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Abstract

Domain adaptation remains one of the most
challenging aspects in the wide-spread use
of Semantic Role Labeling (SRL) systems.
Current state-of-the-art methods are typically
trained on large-scale datasets, but their per-
formances do not directly transfer to low-
resource domain-specific settings. In this
paper, we propose two approaches for do-
main adaptation in biological domain that in-
volve pre-training LSTM-CRF based on ex-
isting large-scale datasets and adapting it for
a low-resource corpus of biological processes.
Our first approach defines a mapping between
the source labels and the target labels, and the
other approach modifies the final CRF layer
in sequence-labeling neural network architec-
ture. We perform our experiments on Pro-
cessBank (Berant et al., 2014) dataset which
contains less than 200 paragraphs on biologi-
cal processes. We improve over the previous
state-of-the-art system on this dataset by 21
F1 points. We also show that, by incorporat-
ing event-event relationship in ProcessBank,
we are able to achieve an additional 2.6 F1
gain, giving us possible insights into how to
improve SRL systems for biological process
using richer annotations.

1 Introduction

Semantic Role Labeling (SRL) is shallow seman-
tic representation of a sentence, that allows us to
capture the roles of arguments that anchor around
an event. Despite significant recent progress in
Deep SRL systems (He et al., 2017; Tan et al.,
2017), there has been limited work in adapting
such systems to low resource domain-specific sce-
narios where the label space of both domains are
completely different. Additionally, existing do-
main adaptation for SRL requires an overhead of
annotating the new corpus using guidelines similar

∗∗Both authors equally contributed to the paper.

to the source dataset, and every domain-specific
corpora might not necessarily adhere to the same
label structure and similar annotation guidelines.

We present two different domain adaptation
strategies that rely on training the model on a large
corpora (source dataset) and fine-tuning on a low-
resource domain-specific corpus (target dataset),
more specifically biological processes domain.
The first approach uses mappings from the source
label space to the target label space. For this, we
present DeepSRL-CRF, which incorporates a CRF
layer over the DeepSRL model (He et al., 2017)
with an intermediate step of mapping labels from
source to target domain. For the second approach,
we use a CNN-LSTM-CRF model to pre-train the
neural network weights on the source domain, and
adapt the final CRF layer of the network based on
the target label space. We then fine-tune the model
on the target dataset.

For empirical evaluation, we explore the chal-
lenge of SRL in ProcessBank dataset, where the
target domain (biological processes) is drastically
different compared to the source domain (news).
Both of our approaches are effective for adapt-
ing SRL systems for biological processes. Com-
pared to the previous best system, we get an im-
provement of about 24 F1 points when we use
label-mapping approach, and about 21 F1 point
improvement when we adapt the final CRF layer.
Our contributions can be summarized as follows:

1. Two different approaches for domain adap-
tation of SRL for biological processes, with our
code and models publicly available 1

2. An in-depth analysis for each of the do-
main adaptation strategies, both perform signifi-
cantly better in low-resource SRL for biological
processes

3. Analysis of the model performance when the

1https://github.com/dheerajrajagopal/SciQA
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target corpus is annotated with event-event rela-
tionships to the SRL corpus

2 Models

To label the event-argument relationships, we pro-
pose two models inspired from the current state-
of-art on the SRL and NER literature. Since our
downstream task lends itself to a low-resource set-
ting, we hypothesize that an LSTM-CRF architec-
ture would be better suited for the role-labeling
task.
DeepSRL-CRF : We introduce DeepSRL-CRF,
that is inspired from DeepSRL (He et al., 2017).
The DeepSRL-CRF model uses a stacked BiL-
STM network structure as its representation layer
with a CRF layer on top. The overall model
uses stacked BiLSTMs using an interleaved struc-
ture, as proposed in Zhou and Xu (2015). As de-
scribed in the original model, we use gated high-
way connections (Zhang et al., 2016; Srivastava
et al., 2015) to prevent over-fitting.
CNN-LSTM-CRF : We adapt the state-of-art
sequence-labeling model by Ma and Hovy (2016).
This is an end-to-end model, which uses a BiL-
STM, Convolutional Neural Network (CNN) and
CRF to capture both word- and character-level
representations. The model first uses a CNN
to capture character-level representation. These
embeddings are concatenated with the word-level
embeddings and fed into a BiLSTM to capture the
contextual information at word-level. Here, we
adapt this model to additionally concatenate 100-
dimensional predicate indicators for every word
before feeding the result into a BiLSTM. The out-
put vectors from the BiLSTM are fed into the CRF
layer, which jointly decodes the best sequence.
The model uses dropout layers for both CNN and
BiLSTM to prevent overfitting.

3 Domain Adaptation

Label Mapping : In our first approach, we per-
form domain by mapping each label from the tar-
get label-space to the source label-space by align-
ing it to the closest label from the source dataset.
Since we used the CoNLL-2005 and CoNLL-2012
datasets for pre-training, we used the PropBank la-
bels to map each relation in ProcessBank accord-
ing to the PropBank annotation guidelines. Al-
though there is human intervention in the pipeline,
it is time-efficient since this process has to be done
only once for a target dataset. We asked three in-

dependent annotators to perform the mapping of
these labels, and the majority voted mapping was
used as the final mapping scheme. In case of no
majority vote, the annotators discussed to reach a
consensus. We had an inter-annotator agreement
of 0.8. The entire process for ProcessBank dataset
took approximately two hours. The mapping for
individual relationships are given in Table 1. The
network architecture did not change throughout
the training process for both source and target do-
mains. The final CRF layer of the neural network
maintains the same dimensions as the source do-
main.

PropBank ProcessBank

ARG0 Agent
ARGM-LOC Location
ARG2 Theme
ARG3 Source
ARG4 Destination
ARG1 Result
ARGM-MNR Other

Table 1: Label Mapping: PropBank to ProcessBank

Adapting the CRF Layer : In the second ap-
proach, we maintain the network weights for the
BiLSTM layers constant from the pre-training and
we learn the transition and emission probabilities
from scratch in the target domain dataset. More
specifically, we first train the entire model on
CoNLL-2005 and CoNLL-2012 SRL data. Next,
we replace the final CRF layer with the label-space
dimensions in our target domain, and keep the re-
maining weights in the model as is. Finally, we
start fine-tuning the entire model by training it on
the target data. Contrary to the previous approach,
this approach does not require any manual inter-
vention.

Event Interactions : The ProcessBank dataset
is also annotated with event-event interactions.
In our model, we also study whether event-event
structure is important in predicting the event-
argument structure. We leverage this additional
event-event interaction annotations, and add them
to the input to predict the event-argument role-
labels. From an annotation perspective, this ex-
periment helps us analyze whether the event-event
structure labels are the bottle-neck for better SRL
performance - especially in domain specific set-
tings.
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4 Experiments

Experimental Setup : For evaluation, we use
the CoNLL-2005 (Carreras and Màrquez, 2005)
and CoNLL-2012 (Pradhan et al., 2013) datasets
as our primary large-scale datasets with the stan-
dard splits. For the domain adaptation scenario,
we use the ProcessBank dataset (Berant et al.,
2014)2. We used 134 annotated paragraphs for
training, 19 for development and 50 for test-
ing. Each passage in the ProcessBank dataset
describes a process, defined by a directed graph
(T,A,Ett, Eta), where nodes T denote event
triggers and A denote their corresponding argu-
ments. Ett represents labeled edges event-event
relations and Eta describe event-argument rela-
tions. The edges Eta are annotated with seman-
tic roles AGENT, THEME, SOURCE, DESTINA-
TION, LOCATION, RESULT and OTHER. Each
Ett edge between event and another event is an-
notated with the relations CAUSE, ENABLE and
PREVENT. Our experiments primarily focus on
the prediction of the event-argument structures
Eta since the source datasets that we use for do-
main adaption do not contain any event-event re-
lationship annotation.
Baselines : In our first set of baselines, we com-
pare our models on the CoNLL-2005 and CoNLL-
2012 tasks. We use the previous state-of-the-art
SRL system from He et al. (2018) as our baseline.
3. Since our model is based on LSTM-CRF hybrid
architecture, we implement two other baselines for
our approach. We use a standard BiLSTM-CRF
model (Huang et al., 2015), and a model based
on the structured attention proposed in Liu and
Lapata (2017) which uses CRF style structure in
the intermediate layer. For a fair comparison, we
augmented this structured attention based network
with a CRF layer on top. We use 300D GLoVe em-
beddings (Pennington et al., 2014) across all mod-
els. For domain adaptation, we use the original
system from Berant et al. (2014) as the baseline.
It uses the approach in Punyakanok et al. (2008),
where for each trigger, a set of argument candi-
dates are first determined, and then a binary classi-
fier uses argument identification features to prune

2For dataset statistics, we refer readers to Berant et al.
(2014), Table 1. We use the same training and test split pro-
vided in the original dataset. We further split the training set
into training and development set.

3Due to resource limitations, we were unable to run the
same model for 500 epochs, so we report results from their
paper for CoNLL-2005 and CoNLL-2012 datasets

this set with high recall.

5 Results

Semantic Role Labeling : Table 2 shows the
SRL results4 for the CoNLL-2005 and CoNLL-
2012 datasets across all baseline models. From
the table, it is evident that our DeepSRL-CRF
model with ELMo embeddings performs slightly
lesser than the current state-of-the-art SRL model
DeepSRL with ELMo. We were able to per-
form significantly better than the other baselines –
BiLSTM-CRF and Strucutured Attention model.
Our DeepSRL-CRF model without ELMo per-
formed significantly lower and the improvement
was notably higher with ELMo.
Domain Adaptation : For all our domain adapta-
tion experiments, we found that the DeepSRL and
DeepSRL-CRF models reach similar F1 scores
without any pre-training. Table 3 shows the re-
sults for the set of models that were trained for do-
main adaptation using label mapping. After pre-
training it on the CoNLL 2005 and CoNLL-2012
dataset for 50 epochs, we fine-tuned the weights
on the ProcessBank dataset without making any
changes to the network. The results signify that
the models that were effective for a large dataset,
might not achieve similar gains when restricted
to specific low-resource domains. The DeepSRL-
CRF model, after incorporating event-event rela-
tionships, outperforms the previous system from
Berant et al. (2014) by about 24 F1 points.

In our second domain adaptation approach,
we test the CNN-LSTM-CRF model by learn-
ing the final CRF layer with transition and
emission probabilities for the target label space.
The CNN-LSTM-CRF model, without any pre-
training achieves 40.62 F1 which is similar to
previous performance from Berant et al. (2014).
However, after pre-training it on CoNLL 2005 and
CoNLL-2012 dataset for 50 epochs, the models
outperforms by about 21.7 F1 points. Adapting the
CRF layer, with transition and emission probabili-
ties for the target domain data in its label space,
shows impressive gains in the low-resource set-
ting, specially when there is a limitation for using
any human-intervention in the domain adaptation
process. Although empirically effective, we be-
lieve that there is immense scope to understanding
the impact of better initialization from a theoreti-
cal perspective. We also observe that pretraining

4We use span-based precision, recall and F1 measure
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Model CoNLL-2005 (WSJ) CoNLL-2012 (OntoNotes)

P R F1 P R F1

BiLSTM-CRF 80.9 79.4 80.3 80.0 77.8 78.9
Structured Attention 81.0 80.1 80.5 79.6 77.9 78.8
CNN-LSTM-CRF 82.1 82.7 82.4 81.7 83.0 82.3
DeepSRL 81.6 81.6 81.6 81.8 81.4 81.6
DeepSRL-ELMo - - 87.4 - - 85.5
DeepSRLCRF 35.0 46.3 40.0 51.6 78.1 62.2
DeepSRLCRF-ELMo 84.7 83.6 84.1 84.4 85.8 85.1

Table 2: SRL results for CoNLL-2005 and CoNLL-2012 datasets. DeepSRL-ELMo resuls from He et al. (2018)

Model Development Test

P R F1 P R F1

Berant et al. (2014) - - - 43.4 34.4 38.3

CoNLL-2005

DeepSRL 46.7 53.7 50.0 46.1 51.0 48.5
DeepSRL-ELMo 55.0 48.0 51.7 48.8 41.7 44.5

DeepSRLCRF 51.4 58.1 54.5 50.8 57.0 53.7
DeepSRLCRF-ELMo 53.5 66.2 59.2 49.1 63.2 55.3

+ Event relations 63.0 63.7 63.3 61.0 62.2 61.6
CoNLL-2012

DeepSRL 51.1 56.9 53.9 43.9 49.0 46.3
DeepSRL-ELMo 52.6 50.0 51.2 48.1 43.2 44.6

DeepSRLCRF 45.9 63.1 53.1 40.3 56.7 47.2
DeepSRLCRF-ELMo 44.6 67.5 53.7 36.9 62.1 46.3

+ Event relations 65.0 65.0 65.0 62.1 63.0 62.6

Table 3: SRL results for ProcessBank dataset - Domain adaptation using label mapping.

Model Test

P R F1

Berant et al. (2014) 43.4 34.4 38.3
No pre-training 40.6 40.6 40.6

CoNLL-2005

BiLSTM-CRF 44.7 42.3 43.4
CNN-LSTM-CRF 56.8 55.5 56.1
+Event relations 55.3 53.4 54.4

CoNLL-2012

BiLSTM-CRF 42.8 41.0 42.3
CNN-LSTM-CRF 59.7 60.2 60.0
+ Event relations 58.8 57.7 58.3

Table 4: Results for ProcessBank - Domain adaption
by replacing the CRF layer

on CoNLL-2012 dataset was more effective com-
pared to pre-training on CoNLL-2005 dataset for
this model. The former has about 35000 more
training data instances than later.

Which domain adaptation technique works
best? Our results show that the DeepSRL-CRF
model based on label mapping approach perform
the best overall (improvement of 24 F1 points)
assuming we have event-event relationship anno-

tations. In a setting where there are multiple
datasets of different domains, training different
network for each of the datasets might be cum-
bersome. We believe that the domain adaptation
based on label mapping would suit such situa-
tions better. However, in the cases where there
is no explicit label mapping possible or no read-
ily available event-event interaction annotations
in target domains, resorting to replacing the CRF
layer would be the most effective for domain adap-
tion gains. Our CNN-LSTM-CRF model achieves
an improvement of 21 F1 points by replacing the
CRF layer without event-event annotations. One
of the drawbacks of this system is that it cannot
be trained end-to-end. Given that there is limited
overhead in modifying the architecture, we believe
this wouldn’t be a bottleneck for NLP systems. If
end-to-end training is a hard constraint, we resort
to our DeepSRL-CRF model. In terms of gener-
alization capability and performance, pre-training
on the CoNLL-2012 dataset and fine-tuning on the
ProcessBank dataset with explicit label mapping
with additional event-event relations gives us the
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best results. 5

6 Related Work

Domain adaptation leverages on large-scale
datasets to help improve the performance on other
smaller and similar tasks. From the SRL perspec-
tive, one of the earliest work from Daume III and
Marcu (2006) showed simple but effective ways
for ‘transferring the learning’ from a source to
a target domain. Building on strong feature-rich
models, Dahlmeier and Ng (2010) analyzed vari-
ous features and techniques that are used for do-
main adaptation and conducted an extensive study
for biological SRL task. Later, Lim et al. (2014)
proposed a model that uses structured learning
for domain adaptation. Although effective, these
methods rely on hand-annotated features. Re-
cently, there have been neural-network based at-
tempts at Domain adaptation in SRL. Do et al.
(2015) combined the knowledge from a neural lan-
guage model and external linguistic resource for
domain adaptation for biomedical corpora. Our
work closely aligns to this work from a modeling
stand-point. Our target domain is biological pro-
cess descriptions from high-school biology with-
out restrictions of PropBank style annotations.

Our work builds on multiple existing works,
especially the dataset from Berant et al. (2014),
using the thematic roles defined in Palmer et al.
(2005). Our approach is inspired by the recent
success in including structured representations in
deep neural networks (He et al., 2017; Ma and
Hovy, 2016) for structured prediction tasks. Our
primary motivation is to improve the system per-
formance for low-resource domain-specific event-
argument labeling tasks, particularly biological
processes. Argument labeling, specifically, SRL
as been used for biomedical domain previously.
E.g. Shah and Bork (2006) applied SRL in the
LSAT system to identify sentences with gene tran-
scripts, and Bethard et al. (2008) applied SRL
to extract information about protein movement.
However, developing annotated SRL data for each
task can be expensive.

7 Conclusion

In this work, we present two new approaches
to adapt deep learning models trained on large

5Please refer to the supplemental material 9 for a detailed
discussion on results

scale datasets, to smaller domain-specific biolog-
ical process dataset. We present a LSTM-CRF
based architectures which perform on-par with the
state-of-the-art models for SRL but significantly
better than them in low-resource domain-specific
settings. We show significant improvement of ap-
proximately 24 F1 points over current best model
for role-labeling on the ProcessBank - notably dif-
ferent in nature compared to CoNLL dataset.
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8 Appendices

8.1 Parameter Settings

CNN-LSTM-CRF : The words that are ab-
sent in GloVe embeddings are replaced with
<UNK> and intialized randomly. The character-
embeddings are intialized with uniform samples as
proposed in He et al. (2015). Weight matrices are
initialized using Glorot initialization (Glorot and
Bengio, 2010). Bias vectors are initialized to zero
except the bias vector of Bi-LSTM (bf ) which is
initialized to 1. Parameter optimization is per-
formed using Adam optimizer with batch size of
32 and learning rate of 0.0001. We use a non-
variational dropout of 0.5 on CNN and BiLSTM
layers. We use a hidden size of 512, and use 5
layers for the BiLSTM. For character embeddings,
we use a hidden size of 30. The CNN’s use 30 fil-
ters.
DeepSRL-CRF : We maintain most of the exper-
imental settings similar to He et al. (2017). We
convert all tokens to lower-case, initialize with the
embeddings. We use the Adadelta with ε = 1e−6

and ρ = 0.95 with mini-batch size 64. The
dropout probability was set to 0.1 and gradient
clipping at 1. The models are trained for 50 epochs
(compared to 500 epochs in the original DeepSRL
model) and use the best model from 50 epochs for
pretraining. We do not add any constraints for de-
coding and we use the viterbi decoding to get our
output tags.

9 Supplemental Material

9.1 Additional Discussion

DeepSRL-CRF: The DeepSRL-CRF model
achieves comparable but slightly lower perfor-
mance compared to the current state-of-the-art in
the CoNLL-2005 and CoNLL-2012 SRL datasets.
We observed that these performances did not
directly translate to the ProcessBank dataset. In
the limited-resource domain of ProcessBank,
the final CRF layer had a more pronounced
performance improvements. Adding CRF layer to
DeepSRL model improves performance by atleast
4 F1 points when pre-trained using CoNLL-2005
and 1 F1 point when pre-training using CoNLL-
2012 dataset. Adding ELMo embeddings to
the DeepSRL and DeepSRL-CRF models did
not result in performance gains in ProcessBank
except for one experimental setup (DeepSRL-
CRF pre-trained on CoNLL-2005). Across both

http://arxiv.org/abs/1705.09207
http://arxiv.org/abs/1705.09207
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datasets, we acheived our best results when we
incorporated event-event relations in the SRL
annotation. Although a performance improvement
is expected, the best results for domain adaptation
was achieved after adding the event relations. The
tags that gain most from the event relationships
are Agent, Destination, Source and Location.
The improvements primarily come from the gain
in precision with a slight drop in recall. We
believe that the reason for this improvement is the
artifact of the dataset’s event-event relationships
tend to correlate often with these entities given
the nature of these biological processes. Across
CoNLL-2005 and CoNLL-2012, it did not make
a considerable difference as to which dataset we
used for pre-training. Although CoNLL-2012 has
slighly better performance (shown in table 3, there
could be additional hyper-parameter tuning that
could lead to slightly different results between the
two datasets.

CNN-LSTM-CRF: The CNN-LSTM-CRF
model on ProcessBank achieves 40.62 F1 without
any pre-training. This result is comparable to
the baseline, showing the importance of ini-
tialization of weights while training a neural
network based model. However, we achieve
substantial improvement of about 21.7 F1 with
pre-training on CoNLL data and later adapting
only the final CRF layer for the target label space.
In contrast to DeepSRL-CRF, we notice that
performance difference between pre-training on
CoNLL-2005 and CoNLL-2012 is considerable
(4 F1 points). We have to note that CoNLL-2012
dataset has about 35000 more training data
instances than CoNLL-2005. We hypothesize that
these additional training instances might have
contributed to the final F1 score while training
using CoNLL-2012 dataset. We also observe that
pre-training improves the performance of tags
that have less number of instances in the target
domain (ProcessBank). One of the unique cases
is shown in table 7, where Source tag prediction
shows huge improvements (57.0 F1) after the
model was pre-trained using the CoNLL data.
However, we do not see the same trend for the
Other tag. Further, as per table 5 and 6, the
model particularly confused the Other tag with
the O tag of the BIO scheme. In the original
ProcessBank dataset, the tags that do not belong
to the original proposed categories, were classified
as one single Other category and this category

had the least number of annotated examples.
We believe that the combination of these factors
made it challenging for the model to predict this
particular category. According to table 5 and 6,
the most frequent tags – Theme and Agent have
high prediction accuracy. However, their spans
are sometimes incorrectly identified. For instance
the Theme tags are identified incorrectly as O or
vice-versa. Overall B tags have higher precision
than the I tags, and the model is able to better
predict the start of a span than the end of a span.

From table 7, we also notice that annotating
a dataset with event-event relationships does not
consistently improve the performance which we
observed in DeepSRL-CRF. These results also
show that adding the CNN-layer of character em-
beddings to the BiLSTM-CRF model helps the
model perform better across all the labels. em-
phasizing the relevance of these character embed-
dings.



87

% Agt. Dest Loc Oth. Res. Src. The. O

Agt. 71.1 1.0 0.0 0.0 0.0 1.0 6.2 20.6
Dest. 0.0 53.9 7.7 0.0 7.7 0.0 15.4 15.4
Loc 0.0 3.0 45.5 0.0 3.0 0.0 9.1 39.4
Oth. 0.0 25.0 25.0 0.0 0.0 0.0 0.0 50.0
Res. 0.0 0.0 2.2 0.0 31.1 0.0 24.4 42.2
Src. 0.0 15.8 0.0 0.0 0.0 68.4 15.8 0.0
The. 4.0 1.6 0.0 0.0 1.2 0.8 85.9 6.5

Table 5: Best performing CNN-LSTM-CRF model’s breakdown of true (rows) and predicted (columns) B tags with
BIO tagging scheme. (Agt.=Agent; Dest.=Destination; Loc.=Location; Oth.=Other; Res.=Result; Src.=Source;
The.=Theme; O=O tag in BIO tagging)

% Agt. Dest Loc Oth. Res. Src. The. O

Agt. 65.6 1.1 0.0 0.0 0.0 0.0 7.1 26.2
Dest. 0.0 43.0 15.8 0.0 5.3 0.0 16.7 19.3
Loc 0.0 9.2 48.7 0.0 5.3 0.0 6.6 30.3
Oth. 0.0 16.7 16.7 0.0 0.0 0.0 0.0 66.7
Res. 0.0 0.0 0.8 0.0 43.0 0.0 20.3 35.9
Src. 0.0 6.5 0.0 0.0 0.0 71.0 22.6 0.0
The. 3.2 2.7 3.4 0.0 1.7 1.2 73.2 14.6

Table 6: Best performing CNN-LSTM-CRF model’s breakdown of true (rows) and predicted (columns) I tags with
BIO tagging scheme. (Agt.=Agent; Dest.=Destination; Loc.=Location; Oth.=Other; Res.=Result; Src.=Source;
The.=Theme; O=Otag in BIO tagging)

BiLSTM-CRF CNN-LSTM-CRF

#Instances PB only
+Pretrain.

+Dom. adp.
PB only

Pretrain.
+Dom. adp.

+Verb
Relations

Agent 280 25.8 37.0 35.5 62.1 63.3
Destination 153 8.0 2.7 38.5 51.3 53.1

Location 109 4.8 1.8 26.1 44.1 38.8
Other 11 0.0 0.0 0.0 0.0 0.0
Result 173 2.8 12.0 11.1 34.7 25.0
Source 50 8.7 15.4 0.0 57.9 59.1
Theme 838 44.9 57.3 52.1 67.2 66.0

Table 7: F1 scores on different tags in ProcessBank with BiLSTM-CRF and CNN-LSTM-CRF model
(PB=ProcessBank). Pre-training was done on CoNLL-2012 dataset


