

4.4.1 English-to-Czech Translation
Altogether, the English→Czech translations were
evaluated by 5 annotators. They evaluated 48 seg-
ments randomly chosen from documents trans-
lated by 4 selected systems and the reference
translation. The translation systems were selected
based on their automatic scores in WMT19 and
their results in the past years. TartuNLP-c was
added as a representative of a system with an over-
all lower output quality, although it seemed to per-
form well in some of the observed phenomena.
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BLEU chrF3 nCDER nCharacTER nPER nTER nWER
online-B 14.86±4.01 40.69±2.96 32.04±4.91 22.32±5.07 40.86±4.53 26.12±7.74 24.43±7.53
online-Y 14.69±3.82 40.68±2.92 o 32.12±4.66 o 24.69±4.88 o 40.87±4.48 26.02±7.20 24.33±6.80
online-G 12.22±2.71 39.16±1.94 29.59±3.44 22.13±5.36 38.75±3.86 21.90±5.76 20.32±5.48
online-A 11.80±2.92 38.09±2.52 28.92±4.11 21.11±5.35 37.42±5.20 o 22.17±7.38 o 20.51±7.14
NICT 10.49±2.95 35.99±3.00 27.20±4.37 20.08±5.78 36.49±4.69 19.63±6.55 18.10±6.17
NEU_KingSoft 8.18±2.65 32.89±2.86 24.61±4.94 16.94±5.84 32.62±4.93 19.61±7.08 o 18.36±6.75
lmu-unsup-nmt 7.40±2.49 31.69±2.46 22.96±4.14 13.86±4.88 30.72±4.27 18.00±6.07 16.91±5.90
CUNI-Unsupervised-NER-post 7.03±2.26 o 32.40±2.46 22.76±4.18 o 14.59±4.51 o 31.46±4.42 17.43±6.11 16.13±5.77
Nanjing-6929 6.26±2.11 28.42±2.00 21.11±3.89 9.16±7.70 28.55±4.02 13.92±6.20 13.00±6.10
Nanjing-6935 6.26±2.11 28.42±2.00 21.11±3.89 9.16±7.70 28.55±4.02 13.92±6.20 13.00±6.10
CAiRE 5.85±2.05 26.75±2.21 20.13±3.41 4.52±7.22 o 29.14±4.50 o 14.16±5.07 o 13.03±4.74

Table 7: Automatic scores for German→Czech. “o” marks scores out of sequence. Note that online systems use
parallel data while the others use only monolingual data.

Langs. # Doc Segments # Annotators
en-cs 48 5
en-de 16

1
de-en 16

Table 8: Summary of manual annotations.

Table 9 shows the mean scores and standard de-
viations collected on the translations according to
the five criteria specified in Section 4.1.

As our mini-comparison of annotator agree-
ment suggests mismatches in score assignments,
we provide also a statistic that abstracts from the
absolute values of assigned scores. Because the
assigned scores are associated with a particular
categorical description, we avoid the standard nor-
malization of mean and variance. Instead, we take
all the assessments produced by a single annotator
and sort the systems by the average of scores as-
signed by him or her in a given criterion. Table 10
then shows the mean ordinal number of each of
the systems across all the annotators. Unlike the
scores in Table 9, the best ordinal number is 1 and
it gets worse as it increases.

Even though some subtle differences occur in
ordering of the systems in Tables 9 and 10, the
main observations remain the same. Manual eval-
uation confirms the lower quality of TartuNLP-
c measured by automatic metrics. On the other
hand, online-B scored best and it appears on par
with the human translation, whereas it was sur-
passed by CUNI systems in terms of the auto-
matic metrics as well as in news translation (see
the main Findings of WMT19 paper). Interest-
ingly, apart from TartuNLP-c all the other MT sys-
tems seem to yield fewer spelling and morphology
errors than the human translators, although the dif-
ferences are within the standard deviation bounds.
CUNI-DocTransformer-T2T stands out by being
better even beyond the reported standard devia-

tion of the ordinal interpretation (see 1.40±0.80
in “Spell. & morpho.” in Table 10).

Due to large values of standard deviations, the
small sample size and the fact that the underlying
set of evaluated document segments varied across
the systems, it is difficult to draw reliable con-
clusions from these observations. Some counter-
intuitive results can be thus attributed to pure
randomness. For example, CUNI-Transformer-
T2T-2019 differs from CUNI-DocTransformer-
T2T only in the fact that it operates on triples of
consecutive sentences. This should increase the
adequacy of vocabulary chosen and should have
no effect on spelling and morphology but we have
seen the opposite.

The overall statement we can make is that for
English-to-Czech, the specific domain of audit re-
ports does not differ much from the general obser-
vations made in the main News Translation Task:
the order of the systems generally matches and the
better systems are very close to the human perfor-
mance.

4.4.2 English↔German Translation

Manual evaluation of English→German transla-
tions was provided by a single annotator on 16
randomly selected segments, covering 3 systems
and the human translation. In the opposite trans-
lation direction, also 16 segments were evaluated
by the same annotator, this time covering 2 sys-
tems and the human translation. We chose the
systems which are popular (online-B), expected
to score among the best based on their (automati-
cally assessed) performance on the News Transla-
tion Task (MSRA-MADL) or are provided by the
European Commission as a service for EU institu-
tions (eTranslation).

The mean scores in Tables 11 and 12 show that
none of the systems outperforms human transla-
tion. The ordering of the systems remains the
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Spell. & morpho. Vocab. – adequacy Vocab. – clarity Syntax & word order Coher. & overall underst.
Reference 2.38±0.70 2.44±0.46 2.44±0.46 2.50±0.71 2.50±0.50
online-B o 2.50±0.67 2.40±0.49 2.20±0.75 o 2.60±0.66 2.40±0.66
CUNI-DocTransformer-T2T o 2.75±0.43 2.25±0.83 o 2.33±0.75 2.58±0.49 2.33±0.85
CUNI-Transformer-T2T-2019 2.60±0.49 o 2.50±0.67 2.30±0.78 2.40±0.49 2.30±0.78
TartuNLP-c 1.88±0.78 1.62±0.86 1.75±0.83 1.88±0.93 1.75±0.97

Table 9: Mean scores of English→Czech translation obtained in manual evaluation. The systems are sorted by the
“coherence and overall understanding” criterion. Higher scores are better. “o” marks scores out of sequence.

Spell. & morpho. Vocab. – adequacy Vocab. – clarity Syntax & word order Coher. & overall underst.
online-B 1.80±0.98 1.60±0.80 2.00±1.10 1.40±0.80 1.80±0.75
Reference 2.75±1.09 1.75±0.83 o 1.75±0.83 2.00±1.22 2.00±0.71
CUNI-DocTransformer-T2T o 1.40±0.80 2.60±1.62 2.00±1.55 2.20±0.75 2.20±1.47
CUNI-Transformer-T2T-2019 1.75±0.83 o 2.00±1.00 2.50±1.12 2.75±1.48 2.25±1.09
TartuNLP-c 3.40±1.96 4.00±0.63 3.00±0.89 3.00±1.41 3.20±1.47

Table 10: Mean ordinal numbers of English→Czech systems sorted by manual evaluation scores for each annotator.
Lower numbers are better.

same across most of the evaluation criteria. Unlike
in automatic evaluation, the human annotator con-
siders the output of online-B in English→German
translation of lower quality (except spelling and
morphology) than the outputs of its competitors.
In German→English translation, the ordering of
the systems according to the manual evaluation
agrees with the automatic one.

All in all, comparison of manual and auto-
matic evaluation suggests that the systems achiev-
ing high automatic scores may be judged differ-
ently by human annotators. As the quality of trans-
lation decreases, it is sufficient to evaluate it auto-
matically.

4.4.3 Most Common Mistakes
A part of the evaluation web interface was a free-
form field for the description of the most serious
error(s) encountered. We collected these com-
ments and manually organized them into several
categories. We found out that the most common
mistakes were:
• fluency;
• wrong translation of terms;
• grammatical correctness (such as a wrong gen-

der chosen for pronouns);
• non-translated abbreviations, or abbreviations

which do not make sense in the Czech transla-
tion;
• outputs completely missing a half of the sen-

tence. This was particularly likely after a punc-
tuations such as the closing bracket in the mid-
dle of the sentence.
Table 13 summarizes the overall error counts

by category. (The reference is included in these
counts.) As mentioned above, we did not find
any native German auditor who could annotate our

SAO Test Suite, so the annotation was done by
a single Czech auditor. This could explain the
relatively big differences between language pairs:
with a single annotation, the annotator disagree-
ments are not averaged out. For instance, it is pos-
sible that this marked some of the errors as wrong
grammatical constructions while en→cs annota-
tors could score it in fluency criterion.

We also have to take into account the absolute
number of annotated document segments (48 for
Czech, 16 for English↔German). Considering
the average number of errors per one annotated
document segment, German→English translation
seems the worst, see the last line of Table 13.

5 Translation of Agreements

Aside from the SAO audit documents, we added
one moderately long document from a very spe-
cific domain related to auditing: agreements.

As the source document, we used the English
version of a sublease agreement, which was in fact
a (non-professional) translation from Czech. The
original Czech text was evaluated with all other
WMT19 systems as if it was one of the systems.

Due to the different nature of the text, we de-
cided to evaluate the translation of the sublease
agreement differently from the evaluation of the
main part of SAO Test Suite.

5.1 Manual Evaluation

The evaluation of this small set containing one
source document, one human translation and 11
machine translated documents was done manually.
The evaluation was partially blind. Technically,
the candidate translations were not labelled with
the system name, but the main annotator could
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Spell. & morpho. Vocab. – adequacy Vocab. – clarity Syntax & word order Coher. & overall underst.
Reference 3.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00
MSRA-MADL 2.75±0.43 2.25±0.83 2.25±0.83 2.25±0.83 2.25±0.83
eTranslation 2.50±0.50 2.25±0.83 2.25±0.83 2.25±0.83 2.00±1.00
online-B o 2.75±0.43 1.75±1.30 1.75±1.30 2.00±0.71 1.50±1.12

Table 11: Mean scores of English→German translation obtained in manual evaluation. The systems are sorted by
the “coherence and overall understanding” criterion. Higher scores are better.

Spell. & morpho. Vocab. – adequacy Vocab. – clarity Syntax & word order Coher. & overall underst.
Reference 2.60±0.49 2.60±0.49 2.60±0.49 2.60±0.49 2.60±0.49
online-B 2.33±0.47 2.17±0.69 1.83±0.69 2.00±0.58 1.83±0.69
MSRA-MADL o 2.40±0.49 1.60±0.80 1.60±0.80 1.80±0.75 1.60±0.80

Table 12: Mean scores of German→English translation obtained in manual evaluation. The systems are sorted by
the “coherence and overall understanding” criterion. Higher scores are better.

Errors in en-cs en-de de-en
Wrong translation 20 14 28
Fluency 25 1 0
Untranslated 5 3 7
Abbreviations 6 4 4
Grammar 8 2 2
Missing words 4 0 2
Coherence 4 1 0
Added words 4 0 0
Word repetition 2 0 2
Spasm 1 0 0
Total 79 25 45
Avg. per Doc. Segm. 1.6 1.5 2.8

Table 13: Summary of errors found by SAO annotators.

guess some of the systems. Only the systems
online-X, Y and G are truly blind, we do not know
their identity even from past evaluations.

We are confident that even the knowledge of
the MT system did not affect our evaluation be-
cause we fully focused on the hard criteria such
as named entity preservation or term consistence
throughout the document. The only soft criterion
included was the “fluency” one. We have also in-
cluded the reference document in the evaluation.

5.2 Establishing Evaluation Criteria

By inspecting several of the MT outputs, we first
defined the assessment criteria. They generally
fall into two categories: (1) target-only, and (2)
source-based. Whereas in the former category, we
consider only quality of the target texts on their
own, regardless the source, in the latter we validate
if the selected bits of information were preserved
or corrupted during the translation process.

In the target-only category, we focused on the
following:

• fluency;
• grammatical correctness (this is very strict and

well defined in Czech; most errors were in
morphological agreement and sometimes verb
tense);
• casing errors (esp. in named entities);
• incomprehensibility of the segment;
• “spasm”, i.e. the situation when the MT system

gets stuck in repeating some tokens;
• superfluous words;
• missing words or a whole sentence.

As for the source-based category, we have fo-
cused on the errors, which were formed either by
wrong translation of a very domain-specific term
or an inconsistence of used terms throughout the
whole document.
• Named Entities—here we checked mainly the

preservation of the information:
– Person (e.g. name and surname);
– Address (e.g. street name and number);
– Date (esp. whether the format has been kept

consistent);
– Numbers (if the transcription of numerals

was correct);
– Flat composition (the Czech-specific way is

to count rooms and kitchens/kitchinette and
indicate it as a compact string, here “1+1”);

– Wrong abbreviation;
– Expanded abbreviation (e.g. in Czech, the

“ZIP CODE” should be translated as “PSČ”,
which stands for “poštovní směrovací číslo”,
but this abbreviation is never spelled out in
written text).

• Document-specific terms:
– Tenant;
– Lessee;
– Supplement (of the agreement);
– Sublease agreement;
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Figure 1: Samples from our annotation with one of the best scoring systems (CUNI-Transformer-T2T-2018) on the
left and one of the worst ones (online-X) on the right. Crosses indicate errors in term translation, strange wordings
are underlined, casing errors and other errors have their simple marks.

– Contracting parties;
– Apartment in question;
– Equipment (e.g. the kitchen);
– Amenities (e.g. a cellar or a segment of the

garden);
– Housing cooperative;
– Team of owners;
– Term of the lease;
– The specification of the supplement (“no. 1”).

In the category of “Document-specific terms”,
we focused on evaluation whether:

• the term is translated correctly, incorrectly (incl.
not translated at all), or missing altogether;
• the target term is preserved in the document.

It should be noted that the MT system was of-
ten free to choose from several translation op-
tions of a term. At the same time, a very impor-
tant criterion was whether the translation of each
of the terms was consistent throughout the docu-
ment and also whether it did not clash with other
choices. For example, each of the terms “ten-
ant” and “lessee” could be—depending on the par-
ticular situation—correctly translated as “prona-
jímatelka”, ”nájemkyně” or “podnájemkyně” (all
are feminine variants of the words, because in-
cidentally, it was women who were entering this
sample agreement). If the two different parties
however happened to have been referred to in any
way that could lead to confusion, we marked this
as a (serious) error.

In some cases, we had a strict expectation.
For instance the term “sublease” could be trans-
lated into Czech in principle either as “pronájem”
(which corresponds to the relationship between a
landlord and a tenant) or as “podnájem” (which
corresponds to the relationship between a tenant
and a lessee). Based on the text of the agree-
ment, it was however clear that the correct term is
“podnájem” (the tenant is not the actual owner of
the property), so we demanded the this particular
choice.

5.3 Execution of Evaluation
Because of the relatively small amount of data, the
evaluation was done on paper, see Figure 1.

The annotations of “source-based” error types
were done with respect to the source text using a
fixed set of “markables”, i.e. the set of occurrences
of words and expressions to annotate for correct-
ness. The set of markables was identical for all
the candidate translations. Each markable in each
translation candidate received a label indicating if
it was translated correctly, with an error, or if was
fully missing.

The “target-only” error types were marked in-
dependently for each system, with no number of
markable positions given apriori.

The question was how to deal with inconsis-
tency in used terms. At the beginning it was not
clear whether we should assume that the first oc-
currence of term “defines” it for the rest of the
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Target-Only Source-Based Total
System Errs (Miss) Errs (Miss) Errs (Miss)
Reference 3 1 6 2 9 3
C-Trafo-T2T-2018 6 0 15 0 21 0
C-DocTrafo-T2T-2019 9 0 21 0 30 0
online-Y 10 0 20 0 30 0
C-Trafo-T2T-2019 5 2 26 2 31 4
online-B 15 1 27 0 42 1
uedin 9 2 34 12 43 14
online-A 19 0 30 0 49 0
C-DocTrafo-Marian 13 2 38 0 51 2
TartuNLP-c 14 1 37 1 51 2
online-G 34 0 28 0 62 0
online-X 48 7 77 0 125 7

Table 14: Total number of errors “Errs”, and of those the cases when the output was completely missing “(Miss)”,
by English-Czech WMT19 news translation systems applied to the sublease agreement.

document or whether we should take the most fre-
quent one as the “intended one” by the MT sys-
tem and treat other translations as errors. After the
first round of corrections, we chose the first option.
Some terms, e.g. “tenant”, “lessee” or “agree-
ment” had always only one correct translation, but
some, e.g. “sublease” could have had multiple
possible translations. In these latter cases, we al-
ways marked the first occurrence as correct.

5.4 Results of Manual Evaluation

The summary of manual evaluation is presented in
Table 14. Errors in the source-based categories are
more frequent than in target-only. This is mainly
due to the incorrect translation of the term “lessee”
(see Section 5.4.2 below).

One thing worth mentioning is the 9 errors and
3 omissions in the reference translation. This can
be partly attributed to Czech being in fact the orig-
inal and English (i.e. the source for MT systems)
its translation. What is a good Czech→English
manual translation is not always literal enough
when observed from the English side. Three er-
rors were for instance incurred from one single
case where the Czech text referred to the agree-
ment itself one time less than the English text,
but this “missing reference” (fully acceptable in
the Czech→English direction) counted as several
missing expressions. As for the true errors, there
was one incorrect translation of term “lessee” and
one mistake in the number of the Supplement.

The number of errors considerably varies
across the systems. The best system (CUNI-

Transformer-T2T-2018) in our evaluation is also
the winner on news in the evaluation last year.
As Bojar et al. (2018) report, this system signif-
icantly outperformed humans at the level of indi-
vidual sentences in that evaluation. In our setting,
the number of errors by CUNI-Transformer-T2T-
2018 is twice the number of errors in the refer-
ence, but aside from term choice discussed in Sec-
tion 5.4.2, one could say that the translation is very
good.

In the target-only category, we did not have any
pre-defined items that could be correct or incor-
rect. Therefore the number of errors varies greatly
across the systems. From the lowest number of
errors in the CUNI-Transformer-T2T-2019 (5 er-
rors) and in CUNI-Transformer-T2T-2018 (6 er-
rors) to the very high numbers in online-X and
online-G (48 and 34 errors, respectively).

As for the “(Miss)” counts, there were two types
of situations: (1) only a single word was missing
in the output and (2) the whole sentence or a half
of a paragraph was not there. The second case of-
ten lead to a large increase in the “(Miss)” count
because several markables from the source were
supposed to appear in the lost part. The systems
uedin and online-X were most affected by this.

Another interesting fact worth mentioning is
that even though the system online-Y had a rela-
tively low number of mistakes, those errors made
the readability and the comprehensibility of the
message substantially more difficult than e.g. the
translation by online-B with a higher error count.

The point here is that the number of errors
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Reference
C-Trafo-T2T-2018
C-DocTrafo-T2T-2019
online-Y
C-Trafo-T2T-2019
online-B
uedin
online-A
C-DocTrafo-Marian
TartuNLP-c
online-G
online-X

Table 15: Composition of source-based errors of individual MT systems. An empty box ( ) indicates no error.
Black-filled portion corresponds to erroneous output and gray-filled output corresponds to missing output.

is important but their type can be critical, too.
We already mentioned the missing sentences or
“spasm”, which accounted for the 14 missing term
translations in the output of uedin. Another in-
teresting case is a “misunderstanding” of the MT
system. For instance, uedin system misunderstood
“I.” (the Roman numeral) for the pronoun “I” or
mistranslated the “ZIP CODE” as “občanka” (per-
sonal ID card). It is exactly these types of errors,
which are the most serious from the reader’s point
of view.

5.4.1 Detailed Error Counts
Table 15 provides further details on error types ob-
served in the outputs of individual MT systems.
The table is again sorted by the total number of er-
rors as in Table 14. We see that the best system
(CUNI-Transformer-T2T-2018) fully failed in the
translation of the terms “lessee”, “amenities” and
“term of the lease”. This system was also the only
one which dealt well with abbreviations.

In contrast to all other systems, CUNI-
DocTransformer-Marian struggled to translate
several named entities correctly. This system used
the same training data as CUNI-Transformer-T2T-
2019 and both of these systems translate several

consecutive sentences at once in order to improve
cross-sentence consistency but they somewhat dif-
fer in the details of the handling of multi-sentence
input, and they also differ in the underlying MT
system: Tensor2Tensor vs. Marian, see Popel
et al. (2019) for more details. It is hard to explain
why these sentences could adversely affect named
entities, so the authors of the system should care-
fully look at this issue.

5.4.2 Referring to Contracting Parties
Our analysis so far does not sufficiently high-
light the most severe flaw of all the MT systems.
The problem concerns a clear way of referring to
the contracting parties, i.e. the translation of the
terms “tenant” and “lessee”. All the systems trans-
lated almost all occurrences of these terms using
one word only, “nájemce”, which causes a lot of
confusion to any reader (including native Czech
speakers). The problem which occurred here arose
from the fact that there are actually three com-
mon roles and two types of agreements in apart-
ment renting. Commonly, the contracting parties
are:
• landlord—tenant = pronajímatel—nájemce in

the case when the landlord is the owner of the
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Correct Clash Non. Oth.
Reference 16 1 - -
online-B 9 8 - -
C-DocTrafo-T2T-2019 8 7 2 -
online-Y 8 7 - 2
C-Trafo-T2T-2018 8 7 1 1
C-DocTrafo-Marian 8 6 1 2
TartuNLP-c 8 6 2 1
online-A 7 8 - 2
online-X 7 8 - 2
C-Trafo-T2T-2019 7 7 - 3
uedin 7 5 1 4
online-G 6 7 1 3

Table 16: How the systems were referring to the con-
tracting parties. “Correct” indicates an appropriate and
consistent translation. “Clash” indicates that the trans-
lation wrongly refers to the other party. “Non.” are
cases when the original English word appeared in MT
output and “Oth.” are other translations; these are also
confusing because the identity with the correct party is
not maintained.

property;
• tenant—lessee = nájemce—podnájemce for the

sublease agreement, i.e. when the owner is not
directly involved in the agreement.

The common translation in training corpora or dic-
tionaries of the term “lessee” is apparently “ná-
jemce” which is possible, but only if the term “ten-
ant” is not used in the document as well. Should
this happen, “lessee” needs to be translated as
“podnájemce” to avoid confusion.

Table 16 details the performance of the systems
in this respect. Each line sums up to 17 mentions
of either of the two contracting parties. We see
that the reference translation made only one error
by using the wrong term while all the other sys-
tems cause a term clash (using the same term for
both parties) in half of the cases. This, in fact, cor-
responds to all the mentions of the second party
and all these translations by all the systems are
thus completely wrong.

6 Test Suite Availability

SAO Test Suite is available under CC-BY-SA at:

https://github.com/ELITR/
wmt19-elitr-testsuite

7 Conclusion

We presented a test suite of Czech, English, Ger-
man, Polish and Slovak documents from the au-

diting domain and used its English-Czech-German
tri-parallel part in the WMT19 Translation Shared
Task. We also added one more document type,
namely a sublease agreement.

Despite the fact that the participating MT sys-
tems were trained for a rather general domain of
news articles, many of them perform very well
on general terms. Our detailed manual evaluation
used criteria similar to those used in the scoring of
GCSE essays of the Czech language.

An important observation in our study was that
a thorough domain knowledge is necessary to as-
sess the correctness of the translation, esp. in
terms of lexical choices, and that the reference
translations are insufficient for the task. Our im-
pression is that automatic MT evaluation is ef-
fectively useless for assessing terminological sub-
tleties, esp. with one reference translation only.
We find this observation particularly important for
future research directions, because none of the MT
systems are trained in a way which could directly
address such subtle issues. Terminology lists may
be a good help for both MT and MT evaluation
but we anticipate that the only practically possi-
ble ultimate solution for translation would be an
interactive system supporting a domain expert in
manual correction of terminological choices.

As for the translations of the Sublease Agree-
ment, even though the dispersion in the number
of errors is huge—varying from 21 errors (CUNI-
Transformer-T2T-2018) to 125 errors online-X—
the number of errors alone is not as indicative
of the practical usability of the translation. The
main problem was that all the systems made the
same (and from the readers’ perspective, the most
severe) translation error by translating the terms
“tenant” and “lessee” using the same Czech word
“nájemce”, which made the whole text incompre-
hensible. Other observed mistakes needed rather
cosmetic adjustments, except for the occasions
where the system forgot a whole sentence or the
rest of a paragraph.

We released the texts of the test suite for future
use and we are also happy to share our annota-
tion protocols, but as of now, we cannot provide
any novel automatic evaluation of MT on this test
suite.
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Auersperger, Ondřej Bojar, and Pavel Pecina.
2019. English-czech systems in wmt19: Document-
level transformer. In Proceedings of the Fourth
Conference on Machine Translation: Volume 2,
Shared Task Papers.
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Abstract

We propose WMDO, a metric based on dis-
tance between distributions in the semantic
vector space. Matching in the semantic space
has been investigated for translation evalua-
tion, but the constraints of a translation’s word
order have not been fully explored. Building
on the Word Mover’s Distance metric and var-
ious word embeddings, we introduce a frag-
mentation penalty to account for fluency of
a translation. This word order extension is
shown to perform better than standard WMD,
with promising results against other types of
metrics.

1 Introduction

Current metrics to automatically evaluate machine
translations, such as the popular BLEU (Papineni
et al., 2002), are heavily based on string matching.
They claim to account for adequacy by checking
for overlapping words between the machine trans-
lation output and reference translation, and fluency
by rewarding matches in sequences of more than
one word. This way of viewing adequacy is very
limiting; comparing strings makes it harder to
evaluate any deviation from the semantics of the
original text in the reference or machine transla-
tion.

Meteor (Banerjee and Lavie, 2005) relaxes this
constraint by allowing matching of lemmas, syn-
onyms or paraphrases. However, this requires lin-
guistic resources to lemmatise the data or lexical
databases to fetch synonyms/paraphrases, which
do not exist for most languages.

Character-based metrics like chrF (Popovic,
2015) and CharacTER (Wang et al., 2016) also re-
lax the exact word match constraint by allowing
the matching of characters. However, they ulti-
mately still assume a surface-level similarity be-
tween reference and machine translation output.

Chen and Guo (2015) presented a number of
experiments where both translation and reference
sentences are compared in the embedding space
rather than at surface level. They however sim-
ply extract these two embedding representations
and measure the (cosine) similarity between them,
which may account for some overall semantic
similarity, but ignores other aspects of translation
quality.

A version of Meteor has been proposed that also
performs matches at the word embedding space
(Servan et al., 2016). Two words are considered
to match if their cosine distance in the embed-
ding space is above a certain threshold. In other
words, the embeddings are only used to provide
this binary decision, rather than to measure over-
all semantic distance between two sentences. In a
similar vein, bleu2vec and ngram2vec (Tttar and
Fishel, 2017) are a direct modification of BLEU
where fuzzy matches are added to strict matches.
The fuzzy match score is implemented via token
and n-gram embedding similarities. As we show
in Section 4, these metrics do not perform well.

MEANT 2.0 (Lo, 2017) also relies on matching
of words in the embedding space, but this is only
used to score the similarity between pairs of words
that have already been aligned based on their se-
mantic roles, rather than to find the alignments be-
tween words.

We suggest a more general way of using distri-
butional representations of words, where distance
in the semantic space is viewed as a global de-
cision between the entire machine and reference
translations. More specifically, we propose an
adaptation of a powerful and flexible metric that
operates on the semantic space: Word Mover’s
Distance (WMD) (Kusner et al., 2015). WMD is
an instance of the Earth Mover’s Distance trans-
portation problem that calculates the most efficient
way to transform one distribution onto another.
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Adjustments to EMD have been used previously
to create evaluation metrics based on word embed-
dings and word positions (Echizen’ya et al., 2019).
Likewise, using vector word embeddings as an in-
dicator of similarity and the word embeddings of
each text as a distribution, WMD gives the opti-
mal method of transforming the words of one doc-
ument to the words of another document. WMD
does not take word order into account and rather
focuses on semantic similarity of word meanings.

WMD has been recently used for the evalua-
tion of image captioning models (Kilickaya et al.,
2017; Madhyastha et al., 2019). It proved promis-
ing for image captioning evaluation, where word
order is less relevant. The same image can be de-
scribed similarly using different word orders as it
is constrained by the image itself. We note that in
machine translation evaluation, word order is more
important, since the order is constrained by that of
the source sentence.

In this paper, we propose WMDO – an extension
to WMD that incorporates word order. We show
that this metric outperforms the standard WMD
and performs on par or better than most state-of-
the-art evaluation metrics.

2 Method

In this section we describe the original WMD dis-
tance metric and its extension to account for word
order.

2.1 WMD

Word Mover’s Distance (WMD) (Kusner et al.,
2015) makes use of vectorial relationships be-
tween word embeddings to compute distance be-
tween two text documents. In essence, WMD cap-
tures the minimal distance required to move words
from the first document to words in the second
document.

Let X ∈ Rn×d be a d-dimensional word em-
bedding matrix for a vocabulary of n words. Let
xi ∈ Rd be a d-dimensional representation of
ith word. Assume two documents A and B with
da and db as the normalized bag-of-words (BOW)
vectors, k-dimensional vectors for the respective
documents, where dja is the number of times word
j occurs in A (normalized by all words appearing
inA). Note that stop words are removed from doc-
uments; only content words are retained.

Kusner et al. (2015) propose the word travel
cost, that is the cost of moving words from T a

i to

T b
j , as the measure of word dissimilarity, using the

Euclidean distance between the embeddings cor-
responding to words. More precisely, the cost as-
sociated is defined as:

c(i, j) = ‖xi − xj‖22 , (1)

This allows documents with many closely re-
lated words to have smaller distances than docu-
ments with very dissimilar words. WMD defines
a transport matrix T ∈ Rn×n,

where Tij contains information about the pro-
portion of dai that needs to be transported to dbj .
Formally, WMD computes T that optimizes:

D(da, db) = min
T≥0

n∑

i,j=1

Tijc(i, j), (2)

such that:
∑n

j=1 Tij=d
a
i and

∑n
i=1 Tij=d

b
j , ∀ i, j.

Here, the normalized bag-of-words distribution of
the documents da and db contains a combined vo-
cabulary from da and db resulting in a square trans-
port matrix T of dimensionality n×n.

We note that Kusner et al. (2015) remove stop
words and retain only content words before com-
puting WMD, as stop words are generally less rel-
evant for capturing content specific similarity be-
tween documents. In our implementation, we in-
clude the stop words in order to capture a more
coherent distance.

2.2 WMD with word order
Evaluation of translation candidates generally
takes into account fluency as well as adequacy to
form a judgment. As described in previous sec-
tion, the standard WMD does not take word order
into account. We introduce a modified version
which includes a specialized penalty that is in-
tended to penalize for words occurring in a dif-
ferent order from the reference translation. This
modification adds a notion of fluency on top of the
original WMD metric, which is crucial in match-
ing the multifaceted approach of human transla-
tion evaluation.

The word order penalty is applied after calcula-
tion of the standard WMD score. Our proposal for
penalty is similar to the notion of fragmentation
penalty of Meteor (Banerjee and Lavie, 2005),
which separates word matches into chunks in or-
der to prevent the metric from doubly-penalising
a translation for having out of order consecutive
words. These chunks are defined as a group of un-
igrams which are adjacent in both reference and
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machine translation. The longer each chain of n-
grams is, the fewer the chunks, so if the entire ma-
chine translation matches the reference in consec-
utive order there is only one chunk. Figure 1 is
an illustration of the use of chunks. The matched
unigrams for “the president” and “spoke loudly”
are in the same order in both sentences, giving
two chunks for this translation, fragmented by the
word “then”.

the president spoke loudly

the president then spoke loudly

Figure 1: An example of chunks.

This type of word order penalty is necessary to
deal with examples such as that of Figure 2. The
sentence gets a perfect WMD score because all of
its words align exactly to another one in the vector
space, with no regard to its fluency. With a frag-
mentation penalty, this type of situation would see
the score get worse because of its different sen-
tence structure to the reference.

the sun is shining brightly

brightly shining is the sun

Figure 2: The WMD score for this sentence pair is 0.0.

The penalty is formulated as:

Penalty =
c

um
(3)

where c is the number of chunks and um is the
number of unigrams in the machine translation.

This penalty is weighted by a value δ. and is
formulated as:

Weight = δ × Penalty (4)

We also observed that, in many cases, the sim-
ple penalty in Equation 4 can further be aug-
mented with a modification that rewards sentences
which are largely contiguous. We modify Equa-
tion 4 such that sentences with fewer chunks are
rewarded and sentences with more chunks are pe-
nalized. We empirically found that 1

2 is optimal
for such a realization. With this modification, our
fluency based word mover’s distance (WMDO) is

defined as:

WMDO = WMD− δ(1
2
− Penalty) (5)

We also observe that, in most cases, the optimal
weight seems to be 0.2.

3 Experimental settings

We performed experiments to verify the perfor-
mance of the proposed metric, comparing the met-
ric’s results against human annotations to measure
a level of correlation. We used the PyEMD wrap-
per (Mayner, 2019) for calculating the WMD,
based on (Pele and Werman, 2008, 2009). We
did not remove any stopwords as these are impor-
tant to fluency. We also use Cosine rather than
Euclidean distance to calculate distance between
word embeddings as magnitude of the vectors is
not as important in such high dimensions.

3.1 Datasets

We used the WMT17 segment-level into-English
datasets for our experiments (Bojar et al., 2017).
This has data from seven different source lan-
guages, with 560 different texts each. Every text
carries a reference translation and a machine trans-
lation, with a human annotation labelling how
closely the machine translation relates to the ref-
erence.

3.2 Word embeddings

Many pre-trained word embeddings are available
for English. Since word2vec embeddings have
been shown to work well with WMD, this was
our starting point as the embeddings used to de-
velop the metric. We used a freely-available pre-
trained model of 300 dimensions trained on ap-
proximately 100 billion words from news articles
(Mikolov et al., 2013). This model had a vocab-
ulary size of 3 million. While large, there were
still many instances of out-of-vocabulary (OOV)
words in the WMT17 dataset alone. Some of
this can be attributed to incomplete translations;
many of the missing words were foreign words in
the source language. Other instances were proper
nouns which had not been seen in the pre-trained
embeddings vocabulary, as well as numerical val-
ues for the same reason.

To tackle OOV, we tried several different ap-
proaches. One was to assign a single random vec-
tor as an OOV vector, using the same vector for
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every instance of a missing word. For these exper-
iments, we used the vector of all 0s, as this seemed
the most neutral. Another was to have a random
vector for each OOV word and store it in a dictio-
nary, calling on the same value whenever the OOV
word is encountered again. In the same vein, one
setting was to generate this vector by taking an av-
erage of five random vectors in the embedding.

An alternative approach we also pursued was
to use a different set of embeddings. FastText
(Mikolov et al., 2018) is a type of embedding
which is able to produce embeddings for words not
part of the vocabulary. This utilises vectors from
of substrings of characters contained in the miss-
ing word, adding them together so even vectors for
misspelled words or a concatenation of words can
be produced. Again, a pre-trained model, also of
300 dimensions and trained on news articles was
used here. We also fine-tuned this model to pro-
duce another set of embeddings, using monolin-
gual training data from the WMT19 news transla-
tion task. The experiments with these embeddings
were done with and without the FastText character
n-gram method of solving OOVs.

All of these approaches were used to test the
metric against human scores, the results of which
can be seen in Section 4.

4 Results

The results of these experiments are shown in Ta-
bles 1 to 4. Each row in a table corresponds to
an experimental setting, while each column repre-
sents one of the seven language pairs. The value
of each cell represents the Pearson correlation with
of the metric’s score with the given human score,
with a higher value suggesting better agreement
with the gold standard human evaluation.

Table 1 shows the results of the different OOV
strategies, all using the pre-trained word2vec em-
bedding and the standard WMD metric. Out of
these strategies, the same random vector for all
OOVs came out top by a small margin.

Table 2 looks at the effect of using different em-
beddings on results and OOV rate, including with
and without the n-gram method of FastText to re-
solve OOVs. We can see that the pre-trained Fast-
Text vectors with the OOV resolution strategy of
the same vector for all OOV had the best perfor-
mance, but only marginally over a random vec-
tor for each OOV. A different vector choice might
be better for different embeddings, but for the

purposes of further experiments with this dataset
the zero vector was used. It also shows that
the FastText embeddings perform better than the
word2vec embedding with the same OOV resolu-
tion strategy, suggesting a difference in quality of
vectors.

Table 3 presents the experimental results of
WMD and the WMD word order metrics for dif-
ferent values of δ. These experiments used the pre-
trained FastText vectors with a zero vector for all
OOV. It shows that the WMD word order metric
performs better than the standard WMD metric in
the majority of language pairs.

Combining these results, we find that the best
performing iteration of our metric for all language
pairs is the word order version of WMD, with δ
at 0.2. This is using the pre-trained FastText em-
bedding, with the zero vector used for each OOV
word. However, it should be noted that some lan-
guage pairs perform slightly better with a higher
or lower δ; this is reflected in the next table with
the “ideal” parameter.

We compare this to the rest of the results from
the WMT17 metrics task in Table 4; it shows that
our metric performs at a similar level or better than
most evaluation metrics. Of the metrics which
do better than WMDO. Blend and AutoDA are
trained metrics, which are not the most practical
when applied to larger datasets as they rely on hu-
man annotated training data. MEANT is a met-
ric that does very well for most language combi-
nations. It also uses word embeddings to score
matching words, but it is not clear whether the
benefit comes from this or from other components
in the metric. Overall, this metric has a very large
number of steps that rely on linguistic resources,
and its code is not available.

5 Analysis

We plot two examples of the distributions of hu-
man and WMDO metric scores in Figures 3 and
4. The results for Finnish-English were fairly
strong, but those for Latvian-English had a few
more anomalies.

The metric performs sufficiently with reference
and machine translated outputs which were largely
of a similar length, as the influence of each word
was not overbearing on the metric’s end result.
This can be seen in the results for Finnish to En-
glish, which are quite consistent.

Our metric struggled more with bad translations
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cs-en de-en fi-en lv-en ru-en tr-en zh-en
Same vector for all OOV 0.513 0.531 0.689 0.505 0.562 0.561 0.595
Random vector per OOV 0.513 0.531 0.687 0.501 0.560 0.557 0.591
Average of 5 random vectors 0.500 0.534 0.678 0.492 0.563 0.557 0.572

Table 1: Performance of OOV strategies with standard WMD and word2vec.

cs-en de-en fi-en lv-en ru-en tr-en zh-en OOV (%)
Word2vec (same vector for all OOV) 0.513 0.531 0.689 0.505 0.562 0.561 0.595 0.10
FastText (same vector for all OOV) 0.521 0.536 0.704 0.530 0.571 0.566 0.607 0.22
FastText (random vector per OOV) 0.521 0.536 0.702 0.530 0.571 0.566 0.607 0.22
FastText (n-grams) 0.511 0.542 0.700 0.526 0.572 0.577 0.583 0
FastText finetuned (n-grams) 0.485 0.525 0.671 0.513 0.546 0.538 0.597 0

Table 2: Performance of different embeddings on standard WMD, including OOV rate.

cs-en de-en fi-en lv-en ru-en tr-en zh-en
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMDO, δ = 0.05 0.528 0.544 0.709 0.537 0.580 0.585 0.616
WMDO, δ = 0.1 0.531 0.546 0.710 0.541 0.585 0.600 0.621
WMDO, δ = 0.2 0.530 0.542 0.705 0.543 0.585 0.620 0.623
WMDO, δ = 0.3 0.525 0.534 0.696 0.540 0.579 0.631 0.621
WMDO, δ = 0.4 0.518 0.525 0.686 0.535 0.572 0.637 0.616

Table 3: Performance of different WMD implementations with pre-trained FastText and same vector strategy.
Bolded value signify the best performing metric for each language pair.

cs-en de-en fi-en lv-en ru-en tr-en zh-en
AUTODA 0.499 0.543 0.673 0.533 0.584 0.625 0.583
BEER 0.511 0.530 0.681 0.515 0.577 0.600 0.582
BLEND 0.594 0.571 0.733 0.577 0.622 0.671 0.661
BLEU2VEC SEP 0.439 0.429 0.590 0.386 0.489 0.529 0.526
CHRF 0.514 0.531 0.671 0.525 0.599 0.607 0.591
CHRF++ 0.523 0.534 0.678 0.520 0.588 0.614 0.593
MEANT 2.0 0.578 0.565 0.687 0.586 0.607 0.596 0.639
MEANT 2.0-NOSRL 0.566 0.564 0.682 0.573 0.591 0.582 0.630
NGRAM2VEC 0.436 0.435 0.582 0.383 0.490 0.538 0.520
SENTBLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512
TREEAGGREG 0.486 0.526 0.638 0.446 0.555 0.571 0.535
UHH TSKM 0.507 0.479 0.600 0.394 0.465 0.478 0.477
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMDO , δ = 0.2 0.530 0.542 0.705 0.543 0.585 0.620 0.623
WMDO , δ = IDEAL 0.531 0.546 0.710 0.543 0.585 0.637 0.623

Table 4: Performance of different metrics in the WMT17 shared task against the two proposed metrics. Our
metrics are highlighted in blue. Trained/ensemble metrics are highlighted in grey. Bolded values signify the best
performing non-trained metric for each language pair.
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Figure 3: WMDO against human scores for fi-en

Figure 4: WMDO against human scores for lv-en

of sentences which were shorter, as each chunk be-
came more pronounced in the penalty, which com-
pounded the bad WMD scores of the nonsensical
translation. This was especially evident with poor
translations which were comprised largely of re-
tained foreign words. An example of this is from
the Latvian to English set; one of the machine
translations was “Pann uzkars oil” for the refer-
ence “Heat oil in a frying-pan”. The penalty could
be adjusted in the future to account for sentence
length.

6 Conclusions

We have proposed a novel method of evaluating
machine translations, focusing on word embed-
dings and the semantic space. Our metric imple-
menting a word order weighting achieved strong
performance in relation to other state-of-the-art
metrics and the standard WMD metric. From this
we can conclude that semantic spaces are a viable
approach to assessing machine translations.

In terms of experimental settings, we found that
using the n-gram approach of FastText did not sig-
nificantly outperform initialising a random vector
for each OOV word, although the higher quality
FastText embeddings proved to be more accurate

than the older word2vec embeddings. These set-
tings, along with the value of δ, may vary for dif-
ferent datasets. This may be because the WMT17
dataset had a large number of foreign words,
which would not make much sense to use n-grams
to piece back together. In addition, the finetuned
FastText embedding might have had suboptimal
training parameters, leading to its poorer perfor-
mance. It can also be seen that different values of
δ work better on certain language pairs; this may
have to be a value tuned per language pair rather
than a catch-all value.

This work within semantic spaces can also be
extended to other translation tasks; as compar-
isons of two segments are performed within the
currently monolingual vector space, future trans-
lation evaluations could make use of cross-lingual
word embeddings, which carry vectors for differ-
ent languages in the same space. This could poten-
tially allow translation evaluations to be done di-
rectly from the source text to the machine transla-
tion, without the human evaluation in between by
using a vector space combining the source and tar-
get language. Work into cross-lingual embeddings
has been growing in recent years (Conneau et al.,
2017) and this metric could be used to leverage
the potential of this area in the future of automatic
translation evaluation. We will provide an open
source implementation of WMDO (Chow, 2019).
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Abstract
This paper describes Meteor++ 2.0, our sub-
mission to the WMT19 Metric Shared Task.
The well known Meteor metric improves ma-
chine translation evaluation by introducing
paraphrase knowledge. However, it only fo-
cuses on the lexical level and utilizes consec-
utive n-grams paraphrases. In this work, we
take into consideration syntactic level para-
phrase knowledge, which sometimes may be
skip-grams. We describe how such knowledge
can be extracted from Paraphrase Database
(PPDB) and integrated into Meteor-based met-
rics. Experiments on WMT15 and WMT17
evaluation datasets show that the newly pro-
posed metric outperforms all previous versions
of Meteor.

1 Introduction

Accurate evaluation of machine translation (MT)
plays an important role in measuring improvement
in system performance. Since human evaluation
is time-consuming and expensive, automatic met-
rics for MT have received significant attention in
the past few years. A lot of MT evaluation met-
rics from different perspective have been proposed
to measure how close machine-generated transla-
tions are to professional human translations such
as BLEU (Papineni et al., 2002), Meteor (Baner-
jee and Lavie, 2005), TER (Snover et al., 2006)
etc. Because Meteor has the ability to employ
various linguistic language features and resources
easily, a lot of improved versions has been put for-
ward continuously (Lavie and Denkowski, 2009;
Denkowski and Lavie, 2010a,b, 2011, 2014; Guo
et al., 2018). The Meteor-Next (Denkowski and
Lavie, 2010a,b) extends the Meteor to phrase-level
with the support of paraphrase tables. It’s clear
that this knowledge incorporated into matching
procedure do help the metric reach a higher cor-
relation with the human scores.

In previous work, phrases in paraphrase table
are defaulted to be consecutive n-grams which

mainly draw on the lexical level. What’s more,
skip n-gram (Huang et al., 1993) paraphrases
whose components need not be consecutive also
capture many meaning-preserving syntactic trans-
formations. The original Meteor-based metrics
only pay attention to consecutive string matching,
they perform badly when reference-hypothesis
pairs contain skip n-grams. Using the pair (pro-
tect...from, protect...against) for an example, the
two different prepositions from and against will
bring a miss-matching and then have a negative
effect on the Meteor score. Obviously, these
two words are equivalent when appearing simul-
taneously with the verb protect. What’s more,
from and against here mainly support the sen-
tence structure and contribute little on semantic
expression.

In this paper, we seek to directly address
the problem mentioned before by adopting a
syntactic-level language resource into Meteor.
Taking advantage of the large Paraphrase Database
(Ganitkevitch et al., 2013; Pavlick et al., 2015),
we automatically extract a subset of syntax PPDB
which contains skip n-grams. To demonstrate the
efficacy of this knowledge, we raise an improved
version of the Meteor incorporated with that via
an extra parallel syntax stage. Our extended met-
ric, Meteor++ 2.0, shows an improvement in the
correlation with the human scores on most of the
language pairs.

We organize the remainder of the paper as fol-
lows: Section 2 describes the traditional Meteor
scoring. Section 3 presents the syntactic level
paraphrase table acquisition and model details.
Section 4 is devoted to the experiments and results.
The conclusions follow in the final section.

2 Traditional Meteor Scoring

The Meteor metric based on a general concept of
flexible unigram matching, unigram precision and
unigram recall, including the match of words that
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are simple morphological variants of each other by
the identical stem and words that are synonyms of
each other. For a single hypothesis-reference pair,
the space of possible alignments is constructed by
exhaustively identifying all possible matches be-
tween the sentences according to the following
matchers with different weight.

• Exact: Words are matched if and only if their
surface forms are identical.

• Stem: Words are stemmed using a language
appropriate Snowball Stemmer (Porter,
2001) and matched if the stems are identical.

• Synonym: Words are matched if they are both
members of a synonym set according to the
WordNet (Miller, 1998) database.

• Paraphrase: Phrases are matched if they are
listed as paraphrases in a paraphrase table.

Alignment resolution is conducted as a beam
search using a heuristic based on the specified cri-
teria.The final alignment is then resolved as the
largest subset of all matches to meet the follow-
ing criteria in order of importance:

1. Require each word in each sentence to be
covered by zero or one match.

2. Maximize the number of covered words
across both sentences.

3. Minimize the number of chunks, where a
chunk is defined as a series of matches that
is contiguous and identically ordered in both
sentences.

4. Minimize the sum of absolute distances be-
tween match start indices in the two sen-
tences. (Break ties by preferring to align
phrases that occur at similar positions in both
sentences.)

Once the final alignment is selected, the Meteor
calculates weighted precision P and recall R. For
each matcher (mi), it counts the number of con-
tent and function words covered by matches of ith
type in the hypothesis (mi(hc), mi(hf )) and ref-
erence (mi(rc), mi(rf )), |hf | and |rf | mean the
total number of function words in hypothesis and
reference, |hc| and |rc| mean the total number of
content words in hypothesis and reference.

P =

∑
iwi · (δ ·mi(hc) + (1− δ) ·mi(hf ))

δ · |hc|+ (1− δ) · |hf |
(1)

R =

∑
iwi · (δ ·mi(rc) + (1− δ) ·mi(rf ))

δ · |rc|+ (1− δ) · |rf |
(2)

The parameterized harmonic mean of precision
P and recall R then calculated:

Fmean =
P ·R

α · P + (1− α) ·R (3)

To account for gaps and differences in word
order, a fragmentation penalty is calculated us-
ing the total number of matched words (m, aver-
aged over hypothesis and reference) and number
of chunks(ch):

Pen = γ · (ch
m

)β (4)

The Meteor score is then calculated:

Score = (1− Pen) · Fmean (5)

The parameters α, β, γ, δ and wi...wn are tuned
to maximize correlation with human judgments.

3 Our Approach

In this section, we firstly present the syntactic level
paraphrase table acquisition in 3.1 and then we in-
troduce how to integrate this knowledge resource
into Meteor in 3.2.

Element A Element B
assist in help to
protect from protect against
the turkish the of turkey
feel is believe that is

administration of management
give provide with
ask to do ask that
depressing of depressing from
issue the number of

Table 1: Some examples of our extracted Syntactic
Level Paraphrase Table. Note that ’ ’ is the placeholder
which can be skipped over.

3.1 Syntactic Level Paraphrase Table
Acquisition

Syntactic paraphrases always capture meaning-
preserving syntactic transformations but gain less
attention than lexical paraphrases in Meteor-based
metrics. In this work, we benefit from the widely

502



Reference
We(0) will(1) get(2) the(3) boys(4) ready(5) to(6) go(7) again(8)
said(9) donnelly(10)

Hypothesis
We(0) will(1) prepare(2) the(3) boy(4) back(5) to(6) action(7) don-
nelly(8) promises(9)

Index Reference Hypothesis Match Type Match Weight
0 we(0) we(0) Exact [1.0]
1 will(1) will(1) Exact [1.0]
2 get(2) ready(5) prepare(2) Syntax [0.4, 0, 0, 0.8]
3 the(3) the(3) Exact [1.0]
4 boys(4) boy(4) Synonym [0.8]
5 - - - -
6 to(6) to(6) Exact [1.0]
7 go(7) - - -
8 again(8) - - -
9 said(9) - - -
10 donnelly(10) donnelly(8) Exact [1.0]

Table 2: An example of alignment result between the reference-hypothesis pair.The weights of Exact, Stem, Syn-
onym, Paraphrase and Syntax are set to be [1.0, 0.6, 0.8, 0.6, 0.4]

used paraphrase resource PPDB2.0 (Pavlick et al.,
2015) and try to bring syntactic level knowledge
into Meteor evaluation. Here we mainly focus on
skip n-gram paraphrases whose components are
not consecutive in appearance such as examples
shown in Table 1. Note that here we filter those
pairs in which both elements are consecutive n-
grams because they will be duplicate with the pairs
in existing paraphrase table of Meteor.

The PPDB divides the database into six sizes for
several languages according to three perspectives,
from S to XXXL on the lexical, phrasal and syntac-
tic level. We build our own syntactic level para-
phrase table using the XXXL syntax PPDB:Eng
which contains over 140 million syntax paraphrase
pairs. Then we use regular expressions to ex-
tract the skip n-gram paraphrases with the follow-
ing criteria and hold out about 27 million pairs.
The paraphrase pair in the following descriptions
means two phrases which are listed as paraphrases
in our syntactic level paraphrase shaped like (Ele-
ment A, Element B) in Table 1.

• Each phrase in one paraphrase pair should be
not consecutive in appearance .

• Each phrase in one paraphrase pair should
contain at least one content word.

• The length difference between the two
phrases in one paraphrase pair should less
than the threshold.

Compared to the prior paraphrase tables, we list
two principal differences between them:

• In appearance, we mainly focus on skip n-
grams whose components need not be con-
secutive in the text. In our table, at least one
element in each paraphrase pair should have
a break by the placeholder ‘ ’ which means
the position can be any word.

• Lots of pairs have duplicate words between
the two elements in ours. For the reason that
some meaning-preserving syntactic transfor-
mations just substitute function words and
still have the same content words.

Therefore, treated this knowledge the same way
with the previous is unreasonable, and we will dis-
cuss the details on how to leverage this language
resources under the Meteor framework in the next
section.

3.2 Meteor++ 2.0

Under the Meteor framework, Meteor++ 2.0 adds
a parallel Syntax stage for possible syntactic level
paraphrases matching. Due to its difference men-
tioned in 3.1, we discuss the following modified
steps during the matching process.

3.2.1 Possible Alignment Construction
In the extended Syntax stage, phrases are matched
if they are listed as a pair in our syntactic para-
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Figure 1: An example of the modified beam search.

phrase table (3.1). The position of the place-
holder ’ ’ can be any word which will be skipped
over in this phrase matching. And we only keep
those matching pairs with the absolute distances
between match start indices in the reference and
hypothesis less than the threshold.

In prior paraphrase stage, all words in both Ele-
ment A and B are set with the same value. While
in the Syntax stage, we set the different word with
a different value in one element of the paraphrase
pair. More generally, we set 1.0 as the weight
of Exact stage and 0.4 as the weight of Syntax
stage. Consider about the paraphrase pair (protect

from, protect against), we suppose the two
elements appear in the reference and hypothesis
separately. If we assign the weight 0.4 for all the
words in this paraphrase pair, there will be a bias
with the other Exact matching pairs. Because the
two protect would be an exact matching with the
weight 1.0 if Syntax stage doesn’t exist. In a word,
as for the weight assignment in Sytax stage , we
set the word exact weight if it appears in both el-
ements, and set the word synonym weight if the
other element includes its synonym and so on.

Table 2 shows a matching example in a
reference-hypothesis pair. The weights of Exact,
Stem, Synonym, Paraphrase and Syntax are set to
be [1.0, 0.6, 0.8, 0.6, 0.4]. The (get ready, pre-
pare) pair is matched in Syntax stage, the weight
for words ready and prepare is 0.8, for the reason
that they are synonym each other, in other word, it

would be matched in an Synonym stage if no Syn-
tax stage here. And for the word get, only matched
in the syntax stage, set with the Syntax weight 0.4.

3.2.2 Incorporate Syntactic knowledge into
Beam Search

The incorporation of the syntactic level para-
phrases will bring much more possible matches,
therefore it requires a larger beam size which leads
a low efficiency. Consider the trade-off between
performance and efficiency, we add the syntac-
tic matching pair into the current path until the
last word appears during the beam search proce-
dure. Then we look backward to check the state of
the other words in this pair, if they are all free to
match, we add it into our path.

Figure 1 shows an example in the modified
beam search process. At step 4, get is an un-
matched word in the reference. When comes to the
word ready in next step, (get ready, prepare)
is a syntax matching pair between the reference-
hypothesis. Then we look backward and find that
get hasn’t been matched by others words before,
finally, we add the paths with or without (get
ready, prepare) into the current path queue.

4 Experiments

4.1 Setups

To evaluate the impact of our syntactic level para-
phrase knowledge, We carry out experiments to
compare the performance of Meteor++ 2.0 and
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lang-pair de-en fi-en ru-en cs-en tr-en lv-en zh-en

WMT2015
Meteor .615 .638 .629 .595 - - -
Meteor++ 2.0 (syntax) .621 .633 .631 .606 - - -

WMT2017
Meteor .532 .719 .621 .555 .628 .555 .639
Meteor++ 2.0 (syntax) .535 .722 .621 .561 .628 .556 .646

Table 3: Comparison of segment-level Pearson correlation between Meteor and Meteor++ 2.0 (syntax) on WMT15
and WMT17 evaluation datasets. The weight of Syntax stage in Meteor++ 2.0 is set to be 0.4, other parameters are
consistent with the Meteor Universal.

lang-pair de-en fi-en ru-en cs-en tr-en lv-en zh-en

WMT2015
Meteor++ (copy) .630 .652 .625 .595 - - –
Meteor++ 2.0 (copy + syntax) .634 .647 .628 .606 - - -

WMT2017
Meteor++ (copy) .525 .717 .625 .557 .623 .562 .644
Meteor++ 2.0 (copy + syntax) .527 .721 .626 .563 .621 .565 .652

Table 4: Comparison of segment-level Pearson correlation between Meteor++ (copy) and Meteor++ 2.0 (copy +
syntax) on WMT15 and WMT17 evaluation datasets. The weight of Syntax stage in Meteor++ 2.0 is set to be 0.4,
other parameters are consistent with the Meteor Universal.

other prior Meteor-based metrics using the evalu-
ation datasets on WMT15 and WMT17 to-English
pairs. And we tune the weight of Syntax stage
to maximize the Pearson correlation with human
scores on all WMT16 to-English datasets, other
parameters are consist of the Meteor Universal.
Table 5 shows statistics for each language-pair in
WMT15-17, each dataset contains the source sen-
tence, MT output, reference, and human score.
And we calculate the Pearson correlation between
metric scores and human scores for each language
pair.

lang-pair WMT15 WMT16 WMT17
de-en 500 560 561
fi-en 500 560 561
ru-en 500 560 561
ro-en - 560 -
cs-en 500 560 561
tr-en - 560 561
lv-en - - 561
zh-en - - 561

Table 5: Number of sentences for each language pairs
in WMT15-17 evaluation sets.

4.2 Results
Table 3-4 show the Pearson correlation with
direct assessment (DA) (Graham et al., 2013)
on WMT15 and WMT17 evaluation sets at
segment-level. Meteor++ is the previous work in
WMT2018 (Guo et al., 2018) integrated with copy

knowledge, i.e. words that are likely to be pre-
served across all paraphrases of a sentence in a
given language. Meteor++ 2.0 is the newly pro-
posed one in this paper. In Table 3, we give
the comparison between Meteor and Meteor++
2.0, and Table 4 gives the comparison between
Meteor++ and Meteor++ 2.0. For both prior
Meteor-based metrics, the incorporation of the
syntactic paraphrase table has a positive influ-
ence on almost every to-English language pairs.
Apparently, Meteor++ 2.0 (copy + syntax), the
combination with Guo et al. (2018) achieve the
best performance in almost every language pair.
Hence, we submit Meteor++ 2.0 (copy + syntax)
to WMT19 Metric task to-English language pairs.

5 Conclusion

In this paper, we describe the submission of our
proposed metric Meteor++ 2.0 for WMT19 Met-
rics task. Firstly, we extract a syntactic level para-
phrase table from the syntax PPDB and list the
principle differences between the two paraphrase
tables. Secondly, we propose Meteor++ 2.0 incor-
porated with this language resource. Finally, our
metric outperforms all prior Meteor-based metrics
on almost every WMT15 and WMT17 to-English
language pairs.

6 Future Work

According to the observation of the phrase
matches contributed by syntactic level para-
phrases, though we benefit a lot from this knowl-

505



edge resource, some noises are brought at the
meantime.

Firstly, in the perspective of the knowledge
quality, despite filtering techniques, there are
still some unusual, inaccurate or highly context-
dependent paraphrases. High-frequency usage al-
ways indicates high confidence, so hope our met-
ric can play a role of a quality estimator for para-
phrase tables in the future.

Secondly, since the syntax-level knowledge pay
more attention on sentence structure, mismatch
can not always be avoid. With the help of syn-
tactic tools such as parsing may help take better
usage of this knowledge.
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Abstract

We present YiSi, a unified automatic seman-
tic machine translation quality evaluation and
estimation metric for languages with different
levels of available resources. Underneath the
interface with different language resources set-
tings, YiSi uses the same representation for
the two sentences in assessment. Besides, we
show significant improvement in the correla-
tion of YiSi-1’s scores with human judgment is
made by using contextual embeddings in mul-
tilingual BERT–Bidirectional Encoder Repre-
sentations from Transformers to evaluate lex-
ical semantic similarity. YiSi is open source
and publicly available.

1 Introduction

A good automatic MT quality metric is one that
closely reflect the usefulness of the translation, in
terms of assisting human readers to understand the
meaning of the input sentence. BLEU (Papineni
et al., 2002) has long been shown not to correlate
well with human judgment on translation qual-
ity (Machacek and Bojar, 2014; Stanojević et al.,
2015; Bojar et al., 2016, 2017; Ma et al., 2018).
However, it is still the most commonly used metric
for reporting quality of machine translation sys-
tems. One of the major reasons is that BLEU is
ready-to-deploy to all languages due to its simplic-
ity. Semantic MT evaluation metrics, such as ME-
TEOR (Denkowski and Lavie, 2014) and MEANT
(Lo, 2017), require additional linguistic resources
to more accurately evaluate the meaning similarity
between the MT output and the reference transla-
tion. The lower portability hinders the wide adop-
tion of these metrics.

We, therefore, propose a unified framework,
YiSi, for MT quality evaluation and estimation
that take advantage of both metric paradigms by
providing options to fallback to surface-level lexi-

cal similarity when semantic models are not avail-
able for the languages in assessment.

YiSi were first used in WMT 2018 metrics
shared task (Ma et al., 2018) and performed well
and consistently at segment-level across the tested
language pairs in correlating with human judg-
ment. An YiSi based system successfully served in
WMT2018 parallel corpus filtering task (Lo et al.,
2018).

This year, instead of using word2vec
(Mikolov et al., 2013) to evaluate lexical seman-
tic similarity in YiSi, we use BERT –Bidirectional
Encoder Representation from Transformers (De-
vlin et al., 2018). YiSi is open source and publicly
available.1

2 YiSi

YiSi2 is a unified semantic MT quality evaluation
and estimation metric for languages with different
levels of available resources. Inspired by MEANT
(Lo, 2017), YiSi-1 is a MT quality evaluation met-
ric that measures the similarity between a machine
translation and human references by aggregating
the weighted distributional lexical semantic sim-
ilarities and optionally incorporating shallow se-
mantic structures. YiSi-0 is the degenerate ver-
sion of YiSi-1 that is ready-to-deploy to any lan-
guages. It uses longest common character sub-
string to measure the lexical similarity. YiSi-2 is
the bilingual, reference-less version, which uses
bilingual embeddings to evaluate crosslingual lex-
ical semantic similarity between the input and MT
output. Like YiSi-1, YiSi-2 can exploit shallow
semantic structures as well.

YiSi-0 and YiSi-1 were first used in WMT
2018 metrics shared task (Ma et al., 2018) and
performed well and consistently at segment-level

1http://chikiu-jackie-lo.org/home/index.php/yisi
2YiSi is the romanization of the Cantonese word 意思

(‘meaning’).
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Figure 1: Graphical representation of the computation of YiSi.

across the tested language pairs in correlating with
human judgment. While YiSi-1 also successfully
served in WMT2018 parallel corpus filtering task,
YiSi-2 showed comparable accuracy in our inter-
nal experiments (Lo et al., 2018).

2.1 Overview
Following the guiding principle that a good MT
quality metric reflects how well human readers un-
derstand the meaning of the input sentence, YiSi is
the weighted f-scores over corresponding seman-
tic frames and role fillers in the two sentences E
and F in assessment. The procedure of computing
YiSi is described as follow:

1. Apply a shallow semantic parser to both E
and F .

2. Apply the maximum weighted bipartite
matching algorithm to align the semantic
frames between E and F according to the
lexical similarities of the predicates.

3. For each pair of aligned frames, apply the
maximum weighted bipartite matching algo-
rithm to align the arguments between E and
F according to the lexical similarity of role
fillers.

4. Compute the weighted f-score over the

matching role labels of these aligned predi-
cates and role fillers according to the follow-
ing definitions: (Figure 1 is the graphical rep-
resentation of the following computation.)

w (e) = lexical weight of e

s(e, f) = lexical similarity of e and f

where s(e, f) is the lexical similarity and it is
weighted byw(e) andw(f) for computing phrasal
precision and recall respectively. Different vari-
ants of YiSi have different definition of lexical
similarities and weights depend on the resources
available for the assessment settings. By aggregat-
ing the weighted lexical similarities into n-gram
similarities, we then align the bag of n-grams in
the two sentences using maximum alignment on
the n-gram similarities. The phrasal similarity pre-
cision, sp, and recall, sr, (as defined below) are the
weighted average of the similarities of the aligned
n-gram.

sp(
−→e ,
−→
f ) =

∑
a

max
b

n−1∑
k=0

w (ea+k) · s (ea+k, fb+k)

∑
a

n−1∑
k=0

w (ea+k)

sr(
−→e ,
−→
f ) =

∑
b

max
a

n−1∑
k=0

w (fb+k) · s (ea+k, fb+k)

∑
b

n−1∑
k=0

w (fb+k)
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With the phrasal semantic precision and recall,
we compute the structural semantic precision and
recall as follow:

qEi,j = argument j of aligned frame i in E

qFi,j = argument j of aligned frame i in F

wE
i =

#units filled in aligned frame i of E
total #units in E

wF
i =

#units filled in aligned frame i of F
total #units in F

wj = count (argument j in F)
wt = 0.25 ∗ count (predicate in F)

srlp =

∑
i
we
i

wtsp(
−→ei,t,
−→
fi,t)+

∑
j
wjsp(

−→ei,j ,
−→
fi,j)

wt+
∑
j
wj |qei,j |

∑
i
we
i

srlr =

∑
i
wf
i

wtsr(
−→ei,t,
−→
fi,t)+

∑
j
wjsr(

−→ei,j ,
−→
fi,j)

wt+
∑
j
wj |qfi,j |

∑
i
wf
i

wherewt is the weight of the lexical similarities of
the aligned predicates in step 2. wj is the weight
of the phrasal similarities of the role fillers of the
arguments of role type j of the aligned frames be-
tween the reference translations and the MT out-
put in step 3 if their role types are matching. As
in (Lo, 2017), we merge the semantic role labels
into 8 role types (who, did, what, whom, when,
where, why, how) for more robust performance.
Thus, there is a total of 8 weights for the set of se-
mantic role types in YiSi estimated by type counts
in the document F. The frame precision/recall is
the weighted sum of the phrasal precision/recall
of the aligned role fillers. The token coverage we

i

and wf
i estimate the importance of frame i in the

sentence E and F . The structural semantic preci-
sion and recall is the weighted average of all the
aligned frames in sentence E and F respectively.

Now, the overall precision and recall is the
weighted sum of the phrasal precision and recall
of the whole sentence of −−−→esent and

−−−→
fsent, like in

the following:

precision = β · srlp + (1− β) · sp(−−−→esent,
−−−→
fsent)

recall = β · srlr + (1− β) · sr(−−−→esent,
−−−→
fsent)

It is important to note that the weight β should
NOT be interpreted as the importance of the struc-
tural semantic similarity in YiSi because there is a

Figure 2: Resources used in YiSi-0.

huge overlap in the structural semantic similarity
and the phrasal semantic similarity. Instead, we
should pay attention to the significant difference
in the performance of YiSi with and without struc-
tural semantic similarity, especially in YiSi-2, the
crosslingual variant. In this experiment, β is set to
0.1.

Finally, the weight α for the precision and recall
is introduced for different usages of YiSi. α should
be set to 0.7 to make YiSi more recall-oriented
when it is used for MT evaluation. When used for
MT system optimization, α should be set to 0.5 to
balance precision and recall.

YiSi =
precision · recall

α · precision + (1− α) · recall

In the following, we describe how we estimate
the lexical similarity s(e, f) and lexical weight
w(e) under different resource conditions.

2.1.1 YiSi-0: quality evaluation metric for
extremely low resource languages

YiSi-0 is the degenerate resource-free variant of
YiSi for MT quality evaluation, where sentence E
is the MT output and sentence F is the reference.
Figure 2 shows the resources used in YiSi-0.

YiSi-0 uses the longest common character sub-
string accuracy to evaluate lexical similarity be-
tween the MT output and human reference. Since
the MT output and the human reference are both
in the same language, the lexical weight w(e) of
word e in the translation and the lexical weight
w(f) of word f in the reference are both estimated
by the inverse-document-frequency of those words
in the reference document F. Thus, formally YiSi-
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Figure 3: Resources used in YiSi-1. The dash arrow
means that the semantic parser is optional.

0 is defined as follow:

l(e, f) = longest common substring of e and f

s0(e, f) =
2 ∗ l(e, f)
|e|+ |f |

w (e) = idf(e) = log(1 +
|F|+ 1

|F∃e|+ 1
)

YiSi-0 = YiSi(s=s0, β=0.0, E=MT, F=REF)

2.1.2 YiSi-1: quality evaluation metric with
access to an embedding model

YiSi-1 is the monolingual variant of YiSi for MT
quality evaluation, where sentence E is the MT
output and sentence F is the reference. Figure 3
shows the resources used in YiSi-1.

YiSi-1 requires an embedding model to evalu-
ate lexical semantic similarity and optionally re-
quires a semantic role labeler in the output lan-
guage for evaluating structural semantic similarity.
The lexical semantic similarity is the cosine simi-
larity of the embeddings from the lexical represen-
tation model. Similar to YiSi-0, the lexical weight
w(u) of word unit u in the MT and the reference
are estimated by the inverse-document-frequency
of that word in the reference document F. Thus,
formally YiSi-1 is defined as follow:

v(u) = embedding of unit u

s1(e, f) = cos(v(e), v(f))

w (u) = idf(u) = log(1 +
|F|+ 1

|F∃u|+ 1
)

YiSi-1 = YiSi(s=s1, β=0.0, E=MT, F=REF)

YiSi-1 srl = YiSi(s=s1, β=0.1, E=MT, F=REF)

Figure 4: Resources used in YiSi-2. Arrows in green
depict resources in target language and arrows in or-
ange depict resources in source language. The dash ar-
rows mean that the semantic parsers are optional.

2.1.3 YiSi-2: quality estimation metric for
languages with access to a bilingual
embedding model

YiSi-2 is the cross-lingual variant of YiSi for MT
quality estimation, where sentence E is the MT
output and sentence F is the input. Figure 4 shows
the resources used in YiSi-2.

YiSi-2 requires a cross-lingual embedding
model for evaluating cross-lingual lexical seman-
tic similarity and optionally requires a semantic
role labeler in both the input and the output lan-
guages for evaluating structural semantic similar-
ity. The lexical semantic similarity is the co-
sine similarity of the embeddings from the cross-
lingual lexical representation model. The lexical
weight w(e) of word unit e in the MT is estimated
by the inversion-document-frequency of the word
in the MT document E while the lexical weight
w(f) of word unit f in the MT is estimated by the
inversion-document-frequency of the word in the
MT document F. Thus, formally YiSi-2 is defined
as follow:

v(u) = embedding of unit u

s2(e, f) = cos(v(e), v(f))

w (e) = idf(e) = log(1 +
|E|+ 1

|E∃e|+ 1
)

w (f) = idf(f) = log(1 +
|F|+ 1

|F∃f |+ 1
)

YiSi-2 = YiSi(s=s2, β=0.0, E=MT, F=IN)

YiSi-2 srl = YiSi(s=s2, β=0.1, E=MT, F=IN)
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2.2 Using BERT for lexical unit semantic
similarity

In WMT 2018 metrics shared task, YiSi-1 uses
word2vec (Mikolov et al., 2013) to evaluate lex-
ical semantic similarity between the MT output
and the human reference at word level. The short-
comings of this kind of static embedding models
(also including but not limited to GloVe (Pen-
nington et al., 2014)) is that they provide the
same embedding representation for the same word
without reflecting context of different sentences.
In contrast, BERT (Devlin et al., 2018) uses a
bidirectional transformer encoder (Vaswani et al.,
2017) to capture the sentence context in the out-
put embeddings (at subword unit level), such that
the embedding for the same word/subword unit in
different sentences would be different and better
represented in the embedding space. Zhang et al.
(2019) provided an extensive study on the perfor-
mance of the output embeddings of difference lay-
ers of BERT model in correlation with human ad-
equacy. Following the recommendation from their
studies, we use embeddings extracted from BERT
models with the following settings:

• the 18th layer of the pretrained English cased
BERT-Large model to represent the subword
units in the reference and MT output in En-
glish for computing YiSi-1;

• the 9th layer of the pretrained Chinese BERT-
Base model to represent the characters in the
reference and MT output in Chinese for com-
puting YiSi-1; and

• the 9th layer of the pretrained multilingual
cased BERT-Base model to represent the sub-
word units in the reference and MT output in
languages other than Chinese and English for
computing YiSi-1 and to represent the sub-
word units in the original input and MT out-
put in all language pairs for computing YiSi-
2.

2.3 Using MATE/MATEPLUS for structural
semantic similarity

There are a handful of shallow semantic parsers
available publicly. mate-tools (Björkelund
et al., 2009) is an SVM classifier based on features
extracted from a dependency parse. Its succes-
sor mateplus (Roth and Woodsend, 2014) also
uses features extracted from distributional word
embeddings. mate-tools and mateplus are

integrated into YiSi because of their support for
languages other than English. We use mateplus
for German’s and English’s semantic role labeling
and mate-tools for Chinese’s semantic role la-
beling.

3 Experiments and results

We use WMT 2018 metrics task evaluation set
(Ma et al., 2018) for our development experi-
ments.

The official human judgments of translation
quality in WMT 2018 were collected using direct
assessment. The direct assessment evaluation pro-
tocol in WMT2018 gave the annotators the refer-
ence and a MT output and asked them to evaluate
the translation adequacy of the MT output on an
absolute scale.

Due to space limitations, we only report the re-
sults of YiSi, chrF (Popović, 2015), BLEU and the
best correlation in each of the individual language
pairs. Since we use exactly the same correlation
analysis as the official task for each of the test sets,
our reported results are directly comparable with
those reported in the task’s overview paper. We
summarize our observations in the following sec-
tions.

3.1 Correlation with human judgment at
system-level

Table 1 shows the Pearson’s correlation with
WMT 2018 official aggregated human direct as-
sessment of translation adequacy at system-level.

YiSi-0 performs more stably than chrF and
BLEU in correlating with human on translation
quality across all translation directions. YiSi-0
achieves comparable results with chrF and BLEU
in most of the translation directions while signif-
icantly outperforms chrF and BLEU in correlat-
ing with human in evaluating Turkish-English and
English-Turkish translations.

YiSi-1 beats all the WMT2018 participants
in correlation with human at system level for
evaluating Czech-English, German-English,
Chines-English, English-German, English-
Estonian, English-Finnish and English-Russian
translations. In addition, YiSi-1 srl further
improves YiSi-1’s correlation with human at
system level for evaluating German-English,
Chinese-English translations.

For the quality estimation variants, YiSi-2
achieves reasonably good results (with less than
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input lang. cs de et fi ru tr zh en en en en en en en
output lang. en en en en en en en cs de et fi ru tr zh
individual best .981 .997 .991 .996 .995 .958 .982 .999 .991 .984 .974 .992 .990 .983
chrF .966 .994 .981 .987 ,990 .452 .960 .990 .990 .981 .969 .989 .948 .944
BLEU .970 .971 .986 .973 .979 .657 .978 .995 .981 .975 .962 .983 .826 .947
YiSi-0 .962 .995 .982 .986 .985 .857 .972 .984 .989 .984 .954 .989 .980 .956
YiSi-1 .990 .998 .986 .994 .993 .830 .988 .993 .995 .988 .979 .993 .929 .977
YiSi-1 srl .989 .999 .987 .993 .993 .793 .989 – .995 – – – – .976
Quality estimation as a metric
YiSi-2 .919 .946 .865 .927 .566 .061 .797 .710 .862 .156 .475 .204 .389 .417
YiSi-2 srl – .948 – – – – .781 – .902 – – – – .472

Table 1: Pearson’s correlation of the metric scores with WMT 2018 aggregated human direct assessment scores at
system-level.

input lang. cs de et fi ru tr zh en en en en en en en
output lang. en en en en en en en cs de et fi ru tr zh
individual best .347 .498 .368 .273 .311 .259 .218 .518 .696 .573 .525 .407 .418 .323
chrF .288 .479 .328 .229 .269 .210 .208 .516 .677 .572 .520 .383 .409 .328
sentBLEU .233 .415 .285 .154 .228 .145 .178 .389 .320 .414 .355 .330 .261 .311
YiSi-0 .308 .480 .330 .210 .284 .213 .216 .454 .670 .530 .468 .396 .362 .316
YiSi-1 .391 .544 .397 .299 .352 .301 .254 .548 .734 .599 .549 .427 .402 .371
YiSi-1 srl .396 .543 .390 .303 .351 .297 .253 – .719 – – – – .368
Quality estimation as a metric
YiSi-2 .014 .279 .186 .151 .088 .066 .091 -.043 .359 .106 .172 .061 .103 .101
YiSi-2 srl – .281 – – – – .085 – .380 – – – – .103

Table 2: Kendall’s correlation of metric scores with the rankings at segment-level human direct assessment in
WMT 2018.

0.1 degradation in correlation with human) in eval-
uating Czech-English , German-English, Finnish-
English translation without using the human trans-
lation as reference. At the same time, YiSi-2 srl
improves YiSi-2’s correlation with human at sys-
tem level for evaluating English-German, English-
Chinese translations.

3.2 Correlation with human judgment at
segment-level

Table 2 shows the Kendall’s correlation with the
rankings at segment-level human direct assess-
ment obtained in the WMT 2018.

YiSi-0 achieves comparable results with chrF
and BLEU for evaluating all translation directions
at segment level. YiSi-1 beats all the WMT2018
participants in correlation with human at segment
level for evaluating almost all translation direc-
tions, except English-Turkish. In addition, YiSi-
1 srl further improves YiSi-1’s correlation with
human at segment level for evaluating Czech-
English and Finnish-English translations.

For the quality estimation variants, YiSi-2 per-
forms significantly worse than YiSi-1 due to the
lacking of a reference translation in the same lan-
guage for evaluating fluency. Therefore, We can
see that as shown by the significant improvement
in YiSi-2 srl for evaluating English-German trans-

lation without reference translation, using seman-
tic parsers to extract the semantic frames of the in-
put sentence and machine translation become very
helping in evaluating translation fluency.

4 Conclusion

We have presented the on-going work in devel-
oping a unified semantic MT quality evaluation
and estimation metric for languages with differ-
ent levels of available resources. Initial experi-
ment results show that the improved variants of
YiSi that use BERT contextual embeddings corre-
late with human judgment significantly better than
other trained metrics.
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Abstract

Over the years a number of machine transla-
tion metrics have been developed in order to
evaluate the accuracy and quality of machine-
generated translations. Metrics such as BLEU
and TER have been used for decades. How-
ever, with the rapid progress of machine trans-
lation systems, the need for better metrics is
growing. This paper proposes an extension of
the edit distance, which achieves better human
correlation, whilst remaining fast, flexible and
easy to understand.

1 Introduction

Machine Translation (MT) has been a popular re-
search topic for the past few years. It deals with
the paradigm of how to automatically translate a
sentence or a set of sentences from a source lan-
guage to a different target language. In statistical
MT, this can be formally described as finding the
translation eI1 = e1 . . . ei . . . eI with the highest
probability for a given source language sentence
fJ1 = f1 . . . fj . . . fJ :

êÎ1 = argmax
I,eI1

{p(eI1 | fJ1 )} (1)

This approach models the translation task by
defining it as a search for the sentence that best
suits a given criterion. For example through log-
linear models as described by Och and Ney, 2002.

However, all approaches have to be evaluated to
quantify the quality and accuracy of the produced
translations. Naturally, the best method would be
to have human experts rate each produced trans-
lation in order to evaluate the whole MT system.
This is quite a costly process and is not viable for
development of MT systems. For this reason a
number of metrics exist that automate the process
and use different scoring methods to automatically
evaluate the produced translation based on a refer-
ence sentence. Two of the earliest and most pop-

ular metrics are BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006).

This paper introduces a new MT metric: Ex-
tended Edit Distance (EED), based on an extension
of the Levenshtein distance (Levenshtein, 1966).
This metric follows a number of criteria:

• It is bound between zero and one.

• Its definition is kept simple, as it does not
depend on external dictionaries or language
analysis.

• It has competitive human correlation.

• It is fast to compute.

The remainder of this paper is structured as fol-
lows: first, related work is reviewed in Section 2;
Section 3 introduces the concept of edit distance
and the different existing extensions of it; Sec-
tion 4 introduces the EED metric in detail; A com-
parison with other metrics regarding human corre-
lation and speed is performed in Section 5; Finally,
a conclusion is drawn in Section 6.

2 Background

MT metrics compute a score based on the output
of a MT system, here called “candidate”, and a
“reference” sentence, which is provided. The ref-
erence is a valid translation of the original source
sentence to the target language, usually obtained
through a human expert. A metric aims to use
the pair of reference and candidate to give a nu-
merical value to the correctness of the translation.
A naı̈ve approach would be to directly compare
the candidate and reference in order to consider
the translation quality. This, however, cannot be
a good evaluation criterion since human language
has multiple ways of expressing the same idea, and
thus there is seldom one unique translation of a
sentence from one language to another.

Over the years, a number of metrics have been
created based on a variety of ideas and principles.
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Some examples for such principles can be seen in
the count-based metrics (BLEU, CHRF (Popovic,
2015)) or the edit distance based metrics (TER,
CHARACTER (Wang et al., 2016), CDER (Leusch
et al., 2006)).

Count-based metrics compute the n-grams of
both reference and candidate and then compare
them with each other using a scoring function.
One of the most used metrics – BLEU, uses word
level n-grams as input to a modified version of
precision to evaluate the translation accuracy. Fur-
thermore, a brevity penalty is applied if the candi-
date is shorter than the reference. CHRF uses the
F-score to produce a scoring based on character
level n-grams. In most cases, the shift from word
level n-grams to the character level results in bet-
ter human correlation (Popovic, 2015).

Edit distance based metrics utilise the edit dis-
tance to express the difference between the can-
didate and the reference. Since written language
allows for the word order to be changed without
significant change in meaning, the pure edit dis-
tance is too restrictive and is often extended by
additional operations. TER extends it by introduc-
ing “shifts” which allow for words or phrases to
be moved from one position in the candidate to
another with a certain cost.

CDER gives another solution to the problem
by introducing the operation of jumps. These
“jumps” allow for a more flexible alignment. Of
course, as in the n-gram based metrics, it is pos-
sible to apply these methods at both the word and
the character level. CHARACTER uses the edit dis-
tance at the character level while keeping the shift
operations at the word level with suitably adjusted
costs.

3 Edit Distance

Since the metric presented in this paper belongs to
the category of the edit distance based metrics, a
more thorough introduction to the concept of edit
distance is needed. The goal of the Levenshtein
distance is to find the minimum number of opera-
tions required to transform the candidate into the
reference. The Levenshtein distance in its purest
form consists of three basic operations:

• Substitution: the act of switching one symbol
with another

• Deletion: the removal of a symbol

• Insertion: the addition of a symbol

All of the basic operations are defined as having
an uniform cost of one. To not penalise match-
ing symbols with substitutions, substitutions can
be defined via the Kroneker delta: 1 − δ(cn, rm)
with cn and rm standing for the symbol at posi-
tion m ∈ {1, 2 . . . |r|}, n ∈ {1, 2 . . . |c|} for the
candidate c and reference r, respectively. The edit
distance is then computed as the sum of substitu-
tion, insertion and deletion operations made.

The edit distance can be efficiently computed
via the dynamic programming algorithm by Wag-
ner and Fischer, 1974. This allows for a computa-
tion in O(cr).

In MT, the Levenshtein distance is not usually
used in its original definition since it does not pro-
vide the required flexibility. The reason is that
written language allows for multiple ways to ex-
press the same concept or idea. To alleviate this
problem extensions to the edit distance have been
proposed.

The most prominent extension of the edit
distance, implemented by both TER and
CHARACTER, is the introduction of an addi-
tional operation prior to computing the edit
distance on the candidate. Namely, to permute
the words in the candidate to most closely match
the reference. This permutation is termed shift.
Since computing all possible shifts of a given
sentence is quite costly, in practice, the beam
search algorithm is used to reduce the search
space.

Another possible extension of the edit distance
is to define so called jumps. Jumps provide the
opportunity to continue the edit distance computa-
tion from a different point. A more detailed expla-
nation of the jumps is presented in the next section.

To obtain a final score, the edit distance is nor-
malised either over the length of the candidate or
over the length of the reference. Naturally, in the
case where every symbol is wrong and the normal-
ising term is the shorter one of the candidate and
the reference, the resulting score may significantly
exceed 1.0. This in turn results in scores which are
not easily interpretable.

4 Extended Edit Distance

One aspect of each metric is its input which usu-
ally comes in tokenized form. Punctuation marks
are separated from words via a white space and
abbreviation dots are kept next to the word e.g.
“e.g.”. EED additionally adds a white space at

515



both beginning and end of each sentence.
EED utilises the idea of jumps as an extension of

the edit distance. EED operates at character level
and is defined as follows:

EED = min

(
(e+ α · j) + ρ · v
|r|+ ρ · v , 1

)
(2)

where e is the sum of the edit operation with uni-
form cost of 1 for insertions and substitutions and
0.2 for deletions. j denotes the number of jumps
performed with the corresponding control param-
eter α = 2.0. v defines the number of charac-
ters that have been visited multiple times or not
at all and scales over ρ = 0.3. The parame-
ter values have been optimised based on the aver-
age correlation scores (both from and to English)
from WMT17 and WMT18 (Bojar et al., 2017; Ma
et al., 2018). EED is normalised over the length of
the reference |r| and the coverage penalty. To keep
it within the [0,1] boundary, the minimum between
1 and the metric score is taken. This makes the
metric more robust in cases of extreme discrep-
ancy between candidate and reference length.

Jumps are a way to move between characters or
blocks thereof and can be incorporated into the dy-
namic programming algorithm for the Levenshtein
distance (Leusch et al., 2006). This provides an
optimal solution for the matching between can-
didate and reference in reasonable computation
time. In EED jumps may only be performed when
a blank in the reference is reached, allowing the
metric to take word boundaries into account and
restricting the inter-word jumps. Figure 1 illus-
trates the way jumps work. Here Die Fans from
the reference are aligned with die Fans from
the candidate via a jump, after which normal edit
distance operations are performed. When the s is
reached, another jump is made to the blank before
n, in order to align nicht to Nicht. Finally an-
other jump is performed to align the period and
white spaces. In total, this results in two edit oper-
ation errors (from the difference in capitalisation)
and three jumps.

To further refine the metric a coverage penalty is
introduced that aims to penalise characters which
are aligned to more than once or not at all in the
candidate. This allows the metric to penalise rep-
etition of words in the reference with more than
just the jump costs. The sum v of visits for all
characters visited more than once is computed and
is added, after multiplication with a scaling factor
ρ to the total cost. To keep the situations where 1
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Figure 1: EED alignment lattice. Identity operations
are marked with solid points, jumps with dashed lines,
edit operations with full lines and blanks with .

is chosen by the minimum in Equation (2) as few
as possible, the coverage penalty is also used in
the denominator.

Using only the length of the reference as part
of the normalisation factor does not guarantee that
the metric score is in the range [0,1]. This is unde-
sirable since scores above one are not interpretable
as an error measure. For this reason a number of
strategies were considered to enforce this bound:

• Taking the maximum length between candi-
date and reference;

• Taking the average length between candidate
and reference;

• Using just the candidate or just the reference;

• Cutting the score to 1.0 if it is above 1.0;

• Mapping the score to accuracy via the func-
tion 1/(1− EED) (Zhang et al., 2011).

Out of all of these methods, the simplest and most
efficient method is to use the reference as normal-
isation and to cut the score if it is above one. In
our experiments taking the maximum or average
between candidate and reference leads to a decline
in correlation. The use of accuracy mapping yields
different results depending on the parameter set-
ting of the metric and the test set used. For this
reason EED uses the cut method for normalisation.

Although EED utilises the same movement tech-
nique as CDER, there are a few notable differ-
ences:
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• Edit distance is performed on the character
level;

• Jumps are performed only upon reaching a
blank in the reference;

• An additional penalty for multiple matching
of the same symbol (coverage cost) is applied

5 Results

EED is implemented in C++ and imported in
python via a wrapper. This implementation re-
tains the ease of use of python while getting the
speed from a C++ implementation.

EED was evaluated via the scripts provided by
Ma et al., 2018 as part of WMT18. The evalu-
ation is done both on segment and system level.
The data consists of about 3000 sentences per lan-
guage pair as part of the newstest2018 test set
and provides one reference per translation. In total
there are 14 language pairs. For the system level
evaluation, direct assessment (DA) (Graham et al.,
2017) was used to obtain human scores and Pear-
son’s r is used as the correlation coefficient. The
segment level uses the relative ranking (RR) which
is pooled from system level DA scores. This re-
sults in DARR. The correlation coefficient used for
the segment level is the Kendall’s τ like formula-
tion defined by Graham et al., 2015.

Figure 2: Human correlation variation as a function of
deletion cost on WMT18 to English � and from En-
glish on segment-level.

To obtain the best possible human correlation,
a parameter search was performed over ρ, α and
the edit operation costs. For substitution and in-
sertions there is no relevant correlation improve-
ment. However, changes to the deletion cost pa-
rameter resulted in human correlation improve-

ment. Using the WMT18 segment level test set, a
parameter search was performed. Since searching
over the whole search space is infeasible, the pa-
rameter search was done in a sequential manner.
The results of the search are shown in Figure 2.
From these results, combined with the findings on
WMT16 and WMT17 (Bojar et al., 2016, 2017),
the deletion cost is set to 0.2.

Figure 3: Human correlation variation as a function of
jump cost on WMT18 to English � and from English

on segment-level.

The error distribution of EED was skewed quite
heavily towards performing jumps even after re-
stricting jump operation only to blanks on the ref-
erence side. For this reason it was restricted fur-
ther by increasing the jump costs. In order to de-
termine the optimal jump penalty α, a parame-
ter search was performed, which is presented Fig-
ure 3. It is evident that the optimal jump cost lie
close to 2.0 for the to English direction. For the
from English direction the optimum is clear, thus
α is set to 2.0.

Similar to the deletion cost and the jump
penalty, a parameter search was carried out for the
coverage cost in order to increase human corre-
lation. The results of the search are presented in
Figure 4. The resulting optimum is ρ = 0.3.

After the parameter tuning, the performance
of EED was measured by the human correlation
achieved on the WMT18 test set. The results
of this measurement obtained at the segment and
system level and also in the directions to En-
glish and from English are presented in Tables 1
to 4. At the segment level, EED offers competi-
tive results compared with the top-ranking metrics
BEER, RUSE and CHRF +. On system level EED

performs best for the out of English direction, fol-
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cs-en de-en et-en fi-en ru-en zh-en Average

# Sentences 5110 77811 56721 15648 10404 33357 33181
EED 0.297 0.486 0.335 0.227 0.284 0.225 0.309
BEER1 0.295 0.481 0.341 0.232 0.288 0.214 0.309
CHARACTER 0.256 0.450 0.286 0.185 0.244 0.202 0.271
CHRF + 0.288 0.479 0.332 0.234 0.279 0.207 0.303
ITER2 0.198 0.396 0.235 0.128 0.139 0.144 0.206
RUSE3 0.347 0.498 0.368 0.273 0.311 0.218 0.336
sentBLEU 0.233 0.415 0.285 0.154 0.228 0.178 0.248

Table 1: Segment-level human correlation measured through DARR to English on newstest18 as part of
WMT18 via absolute Kendall’s τ .
1 Stanojevic and Sima’an, 2014
2 Panja and Naskar, 2018
3 Shimanaka et al., 2018

en-cs en-de en-et en-fi en-ru en-zh Average

# Sentences 5413 19711 32202 9809 22181 28602 19820
EED 0.508 0.674 0.572 0.503 0.405 0.350 0.502
BEER 0.518 0.686 0.558 0.511 0.403 0.302 0.496
CHARACTER 0.414 0.604 0.464 0.403 0.352 0.313 0.425
CHRF + 0.513 0.680 0.573 0.525 0.392 0.328 0.502
ITER 0.333 0.610 0.392 0.311 0.291 − 0.387
sentBLEU 0.389 0.620 0.414 0.355 0.330 0.311 0.403

Table 2: Segment-level human correlation measured through DARR from English on newstest18 as part of
WMT18 via absolute Kendall’s τ .

Figure 4: Human correlation variation as a function of
coverage cost on WMT18 to English � and from En-
glish on segment-level.

lowed by CHARACTER and CDER. For the to En-
glish direction, EED is the second best after RUSE.

Apart from human correlation, EED was com-
pared to the performance of the most common
metrics. This measurement was performed by let-
ting each metric evaluate 1M (106) sentence pairs

and tracking the time and memory needed to com-
plete the task. The following metrics have been
tested: BEER, BLEU, CHARACTER, CHRF, EED.
The results of the resource usage test are sum-
marised in Table 5. The fastest is BLEU followed
by EED. Concerning memory usage all metrics
have similar memory needs, except for the shift
based metrics which needed considerably more.
Since CHARACTER needs more memory, candi-
date sentences above 200 words were restricted to
200 words for this test.

6 Conclusion

A number of different metrics have been devel-
oped over the years to help evaluate MT. Metrics
such as BLEU and TER have been used for some
time, but are surpassed by others both in terms of
speed and human correlation.

EED as a metric provides a fast and reliable way
to measure human correlation. It achieves compet-
itive human correlation in comparison to the best
metrics – BEER and CHRF and surpasses the most
used metrics – BLEU and TER. Due to its sim-
plicity and low resource usage it can be used to
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cs-en de-en et-en fi-en ru-en zh-en Average

# Systems 5 16 14 9 8 14 11
BEER 0.958 0.994 0.985 0.991 0.982 0.976 0.981
BLEU 0.970 0.971 0.986 0.973 0.979 0.978 0.976
CDER 0.972 0.980 0.990 0.984 0.980 0.982 0.981
CHARACTER 0.970 0.993 0.979 0.989 0.991 0.950 0.979
CHRF + 0.966 0.993 0.981 0.989 0.990 0.964 0.981
EED 0.970 0.994 0.984 0.991 0.993 0.974 0.984
ITER 0.975 0.990 0.975 0.996 0.937 0.980 0.976
NIST1 0.954 0.984 0.983 0.975 0.973 0.968 0.973
RUSE 0.981 0.997 0.990 0.991 0.988 0.981 0.988
TER 0.950 0.970 0.990 0.968 0.970 0.975 0.971

Table 3: System-level human correlation as DA to English on newstest18 as part of WMT18 via absolute
Pearson’s r.
1 Doddington, 2002

en-cs en-de en-et en-fi en-ru en-zh Average

# Systems 5 16 14 12 9 14 12
BEER 0.992 0.991 0.980 0.961 0.988 0.928 0.973
BLEU 0.995 0.981 0.975 0.962 0.983 0.947 0.973
CDER 0.997 0.986 0.984 0.964 0.984 0.961 0.979
CHARACTER 0.993 0.989 0.956 0.974 0.983 0.983 0.980
CHRF + 0.990 0.989 0.982 0.970 0.989 0.943 0.977
EED 0.988 0.990 0.983 0.977 0.990 0.955 0.981
ITER 0.915 0.984 0.981 0.973 0.975 − 0.966
NIST 0.999 0.986 0.983 0.949 0.990 0.950 0.976
TER 0.997 0.988 0.981 0.942 0.987 0.963 0.976

Table 4: System-level human correlation as DA from English on newstest18 as part of WMT18 via absolute
Pearson’s r.

Metric EED BEER CHRF ++ CHARACTER BLEU TER
Sentences/s 969.9 621.5 261.7 9.5 6410.2 316.6
Memory 1.3G 1.1G 0.3G 48.4G 0.3G 8.4G

Table 5: Speed and memory comparison between metrics, as sentences per second and memory in gigabyte.
Measured on 1M sentences.

quickly evaluate a MT system’s output during de-
velopment.

Since there are a number of metrics based on
some extensions of the Levenshtein distance, a
more in-depth analysis of the field is required.
Furthermore, the relationship between shifts and
jumps will be investigated in the future.
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Abstract

In this paper, we introduce our participation in
the WMT 2019 Metric Shared Task. 　 We
propose a method to filter pseudo-references
by paraphrasing for automatic evaluation of
machine translation (MT). We use the out-
puts of off-the-shelf MT systems as pseudo-
references filtered by paraphrasing in addi-
tion to a single human reference (gold refer-
ence). We use BERT fine-tuned with para-
phrase corpus to filter pseudo-references by
checking the paraphrasability with the gold
reference. Our experimental results of the
WMT 2016 and 2017 datasets show that our
method achieved higher correlation with hu-
man evaluation than the sentence BLEU (Sent-
BLEU) baselines with a single reference and
with unfiltered pseudo-references.

1 Introduction

In general, automatic evaluation of MT is based
on n-gram agreement between the system output
and a manually translated reference of the source
sentence. Therefore, automatic evaluation fails to
evaluate a semantically correct sentence if the sur-
face of the system output differs from that in the
reference. To solve this problem, many automatic
evaluation methods allow the use of multiple ref-
erences that potentially cover various surfaces; in
particular, Finch et al. (2004) reported that corre-
lation between automatic evaluation results and
human evaluation increases when multiple refer-
ences are used for evaluation. However, owing to
the time and costs involved in manually creating
references, many datasets only include one refer-
ence per source sentence, which leads to improper
translation evaluation, especially in the case of di-
verse machine translation systems.

In order to obtain cheap references without
any human intervention, Albrecht and Hwa (2008)
used the outputs of off-the-shelf MT systems as
pseudo-references; They showed that using mul-

tiple references consisting of gold and pseudo-
references may yield higher correlation with hu-
man evaluation than using a single gold reference.
However, because they did not consider the qual-
ity of the pseudo-references, this may result in us-
ing poor references. Thus, in some cases the cor-
relation becomes worse when using multiple ref-
erences consisting of gold and pseudo-references
relative to only using a gold reference.

To address the quality of pseudo-references, we
filtered pseudo-references by checking the para-
phrasability to the gold reference. Our approach
can be applied to various MT evaluation metrics
which can be evaluated with multiple references.
The experimental results show that our method
achieves higher correlation with human evaluation
than the previous work.

2 Related Work

Albrecht and Hwa (2008) showed that using the
outputs of off-the-shelf MT systems as pseudo-
references in n-gram based metrics such as
BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2011) may yield higher
correlation with human evaluation than using a
gold reference. They use the outputs of off-the-
shelf MT systems as they are, whereas we filter
them by paraphrasing the gold reference.

Kauchak and Barzilay (2006) proposed a
method to obtain a paraphrase of a gold reference
that is closer in wording to the system output
than the gold reference for MT evaluation. They
evaluated an MT system using only the generated
references, whereas we evaluated MT systems
using multiple references, including those ob-
tained by adding generated references to the gold
reference. They generate a paraphrase of a gold
reference, whereas we translate source sentences
and identify whether the outputs are paraphrases
of gold references. That is, they used only gold
references whereas we used both source and gold
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Figure 1: Overview of the proposed method.

reference information.

3 MT Evaluation Metric Using Filtered
Multiple Pseudo-References

3.1 Overview

Figure 1 shows the overview of our proposed
method. The procedure of our proposed method
is as follows.

1. Prepare off-the-shelf MT systems for gener-
ating pseudo-references.

2. Translate the source sentence in the evalua-
tion data using the abovementioned MT sys-
tems.

3. Filter the outputs of off-the-shelf MT systems
by checking the paraphrasability of being a
paraphrase to the single gold reference.

4. Calculate the sentence evaluation score with
multiple references obtained by adding fil-
tered pseudo-references to the single gold
references.

3.2 Automatic pseudo-reference generation

Any MT system can be used as a pseudo-reference
generation system except for the translation sys-
tem to be evaluated. 1 There are no restrictions on
the type of MT systems, such as neural machine
translation (NMT) or statistical machine transla-
tion (SMT) systems, or the number of MT sys-
tems.

1If the system to be evaluated were used as a pseud-
reference generation system, the output would be used as a
reference.

Figure 2: BERT model architecture for sentence pair
classification.

3.3 Filtering by paraphrasing

We use Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
to filter pseudo-references by checking the para-
phrasability with a gold reference. BERT is a
new approach to pre-train language representa-
tions, and it obtains state-of-the-art results on a
wide variety of natural language processing (NLP)
tasks, including question answering (QA), seman-
tic textual similarity (STS), natural language infer-
ence (NLI). The key to pre-training BERT is the
prediction of masked words and of the next sen-
tence. Masking words allows bidirectional learn-
ing, which improves joint training of language
context relative to Embeddings from Language
Models (ELMo) (Peters et al., 2018), which com-
bines forward and backward training. Prediction
of the next sentence leads to capturing the rela-
tionship between two sentences.

Figure 2 shows the BERT model architec-
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cs-en de-en fi-en ru-en
single reference 0.557 0.484 0.448 0.502

single reference + pseudo-references 0.565 0.499 0.543 0.456
single reference + filtered references (MAS) 0.576 0.473 0.517 0.469
single reference + filtered references (BERT) 0.589 0.519 0.572 0.490

Table 1: Segment-level Pearson correlation between SentBLEU and human evaluation scores in WMT 2016.

cs-en de-en fi-en ru-en
single reference 0.435 0.433 0.571 0.484

single reference + pseudo-references 0.515 0.565 0.653 0.519
single reference + filtered references (MAS) 0.524 0.586 0.650 0.517
single reference + filtered references (BERT) 0.555 0.580 0.671 0.545

Table 2: Segment-level Pearson correlation between SentBLEU and human evaluation scores in WMT 2017.

corpus train dev test Accuracy
MRPC 3,669 408 1726 0.845

Table 3: Numbers of sentences in each split of MRPC
and accuracy of BERT.

ture for sentence pair classification. In classi-
fication tasks where labels are attached to sen-
tence pairs, BERT encodes sentence pairs to-
gether with a [CLS] token for classification and
a [SEP] token for sentence boundaries; The out-
put of the [CLS] token is used for the input of
classifier of a feedforward neural network with
softmax. BERT achieves state-of-the-art perfor-
mance in a paraphrase identification task on the
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005) with this architecture.

For that reason, we use BERT to estimate the
paraphrasability between pseudo-references and
the gold reference. We fine-tune BERT with
MRPC. The output of the classifier is the probabil-
ity of the paraphrase from 0 to 1. We use pseudo-
references whose paraphrase probability is greater
than 0.5.

4 Experiments

4.1 Data
We used the segment-level evaluation datasets
of Czech-English (cs-en), German-English (de-
en), Finnish-English (fi-en), Russian-English (ru-
en) language pair from WMT 2016 (Bojar et al.,
2016) and 2017 (Bojar et al., 2017). The datasets
consist of 560 pairs of sources and references,

Figure 3: Histograms of paraphrase score of pseudo-
references in the fi-en language pairs of WMT 2016.

along with the outputs of each system and human
evaluation scores.

4.2 Off-the-shelf MT systems
We used Google Translation 2 and Bing Microsoft
Translator 3 as MT systems to generate pseudo-
references. We chose these two MT systems be-
cause they are widely used, easy to use, and well
known to have good performance. We automati-
cally translated source files using each translation
API.

4.3 Fine-tuning BERT with MRPC
We use the pre-trained BERT-Base Uncased
model 4, which has 12 layer, 768 hidden, 12 heads

2https://translate.google.com/
3https://www.bing.com/translator
4https://github.com/google-research/bert
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system output gymnastics and freestyle exercises - where bayles defends the title of world
champion - lie in the veil .

gold reference balance beam and floor exercise - where biles is the defending world champion
- lay in wait .

pseudo-reference
(Google)

gymnastics log and floor exercises - where biles defends the world champion
title - lie in wait . (0.994)

pseudo-reference
(Bing)

gymnastic log and freestyle exercises― where the bayles defends the title of
world champion― lie in ambush . (0.215)

human score: -1.497; SentBLEU: single reference: -1.118, without filtering: -0.335, filtering: -1.662

Table 4: Example of pseudo-references in ru-en language pair of WMT 2017; The value in parentheses at the
end of each pseudo-reference indicates the paraphrase score by BERT. Each score is standardized according to the
mean and standard deviation to compare human evaluation and each SentBLEU score.

and 110M parameters. We fine-tuned BERT with
MRPC. MRPC is a dataset extracted from web
news articles along with human annotations indi-
cating whether each pair is a paraphrase. If the
pair is paraphrase, the label is 1, if not, the label
is 0. The original dataset consists of 4,077 sen-
tences for training and 1,726 sentences for testing.
We divided the test set in half and used it as devel-
opment data. The numbers of sentences in each
corpus and the accuracy of the fine-tuned BERT
model are listed in Table 3.

Figure 3 shows the histogram of paraphrase
score of pseudo-references in the fi-en language
pair of WMT 2016. Due to the use of high qual-
ity MT systems, more than 50% of the pseudo-
references have paraphrase scores between 0.9 and
1.0. The same trend was observed in all languages
and years.

4.4 Evaluation
We calculated the SentBLEU score with system
output and multiple references which consisted
of a single gold reference and pseudo-references.
The SentBLEU is computed using the sentence-
bleu.cpp 5, a part of the Moses toolkit. It is a
smoothed version of BLEU (Lin and Och, 2004).
We followed the tokenization method for each
year’s dataset. We measured Pearson correlation
identically to WMT 2016 and WMT 2017 between
the automatic and human evaluation scores. In
order to compare with our method, we also per-
formed filtering by Maximum Alignment Similar-
ity (MAS) (Song and Roth, 2015), which is one
of the unsupervised sentence similarity measures
based on alignments between word embeddings

5https://github.com/moses-smt/
mosesdecoder/blob/master/mert/sentence-bleu.cpp

and is known to achieve good performance on Se-
mantic Textual Similarity (STS) task. We used
GloVe 6 (Pennington et al., 2014) as word embed-
dings. We used pseudo-references whose MAS
score is higher than 0.8.

5 Results

Tables 1 and 2 show the segment-level Pearson
correlation coefficients between automatic and hu-
man evaluation scores. The result shows that our
proposed method outperforms the baselines except
in the case of the ru-en language pair in WMT
2016 and filtering by MAS does not produce any
consistent result.

6 Discussion

Table 4 shows an example of pseudo-references
with BERT’s paraphrase score for the ru-en lan-
guage pair in WMT 2017. The pseudo-reference
from Bing translation has a low paraphrase score
because “biles” in the gold reference remains as
“bayles” in the pseudo-reference, and “floor exer-
cise” became “freestyle exercise” in Bing transla-
tion. In the unfiltered method, the BLEU score
is unreasonably high because the surface of the
pseudo-reference from Bing translation is simi-
lar to the output sentence. Filtering the pseudo-
references prevents the problem. The pseudo-
reference from Google translation has different
surfaces but carry the same meaning as in the gold
reference. Our filtering method correctly retains
the sentence because BERT assigned high para-
phrase score.

6https://nlp.stanford.edu/projects/glove/
Common Crawl (840B tokens, 2.2M vocab, cased, 300d vec-
tors)
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7 Conclusions

We proposed a method to filter pseudo-references
in terms of paraphrasability with a gold ref-
erence that addresses the problem of using
poor pseudo-references from previous work
(Albrecht and Hwa, 2008). We use BERT fine-
tuned with MRPC to filter pseudo-references.
By filtering pseudo-references in terms of para-
phrasability with a gold reference, we can keep
the references having the same meaning with the
gold reference but different surface and solve the
problem of using poor pseudo-reference from pre-
vious work. The experimental results show that
our method outperforms baselines.
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Abstract

This paper describes the systems that we sub-
mitted to the WMT19 Machine Translation
robustness task. This task aims to improve
MT’s robustness to noise found on social me-
dia, like informal language, spelling mistakes
and other orthographic variations. The orga-
nizers provide parallel data extracted from a
social media website1 in two language pairs:
French-English and Japanese-English (in both
translation directions). The goal is to ob-
tain the best scores on unseen test sets from
the same source, according to automatic met-
rics (BLEU) and human evaluation. We pro-
posed one single and one ensemble system for
each translation direction. Our ensemble mod-
els ranked first in all language pairs, accord-
ing to BLEU evaluation. We discuss the pre-
processing choices that we made, and present
our solutions for robustness to noise and do-
main adaptation.

1 Introduction

Neural Machine Translation (NMT) has achieved
impressive results in recent years, especially on
high-resource language pairs (Vaswani et al., 2017;
Edunov et al., 2018), and has even lead to some
claims of human parity (Hassan et al., 2018).2

However, Belinkov and Bisk (2018) show that
NMT is brittle, and very sensitive to simple
character-level perturbations like letter swaps or
keyboard typos. They show that one can make
an MT system more robust to these types of syn-
thetic noise, by introducing similar noise on the
source side of the training corpus. Sperber et al.
(2017) do similar data augmentation, but at the
word level and so as to make an MT model more
robust to Automatic Speech Recognition errors
(within a speech translation pipeline). Cheng et al.
(2018) propose an adversarial training approach

1https://www.reddit.com
2These claims were discussed at WMT by Toral et al.

(2018).

to make an encoder invariant to word-level noise.
Karpukhin et al. (2019) propose to inject aggres-
sive synthetic noise on the source side of training
corpora (with random char-level operations: dele-
tion, insertion, substitution and swap), and show
that this is helpful to deal with natural errors found
in Wikipedia edit logs, in several language pairs.

Michel and Neubig (2018) release MTNT, a
real-world noisy corpus, to help researchers de-
velop MT systems that are robust to natural noise
found on social media. The same authors co-
organized this task (Li et al., 2019), in which
MTNT is the primary resource. Vaibhav et al.
(2019) show that back-translation (with a model
trained on MTNT) and synthetic noise (that em-
ulates errors found in MTNT) are useful to make
NMT models more robust to MTNT noise.

This task aims at improving MT’s robustness
to noise found on social media, like informal lan-
guage, spelling mistakes and other orthographic
variations. We present the task in more detail in
Section 2. Then, we describe our baseline models
and pre-processing in Section 3. We extend these
baseline models with robustness and domain adap-
tation techniques that are presented in Section 4.
Finally, in Section 5, we present and discuss the
results of our systems on this task.

2 Task description

The goal of the task is to make NMT systems that
are robust to noisy text found on Reddit, a social
media, in two language pairs (French-English and
Japanese-English) and both translation directions.
The evaluation will be performed on a blind test
set (obtained from the same source), using auto-
matic metrics and human evaluation. We present
our final BLEU scores in Section 5, while the hu-
man evaluation results are given in the shared task
overview paper (Li et al., 2019).

MTNT Michel and Neubig (2018) crawled
monolingual data from Reddit in three languages:
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English, French and Japanese, which they filtered
to keep only the “noisiest” comments (containing
unknown words or with low LM scores).

Then, they tasked professional translators to
translate part of the English data to French, and
part of it to Japanese. The Japanese and French
data was translated to English. The resulting par-
allel corpora were split into train, valid and test sets
(see Table 1). The test sets were manually filtered
so as to keep only good quality translations. The
data that was not translated is made available as
monolingual corpora (see Table 3).

Other data In addition to the provided in-
domain training and evaluation data, we are al-
lowed to use larger parallel and monolingual cor-
pora (see Tables 2 and 3). For FR↔EN, any par-
allel or monolingual data from the WMT15 news
translation task3 is authorized. For JA↔EN, we
are allowed the same data that was used by Michel
and Neubig (2018): KFTT, TED and JESC.

Challenges Michel and Neubig (2018) identified
a number of challenges for Machine Translation of
MTNT data, which warrant the study of MT ro-
bustness. Here is an abbreviated version of their
taxonomy:

• Spelling and grammar mistakes: e.g.,
their/they’re, have/of.

• Spoken language and internet slang: e.g., lol,
mdr, lmao, etc.

• Named entities: many Reddit posts link to
recent news articles and evoke celebrities or
politicians. There are also many references
to movies, TV shows and video games.

• Code switching: for instance, Japanese text
on Reddit contains many English words.

• Reddit jargon: words like “downvote”, “up-
vote” and “cross-post”,4 and many acronyms
like TIL (Today I Learned), OP (Original
Poster), etc.

• Reddit markdown: characters like “∼”, “*”
and “^” are extensively used for formatting.
“!” is used to call macros.

• Emojis (😉) and emoticons (“;-)”).
3http://www.statmt.org/wmt15/

translation-task.html
4The French-speaking Reddit community sometimes uses

funny literal translations of these: “bas-vote”, “haut-vote” and
“croix-poteau”.

Lang pair Lines Words
Source Target

JA→EN 6 506 160k 155k
EN→JA 5 775 339k 493k
FR→EN 19 161 794k 763k
EN→FR 36 058 1 014k 1 152k

Table 1: Size of the MTNT training corpora. Word
counts by Moses (fr/en) and Kytea (ja) tokenizers.

Lang pair Lines Words
Source Target

JA↔EN 3.90M 48.42M 42.63M
FR↔EN 40.86M 1 392M 1 172M

Table 2: Size of the authorized out-of-domain parallel
corpora in constrained submissions.

• Inconsistent capitalization: missing capital
letters on proper names, capitalization for em-
phasis or “shouting”, etc.

• Inconsistent punctuation.

Evaluation Automatic evaluation is performed
with cased BLEU (Papineni et al., 2002), us-
ing SacreBLEU (Post, 2018).5 For English and
French, the latter takes as input the detokenized
MT outputs and the untokenized reference data.
For Japanese, the MT output and reference are first
tokenized with Kytea6 (Neubig et al., 2011) before
being processed by SacreBLEU (because it does
not know how to tokenize Japanese). The organiz-
ers will also collect subjective judgments from hu-
man annotators, and rank the participants accord-
ingly.

Language Corpus Lines
Japanese MTNT 32 042

French
MTNT 26 485

news-discuss 3.84M
news-crawl 42.1M

English
MTNT 81 631

news-discuss 57.8M
news-crawl 118.3M

Table 3: Authorized monolingual data.

5BLEU+case.mixed+numrefs.1+smooth.exp
+tok.13a+version.1.3.1

6kytea -model share/kytea/model.bin -out
tok (v0.4.7)
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3 Baseline models
This section describes the pre-processing and hy-
per parameters of our baseline models. We will
then detail the techniques that we applied for ro-
bustness and domain adaptation.

3.1 Pre-processing
CommonCrawl filtering We first spent efforts
on filtering and cleaning the WMT data (in partic-
ular CommonCrawl).

We observed two types of catastrophic failures
when training FR→EN models: source sentence
copy, and total hallucinations.

The first type of error (copy) is due to having
sentence pairs in the training data whose refer-
ence “translation” is a copy of the source sentence.
Khayrallah and Koehn (2018) show that even a
small amount of this type of noise can have catas-
trophic effects on BLEU. We solve this problem by
using a language identifier (langid.py, Lui and
Baldwin, 2012) to remove any sentence pair whose
source or target language is not right.

Then, we observed that most of the hallucina-
tions produced by our models were variants of the
same phrases (see Table 5 for an example). We
looked for the origin of these phrases in the train-
ing data, and found that they all come from Com-
monCrawl (Smith et al., 2013).

We tried several approaches to eliminate hallu-
cinations, whose corresponding scores are shown
in Table 4:

1. Length filtering (removing any sentence pair
whose length ratio is greater than 1.8, or 1.5 for
CommonCrawl): removes most hallucinations
and gives the best BLEU score (when combined
with LID filtering). This type of filtering is
common in MT pipelines (Koehn et al., 2007).

2. Excluding CommonCrawl from the training
data: removes all hallucinations, but gives
worse BLEU scores, suggesting that, albeit
noisy, CommonCrawl is useful to this task.7

3. Attention-based filtering: we observed that
when hallucinating, an NMT model produces a
peculiar attention matrix (see Figure 1), where
almost all the probability mass is concentrated
on the source EOS token. A similar matrix is
produced during the forward pass of training
when facing a misaligned sentence pair. We
7And yet, CommonCrawl represents only 7.9% of all lines

and 6.5% of all words in WMT.

LID Len CC Att FR Hallu. BLEU
✓ 126 46 34.4

0 12 34.8
✓ ✓ 0 0 35.2
✓ ✓ 0 29 37.7
✓ ✓ ✓ ✓ 0 0 38.7
✓ ✓ ✓ 0 10 39.6

Table 4: Number of hallucinations and French-
language outputs (according to langid.py) when
translating MTNT-test (FR→EN). LID: language iden-
tifier, Len: length filtering, CC: training data includes
CommonCrawl, Att: attention-based filtering.

SRC T’as trouvé un champion on dirait !
REF You got yourself a champion it seems !
MT I’ve never seen videos that SEXY !!!

Table 5: Example of hallucination by a FR→EN Trans-
former trained on WMT15 data without filtering.

filtered CommonCrawl as follows: we trained
a baseline FR→EN model on WMT without
filtering, then translated CommonCrawl while
forcing the MT output to be the actual reference,
and extracted the corresponding attention ma-
trices. We computed statistics on these atten-
tion matrices: their entropy and proportion of
French words with a total attention mass lower
than 0.2, 0.3, 0.4 and 0.5. Then, we manu-
ally looked for thresholds to filter out most of
the misalignments, while removing as little cor-
rectly aligned data as possible.

A combination of LID, length-based and
attention-based filtering removed all hallucina-
tions in the MT outputs, while obtaining excellent
BLEU scores. The resulting corpus has 12%
fewer lines.8 We use this filtered data for both
FR→EN and EN→FR. As the JA↔EN training
data seemed much cleaner, we only did a LID
filtering step.

SentencePiece We use SentencePiece (Kudo
and Richardson, 2018) for segmentation into sub-
word units.

An advantage of SentencePiece is that it does
not require a prior tokenization step (it does its
own coarse tokenization, based on whitespaces and
changes of unicode categories). It also escapes
all whitespaces (by replacing them with a meta

8LID: -5%, length filtering: -6.7%, attention filtering: -
0.5%.
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Figure 1: Attention matrix of a French (left) → English
(top) Transformer when hallucinating. This is the aver-
age of the attention heads of the last decoder layer over
the last encoder layer.

symbol), so that its tokenization is fully reversible.
This is convenient for emoticons (e.g., ‘:-(’), which
Moses-style tokenization tends to break apart irre-
versibly.

SentencePiece also normalizes unicode charac-
ters using the NFKC rules (e.g., ½ → 1/2). It is
useful for Japanese, which sometimes uses double-
width variants of the ASCII punctuation symbols
(e.g., “fullwidth question mark” in unicode table).

We tried different settings of SentencePiece, and
settled with the BPE algorithm (Sennrich et al.,
2016b),9 with a joined model of 32k tokens for
FR↔EN (with a vocabulary threshold of 100), and
two separate models of size 16k for JA↔EN.

Japanese tokenization SentencePiece’s tok-
enization is based mostly on whitespaces, which
are very rare in Japanese. For this reason, a
pre-tokenization step may be useful (as a way to
enforce some linguistic bias and consistency in
the BPE segmentation).

We tested several tokenizers for Japanese:
MeCab (with IPA and Juman dictionaries),10 Ju-
man++,11 and Kytea.12 MeCab and KyTea gave
comparable results, slightly better than when us-
ing no pre-tokenization (especially when Japanese
is the target language), and Juman++ gave worse
results. We settled with Kytea, which is the offi-
cial tokenizer used on the EN→JA task.13

9SentencePiece also implements ULM (Kudo, 2018).
10http://taku910.github.io/mecab/
11https://github.com/ku-nlp/jumanpp
12http://www.phontron.com/kytea/
13We use the default model shipped with KyTea.

3.2 Model and hyper-parameters
We use Transformer Big for FR↔EN and JA→EN,
and Transformer Base for EN→JA. We work
with Fairseq, with essentially the same hyper-
parameters as Ott et al. (2018).

For FR↔EN, we fit up to 3500 tokens in each
batch, while training on 8 GPUs (with synchronous
SGD). We accumulate gradients over 10 batches
before updating the weights. This gives a theoret-
ical maximum batch size of 280k tokens. These
models are trained for 15 epochs, with a check-
point every 2500 updates. We set the dropout rate
to 0.1. The source and target embedding matrices
are shared and tied with the last layer.

For JA↔EN, we fit 4000 tokens in each batch,
and train on 8 GPUs without delayed updates, for
100 epochs with one checkpoint every epoch. We
set the dropout rate to 0.3.

For both language pairs, we train with Adam
(Kingma and Ba, 2015), with a max learning rate
of 0.0005, and the same learning rate schedule as
Ott et al. (2018); Vaswani et al. (2017). We also do
label smoothing with a 0.1 weight. We average the
5 best checkpoints of each model according to their
perplexity on the validation set. We do half preci-
sion training, resulting in a 3× speedup on V100
GPUs (Ott et al., 2018).

4 Robustness techniques
We now describe the techniques that we applied to
our baseline models to make them more robust to
the noise found in MTNT.

4.1 Case handling
One of the sources of noise in the MTNT data is
capital letters. On the Web, capital letters are often
used for emphasis (to stress one particular word,
or for “shouting”). However, NMT models treat
uppercase words or subwords as completely differ-
ent entities than their lowercase counterparts. BPE
even tends to over-segment capitalized words that
were not seen in its training data.

One solution, used by Levin et al. (2017) is to do
factored machine translation (Sennrich and Had-
dow, 2016; Garcia-Martinez et al., 2016), where
words (or subwords) are set to lowercase and their
case is considered as an additional feature.

In this work, we use a simpler technique that we
call “inline casing”, which consists in using special
tokens to denote uppercase (<U>) or title case sub-
words (<T>), and including these tokens within the
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sequence right after the corresponding (lowercase)
subword. For instance, ”They were SO TASTY!!”
→ ”they <T> _were _so <U> _tas <U> ty <U>
!!”. SentencePiece is trained and applied on low-
ercase text and the case tokens are added after the
BPE segmentation. We also force SentencePiece
to split mixed-case words (e.g., MacDonalds →
_mac <T> donalds <T>)

4.2 Placeholders
MTNT contains emojis, which our baseline MT
models cannot handle (unicode defines over 3 000
unique emojis). We simply replace all emojis in
the training and test data with a special <emoji>
token. Models trained with this data are able to
recopy <emoji> placeholders at the correct posi-
tion.14 At test time, we replace target-side place-
holders with source-side emojis in the same order.

We use the same solution to deal with Reddit
user names (e.g., /u/frenchperson) and subred-
dit names (e.g., /r/france). MT models some-
times fail to recopy them (e.g., /u/français).
For this reason, we identify such names with regu-
lar expressions (robust to small variations: without
leading / or with extra spaces), and replace them
with <user> and <reddit> placeholders.

4.3 Natural noise
We extract noisy variants of known words from
the MTNT monolingual data, thanks to French
and English lexicons and an extended edit dis-
tance (allowing letter swaps and letter repetitions).
We also manually build a list of noise rules,
with the most common spelling errors in English
(e.g., your/you’re, it/it’s) and French (e.g., ça/sa,
à/a), punctuation substitutions, letter swaps, spaces
around punctuation and accent removal. Then
we randomly replace words with noisy variants
and apply these noise rules on the source side of
MTNT-train, CommonCrawl and News Commen-
tary (MTNT-train, TED and KFTT for EN→JA),
and concatenate these noised versions to the clean
training corpus.

4.4 Back-translation
Back-translation (Sennrich et al., 2016a; Edunov
et al., 2018) is a way to take advantage of large
amounts of monolingual data. This is particularly
useful for domain adaptation (when the parallel

14We ensure that there is always the same number of place-
holders on both sides of the training corpus.

data is not in the right domain), or for low-resource
MT (when parallel data is scarce).

In this task, we hope that back-translation can
help on JA→EN, where we have less parallel data,
and on FR↔EN to expand vocabulary coverage (in
particular w.r.t. recent named entities and news
topics which are often evoked on Reddit).

Table 3 describes the monolingual data which
is available for constrained submissions. News-
discuss (user comments on the Web about news
articles) is probably more useful than news-crawl
as it is closer to the domain. We use our baseline
models presented in Section 3 to back-translate the
monolingual data. Following Edunov et al. (2018),
we do sampling instead of beam search, with a soft-
max temperature of 1

0.9 .
In all language pairs, we back-translate the tar-

get language MTNT monolingual data, with one
different sampling for each epoch. We also back-
translate the following data:

• JA→EN: 1
20

th of news-discuss.en per epoch
(with rotation at the 21th epoch).

• FR→EN: 1
5

th of news-discuss.en per epoch
(with rotation at the 6th epoch).

• EN→FR: news-discuss.fr with one different
sampling for each epoch and 1

5
th of news-

crawl.fr (with rotation at the 6th epoch).

4.5 Tags
We insert a tag at the beginning of each source
sentence, specifying its type: <BT> for back-
translations, <noise> for natural noise, <real>
for real data, and <rev> for MTNT data in the
reverse direction (e.g., for JA→EN MT, we con-
catenate MTNT JA→EN and “reversed” MTNT
EN→JA). Like Vaibhav et al. (2019), we found that
“isolating” the back-translated data with a different
source-side tag gave better BLEU scores. At test
time, we always use the <real> tag.

Like Kobus et al. (2017), we also use tags
for domain adaptation. We prepend a tag to all
source sentences specifying their corpus. For in-
stance, sentences from MTNT get the <MTNT> tag
and those from Europarl get the <europarl> tag.
These “corpus” tags are used in conjunction with
the “type” tags (e.g., MTNT back-translated sen-
tences begin with <MTNT> <BT>). At test time, we
use <MTNT> to translate MTNT-domain text, and
no corpus tag at all to translate out-of-domain text.

We found that this method is roughly as good
for domain adaptation as fine-tuning. We settle
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Model Test Valid Blind
MTNT 6.7† – 5.8
MTNT fine-tuned 9.8† – –
Transformer base + tags 13.5 11.2 13.7
+ Back-Translation (BT) 15.0 12.8 14.1
+ Trans. big architecture ∗∗ 15.5 12.4 14.0
+ Ensemble of 4 ∗ 16.6 13.7 15.5

Table 6: BLEU scores of the JA→EN models on
MTNT-test, MTNT-valid and MTNT-blind.

Model Test Valid Blind
MTNT 9.0† – 8.4
MTNT fine-tuned 12.5† – –
Transformer base + tags 19.5 19.0 16.6
+ BT + natural noise ∗∗ 19.4 19.4 16.8
+ Ensemble of 6 ∗ 20.7 21.2 17.9

Table 7: BLEU scores of the EN→JA models.

with corpus tags (rather than fine-tuning), as it is
more flexible, less tricky to configure and has bet-
ter properties on out-of-domain text.

5 Results

Tables 6, 7, 8 and 9 give the BLEU scores of
our models on the MTNT-valid, MTNT-test and
MTNT-blind sets (i.e., final results of the task). For
FR↔EN we also give BLEU scores on news-test
2014, to compare with the literature, and to mea-
sure general-domain translation quality after do-
main adaptation. For news-test, we use Moses’
normalize-punctuation.perl on the MT out-
puts before evaluation.

“MTNT” and “MTNT fine-tuned” are the base-
line models of the task organizers (Michel and
Neubig, 2018). The models marked ∗ and ∗∗ were
submitted respectively to the competition as pri-
mary and secondary systems. Our primary ensem-
ble models ranked first in all translation directions

Model Test News Blind
MTNT 23.3† – 25.6
MTNT fine-tuned 30.3† – –
Transformer big 39.1 39.3 40.9
+ MTNT + tags 43.1 39.2 45.0
+ BT + natural noise ∗∗ 44.3 40.2 47.0
+ Ensemble of 4 ∗ 45.7 40.9 47.9

Table 8: BLEU scores of the FR→EN models on
MTNT-test, news-test 2014 and MTNT-blind.

Model Test News Blind
MTNT 21.8† – 22.1
MTNT fine-tuned 29.7† – –
Transformer big 33.1 40.7 37.0
+ MTNT + tags 38.8 40.2 39.0
+ BT + natural noise ∗∗ 40.5 42.3 41.0
+ Ensemble of 4 ∗ 41.0 42.9 41.4

Table 9: BLEU scores of the EN→FR models.

(with +0.7 up to +3.1 BLEU compared to the next
best result). † means that different SacreBLEU pa-
rameters were used (namely “intl” tokenization).

The “robustness” techniques like inline cas-
ing, emoji/Reddit placeholders and natural noise
had little to no impact on BLEU scores. They
solve problems that are too rare to be accurately
measured by BLEU. For instance, we counted 5
emojis and 36 “exceptionally” capitalized words
in MTNT-test. Improvements could be mea-
sured with BLEU on test sets where these phe-
nomena have been artificially increased: e.g.,
an all-uppercase test set, or the natural noise of
Karpukhin et al. (2019).

Most of the BLEU gains were obtained thanks
to careful data filtering and pre-processing, and
thanks to domain adaptation: back-translation and
integration of in-domain data with corpus tags.
Punctuation fixes We looked at the translation
samples on the submission website, and observed
that the French references used apostrophes (’) and
angle quotes (« and »). This is inconsistent with the
training data (including MTNT), which contains
mostly single quotes (') and double quotes ("). A
simple post-processing step to replace quotes led
to a BLEU increase of 5 points for EN→FR.15

6 Conclusion
We presented our submissions to the WMT Ro-
bustness Task. The goal of this task was to
build Machine Translation systems that are robust
to the types of noise found on social media, in
two language pairs (French-English and Japanese-
English). Thanks to careful pre-processing and
data filtering, and to a combination of several do-
main adaptation and robustness techniques (spe-
cial handling of capital letters and emojis, natural
noise injection, corpus tags and back-translation),
our systems ranked first in the BLEU evaluation in
all translation directions.

15The organizers and participants were informed of this.
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Abstract

In this paper we describe our neural
machine translation (NMT) systems for
Japanese↔English translation which we
submitted to the translation robustness task.
We focused on leveraging transfer learning
via fine tuning to improve translation quality.
We used a fairly well established domain
adaptation technique called Mixed Fine
Tuning (MFT) (Chu et al., 2017) to improve
translation quality for Japanese↔English.
We also trained bi-directional NMT models
instead of uni-directional ones as the former
are known to be quite robust, especially in
low-resource scenarios. However, given the
noisy nature of the in-domain training data,
the improvements we obtained are rather
modest.

1 Introduction

Neural machine translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has enabled end-to-end training of a trans-
lation system without needing to deal with word
alignments, translation rules, and complicated de-
coding algorithms, which are the characteristics of
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2007). NMT performs well in
resource-rich scenarios but badly in resource-poor
ones (Zoph et al., 2016).

One such resource-poor scenario is the trans-
lation of noisy sentences which are often found
on social media like Reddit, Facebook, Twitter
etc. There are two main problems: (a) The
type of noise (spelling mistakes, code switching,
random characters, emojis) in the text is unpre-
dictable (b) Scarcity of training data to capture
all noise phenomena. One of the first works on
dealing with noisy translation led to the develop-
ment of the MTNT (Michel and Neubig, 2018)
test suite for testing MT models that are robust

to noisy text. Fortunately, the problem of noisy
text translation can be treated as a domain adap-
tation problem and there is an abundant amount
of Japanese–English text that be leveraged for this
purpose. In this paper, we describe the systems
for Japanese↔English translation, that we devel-
oped and submitted for WMT 2019 under the team
name “NICT”. In particular our observations can
be summarized as follows:

Japanese↔English translation dramatically fails
given the limited amount of noisy training
data.

Fine-Tuning is simple but has over-fitting risks.

Mixed-Fine-Tuning is a simple but effective way
of performing domain adaptation via fine tun-
ing where one does not have to worry about
the possibility of quick over-fitting.

Kindly refer to the task overview paper (Li
et al., 2019) for additional details about the task,
an analysis of the results and comparisons of all
submitted systems which we do not include in this
paper.

2 Approaches

We used domain adaptation approaches on top of
the transformer model.

2.1 The Transformer NMT Model
The Transformer (Vaswani et al., 2017) is the
current state-of-the-art model for NMT. It is a
sequence-to-sequence neural model that consists
of two components: the encoder and the decoder.
The encoder converts the input word sequence into
a sequence of vectors. The decoder, on the other
hand, produces the target word sequence by pre-
dicting the words using a combination of the pre-
viously predicted word and relevant parts of the
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input sequence representations. The reader is en-
couraged to read the original paper (Vaswani et al.,
2017) for a deeper understanding.

2.2 Mixed Fine Tuning for Domain
Adaptation

The fastest way to adapt an out-of-domain model
to an in-domain task is to first train a L1→L2
model on the large out-of-domain data and then
fine tune it on the small in-domain data. However,
given that NMT models overfit quickly on small
data (Zoph et al., 2016), it is important to con-
sider learning rate modification, regularization and
sophisticated training schedules. All this can be
avoided by performing Mixed-Fine-Tuning (MFT)
(Chu et al., 2017) where the out-of-domain model
is fine-tuned on a combination of both the out-of-
domain data and the oversampled1 in-domain data.
When using this technique there is no risk of over-
fitting.

2.3 Bi-directional NMT Modeling

Multilingual models (Johnson et al., 2017) en-
able a model to learn multiple translation di-
rections without increasing the model size.
We concatenated the Japanese→English and
English→Japanese training corpora after append-
ing the tokens “2en” and “2ja” to the source sen-
tences of the respective corpora. In addition to
this, we did not modify the NMT model in any
way.

3 Experimental Settings and Results

3.1 Datasets

We used the official Japanese→English and
English→Japanese datasets provided by WMT.
The out-of-domain (non noisy) datasets are KFTT,
JESC and TED Talks, all of which are adequately
described in the original MTNT paper (Michel
and Neubig, 2018). The total number of out-of-
domain sentence pairs is 3,900,772. As for the
in-domain corpus, the number of training sen-
tence pairs for Japanese→English translation is
6,506 pairs and for English→Japanese translation
there are 5,775 pairs. Upon inspection of the
English→Japanese data, we noted that many sen-
tences were actually paragraphs which are almost
useless for NMT training as they are trimmed to

1To balance the highly skewed corpora ratio thereby en-
suring that the model sees an equal number of training exam-
ples from both domains.

avoid out-of-memory errors. We tried a naive
paragraph splitting method where we split a para-
graphs into sentences and keep the splits if there
are an equal number of sentences. Upon man-
ual investigation we found out that this splitting
leads to correct splits most of the times. As
a result, the number of training sentences for
English→Japanese translation increases to 10,060
pairs. We pre-processed the Japanese text using
KyTea (Neubig et al., 2011). Other than this, we
do not perform any pre-processing.

3.2 Model Training Details

We used the tensor2tensor2 version 1.6 imple-
mentation of the Transformer (Vaswani et al.,
2017) model. We used the default hyperparame-
ters in tensor2tensor for all our models with the
exception of the number of training iterations.
Unless mentioned otherwise we use the “base”
transformer model hyperparameter settings with a
215 = 32, 768 shared sub-word vocabulary which
is learned using tensor2tensor’s internal tokeniza-
tion and sub-word segmentation mechanism. We
used a shared sub-word vocabulary because we
trained bi-directional models. This allows us to
share embeddings between the encoder and the
decoder. During training, a model checkpoint is
saved every 1000 iterations. All models were
trained till convergence on the development set
BLEU score. We averaged the last 10 model
checkpoints and used it for decoding the test sets.
We chose a default beam size of 10 and length
penalty of 0.8. We did not ensemble multiple mod-
els although it could possibly improve the trans-
lation quality even further. When we fine-tuned
models, we simply resumed training the last model
checkpoint on the noisy in-domain data. We did
not change the optimizer nor any other hyperpa-
rameters. One might argue that this could lead to
overfitting but tensor2tensor uses a learning rate
decay by default which prevents this. Further-
more, MFT does not suffer from overfitting.

3.3 Systems

We first trained a (bidirectional)
Japanese↔English model using the out-of-
domain parallel corpus for 150,000 iterations
on 1 GPU with a batch size of 2048 words. We
did not train for a larger number of iterations

2https://github.com/tensorflow/
tensor2tensor
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Task BLEU BLEU
cased

IGNORE
BLEU (11b)

IGNORE
BLEU-cased

(11b)

IGNORE
BLEU-cased-norm BEER 2.0

English→Japanese 11.1 11.1 11.1 11.1 11.1 0.354
Japanese→English 8.1 7.4 8.1 7.4 7.8 0.352

Table 1: Results for Japanese↔English translation for the robustness task.

Approach Ja→En En→Ja
Bidirectional FT 9.6 10.5
Bidirectional MFT 9.2 13.4

Table 2: BLEU scores on the non-blind test set for
Japanese–English translation. We show that MFT is
either comparable to or significantly better than regular
fine-tuning.

because the model had converged sufficiently by
150,000 iterations. We then used this model to
perform Mixed-Fine-Tuning (MFT) which uses a
combination of the out-of-domain and in-domain
corpus. MFT is done for 50,000 iterations on 1
GPU with a batch size of 2048 words.

3.4 Results

Refer to Table 1 for the various automatic evalu-
ation scores. For English→Japanese our submit-
ted system’s run achieved a cased BLEU score of
11.1. On the other hand, our Japanese→English
system’s run achieved a BLEU score of 8.1.

A surface level analysis of our translations
showed that the implementation of the Trans-
former that we used is not well suited to handle
noisy text. In most cases it does not handle emo-
jis. We noted that emojis are always missing in
the translation. Another problem we observed was
that the default KyTea model does not give good
morphological segmentations which we believe is
one of the reasons for our poor performance in
the task. In the future, we will incorporate better
pre-processing mechanisms into the tensor2tensor
implementation for better translation. Although,
we did not mention it in the paper, we tried to use
back-translation to translate the monolingual data
in the MTNT dataset but were unable to achieve
satisfactory results.

3.5 Comparison of Approaches

In Table 2 we give the BLEU scores of our bidi-
rectional models using fine-tuning and mixed-fine
tuning. We obtained these BLEU scores on the
non-blind test set which was provided along with

the training data. We did not use this test set
for training or tuning. The BLEU scores are ob-
tained using SacreBLEU (Post, 2018). We can see
that while the performance of Japanese to English
slightly degrades (not statistically significant), En-
glish to Japanese translation improves by approx-
imately 2 BLEU points. As such MFT is either
comparable to or significantly better than regular
fine-tuning and was the reason why we chose it
for the final submission.

4 Conclusion

In this paper we have described our primary
Japanese↔English systems whose translations
we have submitted to the robustness translation
task in WMT2019. In general, we found that
bi-directional modeling and Mixed-Fine-Tuning
(MFT) work reasonably well for this task although
MFT is the main reason behind the improvements.
However, these techniques only partially address
the problem of training NMT models that are ro-
bust to noise. MFT is a robust training approach
and does not actually deal with different sources of
noise. In the future we will consider applying bet-
ter pre-processing mechanisms, domain adapta-
tion techniques and data augmentation techniques
for even more robust translation systems.
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Abstract

This paper describes the systems of Fraun-
hofer FOKUS for the WMT 2019 machine
translation robustness task. We have made
submissions to the EN-FR, FR-EN, and JA-EN
language pairs. The first two were made with
a baseline translator, trained on clean data for
the WMT 2019 biomedical translation task.
These baselines improved over the baselines
from the MTNT paper by 2 to 4 BLEU points,
but where not trained on the same data. The
last one used the same model class and train-
ing procedure, with induced typos in the train-
ing data to increase the model robustness.

1 Introduction

Our submissions to the robustness task (Li et al.,
2019) aimed to investigate two questions: a) how
robust are well-performing models that are trained
on clean text and b) does making small intentional
“typos” in the training data lead to robust models?

2 Methods

FR-EN, EN-FR
We reproduce here for the sake of self-
containment the description of the baseline model
we have developed for the biomedical translation
task. In order to create a baseline for that task,
we have tried to emulate a non-expert who uses a
slightly modified NMT tutorial on the data listed
in the competition page to compete (minimal ef-
fort). The tutorial our submissions are based on
was written for the MT Marathon 2018 Labs and
is available online 1. It uses the Marian NMT sys-
tem(Junczys-Dowmunt et al., 2018).

As training data we have used the UFAL med-
ical corpus(UFA), from which we have removed
the ”Subtitles” pairs, as they are lower quality than
the rest, less medically oriented – if at all, and with

1https://marian-nmt.github.io/examples/mtm2018-labs

the wrong addressing (dialogue, as opposed to nar-
ration). As validation dataset we have used Khres-
moi(Pecina et al., 2013), which we did not find to
be included in UFAL, despite being mentioned as
one of the sources.

The training was set to stop when either the
cross-entropy or the the BLEU on the validation
stalled for 5 training and evaluation cycles. One
such cycle processed 10000 sentence pairs.

The model implemented by Marian NMT in
the tutorial used here is Sequence2Sequence with
shallow networks. The text data has been prepro-
cessed with BPE. Here we deviated for efficiency
reasons from the MOSES BPE(Koehn et al., 2007)
and used FastBPE2.

The vocabulary size for BPE was set to 85000,
the workspace memory to be reserved on the GPU
was reduced to 6 GB to avoid out of memory er-
rors on GTX 1080 Ti. The tests were run on ma-
chines with 8 GPUs, the training process of a sin-
gle language pair took in general a couple of days.

JA-EN
For the Japanese to English submission, we have
employed the same models and training as above,
but with a preprocessing intended to increase the
robustness to typos of two types: missing letters,
duplicated letters.

3 Results

The results are presented in Table 1

4 Discussion and Conclusion

The models trained on the UFAL medical cor-
pus are fairly robust and generic, not excessively
specialized for the biomedical domain. Despite
being trained for the biomedical translation task,

2https://github.com/glample/fastBPE
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Source Target BLEU
un-
cased

BLEU
cased

WMT19
Biomed.

EN FR 24.8 24.2 32.5
FR EN 30.8 29.9 29.9
JA EN 7.3 6.4 ZH2EN

16.7

Table 1: BLEU scores of our submissions, contrasted
with the results of the same models on the biomedical
translation task, except for JA-EN, where the result on
the closest language pair is given, Chinese to English

the EN2FR and FR2EN models trained by us be-
haved reasonably well in the WMT ROBUST-
NESS task, surpassing the NTMT paper baseline
by 2.5 (EN2FR) and 4 (FR2EN) BLEU points,
with the caveat of not being a constrained system,
in the sense that the training has not been done
on the data listed and intended for that task. Still,
as Reddit is not among the sources of UFAL, this
should not affect the validation results.

One choice that we made, and we think it is
right for the biomedical task, to avoid dialogues
and direct speech (the subtitles part of UFAL med-
ical corpus) has probably influenced negatively the
performance in the robustness task - the Reddit
text used for evaluation contains often the first per-
son and second person addressing modes.

In comparison with the performance on the
biomedical text, the performance of FR-EN was
apparently not affected by the noisy text, whereas
for EN-FR there was a strong decrease of the
BLEU score, 8.3 points from 32.5 down to 24.2.
We did apply the postprocessing of the French
text to fix the punctuation marks, thus there should
be another explanation for the decrease of perfor-
mance.

The performance of the JA-EN was very low.
Visual inspection of the results shows typical early
stage training RNN issues like this translation:
Our model’s translation: “It’s very, very, ...” re-
peated 17 times. The reference translation was
“Minpaku has such cool content and it was fun”.
In general, numbers are changed to other numbers
or ignored completely by our JA-EN translation
model. One can assume the training data was not
sufficient in quantity to train a reliable Japanese to
English translation model. In addition to that, due
to an error, we have introduced the intentional ty-
pos not only in the source text but also in the target

text.
The quality of the FR-EN and EN-FR is on

the surface better, but they miss fairly easy trans-
lations by translating too literally (“I’m on the
train” translated as “Je suis sur le train”) or by
missing the correct sense of the word, probably
because we didn’t use the context at all (“I don’t
think we’re are making any trades til the off sea-
son.” translated as “Je ne pense pas que nous ne
faisons aucun métier en dehors de la saison.”).
Meaning got changed (“tu crois vraiment qu’il n’y
a vraiment aucune solution que la ségrégation ?”
went to “Do you really believe that there is really
no solution to segregation?”), coreference is not
properly processed (“Comme Nelson Mandela ne
voulait pas le pouvoir aux noirs(...), il voulait la
fin du racisme.” was translated “As Nelson Man-
dela(...)he wanted to see the end of racism.”).
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Abstract

We present our submission to the WMT19 Ro-
bustness Task. Our baseline system is the
Charles University (CUNI) Transformer sys-
tem trained for the WMT18 shared task on
News Translation. Quantitative results show
that the CUNI Transformer system is already
far more robust to noisy input than the LSTM-
based baseline provided by the task organizers.
We further improved the performance of our
model by fine-tuning on the in-domain noisy
data without influencing the translation qual-
ity on the news domain.

1 Introduction

Machine translation (MT) is usually evaluated on
text coming from news written by a professional
journalist. However, in practice, MT should cover
more domains, including informal and not care-
fully spelled text that we encounter in the online
world.

Although machine translation quality increased
dramatically in recent years (Bojar et al.,
2018), several studies (Belinkov and Bisk, 2018;
Khayrallah and Koehn, 2018) has shown that the
current systems are sensitive to the source-side
noise. It is also an issue that was not studied inten-
sively in the past because neural systems appear to
be more noise-sensitive than the previously used
statistical systems (Khayrallah and Koehn, 2018).

Recently, Michel and Neubig (2018) prepared a
dataset called Machine Translation of Noisy Text
(MTNT) that focuses exclusively on translating
texts from the online environment. This dataset
is used for the WMT19 Robustness Task.

2 MTNT Dataset and Baselines

The MTNT dataset consists of sentences collected
from Reddit1 posts. Unlike the standard corpora

1http://www.reddit.com

which (in a major part) consist of formal language,
often written by professionals, this dataset con-
tains a substantial number of spelling errors, gram-
matical errors, emoticons, and profanities.

Manual translations are provided with the
source sentences crawled from the web. The trans-
lators were asked to keep all the noise-related
properties of the source sentence.

There are two language pairs included in the
dataset: English-French and English-Japanese in
both directions. The dataset comes in three splits,
for training, validation, and testing. The English-
French part consists of 36k examples in the train-
ing split, 852 examples for validation, 1020 exam-
ples for testing in the En→Fr direction, and 19k,
886, and 1022 examples for training, validation,
and testing respectively in the opposite direction.
For English-Japanese, the dataset is substantially
smaller, with around 6k training examples in both
directions. In our experiments, we focus solely on
the translation between French and English.

We noticed that the MTNT dataset as provided
for the task has some peculiarities that were prob-
ably caused inadvertently during the dataset build-
ing. Namely, the training and validation splits
seem to come from a single alphabetically sorted
file. This means that all validation source sen-
tences start with the letter “Y”, and anything that
comes after “Y” in the alphabetical order. Because
of this, the validation scores are unreliable. More-
over, a system trained on the training split will
have a difficult time translating sentences begin-
ning with e.g. the word “You”, which is a com-
monly seen instance in the online discussion do-
main. This does not affect the test split.

The baseline system introduced with the dataset
is a recurrent sequence-to-sequence model with at-
tention (Bahdanau et al., 2014). The encoder is a
bidirectional LSTM with two layers. The decoder
is a two-layer LSTM. The hidden state dimension
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in the LSTMs is 1,024 and the word embedding
size is 512.

The model that was used as a baseline for the
Robustness Task was trained on the WMT15 par-
allel data. Additionally, simple fine-tuning using
stochastic gradient descent on the MTNT data is
shown to improve the translation quality by a large
margin. The translation quality of the system is
tabulated among our systems in Table 2.

3 Related Work

There have been several attempts to increase the
robustness of MT systems in recent years.

Cheng et al. (2018) employ an adversarial train-
ing scheme in a multi-task learning setup in order
to increase the system robustness. For each train-
ing example, its noisy counterpart is randomly
generated. The network is trained to yield such
input representations such that it is not possible to
train a discriminator that decides (based on the in-
put representation) which input is the noisy one.
This method improves both the robustness and the
translation quality on the clean data.

Liu et al. (2018) attempt to make the transla-
tion more robust towards noise from homophones.
This type of noise is common in languages with
non-phonetic writing systems and concerns words
or phrases which are pronounced in the same way,
but spelled differently. The authors of the pa-
per train the word embeddings to capture the pho-
netic information which eventually leads not only
to bigger robustness but also to improved transla-
tion quality in general.

To our knowledge, the only work that specifi-
cally uses the MTNT dataset attempts to improve
the system robustness by emulating the noise in
the clean data (Vaibhav et al., 2019). They in-
troduce two techniques for noise induction, one
employing hand-crafted rules, and one based on
back-translation. The techniques offer a similar
translation quality gains as fine-tuning on MTNT
data.

4 The CUNI Transformer model

Our original plan was to train a system that would
be robust by itself and would not require further
fine-tuning on the MTNT dataset.

As the baseline model, we use the Trans-
former “Big” model (Vaswani et al., 2017) as
implemented in Tensor2Tensor (Vaswani et al.,
2018). We train the model using the procedure

Corpus # Sentences

Pa
ra

lle
l

109 English-French Corpus 22,520k
Europarl 2,007k
News Commentary 200k
UN Corpus 12,886k
Common Crawl 3,224k

M
on

o French News Crawl (’08–’14) 37,320k
English News Crawl (’11–’17) 127,554k

Table 1: Overview of the data used to train the CUNI
Transformer baseline system.

described in Popel (2018) and Popel and Bojar
(2018), which was the best-performing method
for Czech-to-English and English-to-Czech trans-
lation at WMT18 News Translation shared task
(Bojar et al., 2018).

We trained our model on all parallel data avail-
able for the WMT15 News Translation task (Bojar
et al., 2015). We acquired additional synthetic data
by back-translation of the WMT News Crawl cor-
pora (from years 2008–2014 for French and 2011–
2017 for English). We did not include the News
Discussion corpus that we considered too noisy for
training the system. Table 1 gives an overview of
the training data composition.

5 Fine-Tuning

Similarly to the baseline experiments presented
with the MTNT dataset (Michel and Neubig,
2018), we fine-tune our general-domain model on
the MTNT dataset.

We continued the training of the models using
the training part of the MTNT dataset. Unlike the
original model, we used plain stochastic gradient
descent with a constant learning rate for updat-
ing the weights. We executed several fine-tuning
runs with different learning rates and observed that
learning rates smaller than 10−5 do not change
the model outputs at all and learning rates larger
than 10−4 cause the models to diverge immedi-
ately. The models in our final submission were
fine-tuned with a learning rate of 10−4.

6 Results

We evaluate the results on four datasets. The first
one is neswtest2014 (Bojar et al., 2014), a stan-
dard WMT test set consisting of manually trans-
lated newspaper texts where one half is originally
in English and the other half originally in French.
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English-French French-English

WMT14 WMT15 MTNT blind WMT14 WMT15 MTNT blind

MTNT baseline 33.5 33.0 21.8 22.1 28.9 30.8 23.3 25.6
+ fine-tuning — — 29.7 — — — 30.3 —

CUNI Transformer 43.6 41.6 34.0 37.0 42.9 39.6 39.9 42.6
+ fine-tuning 43.5 41.6 36.6 38.5 41.5 40.9 42.1 44.8

Table 2: BLEU scores of the baseline and CUNI models measured on several datasets.

en-fr fr-en

Naver Labs Europe 41.4 47.9
this work 38.5 44.8
Baidu & Oregon State Uni. 36.4 43.6
Johns Hopkins Uni. — 40.2
Fraunhofer FOKUS – VISCOM 24.2 29.9
MTNT Baseline 22.1 25.6

Table 3: Quantiative comparison of the CUNI Trans-
former system + fine-tuning (this work) with other sub-
mitted systems.

Because of the large amount of training data
available, even the statistical MT systems achieved
high translation quality on the news domain. Be-
cause of that a slightly different test set, newsdis-
cusstest2015, was used as the evaluation test set
for the WMT15 competition (Bojar et al., 2015).
The test set consists of sentences from discus-
sions under news stories from The Guardian and
Le Monde. Even though the topics are the same
as the news stories, the language used in the dis-
cussions is less formal and contains grammatical
and spelling errors, which makes them somewhat
closer to the MTNT dataset.

Finally, we evaluate the models on the test part
of the MTNT dataset (described in Section 2) and
the blind test set for the WMT19 Robustness Task,
which was collected in the same way as the origi-
nal MTNT dataset.

The quantitative results are shown in Table 2.
The Transformer-based baseline outperforms the
RNN-based MTNT baseline by a large margin on
both WMT and MTNT test datasets.

The fine-tuning of the RNN-based models
brings a substantial translation quality boost of 8
and 7 BLEU points in each direction respectively.
This effect is much smaller with our stronger base-
line and only improves the performance by around
2 BLEU points in either direction. This may in-
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Figure 1: Learning curves showing the progress of fine-
tuning on the MTNT test split for English-to-French
(top) and French-to-English (bottom) systems with two
different learning rates.

dicate that sufficiently strong models are robust
enough and do not need further fine-tuning for the
type of noise present in the MTNT dataset. Es-
pecially in French-to-English translation, the fine-
tuning improvement is reached at the expense of
decreased translation quality in the news domain.

We observe that the fine-tuning has only a small
negative impact on the translation quality of our
models on the general-domain data. It would be
interesting to see how big impact made the fine-
tuning of the MTNT baseline model, which gained
such a large improvement on the domain-specific
data. However, the authors of the baseline (Michel
and Neubig, 2018) do not report these results.
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We plot the learning curves from the progress of
the system fine-tuning in Figure 1. Even though
the fine-tuning improved the model performance
on both language pairs by approximately the same
margin, the courses of the fine-tuning differ fun-
damentally. For English-to-French translation, we
see that the translation quality slowly increases un-
til convergence. For the opposite direction, it im-
proves immediately and keeps oscillating during
the remaining training steps. We found that this
effect was similar regardless of the learning rate.

Although we observed a strong effect of check-
point averaging during the baseline model train-
ing, it has almost no effect on the fine-tuned mod-
els. Therefore, we report only the performance for
parameter checkpoints with the highest validation
BLEU scores.

Table 3 compares the automatic scores with
other WMT19 Robustness Task participants. Our
submission was outperformed by submissions by
Naver Labs Europe in both translation directions.
Their submission used the same architecture as our
submission, but in addition, it employed corpus
tags and synthetic noise generation. Details about
other systems were not known at the time of our
submission.

7 Conclusions

In our submission to the WMT19 Robustness
Task, we experiment with fine-tuning of strong
Transformer-based baselines for translation be-
tween English and French.

Our results show that when using a strong base-
line, the effect of fine-tuning on a domain-specific
dataset is much smaller than for weaker models
introduced as a baseline with the MTNT dataset.

Acknowledgements

This research has been supported by the from
the European Union’s Horizon 2020 research
and innovation programme under grant agreement
No. 825303 (Bergamot), Czech Science Foundtion
grant No. 19-26934X (NEUREM3), and Charles
University grant No. 976518 and using language
resources distributed by the LINDAT/CLARIN
project of the Ministry of Education, Youth and
Sports of the Czech Republic (LM2015071).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine trans-
lation. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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Abstract

This paper describes NTT’s submission to the
WMT19 robustness task. This task mainly fo-
cuses on translating noisy text (e.g., posts on
Twitter), which presents different difficulties
from typical translation tasks such as news.
Our submission combined techniques includ-
ing utilization of a synthetic corpus, domain
adaptation, and a placeholder mechanism,
which significantly improved over the previ-
ous baseline. Experimental results revealed
the placeholder mechanism, which temporar-
ily replaces the non-standard tokens including
emojis and emoticons with special placeholder
tokens during translation, improves translation
accuracy even with noisy texts.

1 Introduction

This paper describes NTT’s submission to the
WMT 2019 robustness task (Li et al., 2019). This
year, we participated in English-to-Japanese (En-
Ja) and Japanese-to-English (Ja-En) translation
tasks with a constrained setting, i.e., we used only
the parallel and monolingual corpora provided by
the organizers.

The task focuses on the robustness of Machine
Translation (MT) to noisy text that can be found
on social media (e.g., Reddit, Twitter). The task
is more challenging than a typical machine trans-
lation task like the news translation tasks (Bojar
et al., 2018) due to the characteristics of noisy text
and the lack of a publicly available parallel corpus
(Michel and Neubig, 2018). Table 1 shows ex-
ample comments from Reddit, a discussion web-
site. Text on social media usually contains var-
ious noise such as (1) abbreviations, (2) gram-
matical errors, (3) misspellings, (4) emojis, and
(5) emoticons. In addition, most provided paral-
lel corpora are not related to our target domain,

⇤Equal contribution.

(1) I’ll let you know bro, thx
(2) She had a ton of rings.
(3) oh my god it’s beatiful
(4) Thank you so much for all your advice!!
(5) (\ ⇤´ 8 ⇤̀ ) so cute

Table 1: Example of comments from Reddit.

and the amount of in-domain parallel corpus is still
limited as compared with parallel corpora used in
the typical MT tasks (Bojar et al., 2018).

To tackle this non-standard text translation with
a low-resource setting, we mainly use the follow-
ing techniques. First, we incorporated a place-
holder mechanism (Crego et al., 2016) to correctly
copy special tokens such as emojis and emoticons
that frequently appears in social media. Second,
to cope with the problem of the low-resource cor-
pus and to effectively use the monolingual corpus,
we created a synthetic corpus from a target-side
monolingual corpus with a target-to-source trans-
lation model. Lastly, we fine-tuned our translation
model with the synthetic and in-domain parallel
corpora for domain adaptation.

The paper is organized as follows. In Section 2,
we present a detailed overview of our systems.
Section 3 shows experimental settings and main
results, and Section 4 provides an analysis of our
systems. Finally, Section 5 draws a brief conclu-
sion of our work for the WMT19 robustness task.

2 System Details

In this section, we describe the overview and fea-
tures of our systems:

• Data preprocessing techniques for the pro-
vided parallel corpora (Section 2.2).

• Synthetic corpus, back-translated from the
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# sentences # words

MTNT (for En-Ja) 5,775 280,543
MTNT (for Ja-En) 6,506 128,103

KFTT 440,288 9,737,715
JESC 3,237,376 21,373,763
TED 223,108 3,877,868

Table 2: The number of training sentences and words
on the English side contained in the provided parallel
corpora.

provided monolingual corpus, and noisy data
filtering for its data. (Section 2.3).

• Placeholder mechanism to handle tokens that
should be copied from a source-side sentence
(Section 2.4).

2.1 NMT Model

Neural Machine Translation (NMT) has been
making remarkable progress in the field of MT
(Bahdanau et al., 2015; Luong et al., 2015). How-
ever, most existing MT systems still struggle with
noisy text and easily make mistranslations (Be-
linkov and Bisk, 2018), though the Transformer
has achieved the state-of-the-art performance in
several MT tasks (Vaswani et al., 2017).

In our submission system, we use the Trans-
former model (Vaswani et al., 2017) without
changing the neural network architecture as our
base model to explore strategies to tackle the ro-
bustness problem. Specifically, we investigate
how its noise-robustness against the noisy text
can be boosted by introducing preprocessing tech-
niques and a monolingual corpus in the experi-
ments.

2.2 Data Preprocessing

For an in-domain corpus, the organizers pro-
vided the MTNT (Machine Translation of Noisy
Text) parallel corpus (Michel and Neubig, 2018),
which is a collection of Reddit discussions and
their manual translations. They also provided
relatively large out-of-domain parallel corpora,
namely KFTT (Kyoto Free Translation Task)
(Neubig, 2011), JESC (Japanese-English Subtitle
Corpus) (Pryzant et al., 2017), and TED talks (Cet-
tolo et al., 2012). Table 2 shows the number of
sentences and words on the English side contained
in the provided parallel corpora.

# sentences # words

MTNT (Japanese) 32,042 943,208
MTNT (English) 81,631 3,992,200

Table 3: The number of training sentences and words
contained in the provided monolingual corpus.

Yamamoto and Takahashi (2016) pointed out
that the KFTT corpus contains some inconsistent
translations. For example, Japanese era names
are only contained in the Japanese side and not
translated into English. We fixed these errors by
the script provided by Yamamoto and Takahashi
(2016)1.

We use different preprocessing steps for each
translation direction. This is because we need to
submit tokenized output for En-Ja translation, thus
it seems to be better to tokenize the Japanese side
in the same way as the submission in the prepro-
cessing steps, whereas we use a relatively simple
method for Ja-En direction.

For Ja-En, we tokenized the raw text into
subwords by simply applying sentencepiece
with the vocabulary size of 32,000 for each lan-
guage side (Kudo, 2018; Kudo and Richardson,
2018). For En-Ja, we tokenized the text by KyTea
(Neubig et al., 2011) and the Moses tokenizer
(Koehn et al., 2007) for Japanese and English, re-
spectively. We also truecased the English words
by the script provided with Moses toolkits2. Then
we further tokenized the words into subwords us-
ing joint Byte-Pair-Encoding (BPE) with 16,000
merge operations3 (Sennrich et al., 2016b).

2.3 Monolingual Data
In addition to both the in-domain and out-of-
domain parallel corpora, the organizers provided
a MTNT monolingual corpus, which consists of
comments from the Reddit discussions. Table 3
shows the number of sentences and words con-
tained in the provided monolingual corpus.

As NMT can be trained with only parallel data,
utilizing a monolingual corpus for NMT is a key

1https://github.com/kanjirz50/mt_
ialp2016/blob/master/script/ja_prepro.pl

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

3Normally, Japanese and English do not share any words,
thus using joint BPE does not seem effective. However, for
this dataset, we found that Japanese sentences often include
English words (e.g., named entities), so we use joint BPE
even for this language pair.
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TRG → SRC
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parallel

(1) train

TRG monolingual 
 (2) data cleaning &     
       translate
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Synthetic 
parallel

   (3) data cleaning

SRC → TRG
Model

(4) fine-tuning In-domain
parallel

Figure 1: Overview of back-translation and fine-tuning.

challenge to improve translation quality for low-
resource language pairs and domains. Sennrich
et al. (2016a) showed that training with a syn-
thetic corpus, which is generated by translating a
monolingual corpus in the target language into the
source language, effectively works as a method to
use a monolingual corpus. Figure 1 illustrates an
overview of the back-translation and fine-tuning
processes we performed. (1) We first constructed
both of source-to-target and target-to-source trans-
lation models with the provided parallel corpus.
(2) Then, we created a synthetic parallel corpus
through back-translation with the target-to-source
translation model. (3) Next, we applied filtering
techniques to the synthetic corpus to discard noisy
synthetic sentences. (4) Finally, we fine-tuned the
source-to-target model on both the synthetic cor-
pus and in-domain parallel corpus.

Before the back-translation, we performed sev-
eral data cleaning steps on the monolingual data
to remove the sentences including ASCII arts and
sentences that are too long or short. To investi-
gate whether each sentence contains ASCII art or
not, we use a word frequency-based method to de-
tect ASCII arts. Since ASCII arts normally con-
sist of limited types of symbols, the frequency of
specific words in a sentence tends to be locally
high if the sentence includes an ASCII art. There-
fore, we calculate a standard deviation of word fre-
quencies in each sentence of monolingual data to
determine whether a sentence is like ASCII arts.
More specifically, we first define a word frequency
list xi of the sentence i. For example, the word
frequency list is denoted as xi = [1, 1, 1, 1, 1]
for the sentence i, “That ’s pretty cool .” but as
xj = [1, 1, 1, 1, 3] for another sentence j, “THIS
IS MY LIFE ! ! !”. Note that the length of the list
xi is equal to the vocabulary size of the sentence

i or j and each element of the list corresponds to
the word frequency of a specific word. Second,
we calculate the standard deviation �i of the word
frequency list xi for the sentence i. Finally, if �i

is higher than a specific threshold, we assume that
the sentence i contains an ASCII art and discard it
from the monolingual data. We set the threshold
to 6.0.

Moreover, since the provided monolingual data
includes lines with more than one sentence, we
first performed the sentence tokenization using the
spaCy4 toolkit. After that, we discarded the sen-
tences that are either longer than 80 tokens or
equal to 1 token.

Since a synthetic corpus might contain noisy
sentence pairs, previous work shows that an ad-
ditional filtering technique helps to improve ac-
curacy (Morishita et al., 2018). We also apply a
filtering technique to the synthetic corpus as il-
lustrated in (3) in Figure 1. For this task, we
use the qe-clean5 toolkit, which filtered out
the noisy sentences on the basis of a word align-
ment and language models by estimating how
correctly translated and natural the sentences are
(Denkowski et al., 2012). We train the word align-
ment and language models by using KFTT, TED,
and MTNT corpora6. We use fast_align for
word alignment and KenLM for language model-
ing (Dyer et al., 2013; Heafield, 2011).

2.4 Placeholder

Noisy text on social media often contains tokens
that do not require translation such as emojis, “ ,

, ”, and emoticons, “m(_ _)m, ( ` · ! ·´ ),

4https://spacy.io
5https://github.com/cmu-mtlab/qe-clean
6Note that the JESC corpus is relatively noisy, thus we

decided not to use it for cleaning.
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\(ˆoˆ)/”. However, to preserve the meaning of
the input sentence that contains emojis or emoti-
cons, such tokens need to be output to the tar-
get language side. Therefore, we simply copy the
emojis and emoticons from a source language to
a target language with a placeholder mechanism
(Crego et al., 2016), which aims at alleviating
the rare-word problem in NMT. Both the source-
and target-side sentences containing either emojis
or emoticons need to be processed for the place-
holder mechanism. Specifically, we use a special
token “<PH>” as a placeholder and replace the
emojis and emoticons in the sentences with the
special tokens.

To leverage the placeholder mechanism, we
need to recognize which tokens are corresponding
to emojis or emoticons in advance. Emojis can
easily be detected on the basis of Unicode Emoji
Charts7. We detect emoticons included in both
the source- and the target-side sentences with the
nagisa8 toolkit, which is a Japanese morpholog-
ical analyzer that can also be used as an emoticon
detector for Japanese and English text.

Moreover, we also replace “>” tokens at the be-
ginning of the sentence with the placeholders be-
cause “>” is commonly used as a quotation mark
in social media posts and emails and does not re-
quire translation.

2.5 Fine-tuning
Since almost all the provided corpora are not re-
lated to our target domain, it is natural to adapt the
model by fine-tuning with the in-domain corpora.
Whereas we use both the MTNT and synthetic cor-
pora for Ja-En, we only use the MTNT corpus for
En-Ja because the preliminary experiment shows
that synthetic corpus does not help to improve ac-
curacy for the En-Ja direction. We suspect this is
due to the synthetic corpus not having sufficient
quality to improve the model.

3 Experiments

3.1 Experimental Settings
We used the Transformer model with six blocks.
Our model hyper-parameters are based on trans-
former_base settings, where the word embed-
ding dimensions, hidden state dimensions, feed-
forward dimensions and number of heads are 512,
512, 2048, and 8, respectively. The model shares

7https://unicode.org/emoji/charts
8https://github.com/taishi-i/nagisa

the parameter of the encoder/decoder word em-
bedding layers and the decoder output layer by
three-way-weight-tying (Press and Wolf, 2017).
Each layer is connected with a dropout probabil-
ity of 0.3 (Srivastava et al., 2014). For an opti-
mizer, we used Adam (Kingma and Ba, 2015) with
a learning rate of 0.001, �1 = 0.9, �2 = 0.98.
We use a root-square decay learning rate sched-
ule with a linear warmup of 4000 steps (Vaswani
et al., 2017). We applied mixed precision training
that makes use of GPUs more efficiently for faster
training (Micikevicius et al., 2018). Each mini-
batch contains about 8000 tokens (subwords), and
we accumulated the gradients of 128 mini-batches
for an update (Ott et al., 2018). We trained the
model for 20,000 iterations, saved the model pa-
rameters each 200 iterations, and took an average
of the last eight models9. Training took about
1.5 days to converge with four NVIDIA V100
GPUs. We compute case-sensitive BLEU scores
(Papineni et al., 2002) for evaluating translation
quality10. All our implementations are based on
the fairseq11 toolkit (Ott et al., 2019).

After training the model with the whole pro-
vided parallel corpora, we fine-tuned it with in-
domain data. During fine-tuning, we used almost
the same settings as the initial training setup ex-
cept we changed the model save interval to ev-
ery three iterations and continued the learning rate
decay schedule. For fine-tuning, we trained the
model for 50 iterations, which took less than 10
minutes with four GPUs.

When decoding, we used a beam search with
the size of six and a length normalization tech-
nique with ↵ = 2.0 and � = 0.0 (Wu et al.,
2016). For the submission, we used an ensem-
ble of three (En-Ja) or four (Ja-En) independently
trained models12.

3.2 Experimental Results

Table 4 shows the case-sensitive BLEU scores of
provided blind test sets. Replacing the emoticons

9The number of iterations might seem to be too low. How-
ever, Ott et al. (2018) showed that we could train the model
with a small number of iterations if we use a large mini-
batching. We also confirmed the model had already con-
verged with this number of iterations.

10We report the scores calculated automatically on the or-
ganizer’s website http://matrix.statmt.org/.

11https://github.com/pytorch/fairseq
12Originally, we planned to submit an ensemble of four for

both directions. However, we could train only three models
for En-Ja in time. In this paper, we also report the score of
ensembles of four for reference.
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Ja-En En-Ja

Baseline model 10.8 14.3
+ placeholders 12.2 (+1.4) 15.0 (+0.7)

+ fine-tuning 11.9 (+1.1) 16.2 (+1.9)
+ synthetic 14.0 (+3.2) —

+ 4-model ensemble 14.9 (+4.1) 17.0 (+2.7)

Submission 14.8 17.0

Table 4: Case-sensitive BLEU scores of provided blind test sets. The numbers in the brackets show the improve-
ments from the baseline model.

Improved Degraded Unchanged

Ja-En 9 (53%) 0 (0%) 8 (47%)
En-Ja 14 (82%) 1 (6%) 2 (12%)

Table 5: The number of improved/degraded sentences
by applying the placeholder mechanism compared with
the baseline model. We manually evaluated all sen-
tences containing placeholders in terms of whether the
emojis and emoticons are correctly copied to the out-
put.

and emojis with the placeholders achieves a small
gain over the baseline model, which was trained
with the provided raw corpora. Also, additional
fine-tuning with in-domain and synthetic corpora
also leads to a substantial gain for both directions.
For Ja-En, although we failed to improve the ac-
curacy by fine-tuning the MTNT corpus only, we
found that the fine-tuning on both the in-domain
and synthetic corpora achieves a substantial gain.
We suspect this is due to overfitting, and modify-
ing the number of iterations might alleviate this
problem. As described in Section 2.5, we did not
use the synthetic corpus for the En-Ja direction.
For the submission, we decoded using an ensem-
ble of independently trained models, which boosts
the scores.

4 Analysis

4.1 Effect of Placeholders

To investigate the effectiveness of using the place-
holder mechanism, we compared the translation of
the baseline to the model trained with the place-
holders. We manually evaluated how correctly the
emojis and emoticons were copied to the output.
Table 5 shows the numbers of sentences on the
MTNT test set that are improved/degraded by ap-
plying the placeholder mechanism. These result

demonstrate that the placeholder mechanism could
improve the translation of the noisy text, which
frequently includes emojis and emoticons, almost
without degradation.

Tables 6 and 7 show examples of translations
in the Ja-En and En-Ja tasks, respectively. Both
the emoji ( ) and the “>” token, which repre-
sents a quotation mark, were properly copied from
the source text to the translation of +placeholders,
whereas the baseline model did not output such
tokens as shown in Tables 6 and 7. Thus, we can
consider this to be the reason the placeholders con-
tribute to improving case-sensitive BLEU scores
over the baseline.

In our preliminary experiments, although we
tried a method to introduce the placeholder tech-
nique to our systems at the fine-tuning phase, we
found that it does not work properly with only the
fine-tuning. This means that an NMT needs to
be trained with the corpus pre-processed for the
placeholder mechanism before the fine-tuning.

4.2 Effect of Fine-tuning

According to the comparison between +fine-
tuning and baseline shown in Table 4, fine-tuning
on the in-domain and synthetic corpus achieved a
substantial gain in both directions. Accordingly,
we can see that the sentence translated by +fine-
tuning has a more informal style than those trans-
lated by baseline and +placeholders as presented
in Tables 6 and 7.

4.3 Difficulties in Translating Social Media
Texts

Challenges still remain to improving the model’s
robustness against social media texts such as Red-
dit comments. As we pointed out in Section 1,
various abbreviations are often used. For example,
the term, “qπ›Web” (literally East Spo Web) in
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Input Woah woah, hang on a minute, let’s hear this guy out. Amazing title

Reference JDJD�aáchÖfà⇥SDdn�FShí^Df�àF\⇥ƒDø§»Î`

Baseline FèAaáchÖcfSDdnqí^Df�~WáFZOàFj�M`c_èm
(Well wait a minute let’s listen to this story It was an amazing name)

+ placeholders aáchÖcfO`UDSn∫nqí^Df�~WáF tâWDø§»Î`

(Wait a minute, let’s hear the story of this person It’s a great title .)

+ fine-tuning Fè¸�Fè¸�aáchÖcf�Sn7nqí^SF\⇥YTDø§»Î`

(Wow, wow, wait a minute and hear this guy talk. It’s an amazing title .)

Table 6: Translation results on the English-to-Japanese development set. English sentences corresponding to the
Japanese translations are also given.

Input >7�Îgi�HjDtn_`n⌃h�

Reference >Just misguided resentment from some fellow who can’t speak amongst other men.

Baseline A mere grudge against a man who can’t say anything.

+ placeholders > It’s just a grudge against guys who can’t say anything between men.

+ fine-tuning >it’s just inverted resentment for guys who can’t say anything between men.

Table 7: Translation results on the Japanese-to-English test set.

the MTNT dataset should be translated to “Tokyo
Sports Website” according to its reference, but our
model incorrectly translated it to “East Spoweb”.
Such abbreviations that cannot be translated cor-
rectly without prior knowledge, such as “qπ
›Web stands forq¨π›¸ƒWebµ§» (lit-
erally Tokyo Sports Website)”, are commonly used
on social media.

4.4 Use of Contextual Information

Some sentences need contextual information for
them to be precisely translated. The MTNT cor-
pus provides comment IDs as the contextual infor-
mation to group sentences from the same original
comment. We did not use the contextual informa-
tion in our systems, but we consider that it would
help to improve translation quality as in previ-
ous work (Tiedemann and Scherrer, 2017; Bawden
et al., 2018). For example, in the following two
sentences, “Airborne school isn’t a hard school.”
and “Get in there with some confidence!”, which
can be found in the MTNT corpus and have the
same comment ID, we consider that leveraging
their contextual information would help to clarify
what “there” means in the latter and to translate it
more accurately.

5 Conclusion

In this paper, we presented NTT’s submission
to the WMT 2019 robustness task. We partici-
pated in the Ja-En and En-Ja translation tasks with

constrained settings. Through experiments, we
showed that we can improve translation accuracy
by introducing the placeholder mechanism, per-
forming fine-tuning on both in-domain and syn-
thetic corpora, and using ensemble models of
Transformers. Moreover, our analysis indicated
that the placeholder mechanism contributes to im-
proving translation quality.

In future work, we will explore ways to use
monolingual data more effectively, introduce con-
textual information, and deal with a variety of
noisy tokens such as abbreviations, ASCII-arts,
and grammar errors.
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Abstract

We describe the JHU submissions to the
French–English, Japanese–English, and
English–Japanese Robustness Task at WMT
2019. Our goal was to evaluate the per-
formance of baseline systems on both the
official noisy test set as well as news data,
in order to ensure that performance gains
in the latter did not come at the expense of
general-domain performance. To this end,
we built straightforward 6-layer Transformer
models and experimented with a handful
of variables including subword processing
(FR–EN) and a handful of hyperparameters
settings (JA↔EN). As expected, our systems
performed reasonably.

1 Introduction

The team at JHU submitted three systems to
the WMT19 Robustness task: French–English,
Japanese–English, and English–Japanese. Our
goal was to evaluate the performance of reason-
able state-of-the-art systems against both the ro-
bustness test set as well as more standard “general
domain” test sets. We believe this is an important
component of evaluating for actual robustness. In
this way, we ensure that performance gains on ro-
bustness data are not purchased at the expense of
this general-domain performance. Our systems
used no monolingual data and relatively straight-
forward state-of-the-art techniques, and produced
systems of roughly average performance.

2 French-English Systems

2.1 Training Data
We constrained our data use to the officially
supplied data, comprising the WMT15 English–
French parallel data (Bojar et al., 2015). For
French, we experimented with three data settings:

• all of Europarl and News Commentary;

• the best million lines each of CommonCrawl,
Gigaword, and the UN corpus; and

• the MTNT training data.

Data sizes are indicated in Table 1.

dataset segments words

Europarl 2.0m 50.2m
News Commentary 200k 4.4m

Common Crawl 820k 17.4m
FR–EN Gigaword 1m 26.1m
UN Doc 106k 1.1m

MTNTEN→FR 36k 841k
MTNTFR→EN 19k 634k

Table 1: Training datasets for French–English systems.
Common Crawl, Gigaword, and the UN data are post-
filtering.

To filter the data, we applied dual cross-entropy
filtering (Junczys-Dowmunt, 2018). We trained
two smaller 4-layer Transformer models, one each
for EN–FR and FR–EN, and used them to score
the data according to the formula:

exp(−(|s1 − s2|+ 0.5 ∗ (s1 + s2)))

where s1 is the score (a negative logprob) from the
forward FR–EN model and s2 the score from the
reverse EN–FR model. We then uniqued this data,
sorted by score, and took a random sample of one
million lines from the set of all sentence pairs with
a score greater than 0.1.1 For all but FR–EN Giga-
word, what remained was well less than a million
lines. We did this both because prior work has
indicated the utility of filtering, and to make our

1We determined this threshold by eyeballing where in the
ranked list the garbage started to thin out.
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training data sizes more manageable. We there-
fore did not compare against a model trained on
all of the filtered data.

We experimented with two preprocessing
regimes. In the first, we applied standard pre-
processing techniques from the Moses pipeline2

(Koehn et al., 2007), followed by subword split-
ting with BPE (Sennrich et al., 2016) using 32k
merge operations. In the second scenario, we
did not use any data preparation, instead applying
sentencepiece (Kudo and Richardson, 2018)
with subword regularization (Kudo, 2018) directly
to the raw text. In this latter setting, we varied the
size of the learned subword models, experiment-
ing with 8k, 16k, 24k, and 32k.

2.2 Models

We used Sockeye (Hieber et al., 2017), a se-
quence to sequence transduction framework writ-
ten in Python and based on MXNet. Our mod-
els were variations of the Transformer architecture
(Vaswani et al., 2017), mostly using default set-
tings supplied with Sockeye: an embedding and
model size of 512, a feed-forward layer size of
2048, 8 attention heads, and three-way tied em-
beddings. We used batch sizes of 4,096 words,
checkpointed every 5,000 updates, and stopped
training with the best-perplexity checkpoint when
validation perplexity had failed to improve for 10
consecutive checkpoints. The initial learning rate
was set to 0.0002, the Sockeye default.

2.3 Scoring

At test time, we decoded with beam search using
a beam of size 12.

We scored with sacreBLEU (Post, 2018), with
international tokenization.3 In the spirit of the
robustness task, we measure BLEU not just on
the reddit dataset, but also on the WMT15 new-
stest dataset, in order to examine how experimen-
tal variables vary in both in- and out-of-domain
settings. We believe that testing both in- and out-
of-domain data is essential to measuring robust-
ness.

2.4 Results & Discussion

Table 2 contains BLEU scores.

2Calling normalize-punctuation.perl,
remove-non-printing-char.perl, and
tokenizer.perl with flags -no-escape.

3BLEU+case.mixed+refs.1+smooth.exp+tok.intl+v1.2.20

WMT15 MTNT18

4 layers (BPE) 31.6 27.9

6 layers (BPE) 32.7 27.9
+ MTNT 32.6 32.9
+ filter 36.4 33.7
+ both 37.2 39.9

sp24k + filter 36.5 34.5
sp24k + both 37.2 40.0

Table 2: French–English translation results.

WMT15 MTNT18
size filter both filter both

8k 36.0 36.5 33.9 38.7
16k 36.2 36.9 33.9 39.7
24k 36.5 37.2 34.5 40.0

Table 3: BLEU scores with the sentencepiece models
and no other preprocessing.

Observation 1 Improvements are to be had both
from more data and from better (in-domain) data.
Adding the large filtered dataset to the 6 layer
model improved BLEU more (27.9→ 33.7, +5.8)
than adding the MTNT training data (27.9 →
32.9, +5), but the gains from both were even
greater (+12).

Observation 2 In order to ensure that our mod-
els did not increase accuracy on the MTNT data at
the expense of in-domain data, we report scores on
both WMT and MTNT test sets. In only one situ-
ation was there a problem: For the 6-layer Trans-
former, adding the MTNT data alone (without the
large amount of filtered bitext) helped on MTNT18
(+5) but caused a small drop on WMT15 (-0.1).

Observation 3 In all situations, the sentence-
piece model (with no other preprocessing) was just
as good as the BPE model (with the Moses pre-
processing pipeline). In one situation (adding the
filtered data alone), it caused a gain of 0.8 over its
BPE counterpart.

We further conducted a small experiment vary-
ing the sentencepiece model size (Table 3). Larger
sentencepiece models were consistently better in
this relatively large-data setting.

Our score on the official MTNT2019 blind test
set was 40.2.
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3 Japanese-English Systems

3.1 Training Data

We trained systems using only the bitext data al-
lowed in the shared task constrained setting:

• The in-domain Reddit dataset–MTNT ver-
sion 1.1 (Michel and Neubig, 2018)4–
consists of approximately 6k segments for
training (which we label Train-MTNT) and
900 segments for validation (Valid-MTNT)
in both JA→EN and EN→JA language direc-
tions. Additionally we use the included ”test
set” (which we label Test18-MTNT) for in-
ternal BLEU benchmarks prior to submitting
results for the official 2019 blindtest. We did
not use the monolingual part of MTNT.

• The out-of-domain data consists of KFTT
(Wikipedia articles), TED Talks, and JESC
Subtitles.5 We concatenate these out-of-
domain training data with Train-MTNT to
create Train-ALL; similarly we concatenate
the out-of-domain validation data with Valid-
MTNT to create Valid-ALL.

Dataset sizes are shown in Table 4.

JA→EN dataset segments words

Train-ALL 3.9m 42.7m
Train-MTNT 6506 155k
Valid-ALL 5416 88k
Valid-MTNT 965 23k
Test18-MTNT 1001 13k

EN→JA dataset segments words

Train-ALL 3.9m 42.9m
Train-MTNT 5775 333k
Valid-ALL 5405 111k
Valid-MTNT 954 46k
Test18-MTNT 1002 13k

Table 4: Datasets for English–Japanese systems. Word
counts are source side only.

For preprocessing on the English side, we apply
the standard Moses pipeline in the same fashion

4http://www.cs.cmu.edu/˜pmichel1/mtnt/
5The data is also downloaded in pre-packaged form

from the MTNT website via https://github.com/
pmichel31415/mtnt/releases/download/v1.
1/clean-data-en-ja.tar.gz, but do not confuse
these with the MTNT data, which is in the Reddit domain.

as the French–English system. For preprocessing
on the Japanese side, we first performed word seg-
mentation by Kytea (Neubig et al., 2011)6, then
ran the English Moses preprocessing pipeline to
handle potential code-switched English/Japanese
in the data. Finally, we induced BPE sub-
word units with 10k, 30k, and 50k merge opera-
tions, independently for each side on the bitexts
(JA→EN Train-ALL and EN→JA Train-ALL).
Unlike the French-English systems, the Japanese-
English systems do not use shared BPE and em-
beddings.

3.2 Models

We use the Sockeye Transformer models for both
JA→EN and EN→JA directions, similar to our
French-English systems. The hyperparameter set-
tings are different, however. We performed ran-
dom search in the following hyperparameter space
(see Table 5):

• Initial learning rate (LR) for the ADAM op-
timizer: 0.001, 0.0003, 0.0006

• Number of attention heads (head): 8, 16

• Number of layers (layer): 2, 4

• Feed-forward layer size (ffsize): 1024, 2048

• Embedding and model size (embedding):
256, 518, 1024

The training process follows a continued-
training procedure (c.f. Koehn et al. (2018);
Khayrallah et al. (2018)): In Stage 1, we train
systems from scratch on Train-ALL, and per-
form early stopping on Valid-ALL. This repre-
sents a mixed corpus with both in-domain and
out-of-domain bitexts. For all models, we used
batch sizes of 4,096 words, checkpointed every
2,000 updates, and stopped training with the best-
perplexity checkpoint when validation perplexity
on Valid-ALL had failed to improve for 16 con-
secutive checkpoints.

In Stage 2, we fine-tuned the above systems by
training on Train-MTNT, and perform early stop-
ping on Valid-MTNT. Effectively, we initialize a
new model with Stage 1 model weights, reset the
optimizer’s learning rate schedule, and train on
only in-domain data. To prevent overfitting to
the small Train-MTNT bitext, we now checkpoint

6v0.4.7: http://www.phontron.com/kytea/
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more frequently, saving a checkpoint after every
50 updates, and stopped training either when the
perplexity on Valid-MTNT fails to improve for 16
consecutive checkpoints or when we reached 30
checkpoints (i.e., 30× 50 = 1500 updates of 4,096
word batches), to prevent fitting excessively on the
Train-MTNT bitext.

3.3 Scoring
At test time, we decoded with beam search using a
beam of size 5. We scored with sacreBLEU (Post,
2018), with international tokenization.7 Per or-
ganizer suggestion, we applied Kytea to Japanese
output prior to scoring. We measure BLEU on
both VALID-ALL and Test18-MTNT in order to
compare the results on mixed and in-domain cor-
pora.

3.4 Results & Discussion
The BLEU results for Stage 1 models are shown
in Table 5. We performed random search in hyper-
parameter space, training approximately 40 mod-
els in each language-pair. The table is sorted
by Test18-MTNT BLEU score and shows the
top 5 models in terms of BLEU (id=a,b,c,d,e;
id=z,y,x,w,v) as well as another 5 randomly se-
lected model (id=e,f,g,h,i,j; id=u,t,s,r,q).

Observation 1: Despite the relatively narrow
range of hyperparameter settings, there is a com-
paratively large range of BLEU scores in the table.
For example in JA→EN, the best Test18-MTNT
BLEU is 11.1, 2.7 points better than the worst
BLEU (8.4) in the table; there are other poorer per-
forming systems, not sampled for the table. This
suggests that hyperparameter search is important
in practice, even for relatively standard hyperpa-
rameters.

Additionally, we note it is difficult to make post-
hoc recommendations on the “best” hyperparam-
eter settings, as there are no clear trends in the
data. For example, from the top 5 JA→EN mod-
els, it appears that 30k BPE merge operations is
good, but there is an competitive outlier with 10k
BPE (id=c). In the results (not all shown in the ta-
ble), most 10k BPE models achieve Test18-MTNT
BLEU in the 8-10 range, so it is difficult to ex-
plain the strong BLEU score of id=c. Also, it
does appear that layer=4 is consistently better than
layer=2 in the JA→EN results, but the results are
more mixed in the EN→JA direction.

7BLEU+case.mixed+refs.1+smooth.exp+tok.intl+v1.2.14

Observation 2: There is some correlation be-
tween the BLEU scores of Valid-ALL and Test18-
MTNT; the system rankings are relatively simi-
lar. But we note that there are a few outliers, e.g.
the top 5 models in EN→JA perform similarly on
Test18-MTNT, but there are noticeable degrada-
tions for id=x and id=v on Valid-ALL. Similarly,
id=b and id=c perform close on Test18-MTNT but
not on Valid-ALL. With the goal of robustness, we
think these kinds of BLEU gaps due to domain dif-
ferences deserve more investigation.

Continued Training: Next, we perform contin-
ued training on the top 5 models. The results
on Test18-MTNT are shown in Table 6. We ob-
serve consistent BLEU gains in these Stage 2 mod-
els, close to 2 or 3 points across all systems.
This re-affirms the surprising effectiveness of a
simple procedure such as continued training; but
we should also note that preliminary efforts on
English-French did not yield similar gains.

Note that we do not measure Valid-ALL in this
case since we now expect the models to be opti-
mized specifically for MTNT; it is likely Valid-
ALL scores will degrade due to catastrophic for-
getting (Thompson et al., 2019).

Final Submission: In the final official sub-
mission, we performed an 4-ensemble of the
Stage 2 Continued Training models of id=a,b,d,e
for JA→EN and id=z,y,w,v for EN→JA. Note that
the ensemble method in Sockeye currently as-
sumes the same vocabulary, so BPE needs to be
the same for all models in the ensemble. This is a
reasonable assumption, but in the spirit of subword
regularization (Kudo, 2018), we think it may be in-
teresting to explore whether ensembles of systems
with diverse BPE will lead to more robust outputs.

For JA→EN, the ensemble achieved 14.6
BLEU on Test18-MTNT (N-gram precisions:
43.9/19.3/10.1/5.5, Brevity Penality: 0.991,
Length ratio: 0.991). The official MTNT2019
blindtest cased-BLEU is 11.4.

For EN→JA, the ensemble achieved 15.0
BLEU on Test18-MTNT (N-gram precisions:
45.2/19.2/10.3/5.7, Brevity Penality: 1.0, Length
ratio: 1.122). The official MTNT2019 blindtest
case-BLEU is 14.8.

4 Conclusion

We constructed reasonably-scoring systems on
three language pairs without too much effort. Our
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JA→EN Systems Hyperparameter Setting BLEU (EN output)
id BPE LR head layer ffsize embed Valid-ALL Test18-MTNT
a 30k 0.0003 8 4 2048 512 17.1 11.1
b 30k 0.0006 16 4 2048 512 16.5 10.7
c 10k 0.0006 16 4 2048 512 15.7 10.5
d 30k 0.0006 16 4 2048 256 16.4 10.1
e 30k 0.0003 8 4 1024 256 16.0 10.0
f 50k 0.0003 8 4 1024 512 16.4 10.0
g 30k 0.0006 8 2 2048 512 15.9 9.9
h 50k 0.0006 8 2 1024 256 14.4 9.1
i 10k 0.0006 8 2 2048 256 14.0 8.6
j 30k 0.0006 16 2 1024 1024 13.9 8.4

EN→JA Systems Hyperparameter Setting BLEU (JA output)
id BPE LR head layer ffsize embed Valid-ALL Test18-MTNT
z 50k 0.0006 8 4 2048 256 17.0 12.7
y 50k 0.0003 16 4 2048 512 17.5 12.7
x 30k 0.0003 8 2 2048 512 16.6 12.6
w 50k 0.0006 16 4 2048 512 17.1 12.5
v 50k 0.001 8 4 2048 512 16.5 12.5
u 10k 0.0003 8 4 1024 512 16.4 12.3
t 30k 0.001 16 4 1024 256 16.0 12.1
s 50k 0.001 8 4 1024 256 15.8 12.1
r 10k 0.0006 16 2 1024 512 15.3 11.9
q 10k 0.0006 8 2 1024 256 14.5 10.6

Table 5: JA→EN and EN→JA Results for Stage 1 models. For each language pair, we show the top 5 models
(according to Test18-MTNT) and another random selection of 5 models from randomized hyperparameter search.
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id Stage 1 Stage 2 Improvement
JA→EN

a 11.1 13.4 +2.3
b 10.7 13.4 +2.7
c 10.5 13.1 +2.6
d 10.1 13.1 +3.0
e 10.0 13.2 +3.2

EN→JA

z 12.7 14.5 +1.8
y 12.7 14.4 +1.7
x 12.6 14.5 +1.9
w 12.5 14.4 +1.9
v 12.5 14.3 +1.8

Table 6: Continued Training BLEU results on Test18-
MTNT. Stage 1 results are from Table 5. Continued
Training (Stage 2) consistently improves BLEU.

scores fell into roughly the middle tier among
those reported on matrix.statmt.org. It is
certain that much higher gains could be had by
adding even known techniques to our pipeline,
such as backtranslating monolingual data (Sen-
nrich et al., 2016).

We also believe that our approach of evaluat-
ing on multiple test sets is essential to the robust-
ness task. Without this, the task reduces to do-
main adaptation, and one has no assurance that
high scores on the out-of-domain data do not come
at the expense of general-domain performance.
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Abstract

This paper describes the machine translation
system developed jointly by Baidu Research
and Oregon State University for WMT 2019
Machine Translation Robustness Shared Task.
Translation of social media is a very challeng-
ing problem, since its style is very different
from normal parallel corpora (e.g. News) and
also include various types of noises. To make
it worse, the amount of social media paral-
lel corpora is extremely limited. In this pa-
per, we use a domain sensitive training method
which leverages a large amount of parallel
data from popular domains together with a lit-
tle amount of parallel data from social media.
Furthermore, we generate a parallel dataset
with pseudo noisy source sentences which are
back-translated from monolingual data using
a model trained by a similar domain sensitive
way. We achieve more than 10 BLEU im-
provement in both En-Fr and Fr-En translation
compared with the baseline methods.

1 Introduction

Translation of social media is very challenging.
First, there are various types of noises, such as
abbreviations, spelling errors, obfuscated profani-
ties, inconsistent capitalization, Internet slang and
emojis (Michel and Neubig, 2018). Second, the
amount of parallel data is limited. These charac-
teristics of social media make existing neural ma-
chine translation systems extremely vulnerable.

The noise issue of social media has been investi-
gated in some previous work (Baldwin et al., 2013;
Eisenstein, 2013). Most recently, Belinkov and
Bisk (2017) demonstrated the vulnerability of neu-
ral machine translation system to both synthetic
and natural noises. However, the noises tested in
(Belinkov and Bisk, 2017) are not real noises in
social media. To our best knowledge, there seems

∗ Equal contribution

to be a lack of translation methods systematically
targeting noises in social media.

Existing neural machine translation systems are
famous for their hungry of data. However, the
amount of parallel data in social media domain
is very limited. Just recently, a dataset collected
from Reddit has been published and attracted a
lot of attention (Michel and Neubig, 2018). The
amount of data in this dataset is still very small,
compared to the large amount of data from News
domain. Naturally, how to utilize the large amount
of parallel data from the News domain become a
central problem in improving the translation of so-
cial meida.

In this paper, inspired by the success of back-
translation technique (Sennrich et al., 2015a), we
propose to learn a model to generate “social-
media-style” translation in source language from
clean sentences in target language. Since the
amount of parallel data in social media domain
is limited, we utilize the large amount of par-
allel data in News domain to help the training.
With this model, large mount of parallel data for
back-translation can be generated from monolin-
gual data in target language. In the final transla-
tion model, a special “domain” symbol is added
to indicate which domain the source sentence be-
longing to.

The contributions of this paper are multifold,
and some important ones are highlighted below:

1. We found that “social-media-style” sentences
can be generated by training a translation
model with different “start-of-sentence” sym-
bols for sentences in different domains in
the decoder side. The model is trained with
data from all domains, especially News do-
main, which has a large amount of parallel
data, but also adapted to the style in the do-
main of social media, even the amount of
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parallel data in social media is limited. As
demonstrated by our experiments, generating
“social-media-style” sentences is crucial in
the effectiveness of back-translation for train-
ing a translation model suitable for translat-
ing social media.

2. We illustrated that adding a domain symbol
in source sentence improves the robustness
of the model. This may be because the en-
coder learns some domain-specific features
from input sentences.

2 Methods

Noisy text translation is short of in-domain train-
ing data. In this section, we present approaches
to leverage a large amount of out-of-domain (e.g.
News) dataset and monolingual data paired with
pseudo noisy source data from back-translation.

2.1 Domain Sensitive Data Mixing
To improve the translation model from limited
parallel data, we want to make the use of larger
amount of out-of-domain data. However, simply
mixing the clean and noisy data will make the
whole training set unbalanced. To differentiate the
data from different domain, we use different start
symbol in source side.

The intuition of injecting domain label in source
side is based on the noise occurrence statistics
from (Michel and Neubig, 2018), which shows
much more spelling and grammar errors in the
source side of noisy text translation dataset. Thus
the clean and noisy start symbols work as a mean-
ingful sign of source text style for encoder. Com-
pared with the source side sentences, the human
translation of target side sentences are less noisier
with less spelling and grammar errors.

2.2 Noisy Pseudo-Sources Generation with
Back-Translation

To further make the use of monolingual data, we
regard them as target data and generate it’s cor-
responding source data by back-translation (Sen-
nrich et al., 2015a). However, different from Sen-
nrich et al. (2015a) who uses this method in both
clean source and target sentences, the source side
sentences in our test set is much noisier than target
side (as mentioned in previous subsection). There-
fore, we reverse the source and target sentences
where the noisy source sentences becomes target
and cleaner target sentences becomes source. For

example, to generate noisy pseudo French source
sentences for English monolingual data, we train
a En-Fr translation model which takes the noisy
French source sentences in Fr-En noisy dataset as
target, and the corresponding paralleled English
target sentences as source. In this way, the model
will learned how to inject noise into the target side.
Similar to previous domain sensitive method, we
include out-of-domain clean data during the train-
ing of this noisy translation model and differenti-
ate them by different start symbol int target side.

2.3 Ensemble

In our experiments with relatively small train-
ing dataset, the translation qualities of models
with different initializations can vary notably. To
make the performance much more stable and im-
prove the translation quality, we ensemble dif-
ferent models during decoding to achieve better
translation.

To ensemble, we take the average of all model
outputs:

ŷt =
N∑

i=1

ŷit
N

(1)

where ŷit denotes the output distribution of ith
model at position t. Similar to Zhou et al. (2017)
and Zheng et al. (2018c), we can ensemble mod-
els trained with different architectures and training
algorithms.

3 Experiments

To investigate the empirical performances of our
proposed methods, we conduct experiments on
MTNT dataset (Michel and Neubig, 2018) using
Transformer (Vaswani et al., 2017).

We first apply BPE (Sennrich et al., 2015b) on
both sides in order to reduce the vocabulary for
both source and target sides. We then exclude the
sentences pairs whose length are longer than 256
words or subwords. We use length reward (Huang
et al., 2017) to find the optimal target length.

Our implementation is adapted from PyTorch-
based OpenNMT (Klein et al., 2017). Our Trans-
former’s parameters are as the same as the base
model’s parameter settings in the original paper
(Vaswani et al., 2017).

In all experiments, our evaluation uses sacre-
BLEU 1, a standardized BLEU score evaluation

1https://github.com/mjpost/sacreBLEU
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Training Validation Test
Clean 2,207,962 - -
Monolingual 26,485 - -
Noisy 36,058 852 1,020

Table 1: Statistics of En2Fr Dataset. Monolingual data
is French only.

Training Validation Test
Clean 2,207,962 - -
Monolingual 2,244,020 - -
Noisy 19,161 886 1,022

Table 2: Statistics of Fr2En Dataset, Monolingual data
is English only.

En2Fr Fr2En
Domain Insensitive 31.3 34.6
Domain Sensitive 35.7 39.5

Table 3: Results of noisy data generation. We re-
verse the source and target direction of MTNT Fr2En
(En2Fr) dev-set to evaluate the ability of noisy data
generation for En2Fr (Fr2En).

tool by Post (2018). We specify the intl to-
kenization option during BLEU evaluation. We
also uses detokenization and normalization tools
in Moses.

Table 1 and 2 show statistics of En2Fr and
Fr2En datasets. For both En-Fr and Fr-En dataset,
the clean parallel data is from WMT15 news trans-
lation task. The noisy data is from (Michel and
Neubig, 2018) collected from social network. Ex-
cept the French and English monolingual data
from WMT15 news translation task, we also make
the use of English portion of parallel data from
KFTT, TED and JESC used in (Michel and Neu-
big, 2018).

3.1 Noisy Data Generation
To make use of monolingual target data, we want
to generate the corresponding parallel pseudo
noisy source data and put them into training set.
Table 3 shows the performance of our noisy data
generation models. In this experiment, we mix the
clean and noisy dataset as the training set, but use
the target sentences in reversed direction of noisy
dataset (training, validation, test) set as source and
source sentences as target. The domain insensitive
method simply mix the clean and noisy dataset in
training while the domain sensitive method differ-
entiate the clean and noisy dataset in target side by

starting with different symbol (e.g. < clean s >,
< noisy s >). The experiment shows that the
domain sensitive method can outperform the do-
main insensitive method with a large margin.

3.2 Methods Comparison

Table 4 shows the final results of different meth-
ods on test set. Similar with the previous ex-
periments, the domain insensitive methods sim-
ply mix all the clean, noisy training data. The
performance has a little improvement in En-Fr
by adding the monolingual data paired with the
pseudo source data generated by the model trained
in previous experiments. To differentiate the clean
and noisy dataset, we assign different label at the
start of them and the performance is thus boosted
about 3 to 4 BLEU score. We further generate
pseudo noisy source data from the monolingual
target with the model using the domain sensitive
method in previous experiment. By adding these
noisy back-translation data, we achieve more than
2 BLEU improvement. Our final submission en-
sembles 5 models trained with the domain sensi-
tive method and including the noisy back transla-
tion data.

3.3 Final Results

Table 5 and Table 6 show the final results of our
submission in Fr-En and En-Fr. Our system ranks
third in both directions. Table 7 shows the human
judgments over all submitted systems which are
done by Li et al. (2019) who also analyze and dis-
cuss all submitted systems.

4 Related Work

The method proposed in this paper is a kind of
domain adaptation technique. There are many
previous work on domain adaptation for machine
translation (Britz et al., 2017; Wang et al., 2017;
Chu et al., 2017; Chu and Wang, 2018), which
leverages out-of-domain parallel corpora and in-
domain monolingual corpora to improve transla-
tion. The difference between our method and pre-
vious work lies in that we use back-translation
(Sennrich et al., 2015a) for domain adaptation.
Different from some previous work using adver-
sarial training (Liu et al., 2017) or different atten-
tion (Zheng et al., 2018a) to differentiate multiple
tasks, we simply assign different starting symbol
for multiple tasks (Lample et al., 2018).

A similar method was proposed in (Xie et al.,
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Methods En-Fr Fr-En

Baseline
MTNT † 21.8 23.3
+ tuning † 29.7 30.3

Domain
Insensitive

Mix training 33.4 34.5
+ Back translation 33.7 34.3

Domain
Sensitive

Mix training 36.3 38.7
+ Noisy back translation 38.4 41.0
+ Ensemble 40.4 42.3

Table 4: Results of different methods on test-set. †(Michel and Neubig, 2018)

BLEU BLEU-cased BEER CharacTER
NLE 48.8 47.9 0.676 0.364
CUNI 45.8 44.8 0.654 0.395
BD-OSU∗ 44.5 43.6 0.641 0.499
JHU 41.2 40.2 0.624 -
CMU 32.8 32.2 0.573 0.514
FOKUS† 30.8 29.9 0.530 0.574
MTNT 26.2 25.6 0.529 0.550
IITP-MT 25.5 20.8 0.499 0.594

Table 5: Semi-blind test results of Fr-En. ∗Our submission. †Unconstrained.

BLEU BLEU-cased BEER CharacTER
NLE 42.0 41.4 0.626 0.446
CUNI 39.1 38.5 0.605 0.483
BD-OSU∗ 37.0 36.4 0.599 0.512
FOKUS† 24.8 24.2 0.515 0.619
MTNT 22.5 22.1 0.498 0.621
CMU 20.8 20.4 0.488 0.622
IITP-MT 20.7 19.2 0.492 0.619
SFU 19.4 19.1 0.491 0.614

Table 6: Semi-blind test results of En-Fr. ∗Our submission. †Unconstrained.

En-Fr En-Fr Fr-En Fr-En
Score Rank BLEU Rank

BD-OSU∗ 71.5 2 80.6 3
CMU - - 58.2 6
CUNI 66.3 3 82.0 2
JHU - - 76.3 4
NaverLabs 75.5 1 85.3 1
FOKUS† 52.5 4 62.6 5

Table 7: Human judgments over all submitted systems (the higher the better) ∗Our submission. †Unconstrained.

2018) in the context of grammar correction, where
a model is trained to add noises on original sen-
tences to produce noisy sentences. However, in-
stead of learn how to generate arbitrary “noises”,
our goal is to learn “social-media-style” transla-
tions. Singh et al. (2019) injects artificial noise

in the clean data according to the distribution of
noisy data. Liu et al. (2019a) propose to leverage
phonetic information to reduce the noises in data.

Another group of work related to this paper
is data augmentation in machine translation. Al-
though data augmentation is very popular in gen-
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eral learning tasks, such as image processing, it is
non-trivial to do so in machine translation because
even slight modifications of sentences can make
huge difference in semantics. To our best knowl-
edge, there are two categories of successful data
augmentation approaches for machine translation.
The first one is based on back-translation ((Sen-
nrich et al., 2015a)) which augments monolingual
data into training set. The second one is based on
word replacement, such as (Sennrich et al., 2016)
and (Wang et al., 2018). Zheng et al. (2018b) make
the use of multiple references and generates even
more pseudo-references and achieve improvement
in both machine translation and image captioning.

5 Conclusions and Future Work

In this paper, we proposed a method to improve
the translation of social media. The style of so-
cial media is very unique, and is very different
from the style of widely researched News sen-
tences. The core part of our method is to gener-
ate useful parallel data for back-translation, that is,
generating synthetic in-domain parallel data. To
achieve this goal, we proposed a method to gen-
erate “social-media-style” source sentences from
monolingual target sentences. We also distinguish
the domain of source sentences by inserting a do-
main symbol into source sentences. Both tech-
niques are proven to be extremely useful in the
scenario of translating social media. Finally, we
utilized the ensemble to further boosts the transla-
tion performance.

The noises in social media are mostly intro-
duced by human mistakes. There are some other
cases that noises in source side are introduced by
systems, such as ASR in speech-to-text transla-
tion (Liu et al., 2019b). We plan to further in-
vestigate this domain sensitive method on these
tasks, even on speech-to-text simultaneous trans-
lation (Ma et al., 2018; Zheng et al., 2019).

References
Timothy Baldwin, Paul Cook, Marco Lui, Andrew

MacKinlay, and Li Wang. 2013. How noisy social
media text, how diffrnt social media sources? In
Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing, pages 356–
364.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. arXiv preprint arXiv:1711.02173.

Denny Britz, Quoc Le, and Reid Pryzant. 2017. Ef-
fective domain mixing for neural machine transla-
tion. In Proceedings of the Second Conference on
Machine Translation, pages 118–126.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint arXiv:1701.03214.

Chenhui Chu and Rui Wang. 2018. A survey of domain
adaptation for neural machine translation. arXiv
preprint arXiv:1806.00258.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 confer-
ence of the North American Chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 359–369.

Liang Huang, Kai Zhao, and Mingbo Ma. 2017. When
to finish? optimal beam search for neural text gen-
eration (modulo beam size). In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2134–2139.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, et al. 2018. Phrase-based & neu-
ral unsupervised machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 5039–5049.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir K. Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan M. Pino, and
Hassan Sajjad. 2019. Findings of the first shared
task on machine translation robustness. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion, Volume 2: Shared Task Papers, Florence, Italy.
Association for Computational Linguistics.

Hairong Liu, Mingbo Ma, Liang Huang, Hao Xiong,
and Zhongjun He. 2019a. Robust neural machine
translation with joint textual and phonetic embed-
ding. ACL.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1–10.

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang,
Hua Wu, Haifeng Wang, and Chengqing Zong.
2019b. End-to-end speech translation with knowl-
edge distillation. arXiv preprint arXiv:1904.08075.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2018. Stacl: Simultaneous transla-
tion with integrated anticipation and controllable la-
tency. ACL.

563



Paul Michel and Graham Neubig. 2018. Mtnt: A
testbed for machine translation of noisy text. arXiv
preprint arXiv:1809.00388.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare
words with subword units. arXiv preprint
arXiv:1508.07909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Sumeet Singh, Craig Stewart, Graham Neubig, et al.
2019. Improving robustness of machine trans-
lation with synthetic noise. arXiv preprint
arXiv:1902.09508.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. Switchout: an efficient data aug-
mentation algorithm for neural machine translation.
arXiv preprint arXiv:1808.07512.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew
Ng, and Dan Jurafsky. 2018. Noising and denoising
natural language: Diverse backtranslation for gram-
mar correction. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
619–628.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simultaneous translation with flexible
policy via restricted imitation learning. ACL.

Renjie Zheng, Junkun Chen, and Xipeng Qiu. 2018a.
Same representation, different attentions: share-
able sentence representation learning from multiple
tasks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pages 4616–
4622. AAAI Press.

Renjie Zheng, Mingbo Ma, and Liang Huang. 2018b.
Multi-reference training with pseudo-references for
neural translation and text generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3188–3197.

Renjie Zheng, Yilin Yang, Mingbo Ma, and Liang
Huang. 2018c. Ensemble sequence level training
for multimodal mt: Osu-baidu wmt18 multimodal
machine translation system report. In Proceedings
of the Third Conference on Machine Translation:
Shared Task Papers, pages 632–636.

Long Zhou, Wenpeng Hu, Jiajun Zhang, and
Chengqing Zong. 2017. Neural system combina-
tion for machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 378–384.

564



Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 2: Shared Task Papers (Day 1) pages 565–571
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

Improving Robustness of Neural Machine Translation
with Multi-task Learning

Shuyan Zhou, Xiangkai Zeng, Yingqi Zhou
Antonios Anastasopoulos, Graham Neubig

Language Technologies Institute, School of Computer Science
Carnegie Mellon University

{shuyanzh,xiangkaz,yingqiz,aanastas,gneubig}@cs.cmu.edu

Abstract

While neural machine translation (NMT)
achieves remarkable performance on clean, in-
domain text, performance is known to degrade
drastically when facing text which is full of
typos, grammatical errors and other varieties
of noise. In this work, we propose a multi-
task learning algorithm for transformer-based
MT systems that is more resilient to this noise.
We describe our submission to the WMT 2019
Robustness shared task (Li et al., 2019) based
on this method. Our model achieves a BLEU
score of 32.8 on the shared task French to En-
glish dataset, which is 7.1 BLEU points higher
than the baseline vanilla transformer trained
with clean text1.

1 Introduction

Real world data, especially in the realm of social
media, often contains noise such as mis-spellings,
grammar errors, or lexical variations. Even though
humans do not have much difficulty in recognizing
and translating noisy or ungrammatical sentences,
neural machine translation (NMT; Bahdanau et al.
(2015); Vaswani et al. (2017)) systems are known
to degrade drastically when confronted with noisy
data (Belinkov and Bisk, 2017; Khayrallah and
Koehn, 2018; Anastasopoulos et al., 2019). Thus,
there is increasing need to build robust NMT sys-
tems that are resilient to naturally occurring noise.

In this work, we attempt to enhance the ro-
bustness of the NMT system through multi-task
learning. Our model is a transformer-based model
(Vaswani et al., 2017) augmented with two de-
coders, with each decoder bound to different learn-
ing objectives. It has a cascade architecture
(Niehues et al., 2016; Anastasopoulos and Chiang,
2018) where the first decoder reads in the output
of the encoder and the second decoder reads in the

1The code is available at https://github.com/
shuyanzhou/multitask_transformer

output of both encoder and the first decoder. The
objective of the first decoder, namely the denois-
ing decoder, is to recover from the noisy sentence
and generate the corresponding clean sentence.
Given both the noisy and clean sentence, the ob-
jective of the second decoder, namely the transla-
tion decoder, is to correctly translate the sentence
to the target language. This framework should
be beneficial in two ways: 1) Since the model is
trained with noisy text, it should inherently bet-
ter generalize to noisy text. 2) The translation de-
coder could potentially take advantage of the re-
covered clean sentence while maintaining specific
varieties of noise (e.g. emoji) by referring to the
original noisy sentence. This framework requires
triplets of clean and noisy source sentences, along
with target translations, so we also follow Vaibhav
et al. (2019) and design a back-translation strategy
that synthesizes noisy data.

Our proposed model outperforms the baseline
vanilla transformer trained with clean text by
4.6 BLEU points on the WMT 2019 Robust-
ness shared task (Li et al., 2019) French to En-
glish dataset. The fine-tuning process brings an
additional 2.5 points improvement. According
to our analysis, however, the improvements can
mainly be attributed to introducing noisy data dur-
ing training rather than the multi-task learning ob-
jective.

2 Multi-task Transformer

In this section, we describe in detail the architec-
ture of our proposed multi-task transformer. It is a
transformer-based (Vaswani et al., 2017) cascade
multi-task framework (Niehues et al., 2016; Anas-
tasopoulos and Chiang, 2018).

2.1 Detailed Architecture
As illustrated in Figure 1, the model consists of
one transformer encoder and two transformer de-
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Figure 1: Multitask transformer architecture. Bold grey
lines represent parts we add on top of the vanilla trans-
former.

coders. The dataset consists of triplets: T =
{tn, tc, tt} where tn is the noisy source sentence,
tc is the clean source sentence and tt is the target
translation. Each t consists of a sequence of words
[w1, w2, ..., wl], where l is the length of the corre-
sponding text. By looking up the word and posi-
tion embedding lookup tables, each t is converted
to a representation matrix x = {e1, e2, ..., el} and
thus result in X = {xn,xc,xt}.

The encoder reads in noisy text xn and gener-
ates the encoded representation Mn. The layers
of the first decoder (denoising decoder) first at-
tends to xc (self-attention) and then attends to Mn
from the encoder. After N layers, this decoder
generates another representation Mc which repre-
sents the clean rather than the noisy source text.
Now, the layers of the second decoder (translation
decoder) first perform self-attention as usual, and
then attend to both Mn and Mc simultaneously.
After repeating this process N times, the transla-
tion decoder generates Mt which is then passed on
to a position-wise feed-forward network followed
by a softmax layer. The output of the model is
a probability matrix P ∈ Rl×V , where V is the
vocabulary size and l is the length of translated
sentence.

As the description above, the denoising decoder
is exactly the same as the decoder of the vanilla
transformer. The only difference is that for the
translation decoder each layer needs to attend to

both encoder outputs Mn and denoising decoder
outputs Mc after self-attention. Therefore, the
translation decoder receives two contexts, namely
from the encoder attention An and the denoising
decoder attention Ac. In our model, we design the
final attention context as the linear transformation
of the concatenation of these two attention states:

At = W [An;Ac] + b

Where W ∈ Rd×2d and b ∈ Rd.
Following Tu et al. (2017); Anastasopoulos and

Chiang (2018), the first objective is to maximize
the log likelihood of the clean text tc and the sec-
ond objective is to maximize that of the translated
text tt. The importance of these two objectives are
controlled by a hyper-parameter λ:

L(θ) =λ logP (tc|tn; θ)+ (1)

(1− λ) logP (tt|tn, tc; θ)

2.2 Two Phase Beam Search

Following Anastasopoulos and Chiang (2018), we
use two separate beam search processes to de-
code the final translation. Let Nbeam be the size
of the beam-search. The process is outlined here
for clarity. Given a sentence tn, the denoising
decoder produces a Nbeam outputs, each consist-
ing of a denoised hypothesis t̂c, the probability
of the hypothesis P (t̂c|xn; θ), and corresponding
hidden state matrix M̂c. For each hypothesis from
this first decoder, the second decoder also pro-
duces Nbeam tuples, each including a translation
hypothesis t̂t and its probability P (t̂t|tn, t̂c; θ).
At the end of the second phase, we will have
Nbeam×Nbeam translation hypotheses. We rank the
these hypothesis by their scores defined in Equa-
tion 1.

3 Training Triple Generation

As mentioned in Section 2, the desired training
data for our multi-task transformer is a collection
of triples T = {tn, tc, tt}. However, datasets of
this kind are very rare; the available amounts of
data are less than enough to train such a model
with enormous number of parameters. Inspired
by Vaibhav et al. (2019), we instead use a back-
translation strategy to synthesize these triples. Our
proposed strategy is flexible and it could be used
as long as we have at least one element of the T
triple.
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Figure 2: Training data synthesis. Blocks rounded by dash rectangle are synthetic while others are real.

Depending on which part of triple is available,
we select the proper NMT model and synthesize
the missing ones. In Figure 2, we show 3 ways
that we did this in this work. Note that because
we focus on the translation from French to English
where the French text mostly consists of MTNT-
style noise (Michel and Neubig, 2018), we specify
the source language as fr, the target language as
en and the noise style as MTNT; however, our ap-
proach could be used for all other language pairs
with different noise distributions.

Clean fr & Clean en: This is the most com-
mon parallel corpus that could be obtained from
many existing resources. The only missing text
is the noisy French text. In this case, we syn-
thesize the noisy text with the help of the NMT
model trained with both TED and MTNT training
data. During training, we add a tag showing the
source of this pair at the beginning of each En-
glish sentence (Kobus et al., 2017; Vaibhav et al.,
2019). By adding this tag, the model could po-
tentially better distinguish TED data and MTNT
data. To generate the noisy French text, we add an
MTNT tag at the beginning of each sentence and
feed them to this NMT model. Ideally, besides the
inherent noise as a result of imperfect translations,
the translated French sentences could also possess
a similar noise distribution as MTNT.

Noisy fr & Clean en: This kind of parallel text
can be found in the MTNT training data. Note that
even though the manually translated English sen-
tences contain some level of “noise” (e.g. emoji),
we treat them as clean English text. In this sce-
nario, we leverage a pre-trained NMT system pro-
vided by fairseq (Ott et al., 2019) to translate
English sentences back to French. Considering
its good performance over other benchmarks (e.g.
WMT newstest datasets) we assume that the trans-

lated French sentences are of high quality and thus
treat them as clean French text.

Clean fr: To make our back-translation strategy
more generalized to settings where the above par-
allel data is not enough to train the model, we
also design a pipeline to utilize monolingual data
which is likely to be available most of the time. In
this case, we first translate these sentences to En-
glish and then translate them back to French. Both
NMT models are trained with TED and MTNT
data as we describe above. Similarly, in both di-
rections, we add the MTNT tag in the beginning
of the sentences. Note that alternatively one could
use an off-the-shelf NMT model to generate clean
English text.2

4 Experiments

In this section, we first describe in detail our data
pre-processing scheme, as well as the choice of
hyperparameters. Then we compare our system
with the baseline model (a vanilla transformer
trained on clean French and clean English parallel
data). Finally, we carry out a case study by com-
paring the output of our model with the baseline
model.

4.1 Data Pre-processing

Because of time limitations, we did not use all
three kinds of training triples. We only used the
first two triples introduced in Section 3.

Clean fr & Clean en: The clean data consists of
europarl-v73 and news-commentary-v10 copora.4

We filter out sentences whose length is greater

2We did not attempt this due to time restrictions.
3http://www.statmt.org/europarl/v7/

fr-en.tgz
4http://www.statmt.org/wmt15/

training-parallel-nc-v10.tgz
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than 50. We apply a pretrained Byte Pair Encod-
ing (BPE, Gage (1994)) model with 16k subword
units to both source and target sentences. The pro-
cess of synthesizing noisy French sentences is de-
scribed in the corresponding paragraph of Section
3. We denote this set of triples as Teuroparl.

Noisy fr & Clean en: As mentioned in the cor-
responding paragraph of Section 3, both noisy
French and clean English come from MTNT train-
ing data and we create clean French through back-
translation. This set of triples is denoted as Tmtnt.

4.2 Hyperparameters

We follow the transformer-base setting of Vaswani
et al. (2017), using N = 6 layers for both en-
coder and decoder, h = 8 heads for self-attention,
and dk, dv are both set to 64. The hidden size of
the model dmodel is set to 512 and the hidden size
of the feed forward network is set to 2048. The
smoothing rate ε is set to 0.1 and the dropout rate
is set to 0.1. For our multi-task transformer specif-
ically, the weight λ in Equation 1 is set to 0.5. The
implementation of the model is based on fairseq
(Ott et al., 2019)5.

4.3 Results

The baseline model is the vanilla transformer
trained with clean French and clean English. In
our experiment, it contains pairs T1 = {tc, tt}
that are extracted from Xeuroparl. On the other
hand, our model is the multitask transformer
trained with Xeuroparl. The same number of pairs
and triples are used during training. We evaluate
these two models on two MTNT datasets, one of
them comes from the original paper (Michel and
Neubig, 2018) while the other one is provided by
WMT Robustness shared task (Li et al., 2019).
The BLEU score of these two models are shown
in the first and the third column of Table 1.

Compared to the vanilla transformer, our
proposed multi-task transformer yields 2.5 and
4.6 BLEU points improvement on two MTNT
datasets. However, the component that leads to the
success of this model is unclear as there are mainly
two differences: 1) our proposed model utilizes an
auxiliary decoder to recover from the noisy text,
it could potentially benefit the translation process
with cleaner data 2) our model is further trained on

5https://github.com/pytorch/fairseq/
tree/master/fairseq

Model BLEU

Vanilla Transformer 22.0 25.7
+FT w/ synthetic noise 24.6 27.1

+FT w/ MTNT 34.1 36.0

Our Model 24.5 30.3
+FT w/ MTNT 31.7 32.8

Table 1: BLEU score of different models. The second
column shows the score in MTNT test dataset intro-
duced in Michel and Neubig (2018) and the third col-
umn shows the score in the MTNT test dataset provided
by WMT Robustness share task (Li et al., 2019).

noisy data, presumably overcoming any domain-
adaptation issues.

We investigate this issue by fine-tuning the
baseline model with another set of pairs T2 =
{tn, tt} that are extracted from Teuroparl. We load
the pre-trained model and continue training for an
extra epoch. With this fine-tuning process, the
baseline model sees exact the same number of data
as our proposed model. The fine-tuning result is
shown in the second row of Table 1.

The performance of the fine-tuned baseline sys-
tem is very close to that of our proposed model
on the original MTNT test data and is 3.2 BLEU
points lower on the shared task dataset. This result
suggest that while the inclusion of synthetic noisy
sentences is generalizable among datasets, using
the denoising decoder might be beneficial only in
specific settings.

Further, to investigate model’s potential when in
possession of in-domain training data, we fine tune
both models with MTNT parallel training data.
The data we use here is the same as the MTNT
data we use to train auxiliary NMT systems to gen-
erate triples (Section 3). During the fine-tuning
process, hence, we do not introduce new parallel
data. The performance of the fine-tuned systems
are shown in the third and the last row of Table 1
respectively.

Even vanilla transformer could not beat the
multi-task transformer on both datasets before
fine-tuned with in-domain data, it performs sig-
nificantly better and outperforms our proposed
model on both datasets after the fine-tuning pro-
cess. The results suggest the potential of vanilla
transformer in fitting in-domain data. It is no-
table, of course, that the fine-tuning process leads
to a 9.5/8.9 BLEU points improvement for the
vanilla transformer and 7.2/1.5 points for our pro-
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posed model respectively. This again shows the
power of domain adaptation for building a robust
NMT system.

4.4 Case Study

Table 2 shows example outputs of original MTNT
test dataset from different models. The denoised
source is the sentence generated by the denoising
decoder in our proposed model.

The first example contains special characters
‘>’ and the word ‘xQc’. All models fail to cor-
rectly copy the special character > and generate a
replacement. On the other hand, the word ‘xQc’
confuses the two baseline models and they fail to
correctly copy this word. Our model, however,
correctly copies the word and generates a reason-
able translation. The denoised sentence seems to
not bring benefit and, in fact, it attempts to denoise
‘xQc’ to ‘XVC’. The translation decoder then
seems to combine the two versions, copying the
word from the source noisy sentence but upper-
casing it just like the denoised version.

The second example contains the acronym
‘PC’ and our model does not produce a correct
translation. It is interesting that the translated
word ‘pellets’ is also not the corresponding
translation of ‘peloton’ in the denoised sen-
tence. Somewhat similar to the first example, this
suggests that the translation decoder mostly ig-
nores the context from the denoisy decoder. In
terms of performance of vanilla transformer, al-
though the baseline model also fails, the fine-tuned
model deals with ‘PC’ correctly and procures
a good translation. This indicates that explicitly
having attention to both noisy and clean sentences
does not always lead to better translation quality.

In the last example, the noise lies in a typo in the
phrase corresponding to the phrase ‘‘double
negative’’. None of the models produces a
good translation of this phrase. Similar to the
first case, the denoised sentence has a negative
effect as it falsely “corrects” ‘‘ngation’’ to
‘‘voie’’ (“way” in English), which changes
the meaning of the word and results in the bad
translation ‘track’. This demonstrates that all
models still need to address issues regarding rare
and misspelled words.

The main takeaway from a manual inspection
of the outputs, is that the first (denoising) decoder
does not really properly deal with noise in the de-
sired way, and the translation decoder generally

ignores its output. We suspect that this issue is
caused by the data synthesis process which re-
sults in low quality triples. Other further improve-
ments could be possibly achieved by constrain-
ing the output of the denoising decoder, such that
it produces minimal, non-meaning-altering edits.
We leave these investigations as future work.

5 Related Work

Here, we discuss how the MT community handles
the noise problem. In general, there are mainly
two kinds of approaches: the first attempts to de-
noise text, and the second proposes training with
noisy texts.

Denoising text: Sakaguchi et al. (2017) pro-
poses semi-character level recurrent neural net-
work (scRNN) to correct words with scrambling
characters. Each word is represented as a vector
with elements corresponding to the characters’ po-
sition. Heigold et al. (2018) investigates the ro-
bustness of character-based word embeddings in
machine translation against word scrambling and
random noise. The experiments show that the
noise has a larger influence on character-based
models than BPE-based models. To minimize the
influence of word structure, Belinkov and Bisk
(2017) proposes to represent word as its average
character embeddings, which is invariant to these
kinds of noise. The proposed method enables the
MT system to be more robust to scrambling noise
even training the model with clean text. Instead of
handling noise at the word level, we try to recover
the clean text from the noisy one at the sentence
level. Besides noise like word scrambling, the sen-
tence level denoising could potentially better deal
with more complex noise like grammatical errors.

Training with noisy data: Li et al. (2017) de-
signs methods to generate noise in the text, mainly
focusing on syntactic noise and semantic noise.
(Sperber et al., 2017) proposes a noise model
based on automatic speech recognizer (ASR) er-
ror types, which consists of substitutions, dele-
tions and insertions. Their noise model samples
the positions of words that should be altered in
the source sentence. Even training with synthetic
noise data brings a large improvement in translat-
ing noisy data, Belinkov and Bisk (2017) shows
that models mainly perform well on the same kind
of noise that is introduced at training time, and
they mostly fail to generalize to text with other
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Source > Tu veux dire comme xQc?
Target > Do you mean like xQc?
Baseline ’You want to call it al-Qc?’
Baseline FT − Do you mean asylum-seekers?

Denoised Source − Avez-vous lintention de parler de XVC?
Our model − Do you intend to refer to as XQC?
Source Si tu joues sur pc, a-t-il t bien adapt?
Target If you play on PC, has it been well adapted?
Baseline If you are playing on a pile, has it been adequate?
Baseline FT If you play on pc, has it been properly adapted?

Denoised Source Si vous jouez au peloton, a-t-il t bien adapt?
Our model If you play on pellets, has you been well adapted?
Source Les franais sont les champions de la double-ngation.
Target French people are the champions of the double negative.
Baseline The French are the champions of dual-nation.
Baseline FT The French are the champions of double-nutrition.

Denoised Source Les Franais sont les champions de la double voie.
Our model The French are the champions of the double-track.

Table 2: Comparison of baseline, baseline FT w/ synthetic noise and our model in MTNT fr-en.

kinds of noise. Similar findings were outlined in
Anastasopoulos et al. (2019) and Anastasopoulos
(2019), which evaluated MT systems on natural
and natural-like grammatical noise, specifically on
English produced by non-native speakers. Natural
noise appears to be richer and more complex com-
pared to synthetic noise, making it challenging to
manually design a comprehensive set of noise to
approximate real world settings. In our work, we
follow (Vaibhav et al., 2019) and synthesize the
noisy text through back-translation. There is no
need to manually control the distribution of noise.

In terms of multi-task learning for machine
translation, Tu et al. (2017) proposes to add a
reconstructor on top of the decoder. The aux-
iliary objective is to reconstruct the source sen-
tence from the hidden layers of the translation de-
coder. This encourages the decoder to embed com-
plete source information, which helps improve the
translation performance. This approach was found
to be helpful in low-resource MT scenarios also
by Niu et al. (2019). Anastasopoulos and Chiang
(2018) proposes a tied multitask learning model
architecture to improve the speech translation task.
The intuition is that, speech transcription as an in-
termediate task, should improve the performance
of speech translation if the speech translation is
based on both the input speech and its transcrip-
tion.

6 Conclusion

In this work, we propose a multi-task transformer
architecture that tries to not only denoisy the noisy

source text but also translate it. We design a strat-
egy for synthesizing data triplets for this architec-
ture. Our model could be viewed as a combina-
tion of denoising source text and domain adap-
tation, both of which are popular approaches for
designing robust NMT systems. Compared to
the baseline vanilla transformer that is trained on
clean data only, our proposed model with fine tun-
ing enjoys 7.1 BLEU points improvement on the
WMT Robustness shared task French to English
dataset. However, this improvement is most likely
attributed to the noisy text we add to the training
process (hence, due to better domain adaptation),
and not due to the denoising multi-task strategy.
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