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Abstract

Having in mind that different languages
might present different challenges, this paper
presents the following contributions to the area
of Information Extraction from clinical text,
targeting the Portuguese language: a collec-
tion of 281 clinical texts in this language, with
manually-annotated named entities; word em-
beddings trained in a larger collection of sim-
ilar texts; results of using BiLSTM-CRF neu-
ral networks for named entity recognition on
the annotated collection, including a compari-
son of using in-domain or out-of-domain word
embeddings in this task. Although learned
with much less data, performance is higher
when using in-domain embeddings. When
tested in 20 independent clinical texts, this
model achieved better results than a model us-
ing larger out-of-domain embeddings.

1 Introduction

In recent years, much data has been produced on
different areas, including healthcare, which, be-
sides its general relation to well-being, is also
economically-relevant (Folland et al., 2017). We
focus on the clinical field, where valuable infor-
mation is hidden on produced admission notes, di-
agnostic test reports, patient discharge letters or
clinical case reports. The latter contain informa-
tion about patient clinical histories, such as their
condition; diagnostic tests and respective results;
or treatments and how they were administered.
Such data is very useful for clinical profession-
als in their future decisions about what diagnos-
tic tests or therapies a patient has to do, based
on past clinical information. However, manually
processing all available texts and looking for im-
portant information is impractical for humans. To
make it more tractable, Natural Language Process-
ing (NLP) tools have been developed for automat-
ing tasks such as Information Extraction (IE), in-

cluding Named Entity Recognition (NER), and ul-
timately store acquired information in relational
databases, where queries should be more efficient.

Similarly to many other NLP-related tasks,
the field of clinical NLP has been growing.
This is both reflected in the organization of
shared tasks (Uzuner et al., 2011; Stubbs and
Uzuner, 2015; Doğan et al., 2014; Pestian et al.,
2007; Elhadad et al., 2015; Bethard et al., 2016;
Kelly et al., 2016), which made available several
datasets, such as Informatics for Integrating Bi-
ology & the Bedside (i2b2); or in the adoption
of deep neural network architectures that lead to
state-of-the-art results, namely Bidirectional Long
Short Term Memory with a stacked Conditional
Random Fields layer (BiLSTM-CRF) (Xu et al.,
2017; Unanue et al., 2017). However, most of
the work going on targets text written in English.
When it comes to other languages, such as Por-
tuguese, the number of studies on this field is
much lower (Névéol et al., 2018).

This work aims to boost clinical NLP in Por-
tuguese with three main contributions: (i) A col-
lection of Portuguese clinical texts with manually-
labelled named entities; (ii) A model of word
embeddings learned from a larger collection of
Portuguese clinical text (i.e., Neurology clinical
case descriptions); (iii) An analysis of the per-
formance of state-of-the-art models in Portuguese
clinical NER, namely BiLSTM-CRF neural net-
works (Lample et al., 2016), tested on the labelled
collection, either using the previous word embed-
dings or general-language word embeddings.

In the next section, we introduce deep learning
architectures and word embedding (WE) models
that have been used in NER. Section 3 describes
how texts were labelled and provides some figures
on the resulting dataset and its revision. Further-
more, we explain how the in-domain WE model
was trained and its qualitative difference towards
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the pre-trained out-of-domain WE model used.
Finally, we explain the architecture of our deep
learning model. Section 4 reports the results for
hyperparameters grid search. After choosing the
best model for both in-domain and out-of-domain
WEs, we tested it on an independent test set. We
report micro-averaged relaxed F1-score and strict
F1-score of 70.41% and 62.71%, respectively. We
conclude with a brief discussion.

2 Related Work

Training a model for clinical NER requires access
to much clinical textual data. Although much text
of this kind is produced everyday, its availability
is highly limited due to strict ethical regulations
that constrain using data with personal informa-
tion, as in clinical case or diagnostic test reports.
Still, when available, such texts constitute valu-
able sources of data, and may be used in the de-
velopment of models for Information Extraction,
including Named Entity Recognition (NER).

In order to create machine learning models that
identify and classify named entities (NEs), the lat-
ter have to be annotated on a collection of texts,
which can be used as training and/or testing data.
That is generally done manually, as several au-
thors did. For instance, Uzuner et al. (2011) anno-
tated 871 medical records with Medical Problems,
Treatments and Tests, in order to provide a dataset
for the 2010 i2b2/VA concept extraction shared
task; and Stubbs and Uzuner (2015) labelled
1,304 individual longitudinal records with heart-
risk NEs (e.g. Diabetes references or Hyperten-
sion) with 0.95 agreement ratio. Beyond English,
some studies involved the creation of datasets in
other languages. Skeppstedt et al. (2014) anno-
tated Disorders, Findings, Body Structures and
Pharmaceutical Drugs, in 1,104 clinical notes in
Swedish, with agreement ratios of 0.79, 0.66, 0.80
and 0.90, respectively. Mykowiecka et al. (2009)
annotated 700 mammography reports and 100 di-
abetic discharge documents, in Polish, with NEs
that carry information about Pathological Find-
ings, Breast Tissue, and Crucial Health informa-
tion about diabetic patients. Ferreira et al. (2010)
manually labelled 90 clinical notes in Portuguese
with NEs such as Condition, Anatomical Site and
Finding. Although in Portuguese, the previous
dataset is not publicly available due to ethical reg-
ulations, but the annotation guidelines followed
are published (Ferreira, 2011).

In recent years, deep learning approaches have
been used for NER, leading to state-of-the-art re-
sults. Clinical NER is not an exception, with
such models used for extracting data from Elec-
tronic Medical Records (EMR). Adopted architec-
tures include Recurrent Neural Networks (RNN),
with simple RNN layers, LSTM layers, BiLSTM
layers or Gated Recurrent Unit (GRU) layers;
Convolutional Neural Networks (CNN); and also
Feed-Forward Networks (FFN). Luu et al. (2018)
showed that a vanilla RNN outperforms a FNN us-
ing the same features on clinical texts provided in
the CLEF eHealth 2016 task (Kelly et al., 2016) on
the extraction of relevant information from nurs-
ing shift changes notes. This was expected be-
cause FNNs do not consider past information.

Chokwijitkul et al. (2018) assessed the per-
formance of CNN, RNN, LSTM, BiLSTM and
GRU networks for identifying heart risk factors in
EMRs and found that BiLSTM networks achieved
the best F-measure. They further show that such
models perform near the rule-based and shallow
machine learning models, but do not resort to
gazetteers or knowledge bases. Wu et al. (2018)
compared different classifiers (CRF, CNN and
BiLSTM) for NER, using the dataset of the 2010
i2b2 NLP challenge. They also compared their
models with the best models at the time (Struc-
tured SVM) and trained during the competition
(Semi-Markov model), and used pre-trained word
embeddings (WEs) as features for the BiLSTM
network and the CNN. For the CRF, they used
three different feature sets: only word and n-
gram features; the previous plus linguistic fea-
tures and document level features, such as sec-
tion names; and all the previous plus features
from general clinical NLP systems (MedLEE,
MetaMap, KnowledgeMap) and gazetteer features
from the UMLS terminology. Similarly to Chok-
wijitkul et al. (2018), they report that the BiLSTM
network outperformed all the others.

Others developed a BiLSTM network with a
character embedding layer, a WE layer and a CRF
layer. Xu et al. (2017) evaluated their architecture
on the NCBI Disease Corpus (793 PubMed medi-
cal literature abstracts), while Unanue et al. (2017)
evaluated their models with three different datasets
(2010 i2b2/VA dataset, DrugBank and MedLine).
Both showed that the CRF layer and the character
embedding feature have great importance on the
performance of a BiLSTM network.
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Although these models became the trend in
NER, they rely heavily on the quality of the WE
models for converting each word to its embed-
ding vector. On the clinical domain, Newman-
Griffis and Zirikly (2018) compared WEs using
in-domain and out-of-domain corpora. In-domain
corpora consisted of two different datasets, one
with 154,967 Electronic Health Records (EHR)
and a subset with 17,952 EHR documents fo-
cused on Physical Therapy (PT) and Occupational
Therapy (OT). Out-of-domain corpora were con-
stituted by 14.7 million abstracts from the 2016
PubMed baseline and two million free-text doc-
uments released as part of the MIMIC-III crit-
ical care DB. Besides those, they used a Fast-
Text model, pre-trained on Wikipedia 2017 docu-
ments. They reported that, with WEs trained with
small in-domain corpora, results were similar to
those achieved with the large out-of-domain cor-
pora. Unanue et al. (2017) additionally showed
that re-training WE models with domain-specific
texts improves the performance of the model.

Although not on the clinical domain, there is
some related work on Portuguese. On general
NER, de Castro et al. (2018) recently achieved
state-of-art results using a BiLSTM-CRF model.
On distributional similarity, Hartmann et al.
(2017) compared Portuguese word WEs, learned
with different methods, in both intrinsic (syntac-
tic and semantic analogies) and extrinsic (PoS tag-
ging and sentence similarity) tasks. There are also
studies suggesting that, in tasks such as PoS tag-
ging and NER, combining character embedding
with pre-trained WE outperforms approaches that
use only WEs (Santos and Zadrozny, 2014; dos
Santos and Guimarães, 2015).

3 Experimental Set-up

This section presents the textual data used, the
guidelines followed for its annotation and charac-
terizes the resulting dataset with some numbers on
its contents and revision. It further explains how
the WE models used were learned and the archi-
tecture of the NER model, including how its hy-
perparameters grid search was made.

3.1 Dataset
Three different datasets were used in different
stages of this work:

• For training and validation, 281 clinical case
texts collected from the numbers 1 and 2

of volume 17 of the clinical journal Sinapse
(Sinapse, 2017a,b), published by the Por-
tuguese Society of Neurology. Neurology
texts were used because the testing texts, that
originally motivated this work, were obtained
from the Neurology service.

• For testing, a small set of 20 clinical
texts obtained from the Neurology service
of the Coimbra University Hospital Centre
(CHUC), in Coimbra, Portugal. These in-
clude admission notes, diagnostic test reports
and patient discharge letters and were orig-
inally used in the development of the Euro-
pean Epilepsy Database (Klatt et al., 2012).

• For training the in-domain WE model, a total
of 3,377 clinical texts were collected from all
the volumes of the Sinapse journal, published
between 2001 and 20181. Although the jour-
nal contains clinical cases and experimental
reports we just collected the clinical cases.

As all the texts used for training, validation
and test were in a raw format, they were pre-
processed with tools in NLPPort (Rodrigues et al.,
2018), a NLP toolkit for Portuguese, based on
OpenNLP – each text was tokenized with Tok-
Port, PoS-tagged with TagPort, and lemmas for
each token-PoS pair obtained with LemPort. After
preprocessing, manual NE annotation was based
on the guidelines described in Ferreira’s PhD The-
sis (Ferreira, 2011), originally developed with the
help of physicians and linguists and used in the
annotation of Ferreira’s dataset. All the NEs in
the guidelines were considered, with the exception
of Location, because it represents geographical lo-
cations, e.g, “Coimbra” (a city) or “domicı́lio”
(home, in Portuguese), which does not represent
important clinical information. Although Date-
Time does not represent clinical information as
well, it is important to know what temporal in-
formation is related to diseases or therapies, e.g.,
their frequency or duration. Furthermore, two new
NE classes were introduced, namely Genetics and
Additional Observations. The former was used for
information about genes related to diseases (e.g.,
“...o estudo do gene PMP22 identificou...” (...study
of the gene PMP22 identified...)), and the latter
for all clinically-relevant information that did not
suit any of the other classes (e.g. “...medicada e

1http://www.sinapse.pt/archive.php
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ex-fumador, refere...” (...medicated and ex-smoker,
states...). The dataset thus considers 14 different
tags, one for each NE class, plus the Out tag, for
tokens not belonging to a NE. For annotation, we
adopted the Inside-Outside-Beginning (IOB) for-
mat, which allows to distinguish between tokens
in the beginning and inside a NE. This is essen-
tial to sequential classifiers and allows for better
rules, which do not enable to tag a token as inside-
NE before the beginning of the same NE. Table 1
illustrates the annotated data.

Tables 2 and 4 provide a quantitative analysis
of the training and validation datasets, while ta-
bles 3 and 5 a quantitative analysis of the indepen-
dent test set. Tables 2 and 3 quantify the tokens
for each IOB tag (NT), the number of distinct to-
kens (NDT), and their ratios (NTR, NDTR). Fi-
nally, tables 4 and 5 show the number of NE oc-
currences (O), the number of distinct NE occur-
rences (DO) and their ratios (OR, DOR). As the
test set has only reports related to epilepsy, it does
not have occurrences of the Genetics NE.

The entire dataset was annotated by the first au-
thor of this paper, a last-year student of the MSc
in Biomedical Engineering. After that, to vali-
date the annotation, 30% of the dataset was revised
by two MSc students in Biomedical Engineering,
two PhD students in Data Science, one Computer
Science Professor working on NLP and NER, and
one Physiotherapist. Each of the previous revised
15 texts. Based on the revised subset, we calcu-
lated the agreement ratios as the ratio between the
number of tokens which were annotated with the
same tag as our annotation and the total number
of tokens for each NE. Although there were some
tokens annotated with different tags, we did not
change dataset labels. Agreement ratios (ARs) for
each NE, as well as the number of agreed (AT) and
of not-agreed tags (NAT) are in table 6.

The lowest ARs are for Additional Observa-
tions, Characterization and Results. They were
also the classes whose original labelling raised
more doubts. Additional Observations is a gen-
eral class which may include other NEs, for in-
stance, in case it does not relate to the patient but
to their family — e.g., “...diagnóstico de doença
neoplástica no marido...” (...diagnosis of neoplas-
tic disease in her husband...) — , or information
about the patient that is important but does not
suit any other class — e.g. “...abandono do acom-
panhamento médico...” (...abandonment of medi-

cal assistance...). Characterization may have to-
kens from the Condition or Evolution classes, de-
pending on the perspective of the reader — e.g.,
“possı́vel” (possible) in “possı́vel processo vas-
cular” (possible vascular process) or “hipótese”
(hypothesis) in “hipótese de metástase” (hypoth-
esis of metastasis), for Condition, and “progres-
sivo” (progressive) in “declı́nio cognitivo progres-
sivo” (progressive cognitive decline) for Evolu-
tion. Depending on their interpretation, results
may also have tokens from Condition — e.g.
“nova lesão” (new injury) in “...RM-CE que docu-
mentou nova lesão...” (...RM-CE which documents
a new injury...), or “hematoma” in “...TAC-CE
que mostrou aumento do hematoma...” (...TAC-
CE which shown an increase of the hematoma...).
Overall, the agreement for all the NE classes is
above 90%, except for Characterization. This is
high, especially considering the number of classes
covered and that the used documents are not al-
ways easy to interpret, due to the high presence of
medical terminology. We recall that these numbers
apply for only 30% of the dataset. Due to lack of
time, the remaining documents were not revised.

Token POS Tag Lemma IOB Tag
de prp de O
66 num 66 O

anos n ano O
, punc , O

com prp com O
antecedentes n antecedente B-DT

de prp de O
dislipidemia n dislipidemia B-C

e conj-c e O
sı́ndrome n sı́ndrome B-C
depressiva adj depressivo I-C

, punc , O
começou v-fin começar O

por prp por O

Table 1: Example of dataset annotation. Sentence:
“...de 66 anos, com antecedentes de dislipidemia e
sı́ndrome depressiva, começou por...”

3.2 Word Embeddings
In-domain WE models were trained with 3,377
clinical texts collected from the Sinapse jour-
nal, comprising 686,762 tokens all together. For
training the model, we used the FastText algo-
rithm (Bojanowski et al., 2017), available in the
Gensim library (Rehurek and Sojka, 2010). Fast-
Text learns embeddings for characters and repre-
sents each word by the sum of its characters. It was
used instead of word2vec (Mikolov et al., 2013b)
because, while word2vec would consider unseen
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IOB Tags NT NTR (%) NDT NDTR (%) Examples Examples (English)
B-AS 2,491 4.272 770 6.794 seio (B-AS)

venoso (I-AS)
venous
sinousI-AS 2,510 4.305 599 5.285

B-C 3,884 6.662 1,074 9.476 paramnésia (B-C)
reduplicativa (I-C)

reduplicative
paramnesiaI-C 3,634 6.233 1,269 11.196

B-CH 1,043 1.789 503 4.438 mais (B-CH)
marcado (I-CH)

more
markedI-CH 576 0.988 358 3.159

B-DT 1,516 2.600 280 2.470 18 (B-DT)
semanas (I-DT)

18
weeksI-DT 2,495 4.279 378 3.335

B-EV 794 1.362 184 1.623 desenvolveu (B-EV)
gradualmente (I-EV)

gradually
developedI-EV 452 0.775 120 1.059

B-G 61 0.105 15 0.132 gene (B-G)
EGFR (I-G)

EGFR
geneI-G 62 0.106 47 0.415

B-N 768 1.317 46 0.406 não (B-N)
impedindo (I-N)

not
hinderingI-N 2 0.003 2 0.018

B-OBS 217 0.372 153 1.350 restantes (B-OBS)
irmãos (I-OBS)

remaining
siblingsI-OBS 227 0.389 144 1.271

B-R 1,767 3.031 589 5.197 VS (B-R)
aumentada (I-R)

increased
ESRI-R 2,520 4.322 922 8.135

B-RA 71 0.122 14 0.124 intravenoso (B-RA) intravenousI-RA 0 0.000 0 0.000
B-T 2,041 3.501 490 4.323 estudo (B-T)

citogénico (I-T)
cytogenetic

studyI-T 2,113 3.624 677 5.973
B-THER 894 1.533 384 3.388 correção (B-THER)

de (I-THER)
correction

ofI-THER 709 1.216 332 2.929
B-V 410 0.703 276 2.435 0.8 (B-V)

células (I-V)
0.8

cellsI-V 584 1.002 112 0.988
O 26,463 45.388 1,596 14.082 - -

Total 58,304 100,000 11,334 100.000 - -

Table 2: Quantitative analysis of the training/validation dataset.
Reference: CH: Characterization; T: Test; EV: Evolution; G: Genetics; AS: Anatomical Site; N: Negation; OBS: Additional Observations; C: Condition; R:

Results; DT: DateTime; THER: Therapeutics; V: Value; RA: Route of Administration; O: Out

IOB Tag NT NTR (%) NDT NDTR (%)
B-AS 17 0.628 13 1.343
I-AS 12 0.444 8 0.826
B-C 99 3.660 48 4.959
I-C 109 4.030 58 5.992

B-CH 51 1.885 42 4.339
I-CH 48 1.774 33 3.409
B-DT 130 4.806 67 6.921
I-DT 194 7.172 96 9.917
B-EV 52 1.922 30 3.099
I-EV 12 0.444 10 1.033
B-G 0 0.000 0 0.000
I-G 0 0.000 0 0.000
B-N 33 1.220 7 0.723
I-N 0 0.000 0 0.000

B-OBS 47 1.738 26 2.686
I-OBS 58 2.144 35 3.616

B-R 19 0.702 16 1.653
I-R 14 0.518 13 1.343

B-RA 3 0.111 3 0.310
I-RA 0 0.000 0 0.000
B-T 66 2.440 36 3.719
I-T 36 1.331 28 2.893

B-THER 88 3.253 62 6.405
I-THER 59 2.181 37 3.822

B-V 38 1.405 29 2.996
I-V 62 2.292 18 1.860
O 1,458 53.900 253 26.136

Total 2,705 100 968 100

Table 3: Quantitative analysis of the test dataset

NE O OR (%) DO DOR (%)
AS 2,488 15.59 1,412 16.14
C 3,887 24.35 2,203 25.18

CH 1,044 6.54 632 7.22
DT 1,519 9.52 883 10.09
EV 793 4.97 331 3.78
G 63 0.39 50 0.57

OBS 217 1.36 166 1.90
N 768 4.81 48 0.55
R 1,766 11.06 1,090 12.46

RA 71 0.45 14 0.16
T 2,041 12.79 1,012 11.57

THER 894 5.60 563 6.44
V 411 2.57 344 3.93

Total 15,962 100.00 8,748 100.00

Table 4: NE Training/Validation Dataset Description

words as out-of-vocabulary, FastText may repre-
sent some of them, based on their characters.

For training the FastText model, the follow-
ing parameters were used: 300 dimensions, skip-
gram with negative sampling, minimum count of
5 words, minimum char-gram length of 1, and de-
fault settings for the remaining hyperparameters.
The skip-gram algorithm (Mikolov et al., 2013a)
predicts the surrounding context given the input
word, which allows to relate words to their neigh-
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NE O OR (%) DO DOR (%)
AS 17 2.644 14 2.960
C 99 15.397 66 13.953

CH 51 7.932 45 9.514
DT 130 20.218 102 21.564
EV 52 8.087 34 7.188
G 0 0.000 0 0.000
N 33 5.132 7 1.480

OBS 47 7.309 34 7.188
R 19 2.955 17 3.594

RA 3 0.467 3 0.634
T 66 10.264 44 9.302

THER 88 13.686 73 15.433
V 38 5.910 34 7.188

Total 643 100 473 100

Table 5: NE Test Dataset Description

NE AR (%) AT NAT Total
AS 98.01 1,821 37 1,858
C 94.16 2,323 144 2,467

CH 86.29 428 68 496
DT 93.79 1,193 79 1,272
EV 97.15 375 11 386
G 100.00 27 0 27
N 97.74 259 6 265

OBS 91.11 164 16 180
R 91.68 1,322 120 1,442

RA 91.30 21 2 23
T 96.81 1,273 42 1,315

THER 95.13 605 31 636
V 96.78 331 11 342
O 96.91 8,941 285 9,226

Total 95.73 19,083 852 19,935

Table 6: Agreement Ratios for all NEs and Non-Entity

bors, an important characteristic for NER. The
number of dimensions (300) and minimum word
count (5) were the same as in the out-of-domain
WE model. Minimum char-grams length (1) was
used for training the model with all the characters,
thus enabling to recognize unknown words. Fi-
nally, all the words in the dataset starting with an
uppercase character were converted to lowercase,
since they represent the same word but in the be-
ginning of a sentence. After preprocessing, only
7,312 tokens occur more than 5 times.

For the out-of-domain WEs, we used a gen-
eral Portuguese WE model downloaded from the
FastText website2, trained with billions of tokens
from Wikipedia and Common Crawl (Grave et al.,
2018). As it was trained with a character window
of 5 characters, a total of 27 words and 80 lemmas
in our dataset do not have an embedding vector
in this model. For them, we assign the embed-
ding of the word ’UNK’, meaning unknown, but
not a Portuguese word, thus not introducing much

2https://fasttext.cc/docs/en/crawl-vectors.html

noise to the embedding datasets. This strategy was
followed because simply putting out these words
could influence the labelling of the network, as the
classification of each word depends on the classi-
fication of the others around.

3.3 Model Architecture

Given the current trend on NER and its state-of-
the-art results, we adopted a BiLSTM-CRF neural
network as our model for this purpose. The archi-
tecture used is presented in figure 1. The word em-
bedding step is where all the tokens are converted
to their embedding vectors. Lemmas are also con-
verted to their WE vectors and concatenated to the
previous vectors. PoS tags, orthographic and mor-
phological features, e.g. first character is upper-
case, all characters are uppercase, digit/non-digit
were added as well. Afterwards, the embedding
vectors are inserted in a BiLSTM layer with one
backward layer and one forward layer. The for-
mer enables the network to preserve the informa-
tion from the past to the future, since it analyses
the information from the left to the right. The for-
ward layer enables the network to do the inverse
of the backward. Together, these types of LSTM
improve the prediction of the network, which, this
way, understands better the context of each token.

Finally, the output of the BiLSTM layer is in-
serted in the CRF layer, which enables the network
to consider the neighbor tags. In other words, it al-
lows the network to create tag relations, e.g., if a
token is tagged with a beginning of NE, the fol-
lowing token is probably the continuation of such
NE. This layer is also responsible for not allowing
a token to be tagged with an in-NE tag without this
NE being started previously.

Adam optimization function (Kingma and Ba,
2014) was used with a learning rate of 0.001. A
grid search was not performed here because this
study does not focus on the architecture, but on
the application of these models to Portuguese.

In order to get the best number of hidden units
and dropout percentages for our model, we per-
formed a grid search using 50 training epochs with
10-fold cross validation. As the dataset has a low
number of instances, we used a small set of val-
ues for the grid search of the number of hidden
units [23, 27]. Keeping the network with a low
number of parameters prevents overfitting to the
data (Zhang et al., 2016). Furthermore, we used
an interval of dropout percentage values from 10%
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to 50%. This hyperparameter allows the network
to prevent both overfitting and under-learning (Sri-
vastava et al., 2014). An independent grid search
was run for each WE model, because they had
been trained in different types of text.

antecedentes de dislipidemia síndromee depressiva

Word
Embedding
conversion 

LSTM LSTM LSTMLSTMLSTM LSTM

LSTM LSTM LSTMLSTMLSTM LSTM
Bi-LSTM

layer
forward 
LSTM

backward 
LSTM

B-DT O B-C O B-C B-CCRF 
layer 

Orthographic and
Morphological Features
POS Tag Embeddings

Lemma Embeddings

Word Embeddings

Figure 1: BiLSTM-CRF Neural Network Architec-
ture on the sentence: “antecedentes de dislipidemia e
sı́ndrome depressiva” (history of dyslipidemia and de-
pressive syndrome)

4 Results and Discussion

According to grid search, the best number of hid-
den units is 26 and 25, respectively for the network
that uses the in-domain WEs and for the one that
uses out-of-domain WEs. The best dropout per-
centage is 50% for both. This confirms that, for
small datasets, the value of each parameter should
also be small. Furthermore, the results corroborate
that dropout regularization helps avoiding overfit-
ting, since the best results were obtained for high
dropout percentage. Validation results for both
models and all NE classes are in table 7.

Besides looking at recall and precision, we fo-
cus our discussion on the F1-score. Table 7
shows relaxed and strict results. Relaxed or one-
point performance measures the performance of
the model for each token, while the strict per-
formance considers all occurrences, i.e., one oc-
currence is well predicted if all its tokens are
well predicted too. For example, with the re-
laxed evaluation, “sı́ndrome depressiva” (depres-
sive syndrome) counts as two tokens, i.e, each to-
ken’s tag is independently compared to its golden
tag. With the strict evaluation, if the model fails
on a single token’s tag, all NE occurrence is con-
sidered incorrect.

Results show that the in-domain WE model per-
forms better than the out-of-domain, which is in

line with Newman-Griffis and Zirikly (2018). An
important reason for this is that the out-of-domain
model was not trained with unigrams, leading to
the representation of some tokens with the ‘UNK’
vector, instead of the original token, thus intro-
ducing bias. A second reason is that the out-of-
domain model was not trained specifically for the
clinical domain. Although trained in a much larger
collection of text, the out-of-domain model fails
to learn clinical relations between different dis-
eases or diagnostic tests, as the in-domain model
does. Table 8 shows examples that confirm this
fact, e.g. in the in-domain model the word “ECG”
is related to three other cardiac diagnostic tests,
beyond its extended form, while in the out-of-
domain model, it is only related to one more (“eco-
cardiograma”); or the neighbors of “diabetes” in
the in-domain model, which include related dis-
eases (e.g., “dislipidemia” and arterial hyperten-
sion (“HTA”), while, in the out-of-domain model,
the neighbors of the same word are words that
contain it (e.g., “pré-diabetes” and “diabetes.O”).
Furthermore, in the out-of-domain model, several
words are not related with the clinical domain,
as “hemiparasita” (hemiparasite) in the “hemi-
parésia” (hemiparesis) example, or words are not
related with anything understandable, as in the
“poliangeı́te” example.

Table 9 has the results for both WE models on
the independent test set, and for a CRF model
used as a baseline. The CRF was trained in the
same dataset, using the same features as the deep
learning model, but raw tokens and lemmas, in-
stead of their embeddings. The best hyperparam-
eters of the validation dataset were used for both
WEs. This experiment aims to analyze how well
the models trained in text from the journal perform
on text collected directly from the hospital.

Once again, the in-domain WE model outper-
formed the out-of-domain model. Average results
for this independent dataset are about 10% lower
than for the validation dataset. A possible rea-
son for this is that the test set contains some ad-
mission notes and patient discharge letters, struc-
tured on items (e.g., origin, admission motive) and
their description, which is different from the clin-
ical cases in the validation dataset, described in
a full paragraph that covers all related informa-
tion. Furthermore, since they were not published,
these texts were written less carefully, and there-
fore have some orthographic errors.



230

Recall Precision F1-Score
WE NE Relaxed Strict Relaxed Strict Relaxed Strict

In-Domain mic Avg 82.34±1.97 74.48±2.37 82.77±1.72 75.25±2.36 82.54±1.61 74.86±2.17
Out-of-Domain 81.63±2.07 73.35±1.57 82.31±1.48 75.06±1.62 81.96±1.50 74.19±1.44

In-Domain mac Avg 79.04±1.99 73.08±3.00 81.06±2.12 75.59±2.77 79.54±1.89 73.87±2.66
Out-of-Domain 77.75±2.84 70.87±3.07 79.71±2.87 73.73±3.42 78.02±2.76 71.58±2.91

In-Domain Weighted Avg 82.34±1.97 74.48±2.37 82.84±1.49 75.23±2.39 82.44±1.59 74.73±2.15
Out-of-Domain 81.63±2.07 73.35±1.57 82.35±1.54 74.82±1.65 81.76±1.59 73.90±1.42

Table 7: 10-fold Cross Validation Results with both WEs

WE Word Top-5 Nearest Neighbors
In-Domain ECG ECG-Holter; electrocardiograma; ecodoppler; ecocardiograma ecocardiogramas
Out-of-Domain ECG eletrocardiograma; Electrocardiograma; electrocardiograma; ecocardiograma; Ecocardiograma
In-Domain diabetes mellitus; dislipidemia; dislipidémia; HTA; diabética
Out-of-Domain diabetes diabete; pré-diabetes; Diabetes; Pré-diabetes; diabetes.O
In-Domain paramnésia amnésia; amnésico; mnésico; mnésica; desorientação
Out-of-Domain paramnésia paramécia; param3; paranóia.; alucinatória; articulatória
In-Domain polineuropatia neuropatia; mononeuropatia; axonal; sensitivo-motora; miopatia
Out-of-Domain polineuropatia Polineuropatia; polineuropatias; mononeuropatia; polineurite; neuropatia
In-Domain poliangeı́te ganglonopatia; citopatia; mielopatia; linfoproliferativa; granulomatosa

Out-of-Domain poliangeı́te

CH12CH14CH15CH18CH26CH30CH4DH5DH6DH8DH9DH10DH12DH15DH20DH30DH;
estômagoCarbosymagDulcolaxGavisconImodiumIpraaloxLansoylLubentylMaaloxMicrolaxRennieSmectaSpasfon;
XIII787980818283848586878889909192Colóquio;
AnguloSimulacrosVeı́culosABCIABSCABTDABTMBRTPBRTSBSRPBSRSLTRGVAMEVAPAVCOCVCOTVEVE-
CIVETAVFCIVGEOVLCIVOPEVPVPMEVPMTVRCIVSAEVSAMVSATVTGCVTPGVTPTVTTFVTTRVTTUVUCIA1;
biológicoCaméfitoLigações

In-Domain hemiparésia hemiparesia; hemiplegia; hemianopsia; hemianópsia; biparésia
Out-of-Domain hemiparésia hemiparéticos; hemiparesia; hemiparasita; hemiplegia; hemiparasitas
In-Domain artralgias poliartralgias; algias; mialgias; cervicalgias; lombalgias
Out-of-Domain artralgias Artralgias; artralgia; mialgias; Mialgias; Nevralgias

Table 8: Top-5 Nearest Neighbors for both WE models

Average results for the CRF are lower than the
average results for both BiLSTM-CRF models.
This difference is in line with the results obtained
by Chokwijitkul et al. (2018) and Wu et al. (2018).
In general, the results of table 9 follow the agree-
ment ratios presented in table 6. Additional Ob-
servations and Characterization present the low-
est results because they carry too general informa-
tion easily labelled by the model as a more spe-
cific NE (e.g. Condition or Evolution) as explained
in section 3.1. Results show low results as well,
due to their similarity with Condition, also shown
in the examples of section 3.1. Value, Negation,
DateTime, Evolution and Anatomical Site show
the highest results because they are very specific.
Value is related to numbers of therapeutic doses
or to the results of diagnostic texts, Negation and
Evolution are NEs with many repeated tokens (see
tables 2 and 3) and they are highly related to Con-
dition and Results, a characteristic caught by the
CRF layer. DateTime is related with time, usu-
ally written using the same words and not depend-
ing on the author of the text (e.g. training texts
contain “aos 60 anos” (at 60 years old) and “du-
rante 21 dias” (during 21 days) and test texts have
“aos 14 anos” (at 14 years old) and “durante o

perı́odo da manhã” (during the morning)). Al-
though Anatomical Site has few tokens on the test
texts, they are frequent on the training data, which
is why results for this NE are high. We were ex-
pecting better results for Condition, Test and Ther-
apeutics because they are too specific. This did not
happen, and a possible explanation is the different
style of writing in the training and testing texts.

Finally, it is important to recall that the Genet-
ics NE is not in the test set, and that the same set
has only one token for Negation and Route of Ad-
ministration, which explains the same relaxed and
strict results for these NEs.

5 Conclusion

With this study, we achieved our the three main
goals: we gathered and annotated a new dataset for
Portuguese clinical text; we applied a BiLSTM-
CRF neural network for NER on the previous
dataset; we learned a WE model of Portuguese
clinical text and compared the performance of
the previous approach when using this model and
when using general language WEs. The datasets
and the learned WE model are publicly available
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Recall Precision F1-Score
Algorithm WE NE Relaxed Strict Relaxed Strict Relaxed Strict

BiLSTM-CRF In-Domain
AS

100.00 88.24 80.56 68.18 89.23 76.92
Out-of-Domain 93.10 88.24 75.00 65.22 83.08 75.00

CRF - 86.21 70.59 42.37 40.00 56.82 51.06

BiLSTM-CRF In-Domain
C

70.19 70.71 59.11 54.26 64.18 61.40
Out-of-Domain 72.12 68.69 67.87 59.13 69.93 63.55

CRF - 72.12 61.62 52.63 42.07 60.85 50.00

BiLSTM-CRF In-Domain
CH

24.24 23.53 42.11 38.71 30.77 29.27
Out-of-Domain 21.21 21.57 47.73 45.83 29.37 29.33

CRF - 15.15 21.57 50.00 44.00 23.26 28.95

BiLSTM-CRF In-Domain
DT

85.80 66.15 84.50 71.07 85.15 68.53
Out-of-Domain 87.64 61.54 82.08 68.38 84.78 64.78

CRF - 82.41 48.46 76.95 64.29 79.58 55.26

BiLSTM-CRF In-Domain
EV

81.25 75.00 82.54 81.25 81.89 78.00
Out-of-Domain 64.06 53.85 78.85 80.00 70.69 64.37

CRF - 60.94 51.92 92.86 90.00 73.58 65.85

BiLSTM-CRF In-Domain
N

96.97 96.97 88.89 88.89 92.75 92.75
Out-of-Domain 96.97 96.97 91.43 91.43 94.12 94.12

CRF - 93.94 93.94 91.18 91.18 92.54 92.54

BiLSTM-CRF In-Domain
OBS

17.14 12.77 64.29 40.00 27.07 19.35
Out-of-Domain 0.95 0.00 33.33 0.00 1.85 0.00

CRF - 4.76 6.38 100.00 75.00 9.09 11.76

BiLSTM-CRF In-Domain
R

63.64 68.42 38.18 44.83 47.73 54.17
Out-of-Domain 57.58 47.37 45.24 37.50 50.67 41.86

CRF - 54.55 42.11 19.78 22.22 29.03 29.09

BiLSTM-CRF In-Domain
RA

33.33 33.33 50.00 50.00 40.00 40.00
Out-of-Domain 33.33 33.33 50.00 50.00 40.00 40.00

CRF - 33.33 33.33 100.00 100.00 50.00 50.00

BiLSTM-CRF In-Domain
T

62.75 54.55 68.82 59.02 65.64 56.69
Out-of-Domain 60.78 48.48 57.41 44.44 59.05 46.38

CRF - 50.98 34.85 43.70 33.33 47.06 34.07

BiLSTM-CRF In-Domain
THER

84.35 67.05 58.49 57.84 69.08 62.11
Out-of-Domain 79.59 64.77 68.42 62.64 73.58 63.69

CRF - 69.39 61.36 82.93 80.60 75.56 69.68

BiLSTM-CRF In-Domain
V

96.00 84.21 88.07 80.00 91.87 82.05
Out-of-Domain 89.00 73.68 83.18 66.67 85.99 70.00

CRF - 86.00 63.16 82.69 63.16 84.31 63.16

BiLSTM-CRF In-Domain
mic Avg

70.97 62.36 69.85 63.05 70.41 62.71
Out-of-Domain 67.68 56.14 72.32 62.03 69.93 58.94

CRF - 63.43 49.46 63.79 55.11 63.61 52.13

BiLSTM-CRF In-Domain
mac Avg

67.97 61.74 67.13 61.17 65.45 60.10
Out-of-Domain 63.03 54.87 65.04 55.94 61.93 54.42

CRF - 59.15 49.11 69.59 62.15 56.81 50.12

BiLSTM-CRF In-Domain
Weighted Avg

70.97 62.36 69.75 61.91 68.52 61.10
Out-of-Domain 67.68 56.14 68.20 57.87 66.07 56.26

CRF - 63.43 49.46 70.07 60.77 61.39 51.31

Table 9: Results of BiLSTM-CRF model using both WEs and of baseline CRF model on independent test set

in our GitHub repository3. We hope that mak-
ing all these resources available for everyone has
a positive impact on IE from text written in Por-
tuguese, namely on clinical text.

In-domain WEs were trained with much less
text, but lead to higher performance in NER. Al-
though in a different language, this is in line with
Newman-Griffis and Zirikly (2018), and confirms
that, in the clinical domain, it should be better to
train WE models exclusively with clinical texts,
even if there is substantially more in-domain text.

The performance of the model in the indepen-
dent test confirms that it is possible to train mod-
els for extracting information from hospital clini-
cal texts without having direct access to them. In
other words, IE models trained with public clin-
ical cases extracted from journals are able to ex-
tract information from texts never seen before by
the model. This is important, given the difficulty

3https://github.com/fabioacl/
PortugueseClinicalNER

to access clinical texts from hospitals.
In order to improve the current results, we plan

to make a better parameter optimization and to ex-
plore other deep learning architectures, such as
those using residual learning (Tran et al., 2017).
Furthermore, we aim to increase the datasets used
and tackle relation extraction between NEs (Sahu
et al., 2016), which would make it easier to sum-
marize clinical reports.
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