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Abstract

Semantic specialization methods fine-tune dis-
tributional word vectors using lexical knowl-
edge from external resources (e.g., WordNet)
to accentuate a particular relation between
words. However, such post-processing meth-
ods suffer from limited coverage as they af-
fect only vectors of words seen in the ex-
ternal resources. We present the first post-
processing method that specializes vectors of
all vocabulary words — including those un-
seen in the resources — for the asymmetric rela-
tion of lexical entailment (LE) (i.e., hyponymy-
hypernymy relation). Leveraging a partially
LE-specialized distributional space, our POS-
TLE (i.e., post-specialization for LE) model
learns an explicit global specialization func-
tion, allowing for specialization of vectors
of unseen words, as well as word vectors
from other languages via cross-lingual trans-
fer. We capture the function as a deep feed-
forward neural network: its objective re-scales
vector norms to reflect the concept hierarchy
while simultaneously attracting hyponymy-
hypernymy pairs to better reflect semantic sim-
ilarity. An extended model variant augments
the basic architecture with an adversarial dis-
criminator. We demonstrate the usefulness and
versatility of POSTLE models with different in-
put distributional spaces in different scenarios
(monolingual LE and zero-shot cross-lingual
LE transfer) and tasks (binary and graded LE).
We report consistent gains over state-of-the-art
LE-specialization methods, and successfully
LE-specialize word vectors for languages with-
out any external lexical knowledge.

1 Introduction

Word-level lexical entailment (LE), also known as
the TYPE-OF or hyponymy-hypernymy relation, is
a fundamental asymmetric lexico-semantic relation

(Collins and Quillian, 1972; Beckwith et al., 1991).

*Both authors contributed equally to this work.
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The set of these relations constitutes a hierarchi-
cal structure that forms the backbone of semantic
networks such as WordNet (Fellbaum, 1998). Au-
tomatic reasoning about word-level LE benefits a
plethora of tasks such as natural language inference
(Dagan et al., 2013; Bowman et al., 2015; Williams
et al., 2018), text generation (Biran and McKeown,
2013), metaphor detection (Mohler et al., 2013),
and automatic taxonomy creation (Snow et al.,
2006; Navigli et al., 2011; Gupta et al., 2017).

However, standard techniques for inducing word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014; Melamud et al., 2016; Bojanowski
et al., 2017; Peters et al., 2018, inter alia) are un-
able to effectively capture LE. Due to their crucial
dependence on contextual information and the dis-
tributional hypothesis (Harris, 1954), they display
a clear tendency towards conflating different rela-
tionships such as synonymy, antonymy, meronymy
and LE and broader topical relatedness (Schwartz
et al., 2015; Mrksi¢ et al., 2017).

To mitigate this deficiency, a standard solution
is a post-processing step: distributional vectors are
gradually refined to satisfy linguistic constraints
extracted from external resources such as Word-
Net (Fellbaum, 1998) or BabelNet (Navigli and
Ponzetto, 2012). This process, termed retrofitting
or semantic specialization, is beneficial to language
understanding tasks (Faruqui, 2016; Glavas and
Vuli¢, 2018) and is extremely versatile as it can be
applied on top of any input distributional space.

Retrofitting methods, however, have a major
weakness: they only locally update vectors of
words seen in the external resources, while leaving
vectors of all other unseen words unchanged, as
illustrated in Figure 1. Recent work (Glavas$ and
Vulié, 2018; Ponti et al., 2018) has demonstrated
how to specialize the full distributional space for
the symmetric relation of semantic (dis)similarity.
The so-called post-specialization model learns a
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Figure 1: High-level overview of a) the POSTLE full vo-
cabulary specialization process; and b) zero-shot cross-
lingual specialization for LE. This relies on an initial
shared cross-lingual word embedding space (see §2).

global and explicit specialization function that im-
itates the transformation from the distributional
space to the retrofitted space, and applies it to the
large subspace of unseen words’ vectors.

In this work, we present POSTLE, an all-words
post-specialization model for the asymmetric LE
relation. This model propagates the signal on the
hierarchical organization of concepts to the ones
unseen in external resources, resulting in a word
vector space which is fully specialized for the LE re-
lation. Previous LE specialization methods simply
integrated available LE knowledge into the input
distributional space (Vuli¢ and Mrksi¢, 2018), or
provided means to learn dense word embeddings
of the external resource only (Nickel and Kiela,
2017, 2018; Ganea et al., 2018; Sala et al., 2018).
In contrast, we show that our POSTLE method can
combine distributional and external lexical knowl-
edge and generalize over unseen concepts.

The main contribution of POSTLE is a novel
global transformation function that re-scales vector
norms to reflect the concept hierarchy while simul-
taneously attracting hyponymy-hypernymy word
pairs to reflect their semantic similarity in the spe-
cialized space. We propose and evaluate two vari-
ants of this idea. The first variant learns the global
function through a deep non-linear feed-forward
network. The extended variant leverages the deep
feed-forward net as the generator component of an
adversarial model. The role of the accompanying
discriminator is then to distinguish between origi-
nal LE-specialized vectors (produced by any initial
post-processor) from vectors produced by trans-
forming distributional vectors with the generator.

We demonstrate that the proposed POSTLE meth-
ods yield considerable gains over state-of-the-art
LE-specialization models (Nickel and Kiela, 2017;
Vuli¢ and Mrksié, 2018), with the adversarial vari-
ant having an edge over the other. The gains are
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observed with different input distributional spaces
in several LE-related tasks such as hypernymy de-
tection and directionality, and graded lexical entail-
ment. What is more, the highest gains are reported
for resource-lean data scenarios where a high per-
centage of words in the datasets is unseen.

Finally, we show how to LE-specialize distribu-
tional spaces for target languages that lack external
lexical knowledge. POSTLE can be coupled with
any model for inducing cross-lingual embedding
spaces (Conneau et al., 2018; Artetxe et al., 2018;
Smith et al., 2017). If this model is unsupervised,
the procedure effectively yields a zero-shot LE spe-
cialization transfer, and holds promise to support
the construction of hierarchical semantic networks
for resource-lean languages in future work.

2 Post-Specialization for LE

Our post-specialization starts with the Lexical En-
tailment Attract-Repel (LEAR) model (Vuli¢ and
Mrksi¢, 2018), a state-of-the-art retrofitting model
for LE, summarized in §2.1. While we opt for LEAR
because of its strong performance and ease of use, it
is important to note that our POSTLE models (§2.2
and §2.3) are not in any way bound to LEAR and
can be applied on top of any LE retrofitting model.

2.1 Initial LE Specialization: LEAR

LEAR fine-tunes the vectors of words observed in a
set of external linguistic constraints C = SUAUL,
consisting of synonymy pairs S such as (clever,
intelligent), antonymy pairs A such as (war, peace),
and lexical entailment (i.e., hyponymy-hypernymy)
pairs L such as (dog, animal). For the L pairs, the
order of words is important: we assume that the left
word always refers to the hyponym.

Extending the ATTRACT-REPEL model for sym-
metric similarity specialization (Mrksi¢ et al.,
2017), LEAR defines two types of objectives: 1)
the ATTRACT (Atr) objective aims to bring closer
together in the vector space words that are se-
mantically similar (i.e., synonyms and hyponym-
hypernym pairs); 2) the REPEL (Rep) objective
pushes further apart vectors of dissimilar words
(i.e., antonyms). Let B = {()(l(k),x7(~k))}§:1 be the
set of K word pairs for which the A#f or Rep score
is to be computed — these are the positive examples.
The set of corresponding negative examples 7' is
created by coupling each positive ATTRACT exam-
ple (x;,x,) with a negative example pair (t;, t,),
where t; is the vector closest (in terms of cosine



similarity, within the batch) to x; and t,- vector clos-
est to x,.. The Att objective for a batch of ATTRACT
constraints B4 is then given as:

Att(Ba,Ta) =

K
Z [T (6att + cos (xgk),tl(k)> — cos (xgk),x(rk)>)

k=1

+7 (&m + cos (xgk),tik)) cos ( (k) ﬁk))) ]. M

7(z) = max(0, x) is the hinge loss and d,4 is the
similarity margin imposed between the negative
and positive vector pairs. In contrast, for each posi-
tive REPEL example, the negative example (t;, t,)
couples the vector t; that is most distant from x;
and t,-, most distant from x,.. The Rep objective for
a batch of REPEL word pairs B is then:

Rep(BR, TR) =

K
Z [T (57‘6p + cos ( (k), 51‘)) — cos (xl(k),tl(k)))

k=1

+ 7 (5Tep + cos (xl(k>,x$.k)) cos ( (*) t(k))) ] 2)

LEAR additionally defines a regularization term
in order to preserve the useful semantic informa-
tion from the original distributional space. With
V(B) as the set of distinct words in a constraint
batch B, the regularization term is: Reg(B)
Areg erv(lg) |ly — x||2, where y is the LEAR-
specialization of the distributional vector x, and
Areg 18 the regularization factor.

Crucially, LEAR forces specialized vectors to
reflect the asymmetry of the LE relation with an
asymmetric distance-based objective. The goal is
to preserve the cosine distances in the specialized
space while steering vectors of more general con-
cepts (those found higher in the concept hierarchy)
to take larger norms.! Vuli¢ and Mrksi¢ (2018) test
several asymmetric objectives, and we adopt the
one reported to be the most robust:

3)
PN+

BB, denotes a batch of LE constraints. The full LEAR
objective is then defined as:

J = Att(Bs,Ts) + Rep(Ba,T4)
+ Att(Br,Tr) + LE(BL) + Reg(Bs, B4, Br)
“4)
'E.g., while dog and animal should be close in the LE-

specialized space in terms of cosine distance, the vector norm
of animal should be larger than that of dog.
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In summary, LEAR pulls words from synonymy
and LE pairs closer together (Att(Bg,Ts) and
Att(Br,Tr.)), while simultaneously pushing vec-
tors of antonyms further apart (Rep(54,74)) and
enforcing asymmetric distances for hyponymy-
hypernymy pairs (LE(Bp)).

2.2 Post-Specialization Model

The retrofitting model (LEAR) specializes vectors
only for a subset of the full vocabulary: the words
it has seen in the external lexical resource. Such
resources are still fairly incomplete, even for ma-
jor languages (e.g., WordNet for English), and fail
to cover a large portion of the distributional vo-
cabulary (referred to as unseen words). The trans-
formation of the seen subspace, however, provides
evidence on the desired effects of LE-specialization.
We seek a post-specialization procedure for LE
(termed POSTLE) that propagates this useful signal
to the subspace of unseen words and LE-specializes
the entire distributional space (see Figure 1).

Let X be the subset of the distributional space
containing vectors of words seen in lexical con-
straints and let Y ; denote LE-specialized vectors
of those words produced by the initial LE specializa-
tion model. For seen words, we pair their original
distributional vectors x; € X with corresponding
LEAR-specialized vectors ys: post-specialization
then directly uses pairs (x5, y¥s) as training in-
stances for learning a global specialization function,
which is then applied to LE-specialize the remain-
der of the distributional space, i.e., the specializa-
tion function learned from (X, Y) is applied to
the subspace of unseen words’ vectors X,,.

Let G(x;;0g) : R? — RY (with d as the di-
mensionality of the vector space) be the special-
ization function we are trying to learn using pairs
of distributional and LEAR-specialized vectors as
training instances. We first instantiate the post-
specialization model G(x;;0s) as a deep fully-
connected feed-forward network (DFFN) with H
hidden layers and m units per layer. The mapping
of the j-th hidden layer is given as:

xU) = activ (x(j_l)Wj + b(j)>. 5)

activ refers to a non-linear activation function,?

2As discussed by Vuli¢ et al. (2018); Ponti et al. (2018),
non-linear transformations yield better results: linear transfor-
mations cannot fully capture the subtle fine-tuning done by
the retrofitting process, guided by millions of pairwise con-
straints. We also verify that linear transformations yield poorer
performance, but we do not report these results for brevity.



x(=1) is the output of the previous layer (x(©) is
the input distributional vector), and (W), b)),
j €{1,..., H} are the model’s parameters 6.

The aim is to obtain predictions G(xs; 0¢) that
are as close as possible to the corresponding
LEAR-specializations ys. For symmetric similarity-
based post-specialization prior work relied on co-
sine distance to measure discrepancy between
the predicted and expected specialization (Vulié
et al., 2018). Since we are specializing vectors for
the asymmetric LE relation, the predicted vector
G(xs; ) has to match y not only in direction (as
captured by cosine distance) but also in size (i.e.,
the vector norm). Therefore, the POSTLE objective
augments cosine distance dcos with the absolute
difference of G (xs; f) and y norms:?

Lg=dcos (G(xs;0G),¥s)

+0u|1G(xs: 0c) | = Iyl (©)

The hyperparameter ¢,, determines the contribution
of the norm difference to the overall loss.

2.3 Adversarial LE Post-Specialization

We next extend the DFFN post-specialization model
with an adversarial architecture (ADV), following
Ponti et al. (2018) who demonstrated its useful-
ness for similarity-based specialization. The intu-
ition behind the adversarial extension is as follows:
the specialization function G(xs;6¢) should not
only produce vectors that have high cosine simi-
larity and similar norms with corresponding LEAR-
specialized vectors y, but should also ensure that
these vectors seem “natural”, that is, as if they were
indeed sampled from Y . We can force the post-
specialized vectors G(Xs; ) to be legitimate sam-
ples from the Y distribution by introducing an ad-
versary that learns to discriminate whether a given
vector has been generated by the specialization
function or directly sampled from Y. Such adver-
saries prevent the generation of unrealistic outputs,
as demonstrated in computer vision (Pathak et al.,
2016; Ledig et al., 2017; Odena et al., 2017).

The DFEN function G(x; 0¢) from §2.2 can be
seen as the generator component. We couple the
generator with the discriminator D(x;6p), also
instantiated as a DFFN. The discriminator performs
binary classification: presented with a word vector,
it predicts whether it has been produced by G or

3Simply minimizing Euclidean distance also aligns vectors

in terms of both direction and size. However, we consistently
obtained better results by the objective function from Eq. (6).
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sampled from the LEAR-specialized subspace Y.
On the other hand, the generator tries to produce
vectors which the discriminator would misclassify
as sampled from Y. The discriminator’s loss is
defined via negative log-likelihood over two sets of
inputs; generator produced vectors G (x5; 0¢) and
LEAR specializations y:

N
Lp=— Zlog P(spec =0|G(xs;0G);0p)

s=1
M

- Z log P(spec = 1|ys;0p)

s=1

(N

Besides minimizing the similarity-based loss Lg,
the generator has the additional task of confusing
the discriminator: it thus perceives the discrimina-
tor’s correct predictions as its additional loss Lg:

N
Lg=-— ZlogP(spec =1|G(xs;6c);0p)
s=1
M
— Z log P(spec =0|ys;6p) (8)
s=1

We learn GG’s and D’s parameters with stochastic
gradient descent — to reduce the co-variance shift
and make training more robust, each batch contains
examples of the same class (either only predicted
vectors or only LEAR vectors). Moreover, for each
update step of L we alternate between sp update
steps for Lp and sg update steps for Lg.

2.4 Cross-Lingual LE Specialization Transfer

The POSTLE models enable LE specialization of
vectors of words unseen in lexical constraints. Con-
ceptually, this also allows for a LE-specialization of
a distributional space of another language (possibly
without any external constraints), provided a shared
bilingual distributional word vector space. To this
end, we can resort to any of the methods for induc-
ing shared cross-lingual vector spaces (Ruder et al.,
2018). What is more, most recent methods success-
fully learn the shared space without any bilingual
signal (Conneau et al., 2018; Artetxe et al., 2018;
Chen and Cardie, 2018; Hoshen and Wolf, 2018).
Let X; be the distributional space of some tar-
get language for which we have no external lexi-
cal constraints and let P(x;0p) : R% — R% be
the (linear) function projecting vectors x; € X;
to the distributional space X, of the source lan-
guage with available lexical constraints for which



we trained the post-specialization model. We then
simply obtain the LE-specialized space Y; of the
target language by composing the projection P
with the post-specialization G (see Figure 1):

Y, = G(P(Xy;0p);0c) ©)
In §4.3 we report on language transfer experiments
with three different linear projection models P in
order to verify the robustness of the cross-lingual
LE-specialization transfer.*

3 Experimental Setup

Distributional Vectors. To test the robustness of
the POSTLE approach, we experiment with two
pre-trained English word vector spaces: (1) vec-
tors trained by Levy and Goldberg (2014) on the
Polyglot Wikipedia (Al-Rfou et al., 2013) using
Skip-Gram with Negative Sampling (SGNS-BOW?2)
(Mikolov et al., 2013) and (2) GLOVE embed-
dings trained on the Common Crawl (Penning-
ton et al., 2014). In the cross-lingual transfer ex-
periments (§4.3), we use English, Spanish, and
French FASTTEXT embeddings trained on respec-
tive Wikipedias (Bojanowski et al., 2017).

Linguistic Constraints. We use the same set of
constraints as LEAR in prior work (Vuli¢ and
Mrksié, 2018): synonymy and antonymy con-
straints from (Zhang et al., 2014; Ono et al., 2015)
are extracted from WordNet and Roget’s Thesaurus
(Kipfer, 2009). As in other work on LE specializa-
tion (Nguyen et al., 2017; Nickel and Kiela, 2017),
asymmetric LE constraints are extracted from Word-
Net, and we collect both direct and indirect LE
pairs (i.e., (parrot, bird), (bird, animal), and (par-
rot, animal) are in the LE set) In total, we work
with 1,023,082 pairs of synonyms, 380,873 pairs
of antonyms, and 1,545,630 LE pairs.

Training Configurations. For LEAR, we adopt the
hyperparameter setting reported in the original pa-
per: dapr = 0.6, drep = 0, Apeg = 1079, For POS-
TLE, we fine-tune the hyperparameters via random
search on the validation set: 1) DFFN uses H = 4
hidden layers, each with 1,536 units and Swish
as the activation function (Ramachandran et al.,
2018); 2) ADV relies on H = 4 hidden layers, each

“We experiment with unsupervised and weakly supervised
models for inducing cross-lingual embedding spaces. How-
ever, we stress that the POSTLE specialization transfer is
equally applicable on top of any method for inducing cross-
lingual word vectors, some of which may require more bilin-
gual supervision (Upadhyay et al., 2016; Ruder et al., 2018).
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with m = 2,048 units and Leaky ReLU (slope
0.2) (Maas et al., 2014) for the generator. The dis-
criminator uses H = 2 layers with 1, 024 units and
Leaky ReLU. For each update based on the gener-
ator loss (L), we perform sg = 3 updates based
on the similarity loss (Lg) and sp = 5 updates
based on the discriminator loss (£ p). The value for
the norm difference contribution in Lg is set to to
0n, = 0.1 (see Eq. (6)) for both POSTLE variants.
We train POSTLE models using SGD with the batch
size 32, the initial learning rate 0.1, and a decay
rate of 0.98 applied every 1M examples.

Asymmetric LE Distance. The distance that mea-
sures the strength of the LE relation in the special-
ized space reflects both the cosine distance between
the vectors as well as the asymmetric difference
between their norms (Vuli¢ and Mrksié, 2018):

[l = [l

10
R

ILE(X7 Y) = dCOS(X, Y) +

LE-specialized vectors of general concepts obtain
larger norms than vectors of specific concepts. True
LE pairs should display both a small cosine distance
and a negative norm difference. Therefore, in differ-
ent LE tasks we can rank the candidate pairs in the
ascending order of their asymmetric LE distance
I g. The LE distances are trivially transformed into
binary LE predictions, using a binarization thresh-
old ¢: if I g(x,y) < t, we predict that LE holds
between words x and y with vectors x and y.

4 Evaluation and Results

We extensively evaluate the proposed POSTLE mod-
els on two fundamental LE tasks: 1) predicting
graded LE and 2) LE detection (and directionality),
in monolingual and cross-lingual transfer settings.

4.1 Predicting Graded LE

The asymmetric distance I, g can be directly used
to make fine-grained graded assertions about the hi-
erarchical relationships between concepts. Follow-
ing previous work (Nickel and Kiela, 2017; Vuli¢
and Mrksi¢, 2018), we evaluate graded LE on the
standard HyperLex dataset (Vuli¢ et al., 2017).
HyperLex contains 2,616 word pairs (2,163 noun
pairs, the rest are verb pairs) rated by humans by

3Graded LE is a phenomenon deeply rooted in cognitive
science and linguistics: it captures the notions of concept
prototypicality (Rosch, 1973; Medin et al., 1984) and category
vagueness (Kamp and Partee, 1995; Hampton, 2007). We refer
the reader to the original paper for a more detailed discussion.
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Figure 2: Spearman’s p correlation scores for two input distributional spaces on the noun portion of HyperLex
(2,163 concept pairs) conditioned on the number of test words covered (i.e., seen) in the external lexical resource.
Similar patterns are observed on the full HyperLex dataset. Two other baseline models report the following scores
on the noun portion of HyperLex in the 100% setting: 0.512 (Nickel and Kiela, 2017); 0.540 (Nguyen et al., 2017).

estimating on a [0, 6] scale the degree to which the
first concept is a type of the second concept.

Results and Discussion. We evaluate the perfor-
mance of LE specialization models in a deliberately
controlled setup: we (randomly) select a percentage
of HyperLex words (0%, 30%, 50%, 70%, 90% and
100%) which are allowed to be seen in the external
constraints, and discard the constraints containing
other HyperLex words, making them effectively
unseen by the initial LEAR model. In the 0% set-
ting all constraints containing any of the HyperLex
words have been removed, whereas in the 100% set-
ting, all available constraints are used. The scores
are summarized in Figure 2.

The 0% setting is especially indicative of POS-
TLE performance: we notice large gains in perfor-
mance without seeing a single word from HyperLex
in the external resource. This result verifies that the
POSTLE models can generalize well to words un-
seen in the resources. Intuitively, the gap between
POSTLE and LEAR is reduced in the settings where
LEAR “sees” more words. In the 100% setting we
report the same scores for LEAR and POSTLE: this
is an artefact of the HyperLex dataset construction
as all HyperLex word pairs were sampled from
WordNet (i.e., the coverage of test words is 100%).
Another finding is that in the resource-leaner 0%
and 30% settings POSTLE outperforms two other
baselines (Nguyen et al., 2017; Nickel and Kiela,
2017), despite the fact that the two baselines have
“seen” all HyperLex words. The results further in-
dicate that POSTLE yields gains on top of different
initial distributional spaces. As expected, the scores
are higher with the more sophisticated ADV variant.
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4.2 LE Detection

Detection and Directionality Tasks. We now
evaluate POSTLE models on three binary classi-
fication datasets commonly used for evaluating LE
models (Roller et al., 2014; Shwartz et al., 2017;
Nguyen et al., 2017), compiled into an integrated
benchmark by Kiela et al. (2015).°

The first task, LE directionality, is evaluated
on 1,337 true LE pairs (DBLESS) extracted from
BLESS (Baroni and Lenci, 2011). The task tests the
models’ ability to predict which word in the LE pair
is the hypernym. This is simply achieved by taking
the word with a larger word vector norm as the
hypernym. The second task, LE detection, is evalu-
ated on the WBLESS dataset (Weeds et al., 2014),
comprising 1,668 word pairs standing in one of
several lexical relations (LE, meronymy-holonymy,
co-hyponymy, reverse LE, and no relation). The
models have to distinguish true LE pairs from pairs
that stand in other relations (including the reverse
LE). We score all pairs using the I g distance. Fol-
lowing Nguyen et al. (2017), we find the threshold
t via cross-validation.” Finally, we evaluate LE de-
tection and directionality simultaneously on BIB-
LESS, a relabeled variant of WBLESS. The task
is to detect true LE pairs (including the reverse LE
pairs), and also to determine the relation direction-
ality. We again use I, g to detect LE pairs, and then
compare the vector norms to select the hypernym.

For all three tasks, we consider two evaluation

Shttp://www.cl.cam.ac.uk/~dk427/generality.html

"In each of the 1,000 iterations, 2% of the pairs are sampled
for threshold tuning, and the remaining 98% are used for
testing. The reported numbers are therefore averaged scores.



Setup: FULL

Setup: DISJOINT

DBLESS WBLESS BIBLESS DBLESS WBLESS BIBLESS

SG GL SG GL SG GL SG GL SG GL SG GL
LEAR (Vuli¢etal.,2018) 957 955 905 910 .872 875 528 531 .555 529 381 .389
POSTLE DFFN 957 955 905 910 872 875 898 825 754 746 696  .677
POSTLE ADV 957 955 905 910 872 875 942 888 .832 .766 .757 .690

Table 1: Accuracy of POSTLE models on *BLESS datasets, for two different sets of English distributional vectors:
Skip-Gram (SG) and GloVe (GL). LEAR reports highest scores on *BLESS datasets in the literature.

Target: SPANISH Target: FRENCH

Random 498 515
Distributional 362 387

Ar Co Sm Ar Co Sm
POSTLE DFFN  .798 .740 .728 .688 .735 .742
POSTLE ADV 768 790 .782 .746 .770 .786

Table 2: Average precision (AP) of POSTLE models
in cross-lingual transfer. Results are shown for both
POSTLE models (DFFN and ADV), two target languages
(Spanish and French) and three methods for inducing
bilingual vector spaces: Ar (Artetxe et al., 2018), Co
(Conneau et al., 2018), and Sm (Smith et al., 2017).

settings: 1) in the FULL setting we use all available
lexical constraints (see §3) for the initial LEAR spe-
cialization; 2) in the DISJOINT setting, we remove
all constraints that contain any of the test words,
making all test words effectively unseen by LEAR.

Results and Discussion. The accuracy scores on
*BLESS test sets are provided in Table 1.8 Our
POSTLE models display exactly the same perfor-
mance as LEAR in the FULL setting: this is simply
because all words found in *BLESS datasets are
covered by the lexical constraints, and POSTLE
does not generalize the initial LEAR transforma-
tion to unseen test words. In the DISJOINT setting,
however, LEAR is left “blind” as it has not seen a
single test word in the constraints: it leaves distri-
butional vectors of *BLESS test words identical. In
this setting, LEAR performance is equivalent to the
original distributional space. In contrast, learning
to generalize the LE specialization function from
LEAR-specializations of other words, POSTLE mod-
els are able to successfully LE-specialize vectors
of test * BLESS words. As in the graded LE, the
adversarial POSTLE architecture outperforms the
simpler DFFN model.

8We have evaluated the prediction performance also in
terms of F and, in the ranking formulation, in terms of aver-
age precision (AP) and observed the same trends in results.
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4.3 Cross-Lingual Transfer

Finally, we evaluate cross-lingual transfer of LE
specialization. We train POSTLE models using dis-
tributional (FASTTEXT) English (EN) vectors as
input. Afterwards, we apply those models to the
distributional vector spaces of two other languages,
French (FR) and Spanish (ES), after mapping them
into the same space as English as described in §2.4.

We experiment with several methods to induce
cross-lingual word embeddings: 1) MUSE, an ad-
versarial unsupervised model fine-tuned with the
closed-form Procustes solution (Conneau et al.,
2018); 2) an unsupervised self-learning algorithm
that iteratively bootstraps new bilingual seeds, ini-
tialized according to structural similarities of the
monolingual spaces (Artetxe et al., 2018); 3) an or-
thogonal linear mapping with inverse softmax, su-
pervised by 5K bilingual seeds (Smith et al., 2017).

We test POSTLE-specialized Spanish and French
word vectors on WN-Hy-ES and WN-Hy-FR, two
equally sized datasets (148K word pairs) created by
Glavas and Ponzetto (2017) using the ES WordNet
(Gonzalez-Agirre et al., 2012) and the FR WordNet
(Sagot and FiSer, 2008). We perform a ranking
evaluation: the aim is to rank LE pairs above pairs
standing in other relations (meronyms, synonyms,
antonyms, and reverse LE). We rank word pairs in
the ascending order based on I, see Eq. (10).

Results and Discussion. The average precision
(AP) ranking scores achieved via cross-lingual
transfer of POSTLE are shown in Table 2. We report
AP scores using three methods for cross-lingual
word embedding induction, and compare their per-
formance to two baselines: 1) random word pair
scoring, and 2) the original (FASTTEXT) vectors.
The results uncover the inability of distributional
vectors to capture LE — they yield lower perfor-
mance than the random baseline, which strongly
emphasizes the need for the LE-specialization. The
transferred POSTLE yields an immense improve-



ment over the distributional baselines (up to +0.428,
i.e. +118%). Again, the adversarial architecture sur-
passes DFFN across the board, with the single excep-
tion of EN-ES transfer coupled with Artetxe et al.
(2018)’s cross-lingual model. Furthermore, trans-
fers with unsupervised (Ar, Co) and supervised
bilingual mapping (Sm) yield comparable perfor-
mance. This implies that a robust LE-specialization
of distributional vectors for languages with no
lexico-semantic resources is possible even without
any bilingual signal or translation effort.

5 Related Work

Vector Space Specialization. In general, lexical
specialization models fall into two categories: 1)
joint optimization models and 2) post-processing or
retrofitting models. Joint models integrate external
constraints directly into the distributional objective
of embedding algorithms such as Skip-Gram and
CBOW (Mikolov et al., 2013), or Canonical Corre-
lation Analysis (Dhillon et al., 2015). They either
modify the prior or regularization of the objective
(Yu and Dredze, 2014; Xu et al., 2014; Kiela et al.,
2015) or augment it with factors reflecting exter-
nal lexical knowledge (Liu et al., 2015; Ono et al.,
2015; Osborne et al., 2016; Nguyen et al., 2017).
Each joint model is tightly coupled to a specific dis-
tributional objective: any change to the underlying
distributional model requires a modification of the
whole joint model and expensive retraining.

In contrast, retrofitting models (Faruqui et al.,
2015; Rothe and Schiitze, 2015; Wieting et al.,
2015; Jauhar et al., 2015; Nguyen et al., 2016;
Mrksi¢ et al., 2016; Mrksi¢ et al., 2017; Vulié
and Mrksié, 2018) use external constraints to post-
hoc fine-tune distributional spaces. Effectively, this
makes them applicable to any input distributional
space, but they modify only vectors of words seen
in the external resource. Nonetheless, retrofitting
models tend to outperform joint models in the con-
text of both similarity-based (Mrksic et al., 2016)
and LE specialization (Vuli¢ and MrkSié, 2018).

The recent post-specialization paradigm has
been so far applied only to the symmetric semantic
similarity relation. Vuli¢ et al. (2018) generalize
over the retrofitting ATTRACT-REPEL (AR) model
(Mrksié et al., 2017) by learning a global similarity-
focused specialization function implemented as a
DFFN. Ponti et al. (2018) further propose an adver-
sarial post-specialization architecture. In this work,
we show that post-specialization represents a vi-
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able methodology for specializing all distributional
word vectors for the LE relation as well.

Modeling Lexical Entailment. Extensive re-
search effort in lexical semantics has been dedi-
cated to automatic detection of the fundamental tax-
onomic LE relation. Early approaches (Weeds et al.,
2004; Clarke, 2009; Kotlerman et al., 2010; Lenci
and Benotto, 2012, inter alia) detected LE word
pairs by means of asymmetric direction-aware
mechanisms such as distributional inclusion hy-
pothesis (Geffet and Dagan, 2005), and concept
informativeness and generality (Herbelot and Gane-
salingam, 2013; Santus et al., 2014; Shwartz et al.,
2017), but were surpassed by more recent methods
that leverage word embeddings.
Embedding-based methods either 1) induce LE-
oriented vector spaces using text (Vilnis and Mc-
Callum, 2015; Yu et al., 2015; Vendrov et al., 2016;
Henderson and Popa, 2016; Nguyen et al., 2017;
Chang et al., 2018; Vuli¢ and MrkSsié, 2018) and/or
external hierarchies (Nickel and Kiela, 2017, 2018;
Sala et al., 2018) or 2) use distributional vectors as
features for supervised LE detection models (Ba-
roni et al., 2012; Tuan et al., 2016; Shwartz et al.,
2016; Glavas and Ponzetto, 2017; Rei et al., 2018).
Our POSTLE method belongs to the first group.
Vuli¢ and Mrksi¢ (2018) proposed LEAR, a
retrofitting LE model which displays performance
gains on a spectrum of graded and ungraded LE
evaluations compared to joint specialization mod-
els (Nguyen et al., 2017). However, LEAR still spe-
cializes only the vectors of words seen in external
resources. The same limitation holds for a family
of recent models that embed concept hierarchies
(i.e., trees or directed acyclic graphs) in hyperbolic
spaces (Nickel and Kiela, 2017; Chamberlain et al.,
2017; Nickel and Kiela, 2018; Sala et al., 2018;
Ganea et al., 2018). Although hyperbolic spaces are
arguably more suitable for embedding hierarchies
than the Euclidean space, the “Euclidean-based”
LEAR has been proven to outperform the hyper-
bolic embedding of the WordNet hierarchy across
arange of LE tasks (Vuli¢ and Mrksi¢, 2018).

The proposed POSTLE framework 1) mitigates
the limited coverage issue of retrofitting LE-
specialization models, and 2) removes the problem
of dependence on distributional objective in joint
models. Unlike retrofitting models, POSTLE LE-
specializes vectors of all vocabulary words, and un-
like joint models, it is computationally inexpensive
and applicable to any distributional vector space.



6 Conclusion

We have presented POSTLE, a novel neural post-
specialization framework that specializes distribu-
tional vectors of all words — including the ones
unseen in external lexical resources — to accentu-
ate the hierarchical asymmetric lexical entailment
(LE or hyponymy-hypernymy) relation. The ben-
efits of our two all-words POSTLE model variants
have been shown across a range of graded and bi-
nary LE detection tasks on standard benchmarks.
What is more, we have indicated the usefulness of
the POSTLE paradigm for zero-shot cross-lingual
LE specialization of word vectors in target lan-
guages, even without having any external lexical
knowledge in the target. In future work, we will
experiment with more sophisticated neural archi-
tectures, other resource-lean languages, and boot-
strapping approaches to LE specialization. Code
and POSTLE-specialized vectors are available at:
[https://github.com/ashkamath/POSTLE].
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