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Abstract

Parallel deep learning architectures like fine-
tuned BERT and MT-DNN, have quickly be-
come the state of the art, bypassing previ-
ous deep and shallow learning methods by a
large margin. More recently, pre-trained mod-
els from large related datasets have been able
to perform well on many downstream tasks
by just fine-tuning on domain-specific datasets
(similar to transfer learning).
However, using powerful models on non-
trivial tasks, such as ranking and large docu-
ment classification, still remains a challenge
due to input size limitations1 of parallel archi-
tecture and extremely small datasets (insuffi-
cient for fine-tuning).
In this work, we introduce an end-to-end sys-
tem, trained in a multi-task setting, to filter
and re-rank answers in medical domain. We
use task-specific pre-trained models as deep
feature extractors. Our model achieves the
highest Spearman’s Rho and Mean Recipro-
cal Rank of 0.338 and 0.9622 respectively, on
the ACL-BioNLP workshop MediQA Ques-
tion Answering shared-task.

1 Introduction

In this work, we study the problem of re-ranking
and filtering in medical domain Information Re-
trieval (IR) systems. Historically, re-ranking is
generally treated as a ‘Learning to Rank’ prob-
lem while filtering is posed as a ‘Binary Classi-
fication’ problem. Traditional methods have used
handcrafted features to train such systems. How-
ever, recently deep learning methods have gained

∗* Equal contribution, randomly sorted. Karan and She-
fali took ownership of the NLI module while Sheetal and
Prashant worked on the RQE module. Hemant researched
and implemented the Question-Answering system including
baseline and multi-task learning. Sheetal and Hemant worked
on scraping data from icliniq. Karan and Prashant helped
with integration of NLI and RQE module respectively into
the multi-task system.

1https://github.com/google-research/bert/issues/27

popularity in the Information retrieval (IR) domain
(Mitra and Craswell, 2017).

The ACL-BioNLP workshop MediQA shared
task (Ben Abacha et al., 2019) aims to develop
relevant techniques for inference and entailment
in medical domain to improve domain specific IR
and QA systems. The challenge consists of three
tasks which are evaluated separately.

The first task is the Natural Language Inference
(NLI) task which focuses on determining whether
a natural language hypothesis can be inferred from
a natural language premise. The second task is
to recognize question entailment (RQE) between
a pair of questions. The third task is to filter and
improve the ranking of automatically retrieved an-
swers.

For the NLI and RQE tasks, we use trans-
fer learning on prevalent pre-trained models like
BERT (Devlin et al., 2018) and MT-DNN (Liu
et al., 2019). These models play a pivotal role
to gain deeper semantic understanding of the con-
tent for the final task (filtering and re-ranking) of
the challenge (Demszky et al., 2018). Besides us-
ing usual techniques for candidate answer selec-
tion and re-ranking, we use features obtained from
NLI and RQE models. We majorly concentrate on
the novel multi-task approach in this paper. We
also succinctly describe our NLI and RQE models
and their performance on the final leaderboard.

2 Related Work

Past research demonstrates a simple architecture
for filtering and re-ranking, where the system re-
turns the best answer based on the Information
Retrieval and Question Entailment Scores [from
a corpus of FAQs scraped from medical websites
MediQUAD (Ben Abacha and Demner-Fushman,
2019)]. This system outperformed all the systems
participating in the TREC Medical LiveQA17
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challenges. (Harabagiu and Hickl, 2006) success-
fully shows the use of Natural Language Inference
(NLI) in passage retrieval, answer selection and
answer re-ranking to advance open-domain ques-
tion answering. (Tari et al., 2007) shows effective
use of UMLS (Bodenreider, 2004), a Unified Med-
ical Language System to asses passage relevancy
through semantic relatedness. All these methods
work well independently, but to the best of our
knowledge, there hasn’t been much work in using
NLI and RQE systems in tandem for the tasks of
filtering and re-ranking.

As noted in (Romanov and Shivade, 2018), the
task of Natural Language Inference is not domain
agnostic, and thus is not able to transfer well to
other domains. The authors use a gradient boost-
ing classifier (Mason et al., 2000) with a variety of
hand crafted features for baselines. They then use
Infersent (Conneau et al., 2017) as a sentence en-
coder. The paper also reports results on the ESIM
Model (Chen et al., 2017) but with no visible im-
provements. They also discuss transfer learning
and external knowledge based methods.

Most traditional approaches to Question Entail-
ment use bag-of-word pair classifiers (Tung and
Xu, 2017) using only lexical similarity. How-
ever, in the recent past, neural models (Mishra
and Bhattacharyya, 2018) have been employed to
determine entailment between questions incorpo-
rating their semantic similarity as well. These
techniques work by generating word-level repre-
sentations for both the questions, which are then
combined into independent question representa-
tions by passing it through a recurrent cell like Bi-
LSTM (Liu et al., 2016). However, current state-
of-the-art methods like BERT (Devlin et al., 2018)
and MT-DNN (Huang et al., 2013) learn a joint
embedding of the two questions, which is then
used for classification.

(Abacha and Demner-Fushman, 2016) imple-
mented the SVM, Logistic Regression, Naive
Bayes and J48 models as baselines for Question
Entailment task. They use a set of handcrafted
lexical features, like word overlap and bigram
similarity, and semantic features like number of
medical entities (problems, treatments, tests) us-
ing a CRF classifier trained on i2b2 (Uzuner et al.,
2011) and NCBI corpus (Doğan et al., 2014).

3 Dataset & Evaluation

The dataset for re-ranking and filtering has been
provided by the MediQA Shared task (Ben
Abacha et al., 2019) in ACL-BioNLP 2019 work-
shop. It consists of medical questions and their as-
sociated answers retrieved by CHiQA 2. The train-
ing dataset consists of 208 questions while the val-
idation and test datasets have 25 and 150 questions
respectivley. Each question has upto 10 candidate
answers, with each answer having the following
attributes :

1. SystemRank: It corresponds to CHiQA’s
rank.

2. ReferenceRank: It corresponds to the correct
rank.

3. ReferenceScore: This is an additional score
that is provided only in the training and vali-
dation sets, which corresponds to the manual
judgment/rating of the answer [4: Excellent,
3: Correct but Incomplete, 2: Related, 1: In-
correct].

For the answer classification task, answers with
scores 1 and 2 are considered as incorrect (label
0), and answers with scores 3 and 4 are considered
as correct (label 1). The evaluation metrics for fil-
tering task is Accuracy and Precision while met-
rics for re-ranking task is Mean Reciprocal Rank
(MRR) and Spearman’s Rank Correlation Coeffi-
cient.

To train the Natural Language Inference and
Question Entailment module of our system we
again use the data from MediQA shared task (Ben
Abacha et al., 2019).

For Natural Language Inference (NLI), we use
MedNLI (Romanov and Shivade, 2018) dataset. It
is a dataset for natural language inference in clin-
ical domain that is analogous to SNLI. It includes
15,473 annotated clinical sentence pairs. For our
model, we create a training set of 14,050 pairs and
a held out validation set of 1,423 pairs. The evalu-
ation metric for NLI is accuracy.

The dataset used for Question Entailment
(RQE) consists of paired customer health ques-
tions (CHQ) and Frequently Asked Questions
(FAQ) (Ben Abacha and Demner-Fushman, 2016).
We are provided labels for whether FAQ entails
CHQ or not. The RQE training dataset consists

2https://chiqa.nlm.nih.gov/
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of 8,588 medical question pairs. The validation
set comprises of 302 pairs. The evaluation metric
used for RQE is accuracy.

We also augment the data from a popular medi-
cal expert answering website called 3icliniq. It is a
forum where users can delineate their medical is-
sues, which are then paraphrased as short queries
by medical experts. The user queries are treated as
CHQs whereas the paraphrased queries are treated
as FAQs. We extract 9,958 positive examples and
generate an equal number of negative examples by
random sampling. The average CHQ length is 180
tokens whereas the average FAQ length is 11 to-
kens. In addition, the expert answers are used to
augment the MediQUAD corpus (Ben Abacha and
Demner-Fushman, 2019).

4 Approach/System Overview

We use pretrained RQE and NLI modules as fea-
ture extractors to compute best entailed ques-
tions and best candidate answers in our proposed
pipeline.

4.1 Pretraining NLI and RQE modules
Both the NLI and RQE modules use MediQA
shared task (Ben Abacha et al., 2019) for train-
ing (fine-tuning) and computing the inference and
entailment scores. For both the tasks, we use the
following approaches to preprocess the datasets:

1. Replacing medical terms with their preferred
UMLS name. We augment the terms like
Heart attack in the sentence with Myocardial
infarction extracted from UMLS.

2. Expanding abbreviations for medical terms in
order to normalize the data. The list of medi-
cal abbreviations is scraped from Wikipedia.
Since this list of abbreviations also contains
full forms of stop words like “IS”, “BE”, we
manually curate the list to contain only the
relevant acronyms.

For fine-tuning the NLI and RQE modules, we
use the dataset for NLI and RQE tasks of MediQA
shared task (Ben Abacha et al., 2019) respectivley.
We also augment the RQE dataset with data from
icliniq during fine-tuning.

4.2 Preprocessing
A lot of answers have spurious trailing lines about
FAQs being updated. Any trailing sentences in the

3https://www.icliniq.com/qa/medical-conditions

answers having “Updated by:” are removed. A co-
reference resolution is run on each answer using
Stanford CoreNLP (Manning et al., 2014) and all
the entity-mentions are replaced with their corre-
sponding names.

4.3 Using RQE module

For each question in the training set we get upto
N entailing questions (along with their scores and
embeddings) and answers with a threshold T for
confidence using RQE module. We use this sys-
tem both in the baseline and the multi-task learn-
ing system. The complete process is highlighted
in Figure 1.

4.4 Baseline: Feature-Engineered System

We develop a feature-engineered system as a base-
line. This system uses the following features:

1. Answer Source (One-hot)

2. Answer Length In Sentences

3. ChiQA Rank

4. Bag of Words(BoW) TF-IDF scores of Can-
didate Answer (trained on MediQUAD)

5. Bag of Words (BoW) TF-IDF scores of
1-best Entailed answer (trained on Medi-
QUAD)

6. N-best RQE Scores

7. N-best RQE embeddings

8. N-best Average NLI Scores

Average NLI score between the candidate answer
‘s’ containing ‘S’ sentences and entailed answer
‘p’ containing ‘P’ sentences is defined as:

ANLI(s, p) =
∑

S(maxP (NLI(S,P )))
|S|

where |S| symbolizes the total number of sen-
tences in candidate answer.
For a given confidence threshold T, if N candidates
are not obtained from RQE model we set the cor-
responding features to 0.

We train the system using the above features
with Logistic regression for filtering and use the
scores to rank the answers. We also train a system
with same features using SVM-rank (Joachims,
2006) to improve our ranking metrics. All the re-
sults have been discussed in Section 5.
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Figure 1: Finding entailed questions from MediQuad and Icliniq QA pairs, for a particular query. We get an
entailment score, RQE entailment embedding, and answer for each QA pair in MediQuad and Iclinq data. We then
pick up the top N entailed questions.

4.5 Jointly Learning to Filter and Re-rank

Multitask learning is defined as, “A learning
paradigm in machine learning whose aim is to
leverage useful information contained in multiple
related tasks to help improve the generalization
performance of all the tasks”. (Zhang and Yang,
2017) As the tasks of both filtering and re-ranking
are highly related and can benefit from shared fea-
ture space, we propose a multi-task learning based
system to both rank and filter our candidate an-
swers.

In this system we use the MT-DNN (Liu et al.,
2019) based models developed for NLI and RQE
(described in Sectition 4.1) as feature extractors.
The embedding generated for classification from
both the models is used as features. In addition
we also use the scores from RQE models to get
RQE candidates from MediQUAD (Ben Abacha
and Demner-Fushman, 2019) corpus. Going for-
ward we refer to these features as embeddings.

Our initial step is the same as our baseline sys-
tem and is summarized in Section 4.3. For each
candidate answer in training set and the retrieved
entailed answer we obtain the following embed-
dings:

1. NLI Embedding: If an entailing question’s
answer A has a sentences and candidate an-
swers C have c sentences, then a tensor of

a ∗ c ∗ 768

is extracted to make an embedding matrix us-
ing the NLI module. Each sentence in entail-
ing Answer A is combined with every sen-
tence of candidate answer C and passed to the
MT-DNN NLI model to build this tensor. We
then run a convolution encoder on this ma-
trix to obtain an NLI embedding. The final

layer is an average pooling layer which aver-
ages each of the four quadrants of 256 chan-
nel feature map and concatenates them to ob-
tain an NLI embedding of size 1024. This
step is necessary to convert varied size (due
to varying a and c above) feature maps to a
single embedding of size 1024.

2. RQE Embedding: This is the embedding
obtained from the RQE model while search-
ing for the entailed questions.

3. Metadata Embedding: This embedding en-
codes metadata features for the pair. We en-
code the candidate answer source (one-hot),
the entailed answer source (one-hot), candi-
date answer length, entailed answer length,
candidate answer system rank, and TF-IDF
scores of 2000 words (trained on Medi-
QUAD) for the candidate answer.

We concatenate the above embeddings for each
candidate answer (referred to as joint embedding
going forward). For a given entailed answer, one
joint embedding is obtained for each candidate an-
swer. The entire process of converting a single
entailing answer to a set of joint embeddings for
candidates is summarized in Figure 2.

Using the joint embeddings obtained above we
train two binary classifiers, which are fully con-
nected neural networks, as follows:

1. Filtering classifier: This classifier takes in
the joint embedding for a single candidate an-
swer and classifies it as relevant or irrelevant.

2. Pairwise ranking classifier: This classifier
takes in the joint embedding of two candi-
date answers and classifies if the first candi-
date ranks higher or not.
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Figure 2: Creating NLI embedding for each RQE Answer A1 by concatenating it with every candidate answer
(CA) and passing it through the NLI module and convolutional encoder. This NLI embedding is then concatenated
with the corresponding RQE Question (Q1) embedding and Metadata embedding to obtain the joint embedding.

Architecture details are provided in Appendix
A.

4.6 Training and Inference details

For a given confidence threshold T, if less than N
questions are obtained from the RQE model, we
only use the questions which satisfy the threshold.
In case no entailed question is returned, we use
the top entailed question despite confidence be-
ing below the threshold. Unlike the baseline, here
joint embedding is extracted separately for each
entailed answer. Hence this allows for having dif-
ferent number of entailed answers for each ques-
tion.

For training we consider each question and can-
didate answers as a batch. We define the final
training loss as follows:

Ltotal =
∑
N

(
∑
c

Lfilter(c)

+ α
∑

p∈c2−1pairs

Lpair(p)) (1)

where N is the number of RQE candidates we have
for this question, c is the number of candidate an-
swers, Lfilter is the loss obtained from filtering
classifiers, Lpair is the loss obtained from pair-
wise classifier. We use Cross-Entropy Loss for
both Lfilter and Lpair. Here we use α = 2 to fo-
cus more on the re-ranking task as it is considered
tougher than filtering. To augment the training
data we use higher-ranked candidate answers as
entailed answers to create training instances with
lower-ranked candidate answers. While inference
we use the ensemble from different RQE candi-

dates to decide upon filtering and pairwise rank-
ing, by summing the scores from candidates.

5 Experiments and Results

For this task we perform multiple experiments on
feature-engineered system in Section 4.4 to asses
the usefulness of the designed features. These ex-
periments later help us incorporate these features
into Metadata Embedding defined in Section 4.5.

Firstly we run the experiments on Metedata fea-
tures, BoW, Coarse-grained RQE and NLI scores.
The results are shown in Table 1. We later in-
corporate the RQE embeddings from RQE system
and the results are shown in Table 2. Here we
evaluate the system with different number of RQE
candidates at different threshold settings. Previ-
ous experiments were conducted on the filtering
task only . For ranking task we train SVM-Rank
(Joachims, 2006) based systems to learn pair-wise
ranking, using the same features as the filtering
task. Experiments with SVM-Rank (Joachims,
2006) were performed with N=3 RQE candidates
and the results are shown in Table 4.

Moving to jointly learning system introduced
in Section 4.5, we train it with different parame-
ter settings. Due to lack of resources, we could
evaluate only a few hyperparameter settings where
N is the most number of RQE candidates con-
sidered while training and T is the the threshold
for retrieving the candidates. In addition we also
evaluate the results with augmented datasets from
icliniq. We share the results on validation data in
Table 6 and results on test set in Table 5.
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Metrics Accuracy Spearmans
Rho

Metadata 50.12 0.091
Metadata + BoW
+ RQE Scores

61.23 0.125

Metadata + BoW
+ RQE scores +
Avg NLI

62.17 0.127

Table 1: Results with features except RQE embeddings
using Logistic Regression

No. of RQE Candidates
RQE Threshold N=1 N=3 N=5
No Threshold 63.12 67.17 64.92

T=0.9 63.21 65.12 63.9
T=0.7 64.91 69.67 66.123
T=0.5 65.18 68.96 65.031

Table 2: Accuracy obtained on including RQE embed-
dings.

RQE Threshold Coverage
T=0.5 186/208
T=0.7 175/208
T=0.9 150/208

Table 3: Coverage of Validation set based on RQE
threshold for Task 3.

System Spearman’s Rho
LR based filtering 0.2327
Rank-SVM(T=0.9) 0.2627
Rank-SVM(T=0.7) 0.2972
Rank-SVM(T=0.5) 0.2812

Table 4: Rank-SVM results with Fine-grained features
for N=3 candidates with different threshold levels for
Task 3.

6 Discussion

We design the experiments to see if the answering
and re-ranking tasks can be improved upon using
RQE and NLI tasks. This hypothesis was proved
by seeing the improved performance on including
RQE and NLI features in Section 4.4 as shown in
Table 1. Moreover we see that on including RQE
embeddings we get the performance boost as seen
in Table 2.

Another question which we can ask ourselves is
how many entailed answers are good enough for
performing filtering and re-ranking and how con-
fident do we need to be about the entailment to
consider a candidate. Experimental results shown
in Table 2 show that we can’t take too high num-
ber of candidates as well as the threshold can’t be
too high. We see in Table 3 that if we take too
high threshold for entailment, we might not find
an entailing answer altogether. Hence going for-
ward for all experiments we have taken threshold
as 0.7 and number of candidates as 3.

While the feature sets discussed in the above ex-
periments perform well in filtering tasks, they do
not do well when their re-ranking is done based
on their filtering scores. In further experiments
we train a specialized ranking system using SVM-
Rank (Joachims, 2006) and the results are shared
in Table 4. We see that the same exact feature
set could learn well to re-rank when trained with
specialized algorithm. Improved results in Table 2
and Table 4 by learning on the same feature set but
using different algorithms motivated us to design
our approach in Section 4.5 which would learn a
joint high-dimensional feature space for both the
tasks.

Experiments on multi-task learning clearly
show that this technique is superior to feature-
engineered approach in both re-ranking and filter-
ing. We attribute this increase in performance to
mainly two factors: Firstly the multi-task setting
allows it to learn more generalized features. Sec-
ondly, inclusion of high-dimensional NLI features
in the architecture which was previously not pos-
sible with feature-engineered approach. However
the computationally expensive nature of this ap-
proach did not let us experiment with many hyper-
parameter settings. The results on Validation data
and Test data are shown in Table 6 and Table 5
respectively.

From the results in Table 6 and Table 5 we see
that it reinforces our analysis done about the can-
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Hyperparameters Accuracy Spearman’s Rho MRR Precision
N=3, T=0.7, Corpus = Mediquad + Icliniq 0.765 0.338 0.962 0.776

N=3 , T=0.7 , Corpus = Mediquad 0.733 0.354 0.955 0.741
N=5 , T=0.7, Corpus = Mediquad 0.7 0.317 0.97 0.709

Table 5: Multi-Task learning results with different parameter settings on Test data for Task 3.

Hyperparameters Accuracy Spearman’s Rho
N=3, T=0.7, Corpus = Mediquad + Icliniq 78.12 0.351
N=3 , T=0.7 , Corpus = Mediquad 76.1 0.372
N=5 , T=0.7, Corpus = Mediquad 71.1 0.331

Table 6: Multi-Task learning results with different parameter settings on Validation data for Task 3.

didate and threshold settings based on Table 3. We
also see that adding additional data from Icliniq
improves the accuracy but decreases the Spear-
man’s Rho. This can be attributed to the language
style difference between ICliniq and MediQUAD
(Ben Abacha and Demner-Fushman, 2019). As re-
ranking is a tougher task, it’s performance takes a
hit while the accuracy does improve owing to bet-
ter RQE coverage.

7 Shared Task Performance

To evaluate our performance on the test sets, we
submitted our NLI, RQE and Re-ranking & Filter-
ing model independently on the shared task leader-
board. For Task 1, i.e. the NLI task, we achieved
an accuracy of 85.7 on the test set. For Task 2, i.e.
the RQE task, we observed that the test set var-
ied greatly as compared to the training set, lead-
ing to poor results on test dataset. To account
for this difference, we discarded the training data
and trained our model only on the validation and
augmented data. This model gave us an accu-
racy of 67.1 on the test set. The best model for
both the tasks is the ensemble of Infersent (Con-
neau et al., 2017), BERT fine-tuned (last 4 layers)
(Devlin et al., 2018) and MT-DNN (Huang et al.,
2013). For both For Task 3, i.e. the re-ranking and
filtering task, the results are shown in Table 5.

In the NLI task , our system ranked 7th (out
of 17), showing an improvement of 20% over the
task baseline. In the RQE task, our system ranked
4th (out of 12), showing an improvement of 24%
over the task baseline. In the Question Answering
Task, our system ranked 3rd (out of 10) in filter-
ing metrics (both Accuracy and Precision) while it
ranked 1st (out of 10) in the ranking metrics (both
Mean Reciprocal Rank and Spearmanś Rho). The

system performs significantly better than others in
ranking metrics, showing an improvement of 2.6%
and 42% in Mean Reciprocal Rank and Spear-
man’s Rho respectively over the next best scores
from the participating teams. Interestingly, our
system is the only participating system which out-
performs the baseline (ChiQA provided answers)
on Spearman’s Rho. However, this is not surpris-
ing as we take ChiQA rank as one of our input
features.

8 Error Analysis

In case of NLI, we observe that the model gener-
ally fails in two major settings explained below.
Since most of our training data has negation words
like ‘do not’, ‘not’ etc for the contradicting hy-
pothesis, the model assigns the label as contradic-
tion whenever it sees a confusing example with
negation term as shown in Figure 3.

Figure 3: NLI model Incorrectly Predicting Contradic-
tion on Test Set

The model also fails while trying to differentiate
between statements that are neutral versus those
that entail each other. The model generally relies
on lexical overlap between the hypothesis and the
premise, and in cases, when it is unable to find
one, falls back to assigning the label as neutral as
shown in Figure 4.

For the RQE task, we observe that our model la-
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Figure 4: NLI model Incorrectly Predicting Neutral on
Test Set

bels the CHQ-FAQ pairs as entailment when they
have a high lexical overlap of the medical enti-
ties and not entailment otherwise. We confirm this
with some examples from the RQE test set.

Figure 5: RQE model incorrectly predicting True on
test set

Figure 6: RQE model incorrectly predicting False on
test set

The example shown in Figure 5 has a uni-
gram overlap of 6 and bigram overlap of 3. So
our model predicts the label as True, whereas the
ground truth label is False because even though the
same disease is being referred to in both the CHQ
and FAQ, the questions being asked about it are
different.

The example shown in Figure 6 has a unigram
overlap of 2 and bigram overlap of 0. So our
model predicts the label as False, whereas the
ground truth label is True because the FAQ is sort
of like an abstractive summary of the CHQ with
less lexical overlap.

Above analysis suggests that RQE or NLI mod-
els are baised to the lexical overlap of medical en-
tities. To overcome this, we could extract medical
entities using Metamap (Aronson, 2006) and mask

them randomly during training so that the model
learns the semantic representation even without
the medical entities. Masking entities has been
shown to generalize better in ERNIE(Zhang et al.,
2019) in comparison to BERT(Devlin et al., 2018).

For the re-ranking and filtering tasks we look
into the macro-trends and investigate what quali-
fies as tougher problems for both the tasks. From
Figure 7, it is clear that lower ranked valid answers
are generally harder answers for filtering. Observ-
ing the valid answers with low ranks, we see that
they generally have only 1-2 relevant sentences
each, which might be hard for the model especially
in cases where the answers have a lot of sentences.
Similar analysis for the filtering tasks based on the

Figure 7: Relationship between the rank of the valid
answer and it’s filtering recall. The number in paren-
thesis denotes number of such examples seen in the test
dataset.

number of sentences in the answers show some in-
teresting trends, as shown in Figure 8. Interest-
ingly, the model performs really well for filtering
longer answers with more than 80 sentences. On
further analysis, it is seen that generally the en-
tailed answers can be entirely found in these large
candidate answers for the valid answers.

We also observe that the spearman’s rho is sen-
sitive to the number of valid candidates for each
question. Especially when the number of valid
candidates are less, the metric can vary consid-
erably even with a small error. When analyzing
the spearman’s rho on per question basis, it is seen
that the questions with just two valid answers get
a score of -1 on getting the order wrong, while
the score is 1 if the order is right. This variabil-
ity is captured in Figure 9. The accuracy however,
varies only slightly based on the number of valid
answers.
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Figure 8: Relationship between the number of sen-
tences in an answer and the filtering accuracy. The
number in parenthesis denotes number of such exam-
ples seen in the test dataset.

Figure 9: Trends in accuracy and spearman’s rho based
on the number of valid answers for a question. In case
of 1 valid answer, spearman’s rho is always taken as
0. The number in parenthesis denotes number of such
examples seen in the test dataset.

9 Conclusion and Future work

Our results show that learning to re-rank and fil-
ter answers in a multi-task setting help learn a
joint feature space which improves performance
on both the tasks. In addition, we show that we can
harness the power of pre-trained models by fine-
tuning them for a specific task and using them as
feature extractors to assist in non-trivial tasks such
as re-ranking and large document classification.
We see that an increase in the size of the corpus
with augmented data leads to improved results,
hence some more work can be done to build upon
the work of (Ben Abacha and Demner-Fushman,
2019). Additionally, we could improve the NLI
and RQE systems by tackling the bias created due
to the lexical overlap of medical entities among
the two sentences/questions, as these were the pre-
dominant errors made by our models. This would

indirectly translate to an improved performance of
the filtering and re-ranking system.

References

Asma Ben Abacha and Dina Demner-Fushman. 2016.
Recognizing question entailment for medical ques-
tion answering. In AMIA Annual Symposium Pro-
ceedings, volume 2016, page 310. American Medi-
cal Informatics Association.

Alan R Aronson. 2006. Metamap: Mapping text to
the umls metathesaurus. Bethesda, MD: NLM, NIH,
DHHS, pages 1–26.

Asma Ben Abacha and Dina Demner-Fushman. 2016.
Recognizing question entailment for medical ques-
tion answering. In AMIA 2016, American Med-
ical Informatics Association Annual Symposium,
Chicago, IL, USA, November 12-16, 2016.

Asma Ben Abacha and Dina Demner-Fushman. 2019.
A question-entailment approach to question answer-
ing. arXiv e-prints.

Asma Ben Abacha, Chaitanya Shivade, and Dina
Demner-Fushman. 2019. Overview of the mediqa
2019 shared task on textual inference, question en-
tailment and question answering. In ACL-BioNLP
2019.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): Integrating biomedical termi-
nology. Nucleic acids research, 32:D267–70.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming Question Answering Datasets
Into Natural Language Inference Datasets. arXiv e-
prints, page arXiv:1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.
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A Appendix

Classifier Architecture

Filtering

3824-2048:bn:a
2048-1024:bn:a
1024-512:bn:a
512-512:bn:a
512-256:bn:a
256-64:bn:a
64-1:a

Pairwise Ranking

7648-3824:bn:a
3824-2048:bn:a
2048-1024:bn:a
1024-512:bn:a
512-512:bn:a
512-256:bn:a
256-64:bn:a
64-1:a

Table 7: Classifier Specifications: ‘X1-X2’ - denotes
a linear layer with X1 input features and X2 output
features. ‘bn - with batch normalization, ‘a’: denotes
activation, ‘:’ - separates two layers. Activation used
everywhere is ReLU except for the output layer where
sigmoid is used.

Convolution Encoder Layers
Input : c :768
c:768, k:(1,1), s:(1,1),p:(1,1), bn
c:512, k:(3,3), s:(1,1), p:(2,2), bn
c:512, k:(3,3), s:(2,2), p:(1,1)
c:256, k:(2,2), s:(1,1), p:(1,1), bn
c:,256 k:(3,3), s:(1,1), p:(2,2),
Quadrant Pooling

Table 8: Convolution Encoder Specification. ‘c’: num-
ber of filters, ‘k’: kernel size, ‘s’: stride size, ‘p’:
padding size, ‘bn’: with batch normalization. The sizes
are in order (height, width). ReLU activation function
is used after each layer except for the input and output
layer. Quadrant Pooling is described in Section 4.
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