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Preface

Welcome to the 16th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on August 2, 2019 in Florence, Italy. The workshop aims to bring together
researchers interested in applying computational techniques to problems in morphology, phonology,
and phonetics. Our program this year highlights the ongoing and important interaction between work
in computational linguistics and work in theoretical linguistics. This year, work in both theoretical
phonology and computational morphology were strongly represented in the workshop submissions. We
received 20 submissions, and after a competitive reviewing process, we accepted 12. The workshop is
privileged to present four invited talks this year, all from very respected members of the SIGMORPHON
community.

This year also marks the fourth iteration of the SIGMORPHON Shared Task in Morphological
Inflection, previously co-located with CoNLL. This year’s task encouraged submissions in two important
inflectional sub-tasks: cross-lingual inflection generation, and contextual morphological tagging.

23 teams participated in the task, with 14 teams submitting system papers describing their work, one of
which is non-archival.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared task. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.

Garrett Nicolai
Ryan Cotterell
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AX Semantics’ Submission to the SIGMORPHON 2019 Shared Task

Andreas Madsack and Robert Weißgraeber
AX Semantics, Stuttgart, Germany

{firstname.lastname}@ax-semantics.com

Abstract

This paper describes the AX Semantics’ sub-
mission to the SIGMORPHON 2019 shared
task on morphological reinflection. We im-
plemented two systems, both tackling the task
for all languages in one codebase, without any
underlying language specific features. The
first one is an encoder-decoder model using
AllenNLP; the second system uses the same
model modified by a custom trainer that trains
only with the target language resources after a
specific threshold. We especially focused on
building an implementation using AllenNLP
with out-of-the-box methods to facilitate easy
operation and reuse.

1 Introduction

This paper describes our implementation and re-
sults for Task 1 of the 2019 Shared Task (Mc-
Carthy et al., 2019). The task is to gener-
ate inflected word forms given the lemma and a
morphological feature specification (Kirov et al.,
2018). See Figure 1 for an example in German,
where a verb lemma is inflected according to the
specified number, mood, tense and person.

sehen (V;IND;PST;3;PL)→ sahen

Figure 1: Task 1 Example, German: putting the verb
”sehen” into 3rd person past tense indicative plural.

In contrast to last year, where the training data
was only in the respective target language, this
year the given data consists of up to 10000 ex-
emplars of one high resource language combined
with up to 100 exemplars of a low resource lan-
guage. The target language is the low resource
language. The task is to use the high resource data
to improve the inflection of the low resource lan-
guage. Including the surprise language pairs the
task consists of 99 language pairs.

2 Motivation

After participating last year (Madsack et al., 2018)
we started to rebuild everything we needed for
our production system using AllenNLP (Gardner
et al., 2017). Our main goal here is reproducibility
and full logging of everything as default. In our
experience AllenNLP brings best practices that,
while sometimes opinionated, are way better than
building everything from scratch, and which we
wanted to apply to this problem.

Our two systems represent our learning curve
in the attempt to solve the given shared task. The
first system is a solution entirely based on given
AllenNLP components. The second system has a
custom trainer that, only at the start, trains with all
given training data for a pair and then continues
only with the (low-resource) target language.

The source code of our submission
can be found at: https://301.ax/
github-sigmorphon2019

3 System 1 - softmax baseline in
AllenNLP

Our first system is the soft-attention baseline re-
built in AllenNLP. It basically serves as a starting
point for our second system.

The model is an encoder-decoder (Cho et al.,
2014) and is using the readily implemented ver-
sion in AllenNLP (named SimpleSeq2Seq). We
modified the model code to add accuracy and edit-
distance metrics. The attention used is dot-product
attention (Luong et al., 2015). All other hyper
parameters are inspired by Wu et al. (2018) and
shown in Table 1.

We trained two kinds of System 1. One with
only low data as baseline and another with high
and low data concatenated. All systems used
here are character based and the input sequence
is first the lemma followed by a next marker (we
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used a tabulator) followed by the morphologi-
cal features as a string. One example input of
the encoder looks like the following: zmrzlina
N;DAT;SG. Besides, AllenNLP wraps inputs and
target outputs with start and end markers.

parameter value
System 1 System 2

embedding dimension 200 100
beam size 10 10
hidden size 400 200
number of hidden en-
coder layers

2 1

encoder dropout 0.4 0.3
optimizer adam adam

Table 1: hyper parameters for System 1 and System 2

4 System 2 - transfer learning

The second system uses the same encoder-
decoder-model as System 1. The major modifica-
tion is a trainer that first learns on all training data
(high and low resource data) and after a threshold
is reached continues learning only with the target
language. This threshold marks the transfer learn-
ing point: The cross-lingual model is reused as a
basis for training with the monolingual data.

The first 10 epochs are always trained with all
training data. The switch to only training with low
resource data happens after 5 epochs without train-
ing improvement. As metric for this improvement
a lower loss on validation data is used. Most hy-
per parameters (Table 1) for System 2 were halved
after some experimental evaluation. We did not do
an exhaustive search of these parameters, so minor
improvements with the help of hyperparameter op-
timization (e.g. using cross-validated grid search)
are possible here.

Figure 3 shows a loss curve where training with
only the target language Khakas (and without the
high-resource language Bashkir) started at epoch
17. For comparison the loss curve of System 1
for the same language pair is shown in Figure 2.
In this example System 2 gains a smaller loss than
System 1 on the validation data - System 2 reaches
with about 0.2 half as much loss as System 1 with
about 0.4.

5 Results

The results for System 1 and System 2 shown in
Table 2 and Table 3 together with the soft-attention

Figure 2: Loss for train (orange) and validation (blue)
for System 1 language pair “bashkir–khakas”

Figure 3: Loss for train (orange) and validation (blue)
for System 2 language pair “bashkir–khakas”

baseline from the organizers (Wu and Cotterell,
2019) are the unmodified results from the submis-
sion to the task. We found minor tooling mis-
takes on the surprise languages after the submis-
sion deadline which we didn’t correct in the table.

In the trained models we can observe big differ-
ences in the accuracy for different language pairs.
To better understand the results we trained a new
version of System 1 with only the low data given
and ignored the high-resource language data com-
pletely. As expected this version of System 1 per-
formed worst in comparison to the other systems
due to the lack of a sufficient amount of training
data.

In general, the very low results on some pairs
seem to be based on very different character sets
and/or feature sets between the concerning lan-
guage pairs. For example a language pair with a
lot of different characters and different features is
“bengali–greek”. The amount of Greek data alone
is not enough to train an encoder-decoder-model
(see System 1 low results) and the data for Bengali
doesn’t help either way (see System 1, System 2
and baseline results).

Thus, the results indicate that a difference in
features and/or character sets has a big impact on
the usefulness of the high resource training data.
For the character set a phonological mapping to a
phonetic alphabet could improve on that issue.

2



language pair characters features System 1 System 1 System 2 Baseline
in low not in high (low) (tune) (0-soft)

adyghe–kabardian 0 0 2 85 91 93
albanian–breton 2 7 0 10 11 21
arabic–classical-syriac 22 11 0 33 27 52
arabic–maltese 29 2 0 0 2 16
arabic–turkmen 30 3 6 8 12 32
armenian–kabardian 32 4 2 5 39 68
asturian–occitan 6 0 0 6 14 47
bashkir–azeri 32 10 0 19 11 34
bashkir–crimean-tatar 33 7 0 30 0 51
bashkir–kazakh 3 1 14 64 72 76
bashkir–khakas 3 3 2 62 74 74
bashkir–tatar 35 6 0 35 8 37
bashkir–turkmen 30 0 0 52 42 50
basque–kashubian 14 10 6 2 8 20
belarusian–old-irish 25 18 0 4 4 4
bengali–greek 82 16 0 0 0 3.6
bulgarian–old-church-slavonic 31 5 0 24 17 40
czech–kashubian 8 0 6 10 52 40
czech–latin 9 6 0 4.4 6.7 3.9
danish–middle-high-german 5 6 14 34 70 68
danish–middle-low-german 12 13 10 24 14 36
danish–north-frisian 3 10 0 7 20 23
danish–west-frisian 4 6 0 37 26 48
danish–yiddish 35 16 0 0 42 44
dutch–middle-high-german 2 5 10 50 60 54
dutch–middle-low-german 9 10 4 18 38 38
dutch–north-frisian 3 7 0 12 14 21
dutch–west-frisian 3 2 3 16 38 43
dutch–yiddish 35 13 0 - - 43
english–murrinhpatha 0 7 0 12 22 12
english–north-frisian 4 12 0 2 19 23
english–west-frisian 5 8 0 19 33 41
estonian–ingrian 1 2 0 14 6 30
estonian–karelian 3 4 0 0 46 46
estonian–livonian 16 12 0 2 19 25
estonian–votic 3 1 3 14 17 25
finnish–ingrian 1 1 0 36 34 26
finnish–karelian 2 2 0 0 52 32
finnish–livonian 17 11 1 18 2 25
finnish–votic 4 2 2 27 32 22
french–occitan 3 1 0 24 37 33
german–middle-high-german 3 0 12 38 72 66
german–middle-low-german 10 7 8 2 20 46
german–yiddish 35 14 0 0 20 46
greek–bengali 45 12 1 0 7 31
hebrew–classical-syriac 22 10 0 48 32 61
hebrew–maltese 30 4 0 7 6 16
hindi–bengali 45 12 0 3 6 35
hungarian–ingrian 2 4 0 24 18 10
hungarian–karelian 3 8 2 0 36 30
hungarian–livonian 19 18 0 2 11 19
hungarian–votic 5 4 1 17 15 16
irish–breton 3 5 0 3 3 19
irish–cornish 3 8 0 2 8 8
irish–old-irish 1 12 0 2 4 0
irish–scottish-gaelic 5 2 0 42 26 60
italian–friulian 7 1 0 27 27 33
italian–ladin 2 3 1 13 23 47
italian–maltese 5 5 0 11 16 9
italian–neapolitan 2 2 6 60 48 41
kannada–telugu 23 1 20 44 68 60
kurmanji–sorani 9 12 0 2 0.8 8.1
latin–czech 17 8 0 0 9.1 13.5

Table 2: Left: Feature/character differences between language pairs. (in low, not in high language)
Right: Results (accuracy) for test data compared to baseline (Part 1)
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language pair characters features System 1 System 1 System 2 Baseline
in low not in high (low) (tune) (0-soft)

latvian–lithuanian 29 6 0 0.7 7.7 10.9
latvian–scottish-gaelic 11 0 0 30 48 48
persian–azeri 32 13 0 0 1 23
persian–pashto 15 9 0 0 1 14
polish–kashubian 6 0 6 48 68 66
polish–old-church-slavonic 57 1 0 10 0 30
portuguese–russian 36 15 0 0 0 11.9
romanian–latin 13 9 0 0 0.1 4.5
russian–old-church-slavonic 31 2 0 22 24 32
russian–portuguese 35 8 0 0.3 0.5 32.3
sanskrit–bengali 46 19 0 11 1 21
sanskrit–pashto 38 12 0 2 3 7
slovak–kashubian 9 1 2 22 40 52
slovene–old-saxon 7 6 0 4 6.7 7.8
sorani–irish 26 18 0 0.3 3.3 2.6
spanish–friulian 8 1 0 28 37 38
spanish–occitan 5 1 0 26 39 50
swahili–quechua 5 34 0 0 0.2 3
turkish–azeri 3 1 0 60 64 66
turkish–crimean-tatar 2 3 0 69 74 65
turkish–kazakh 31 1 18 54 68 74
turkish–khakas 25 3 2 68 54 78
turkish–tatar 4 2 0 79 68 69
turkish–turkmen 4 0 0 56 86 80
urdu–bengali 45 9 0 3 5 30
urdu–old-english 38 6 0.2 0.3 0.1 8
uzbek–azeri 12 6 0 5 4 27
uzbek–crimean-tatar 13 8 0 0 0 13
uzbek–kazakh 31 1 22 12 46 56
uzbek–khakas 25 3 0 10 28 76
uzbek–tatar 16 7 0 1 2 21
uzbek–turkmen 11 0 0 8 16 36
welsh–breton 6 8 0 17 20 34
welsh–cornish 4 11 2 0 12 26
welsh–old-irish 8 18 2 2 4 8
welsh–scottish-gaelic 12 11 0 20 16 28
zulu–swahili 0 19 0 0 19 36

Table 3: Left: Feature/character differences between language pairs. (in low, not in high language)
Right: Results (accuracy) for test data compared to baseline (Part 2)

6 Conclusion

Our continual goal is to improve our morphology
system component in our Natural Language Gen-
eration SaaS (Weißgraeber and Madsack, 2017).

In our production setup the System 1 described
above competes against a handcrafted morphology
and a reasonable lexicon (which were not used for
the Shared Task). This handcrafted morphology
together with the lexicon is always better on very
regular part of speech (POS) types (i.e. German
adjectives). Therefore not for every language POS
combination a system shown here is used in our
production NLG inflection system. For every lan-
guage and POS type we evaluate which solution
fits best.

AllenNLP successfully helped us to reproduce
the same results even with newer versions of li-
braries (i.e. PyTorch, CUDA, Python), which is

an important quality for our NLG system.
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Abstract

We propose cognate projection as a method
of crosslingual transfer for inflection genera-
tion in the context of the SIGMORPHON 2019
Shared Task. The results on four language
pairs show the method is effective when no
low-resource training data is available.

1 Introduction

In this description of the University of Alberta
systems, we discuss our approach to Crosslingual
Transfer for Inflection Generation (Task 1) in the
SIGMORPHON 2019 Shared Task on Crosslin-
guality and Context in Morphology (McCarthy
et al., 2019). The task of inflection generation is
to produce an inflected word-form given a lemma
and a sequence of abstract morphological tags. For
example, the Latin citation form fucō with the tag
V;IND;FUT;3;SG should yield the form fucābit.1

The goal is to examine how best to do this in a
cross-lingual setting.

We focus on depth over breadth, performing ex-
periments on only four language pairs which rep-
resent a range of diachronic relationships. Kashu-
bian is so closely related to Polish that it is some-
times viewed as a dialect. Occitan and Spanish are
less closely related, but share many morphologi-
cal features. Romanian evolved from Latin over
the course of 1500 years. Hindi and Bengali are
also related, but written in distinct scripts.

In order to alleviate the training data sparsity in
the low-resource setting, we attempt to leverage
external text corpora, from which we extract target
language word lists for both inflection generation
and cognate projection. The results show that this
strategy improves the overall results for some of
the tested language pairs.

1For an unknown reason, only the inflected Latin forms in
the data include vowel length diacritics.

As our principal contribution, we propose and
test the idea of performing cognate projection
to leverage high-resource training data for low-
resource inflection generation. The results demon-
strate that an implementation of this concept can
perform better than the baselines in the scenario
when no low-resource inflection data is available.

2 Prior Work

Our methods build upon the prior work of the Uni-
versity of Alberta teams for three previous SIG-
MORPHON shared tasks on type-level morpho-
logical generation (Cotterell et al., 2016, 2017,
2018). We view inflection as a string transduc-
tion task. Our discriminative transduction models
stem from the DIRECTL+ transducer of Jiampoja-
marn et al. (2008), which was originally designed
for grapheme-to-phoneme conversion.

Nicolai et al. (2016) apply discriminative string
transduction to morphological reinflection. They
show that the approach of Nicolai et al. (2015)
performs well on typologically diverse languages.
They also discuss language-specific heuristics and
errors.

Nicolai et al. (2017) combine a discriminative
transduction system with neural models. The re-
sults on five languages show that the approach
works well in the low-resource setting. Addition-
ally, they propose adaptations designed to handle
small training sets, such as tag re-ordering and par-
ticle processing.

Najafi et al. (2018a) make further progress on
the combination of neural and non-neural models
for low-resource reinflection. Their best system
obtains the highest accuracy on 34 out of 103 lan-
guages. They achieve additional improvements in
accuracy by leveraging unannotated text corpora
using the non-standard approaches of Nicolai et al.
(2018) and Najafi et al. (2019).
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Figure 1: Two approaches to applying cognate projection to inflection generation. DTLM and NMT denote pro-
jection and inflection models, respectively. Dashed arrows show transduction. Solid arrows indicate training data.
The LR and HR components are shown in orange and blue.

3 Tools

In this section, we describe our two principal tools:
DTLM for cognate projection and low-resource
inflection generation, and OpenNMT for high-
resource inflection generation.

3.1 DTLM
DTLM (Nicolai et al., 2018) combines discrimi-
native transduction with character and word lan-
guage models derived from large unannotated cor-
pora, with the language-model features integrated
into the transducer. DTLM employs a many-to-
many alignment method, which is referred to as
precision alignment.

Nicolai et al. (2018) demonstrate that DTLM
achieves superior results in low-data scenarios
on several transduction tasks, including inflection
generation, transliteration, phoneme-to-grapheme
conversion, and cognate projection. In the
CoNLL–SIGMORPHON 2018 Shared Task on
Universal Morphological Reinflection (Cotterell
et al., 2018), DTLM was our best performing indi-
vidual system. It was also successfully used in the
NEWS 2018 shared task on transliteration (Najafi
et al., 2018b).

3.2 OpenNMT
OpenNMT (Klein et al., 2017) is an open-source
neural machine translation tool based on se-
quence to sequence model with attention mecha-
nism. Klein et al. (2017) demonstrates that Open-

NMT generally performs better quality of machine
translation than other existing open-source ma-
chine translation systems and is fairly efficient in
terms of training and test speed.

Machine translation models have been success-
fully applied to other transduction tasks (Kann
and Schütze, 2016). We employ OpenNMT as a
vanilla HR morphological inflection tool, by sim-
ply concatenating the lemma and the tags to form
the input sequence. Each individual tag is encoded
as a single input token. No target wordlists are
used.

4 Cognate Projection Methods

Each dataset in this shared task pairs a low-
resource (LR) language with a related high-
resource (HR) language. Genetically related lan-
guages share cognates, words with a common lin-
guistic origin (St Arnaud et al., 2017). For exam-
ple, the Latin word oculus ‘eye’ is cognate with
the Romanian word ochi. Cognate pairs exhibit
phonetic and semantic similarity (Kondrak, 2013).
The correspondences between substrings in cog-
nates tend to follow regular patterns (Kondrak,
2009).

Cognate projection, also referred to as cognate
production (Beinborn et al., 2013; Ciobanu, 2016),
is the task of predicting the spelling of a hypo-
thetical cognate in another language. For exam-
ple, the projection of oculus from Latin to Ro-
manian should generate ochi. Even if a cognate

7



Language Source UniMorph Words
Kashubian Wikipedia 509 60286
Occitan Wikipedia 8316 318706
Latin UniMorph 509182 357951
Bengali UniMorph 4443 2752

Table 1: The size of the UniMorph datasets and our
target word lists.

word does not exist, cognate projection should
produce a target form that incorporates the inter-
lingual sound correspondences and the phonotac-
tic constraints of the target language. We hypoth-
esize that the projected forms exhibit some of the
morpho-phonetic properties of the actual words.
For example, the projection of the Spanish verbal
form tomaré (‘I will take’) into a (non-existent)
Latin word tomābō could provide useful informa-
tion for inflecting actual Latin verbs.

We propose two projection-based approaches
for inflection generation which are based on the
above hypothesis (Figure 1). We refer to those
approaches as Data Projection and Instance Pro-
jection respectively. Both approaches aim at tak-
ing advantage of the HR inflection training data
to perform LR inflection. Morphological tags are
left unchanged. For cognate projection, we train
transduction models (Section 3.1) on lists of cog-
nate pairs extracted from small bitexts. The pro-
jection models are strengthened by target wordlists
extracted from freely-available monolingual cor-
pora.

The Data Projection approach simply projects
the entire HR training data, which consists of lem-
mas and the corresponding inflected forms, into
the LR language. For example, the Romanian
training pair “dormi+V;3;SG = doarme” projects
into Latin “dormio+V;3;SG = dormit”. This pro-
duces a relatively large, synthetic LR training set
from which an LR inflection model can be derived
(Section 3.2). The underlying idea is that the HR
inflection patterns may be reflected in the corre-
sponding LR inflection patterns, especially if the
languages are closely related.

The Instance Projection approach is more com-
plex, consisting of three transduction steps: (1)
project an individual LR test instance into the HR
language; (2) inflect the resulting form using a
model trained on the HR training data, and (3)
project the result back into the LR language. For
example, Latin “dormio+V;3;SG” would first be

Pair k t Train Dev Test
pol↔csb 7500 0.4 6500 500 500
spa↔oci 5300 0.4 4500 500 300
ron↔lat 4612 0.4 4000 300 312
hin↔ben 1816 0.5 1456 180 180

Table 2: Our cognate projection datasets.

projected into Romanian “dormi+V;3;SG”, then
inflected using the Romanian model into doarme,
and finally projected back into Latin as dormit.
Unlike in Data Projection, inflection is performed
entirely in the HR language. We aim to determine
whether the higher HR inflection accuracy can off-
set the errors introduced at either of the projection
steps.

5 Development

In this section, we describe our external resources
and development results.

5.1 External Resources

For low-resource tasks, in both inflection gen-
eration and cognate projection, it makes obvi-
ous sense to leverage additional resources, which
are freely available for many under-resourced lan-
guages. We extract the target word lists for
DTLM from UniMorph2 (Kirov et al., 2018). and
Wikipedia3, as summarized in Table 1.4

For cognate projection, we need training sets
composed of cognate pairs, Finding good par-
allel bitexts for low-resource languages is quite
challenging. Small bitexts exist in special do-
mains, such as technical documentation or Bible
translations. For Polish-Kashubian and Spanish-
Occitan, we use software documentation from
OPUS5 (Tiedemann, 2012). For Hindi-Bengali,
we use the OpenSubtitles (v2018) data, also from
OPUS. For Romanian-Latin, we use a parallel
corpus which contains a verse-by-verse align-
ment of the Bible translations in 100 languages
(Christodouloupoulos and Steedman, 2015).

2https://unimorph.github.io
3https://dumps.wikimedia.org
4We are aware that the test data for the shared task may

come from UniMorph. We use UniMorph solely for deriving
the target word language model, without taking advantage of
the morphological annotations. All our submissions that use
external data are declared as non-standard.

5http://opus.nlpl.eu/
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Data System ID
Word Accuracy Levenshtein Distance

csb oci lat ben csb oci lat ben
None Copy Baseline 5 12.0 1.0 2.4 1.0 1.90 3.01 3.83 3.56

LR only
DTLM (standard) 1 60.0 64.0 14.3 55.0 0.58 0.93 2.56 0.86
DTLM + wordlists 2 58.0 63.0 34.0 64.0 0.56 0.97 1.85 0.72

HR only
No Projection - 16.0 7.0 0.3 n/a 1.72 2.91 5.13 n/a

Instance Projection 4 28.0 5.0 0.0 0.0 2.02 2.99 6.58 6.51
Data Projection 3 30.0 3.0 0.8 0.0 1.54 3.20 4.85 6.63

LR + HR
Data Projection 6 66.0 23.0 1.4 17.0 0.78 2.22 4.25 3.33

1-MONO - 62.0 60.0 5.1 31.0 0.60 1.11 3.34 1.91

Table 3: Inflection results on test sets of the shared task.

5.2 Inflection Generation

We perform inflection generation with DTLM in
the low-resource setting, and OpenNMT in the
high-resource setting. For DTLM, we apply the
tag splitting and particle handling techniques de-
scribed in Nicolai et al. (2017). In particular, we
split tag sequences into component tags, and ap-
pend them at both the beginning and end of the
lemma, treating each of them as an atomic sym-
bol. We tune the hyper-parameters of both the
aligner and transducer using grid search for each
language. For OpenNMT, we split tag sequences,
and append them to the lemma. All parameters are
set to default values.

The task of leveraging HR training data for LR
inflection generation is complicated by two types
of inconsistencies. First, there are unavoidable ty-
pological differences, especially between less sim-
ilar languages. For example, Latin nominal inflec-
tion paradigms include six cases, most of which do
not exist in Romanian, which instead distinguishes
between definite and indefinite forms. Second, the
order of the tags in the data may differ. For ex-
ample, the person tag follows the tense tag in the
Spanish data, while the order is reversed in the Oc-
citan data. We do not perform any tag re-ordering
in the current shared task, but see Nicolai et al.
(2017) for a principled solution to this problem.

5.3 Cognate Projection

We train our cognate models on lists of HR-LR
word pairs acquired from the bitexts. The bi-
texts are aligned with FAST ALIGN (Dyer et al.,
2013). We extract all aligned word pairs, and sort
them by the alignment frequency. For Hindi and
Bengali, which are written in different scripts, we
compute the inter-lingual orthographic similarity
after romanizing all words using uroman (Herm-

jakob et al., 2018). We discard all pairs with or-
thographic similarity below a threshold t, which is
manually tuned for each language pair. The sim-
ilarity is computed as 1 − D/L, where D is the
Levenshtein distance, and L is the length of the
longer of the two strings. Furthermore, we discard
pairs which involve any words that are English, are
shorter than 4 characters, or include digits. We
take the top k HR-LR pairs, and randomly divide
them into training, development, and test sets, as
summarized in Table 2.

For each language pair, we train a DTLM model
in each direction on the training set, using the de-
velopment set to prevent over-fitting, as well as a
target-language word list (Section 5.1). The re-
sults of the intrinsic evaluation of the projection
models on the in-domain test sets are shown in Ta-
ble 4. The accuracy of the Romanian-Latin is rela-
tively low, which may be due to the Bible domain.

6 Results and Discussion

We test several systems, as listed in Table 3. (Sub-
mission IDs are given here in parentheses.) A
naive copy baseline (5) simply outputs the un-
changed input lemmas. DTLM models with and
without target wordlists (2 and 1) make no use of
HR data (the latter is our only standard submis-
sion, which uses no external resources). The next
three systems make use of only the HR training
sets provided as part of the shared task. This em-
ulates a scenario6 where no LR inflection data is
available. Data Projection (3) and Instance Pro-
jection (4) implement the two methods illustrated
in Figure 1, while No Projection simply applies
an inflection model trained on HR data to LR in-

6We note the similarity to the setup in the shared task
on Cross-lingual Morphological Analysis of VarDial 2019
(Zampieri et al., 2019).
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Pair WA (LD) Pair WA (LD)
pol→csb 28.6 (1.97) csb→pol 49.8 (1.32)
spa→oci 47.3 (1.76) oci→spa 46.7 (2.15)
ron→lat 5.5 (2.88) lat→ron 17.9 (2.26)
hin→ben 22.2 (2.92) ben→hin 29.8 (2.62)

Table 4: Intrinsic evaluation of cognate projection.

stances. The last system (6) combines the pro-
jected HR inflection data with LR data, which
probably comes closest to the spirit of this shared
task. 1-MONO is the first-order monotonic hard
attention system of Wu and Cotterell (2019).

The test results are shown in Table 3. The best
result on each language is shown in bold. When
only LR data is used, the results confirm the find-
ing of (Nicolai et al., 2018) that leveraging target
wordlists from monolingual corpora can improve
inflection accuracy for less-closely related lan-
guages. With the exception of Polish-Kashubian,
the standard DTLM model is better than the com-
petitive baselines. However, the Polish-Kashubian
results demonstrate that cognate projection can
outperform the Copy and No Projection baselines
when only HR data is used. Finally, augmenting
the LR training data with the projected HR data
does not improve the inflection accuracy in most
cases.

7 Conclusion

We described the details of the systems that we
tested on four language pairs in the SIGMOR-
PHON 2019 Shared Task. In particular, we suc-
cessfully experimented with leveraging cognate
projection for inflection generation. We view our
Polish-Kashubian results as a proof of concept that
should motivate further research on this new idea.

Acknowledgments

We thank Garrett Nicolai for the assistance with
DTLM. We thank the shared task organizers for
their effort.

This research was supported by the Natural
Sciences and Engineering Research Council of
Canada.

References
Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.

2013. Cognate production using character-based
machine translation. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language

Processing, pages 883–891, Nagoya, Japan. Asian
Federation of Natural Language Processing.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the Bible in
100 languages. Language Resources and Evalua-
tion, 49(2):375–395.

Alina Maria Ciobanu. 2016. Sequence labeling for
cognate production. In Knowledge-Based and Intel-
ligent Information and Engineering Systems: Pro-
ceedings of the 20th International Conference KES-
2016, pages 1391–1399. Elsevier.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Abstract

We present our CHARLES-SAARLAND sys-
tem for the SIGMORPHON 2019 Shared Task
on Crosslinguality and Context in Morphol-
ogy, in task 2, Morphological Analysis and
Lemmatization in Context. We leverage the
multilingual BERT model and apply several
fine-tuning strategies introduced by UDify
demonstrating exceptional evaluation perfor-
mance on morpho-syntactic tasks. Our results
show that fine-tuning multilingual BERT on
the concatenation of all available treebanks al-
lows the model to learn cross-lingual informa-
tion that is able to boost lemmatization and
morphology tagging accuracy over fine-tuning
it purely monolingually. Unlike UDify, how-
ever, we show that when paired with additional
character-level and word-level LSTM layers, a
second stage of fine-tuning on each treebank
individually can improve evaluation even fur-
ther. Out of all submissions for this shared
task, our system achieves the highest average
accuracy and f1 score in morphology tagging
and places second in average lemmatization
accuracy.

1 Introduction

We focus on track 2 of the SIGMORPHON 2019
Shared Task (McCarthy et al., 2019), which re-
quires systems to predict lemmas and morphosyn-
tactic descriptions (MSDs) of words given sen-
tences of pre-tokenized words. The data relies on
treebanks provided by the Universal Dependencies
(UD) project (Nivre et al., 2018), where MSDs
are converted from UD format to the UniMorph
schema (McCarthy et al., 2018; Kirov et al., 2018).
Systems must predict from sentences given test
data provided in 107 separate treebanks each rep-
resenting one of 66 different languages.

Recent advances in contextual word representa-
tions show that pretraining language models on a
large corpus of unsupervised text can be used to

Wordpiece Tokenizer

The best optimizer is grad student descent

The    best   op ##timi ##zer is   grad student descent

...
BERT

o   p   t   i m   i z   e   r

…Character LSTM

Layer Attention

… … … …Word LSTMs

x2 x2

“x→x” (optimizer) N;SG

Lemmatizer Morph Tagger

Figure 1: An illustration of our model architecture
with task-specific layer attention, inputting word to-
kens and predicting lemma edit scripts and morphology
tags for each token.

transfer their internal knowledge representations
to other NLP tasks to boost evaluation scores sig-
nificantly (Howard and Ruder, 2018; Peters et al.,
2018; Devlin et al., 2018). We utilize the BERT
base multilingual cased model pretrained on raw
sentences found in the top 104 most-resourced lan-
guages of Wikipedia (Devlin et al., 2018) for all
of our experiments. In addition, we use meth-
ods introduced by UDify (Kondratyuk, 2019) to
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further fine-tune and regularize BERT, which has
been shown to be especially helpful in predicting
morpho-syntactic tasks.

Our system defines a simple multi-task multi-
lingual neural architecture for predicting lemmas
and MSDs jointly. Our contributions to achieve
high lemmatization and morphology tagging per-
formance are as follows:

1. We leverage the pretrained multilingual
BERT cased model to encode input sen-
tences and apply additional word-level and
character-level LSTM layers before jointly
decoding lemmas and morphology tags using
simple sequence tagging layers.

2. Instead of only training models for each tree-
bank separately, we use a two-stage training
process to incorporate cross-linguistic infor-
mation present in other treebanks, training
multilingually over all treebanks in the first
stage and then monolingually using saved
multilingual weights in the second stage.

Our results show that applying an interme-
diate multilingual fine-tuning stage on BERT
is superior to just fine-tuning monolingually in
nearly all cases. Code for our model is released
along with UDify at https://github.com/
hyperparticle/udify.

2 Model Architecture

We describe the architecture of our system as fol-
lows. See Figure 1 for an illustration of this de-
scription. Our network consists of a shared BERT
encoder followed by joint lemma and morphology
tag decoders.

Given an input sentence consisting of a se-
quence of word tokens, we apply BERT’s multi-
lingual cased tokenizer to each word, potentially
splitting it into multiple subword tokens. We en-
code this token sequence with the pretrained mul-
tilingual cased BERT base model consisting of 12
layers with 12 attention heads per layer and hidden
output dimensions of 768. Following this, we take
the subset of wordpieces corresponding to the first
wordpiece of each word to align the BERT encod-
ing with the sequence of input words1.

Once BERT encoding is complete, we apply
two separate instances of layer attention defined

1Kondratyuk (2019) and Kitaev and Klein (2018) found
that first, last, or average of the wordpieces did not make a
noticeable difference.

in UDify which is similar to ELMo (Peters et al.,
2018), i.e., a trainiable weighted sum of all 12 lay-
ers of BERT, which has been shown to improve
evaluation performance over just computing repre-
sentations on the last layer. The layer attention in-
stances generate embeddings specific to each task,
one for lemmatization and the other for morphol-
ogy tagging.

But before decoding, we also apply character-
level embeddings (Santos and Zadrozny, 2014;
Ling et al., 2015; Kim et al., 2016) to produce
an enhanced morphological representation by en-
coding the sequence of character tokens for each
word through a bidirectional LSTM with a resid-
ual connection (Schuster and Paliwal, 1997; Kim
et al., 2017), keeping the hidden layers fixed to
dimensions of 384. We concatenate the final hid-
den states of both LSTM directions, and then sum
these character-level word representations with
each of the two encoded representations produced
by the task-specific layer attention.

Similar to Kondratyuk et al. (2018) and Straka
(2018), both the lemmatizer and morphological
tagger employ two successive layers of word-level
bidirectional residual LSTMs computed over the
entire task layer attention sequence with hidden
dimensions of 768, summing both directions to-
gether along each output state.

For lemmatization, we precompute edit scripts
representing a minimal sequence of character op-
erations to transduce a word form to its lemma
counterpart, as seen in Chrupała (2006); Straka
(2018). As is typical for neural sequence tagging,
we apply a feedforward layer to the final layer
of the lemmatizer LSTM, representing the activa-
tions of classes of all edit scripts found in the train-
ing data.

Similarly for morphology tagging, we apply a
feedforward layer whose units correspond to the
vocabulary over all unfactored MSD strings. We
apply the method of Inoue et al. (2017) to jointly
predict the classes of unfactored and factored mor-
phology tags, i.e., we also predict each dimension
of the morphology tag whose subcategories are de-
fined by the UniMorph schema (e.g., case, mood,
person, tense, etc.). We only use the factored tags
to improve training, and for prediction we use the
full unfactored tags.
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HYPERPARAMETER VALUE

Character-level embedding dimension 256
Character-level LSTM hidden dimension 384
Word-level LSTM hidden dimension 768
Final feedforward learning rate 4e−3

LSTM, layer attention learning rate 1e−3

BERT learning rate (layers 7-12) 5e−5

BERT learning rate (layers 1-6) 1e−5

LSTM embedding dropout 0.5
BERT internal dropout 0.25
Mask probability 0.25
Layer dropout 0.2
Batch size 32
Epochs 50

Table 1: A summary of hyperparameters applicable to
each model configuration.

3 Experiments

We train our system on the provided treebank
training data with three separate configurations.

3.1 Configurations
MONO We train the network (as seen in Fig-

ure 1) monolingually by simply fine-tuning it on
each treebank separately.

MULTI We fine-tune the network as in MONO,
except on a dataset consisting of all treebank train-
ing data concatenated together, as seen in UDify.
All word, character, and tag vocabularies of each
language are combined together.

MULTI+MONO We train the network mono-
lingually as in MONO, but using the BERT
weights saved from the model fine-tuned accord-
ing to MULTI. This effectively defines a two-stage
training process: the first stage involves multilin-
gual fine-tuning of BERT, and the second stage
re-trains the layer attention, LSTMs and feedfor-
ward taggers from scratch on each treebank with
a reduced monolingual vocabulary (keeping fine-
tuned BERT intact).

For all MONO and the second stage of
MULTI+MONO, we ensure that we do not com-
bine multiple treebanks of the same language but
always fine-tune on just the training data from
each provided treebank.

3.2 Hyperparameters
A summary of specific values for each of the hy-
perparameters discussed can be seen in Table 1.

We train each configuration using a batch size
of 32 over 50 epochs. We employ the Adam
optimizer, computing the loss as the softmax
cross entropy between the predicted tags and the

LEMMA MORPH
MODEL ACC DIST ACC F1

Baseline 93.13 0.13 73.16 87.92

Mono 92.80 0.17 90.26 93.44
Multi 90.39 0.27 85.18 90.18
Multi+Mono 95.00 0.12 93.23 96.02

Table 2: A summary of the average results of each
model configuration with a comparison to the baseline
(Malaviya et al., 2019).

gold labels. We apply discriminative fine-tuning
(Howard and Ruder, 2018) by defining four sep-
arate parameter groups each with their own base
learning rate, decreasing as the layers get closer to
the input: the first 6 layers of BERT, the last 6 lay-
ers of BERT, the layer attention and LSTM layers,
and the final feedforward layers.

We apply regularization as defined by UDify,
with a few extra modifications. We raise the
layer dropout, BERT dropout, input mask prob-
ability slightly to prevent overfitting, especially
for the MONO and MULTI+MONO configurations.
We also apply dropout to all intermediate word-
embedding representations between each of the
word-level LSTM layers.

4 Results

We display comparisons between each of the three
configurations. We compute lemma accuracy,
lemma Levenstein distance, morphology tag ac-
curacy, and morphology f1 scores for each of the
107 treebanks. A summary of the averages of all
scores for each configuration can be found in Ta-
ble 2. The full results are shown in Tables 3, 4, 5,
and 6.

5 Discussion

Our results show that not only does fine-
tuning BERT provide excellent lemmatization
and morphology tagging performance, two-stage
MULTI+MONO training can provide significant
improvements for practically every treebank when
compared to MONO. While some of these im-
provements can be attributed to learning from
monolingual data from multiple treebanks of
the same language, we can see improvements
even for languages possessing just one tree-
bank. This provides evidence that the MULTI and
MULTI+MONO models regularize well to multi-
lingual training. This could be explained by a
combination of: multilingual learning providing
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LEMMA MORPH
TREEBANK MODEL ACC DIST ACC F1

Afrikaans AfriBooms Mono 98.66 0.03 98.4 98.63
Multi 97.19 0.05 98.06 98.58
Multi+Mono 98.95 0.02 99.23 99.36

Akkadian PISANDUB Mono 49.78 2.14 86.22 86.41
Multi 23.56 3.63 60.44 60.89
Multi+Mono 65.35 0.97 89.11 89.06

Amharic ATT Mono 100.0 0.00 86.8 90.74
Multi 100.0 0.00 81.0 86.14
Multi+Mono 100.0 0.00 87.43 91.34

Ancient Greek PROIEL Mono 92.15 0.22 90.85 96.95
Multi 85.75 0.43 88.99 96.2
Multi+Mono 92.34 0.20 92.37 97.68

Ancient Greek Perseus Mono 88.88 0.32 88.9 94.74
Multi 80.98 0.56 86.38 93.4
Multi+Mono 89.69 0.29 90.88 96.26

Arabic PADT Mono 94.24 0.17 94.09 96.91
Multi 75.54 0.85 93.66 96.88
Multi+Mono 94.45 0.16 95.66 97.65

Arabic PUD Mono 71.0 1.50 84.03 93.78
Multi 36.65 5.03 65.25 85.59
Multi+Mono 81.92 0.48 84.53 94.09

Armenian ArmTDP Mono 94.5 0.10 91.05 95.48
Multi 91.48 0.17 82.49 89.92
Multi+Mono 95.58 0.08 92.77 96.66

Bambara CRB Mono 90.08 0.18 92.7 94.02
Multi 72.25 0.58 77.09 81.81
Multi+Mono 88.76 0.21 93.32 95.34

Basque BDT Mono 96.3 0.08 90.03 94.72
Multi 93.72 0.14 85.54 92.76
Multi+Mono 96.5 0.07 92.07 96.3

Belarusian HSE Mono 87.76 0.21 78.62 89.47
Multi 87.62 0.22 73.56 81.76
Multi+Mono 92.51 0.12 89.93 95.68

Breton KEB Mono 91.19 0.20 90.88 92.93
Multi 80.24 0.55 76.49 79.07
Multi+Mono 87.66 0.32 90.35 91.77

Bulgarian BTB Mono 96.72 0.10 96.61 98.3
Multi 95.06 0.16 95.64 98.02
Multi+Mono 98.05 0.07 98.01 99.18

Buryat BDT Mono 85.48 0.33 80.29 82.5
Multi 73.48 0.57 64.25 67.12
Multi+Mono 86.35 0.30 85.67 88.42

Cantonese HK Mono 99.49 0.01 92.11 90.19
Multi 98.63 0.02 87.31 84.65
Multi+Mono 100.0 0.00 94.29 92.83

Catalan AnCora Mono 99.2 0.01 98.36 99.19
Multi 98.87 0.02 98.58 99.37
Multi+Mono 99.38 0.01 98.82 99.45

Chinese CFL Mono 100.0 0.00 92.52 91.46
Multi 100.0 0.00 84.9 85.56
Multi+Mono 99.65 0.00 92.55 91.5

Chinese GSD Mono 99.94 0.00 94.56 94.44
Multi 100.0 0.00 97.03 96.96
Multi+Mono 99.97 0.00 97.13 97.04

Coptic Scriptorium Mono 92.52 0.17 89.93 92.28
Multi 84.75 0.33 78.69 82.32
Multi+Mono 96.13 0.08 93.3 94.81

Croatian SET Mono 96.73 0.06 92.07 96.86
Multi 96.54 0.06 91.01 96.74
Multi+Mono 97.51 0.05 94.11 97.82

Czech CAC Mono 99.03 0.02 96.43 98.67
Multi 99.04 0.02 97.09 99.07
Multi+Mono 99.45 0.01 98.48 99.48

Czech CLTT Mono 98.09 0.03 92.35 96.63
Multi 99.29 0.01 92.99 97.49
Multi+Mono 99.3 0.01 95.31 98.2

Czech FicTree Mono 98.11 0.03 93.39 97.14
Multi 98.62 0.03 92.06 97.39
Multi+Mono 99.01 0.02 97.13 98.9

Czech PDT Mono 99.14 0.01 97.01 98.84
Multi 99.12 0.02 97.48 99.12
Multi+Mono 99.42 0.01 98.54 99.47

Czech PUD Mono 92.71 0.12 80.71 92.13
Multi 97.91 0.03 92.71 97.64
Multi+Mono 96.74 0.06 92.38 97.43

Danish DDT Mono 96.48 0.06 95.72 97.15
Multi 96.47 0.07 96.25 97.73
Multi+Mono 98.15 0.03 97.98 98.68

Dutch Alpino Mono 97.63 0.04 96.64 97.43
Multi 96.71 0.07 97.51 98.24
Multi+Mono 98.62 0.03 98.12 98.62

Dutch LassySmall Mono 96.77 0.06 96.11 97.0
Multi 97.41 0.06 98.04 98.6
Multi+Mono 98.08 0.03 98.5 98.83

Table 3: Main results (part 1 of 4).

LEMMA MORPH
TREEBANK MODEL ACC DIST ACC F1

English EWT Mono 98.56 0.02 96.44 97.38
Multi 98.49 0.03 96.98 97.99
Multi+Mono 99.19 0.01 97.85 98.52

English GUM Mono 97.75 0.04 96.17 97.11
Multi 94.97 0.09 93.6 96.15
Multi+Mono 98.45 0.02 97.52 98.11

English LinES Mono 98.31 0.03 96.76 97.51
Multi 96.6 0.07 93.06 95.48
Multi+Mono 98.62 0.02 97.77 98.3

English PUD Mono 95.98 0.06 95.89 97.0
Multi 94.05 0.13 92.65 95.76
Multi+Mono 97.89 0.03 96.67 97.58

English ParTUT Mono 97.87 0.03 96.02 96.55
Multi 97.8 0.04 92.72 94.98
Multi+Mono 98.51 0.02 96.65 97.35

Estonian EDT Mono 93.21 0.15 95.3 97.56
Multi 89.13 0.23 96.13 98.18
Multi+Mono 88.16 0.22 97.23 98.69

Faroese OFT Mono 89.14 0.22 86.97 92.27
Multi 79.94 0.40 75.8 83.55
Multi+Mono 88.95 0.20 86.74 93.47

Finnish FTB Mono 93.74 0.13 93.61 96.3
Multi 93.25 0.12 92.67 96.75
Multi+Mono 95.45 0.08 96.85 98.38

Finnish PUD Mono 75.7 0.54 89.28 94.22
Multi 85.71 0.21 94.76 97.69
Multi+Mono 85.48 0.28 95.62 97.98

Finnish TDT Mono 93.89 0.12 95.05 97.05
Multi 92.76 0.13 93.41 97.1
Multi+Mono 95.73 0.08 97.1 98.54

French GSD Mono 98.51 0.03 97.51 98.57
Multi 98.44 0.03 97.64 98.85
Multi+Mono 99.01 0.02 98.31 99.07

French ParTUT Mono 94.88 0.10 94.35 97.2
Multi 94.1 0.13 91.56 96.74
Multi+Mono 96.66 0.06 95.46 97.95

French Sequoia Mono 97.86 0.04 96.57 98.2
Multi 98.36 0.03 92.56 97.45
Multi+Mono 98.81 0.02 97.75 98.99

French Spoken Mono 97.67 0.04 98.07 98.09
Multi 98.42 0.03 97.17 97.2
Multi+Mono 98.85 0.02 98.6 98.65

Galician CTG Mono 98.58 0.02 98.23 98.07
Multi 98.19 0.03 96.94 96.47
Multi+Mono 98.96 0.02 98.44 98.29

Galician TreeGal Mono 95.32 0.07 92.14 95.32
Multi 96.24 0.05 84.58 92.1
Multi+Mono 98.46 0.03 96.21 97.88

German GSD Mono 97.18 0.06 88.01 94.75
Multi 95.89 0.10 89.33 95.46
Multi+Mono 97.62 0.05 90.43 95.9

Gothic PROIEL Mono 93.25 0.14 85.95 93.72
Multi 86.86 0.29 86.06 94.16
Multi+Mono 94.54 0.13 91.02 96.64

Greek GDT Mono 94.64 0.13 92.74 97.21
Multi 90.99 0.25 92.36 97.12
Multi+Mono 82.95 0.42 95.61 98.23

Hebrew HTB Mono 96.55 0.07 95.99 97.2
Multi 95.25 0.09 95.45 97.3
Multi+Mono 97.85 0.04 97.67 98.47

Hindi HDTB Mono 98.7 0.02 91.95 97.16
Multi 98.63 0.02 92.16 97.4
Multi+Mono 98.84 0.01 93.65 98.04

Hungarian Szeged Mono 93.68 0.12 84.9 94.42
Multi 92.82 0.12 79.01 92.69
Multi+Mono 96.99 0.06 91.5 97.51

Indonesian GSD Mono 99.4 0.01 90.62 93.84
Multi 98.92 0.02 90.84 94.01
Multi+Mono 99.51 0.01 92.48 95.16

Irish IDT Mono 89.07 0.26 80.44 86.01
Multi 85.9 0.33 75.72 84.6
Multi+Mono 88.09 0.27 84.4 90.04

Italian ISDT Mono 98.33 0.03 97.88 98.77
Multi 98.34 0.03 98.31 99.17
Multi+Mono 98.88 0.02 98.49 99.19

Italian PUD Mono 94.82 0.10 95.1 97.67
Multi 96.19 0.09 59.07 84.9
Multi+Mono 97.69 0.04 96.37 98.42

Italian ParTUT Mono 97.32 0.05 97.32 98.24
Multi 98.24 0.04 97.92 98.8
Multi+Mono 98.87 0.02 98.4 99.2

Italian PoSTWITA Mono 96.15 0.08 95.87 96.82
Multi 95.24 0.12 96.56 97.58
Multi+Mono 97.24 0.06 96.88 97.9

Table 4: Main results (part 2 of 4).
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LEMMA MORPH
TREEBANK MODEL ACC DIST ACC F1

Japanese GSD Mono 99.36 0.01 97.36 97.04
Multi 99.49 0.01 98.07 97.83
Multi+Mono 99.65 0.00 98.41 98.21

Japanese Modern Mono 96.17 0.05 96.1 96.17
Multi 94.57 0.08 90.05 90.16
Multi+Mono 98.67 0.01 97.47 97.5

Japanese PUD Mono 98.89 0.02 96.78 96.45
Multi 99.5 0.01 97.9 97.7
Multi+Mono 99.36 0.01 98.56 98.39

Komi Zyrian IKDP Mono 56.63 0.88 45.78 49.74
Multi 63.86 0.83 38.55 37.04
Multi+Mono 78.91 0.38 67.97 75.05

Komi Zyrian Lattice Mono 63.74 0.82 44.51 52.06
Multi 60.44 1.05 39.56 45.87
Multi+Mono 80.77 0.36 67.58 78.01

Korean GSD Mono 87.47 0.26 96.18 95.66
Multi 83.82 0.35 94.06 93.22
Multi+Mono 91.95 0.16 96.77 96.27

Korean Kaist Mono 92.62 0.14 96.97 96.59
Multi 89.3 0.23 97.54 97.24
Multi+Mono 93.18 0.12 97.85 97.58

Korean PUD Mono 98.56 0.03 92.36 95.51
Multi 68.19 0.99 64.7 70.71
Multi+Mono 99.57 0.01 94.67 96.76

Kurmanji MG Mono 87.54 0.24 80.69 86.67
Multi 78.91 0.45 65.04 72.29
Multi+Mono 93.73 0.12 84.23 90.26

Latin ITTB Mono 98.68 0.03 95.17 97.65
Multi 98.53 0.04 96.38 98.44
Multi+Mono 99.2 0.02 97.64 98.96

Latin PROIEL Mono 95.75 0.09 88.81 95.43
Multi 94.67 0.12 91.15 96.78
Multi+Mono 97.36 0.05 93.68 97.87

Latin Perseus Mono 79.04 0.43 72.1 83.21
Multi 86.43 0.27 80.53 90.8
Multi+Mono 89.68 0.19 85.94 93.79

Latvian LVTB Mono 95.15 0.08 92.59 95.85
Multi 94.73 0.09 91.88 95.75
Multi+Mono 97.14 0.05 95.78 98.04

Lithuanian HSE Mono 74.46 0.53 67.6 75.01
Multi 73.61 0.48 66.09 78.74
Multi+Mono 85.57 0.25 79.46 87.97

Marathi UFAL Mono 73.65 0.67 59.53 74.76
Multi 75.53 0.65 55.53 75.05
Multi+Mono 76.69 0.61 67.75 80.19

Naija NSC Mono 99.84 0.01 95.64 94.16
Multi 99.43 0.01 92.33 89.49
Multi+Mono 100.0 0.00 96.5 95.31

North Sami Giella Mono 85.74 0.30 84.66 90.44
Multi 79.06 0.42 83.28 90.03
Multi+Mono 90.17 0.21 92.46 95.33

Norwegian Bokmaal Mono 98.76 0.02 97.13 98.32
Multi 98.62 0.02 97.73 98.83
Multi+Mono 99.18 0.01 98.25 99.02

Norwegian Nynorsk Mono 98.45 0.02 96.89 98.17
Multi 98.34 0.03 97.62 98.77
Multi+Mono 99.0 0.01 98.11 98.97

Norwegian NynorskLIA Mono 96.24 0.07 93.37 94.96
Multi 97.28 0.05 93.96 96.29
Multi+Mono 98.08 0.04 96.8 97.39

Old Church Slavonic PROIEL Mono 91.09 0.19 86.24 93.22
Multi 82.79 0.39 80.18 89.63
Multi+Mono 93.7 0.15 91.71 96.45

Persian Seraji Mono 95.34 0.23 97.17 97.69
Multi 92.17 0.41 96.85 97.73
Multi+Mono 96.63 0.17 98.31 98.67

Polish LFG Mono 96.25 0.07 92.44 96.74
Multi 96.01 0.09 89.63 96.47
Multi+Mono 97.94 0.04 97.13 98.86

Polish SZ Mono 96.54 0.07 88.15 94.79
Multi 96.22 0.08 69.63 91.35
Multi+Mono 97.43 0.05 95.11 98.11

Portuguese Bosque Mono 98.26 0.03 95.1 97.57
Multi 97.48 0.05 94.45 97.34
Multi+Mono 98.65 0.02 96.22 98.26

Portuguese GSD Mono 98.64 0.07 98.63 98.74
Multi 97.73 0.11 98.05 98.03
Multi+Mono 99.09 0.05 99.03 99.1

Romanian Nonstandard Mono 95.66 0.08 93.15 96.26
Multi 92.88 0.13 93.8 96.99
Multi+Mono 96.52 0.06 95.01 97.65

Romanian RRT Mono 97.98 0.03 97.34 98.19
Multi 97.14 0.05 97.15 98.36
Multi+Mono 98.58 0.02 98.19 98.89

Russian GSD Mono 96.41 0.06 90.73 95.92
Multi 97.34 0.04 90.6 96.58
Multi+Mono 97.74 0.04 94.92 97.95

Table 5: Main results (part 3 of 4).

LEMMA MORPH
TREEBANK MODEL ACC DIST ACC F1

Russian PUD Mono 89.44 0.19 86.15 93.84
Multi 94.38 0.10 64.26 89.43
Multi+Mono 95.49 0.08 91.15 96.27

Russian SynTagRus Mono 98.6 0.03 97.22 98.61
Multi 98.28 0.04 97.76 98.97
Multi+Mono 99.01 0.02 98.38 99.23

Russian Taiga Mono 88.91 0.20 82.64 88.88
Multi 94.13 0.13 88.61 94.89
Multi+Mono 93.49 0.13 90.15 94.88

Sanskrit UFAL Mono 57.22 1.12 43.81 58.11
Multi 49.48 1.24 33.51 43.14
Multi+Mono 63.32 0.89 47.74 69.52

Serbian SET Mono 96.74 0.06 93.86 97.02
Multi 97.36 0.05 93.22 97.18
Multi+Mono 98.08 0.03 97.02 98.64

Slovak SNK Mono 96.31 0.06 89.24 95.15
Multi 95.73 0.07 90.61 96.23
Multi+Mono 97.57 0.04 95.41 98.24

Slovenian SSJ Mono 97.22 0.04 92.56 96.37
Multi 97.6 0.04 92.97 97.2
Multi+Mono 98.87 0.02 97.01 98.8

Slovenian SST Mono 93.46 0.10 83.46 90.38
Multi 97.24 0.05 87.76 94.06
Multi+Mono 97.2 0.05 92.76 96.2

Spanish AnCora Mono 99.07 0.02 98.15 99.04
Multi 98.87 0.02 98.36 99.19
Multi+Mono 99.4 0.01 98.79 99.4

Spanish GSD Mono 99.0 0.01 95.93 98.05
Multi 98.35 0.02 95.63 97.96
Multi+Mono 99.16 0.01 95.88 98.08

Swedish LinES Mono 96.24 0.07 93.49 96.42
Multi 94.94 0.09 92.43 96.6
Multi+Mono 97.83 0.04 94.75 97.67

Swedish PUD Mono 91.83 0.12 93.26 95.64
Multi 90.81 0.14 93.46 96.37
Multi+Mono 95.85 0.07 95.62 97.25

Swedish Talbanken Mono 97.54 0.04 96.46 97.92
Multi 97.17 0.05 96.65 98.52
Multi+Mono 98.62 0.02 98.09 99.05

Tagalog TRG Mono 76.0 0.48 72.0 79.17
Multi 72.0 0.60 28.0 38.2
Multi+Mono 91.89 0.19 91.89 95.04

Tamil TTB Mono 88.96 0.27 84.78 92.41
Multi 90.58 0.22 80.21 88.04
Multi+Mono 91.52 0.20 91.07 95.64

Turkish IMST Mono 93.43 0.11 85.51 91.71
Multi 91.77 0.12 76.86 87.72
Multi+Mono 94.77 0.11 90.55 95.38

Turkish PUD Mono 83.11 0.37 84.34 92.13
Multi 84.92 0.36 49.33 76.78
Multi+Mono 86.52 0.32 87.47 94.43

Ukrainian IU Mono 96.14 0.06 90.68 95.59
Multi 96.31 0.06 91.42 96.32
Multi+Mono 97.84 0.03 95.78 98.1

Upper Sorbian UFAL Mono 85.25 0.25 74.19 81.49
Multi 83.19 0.31 71.96 81.55
Multi+Mono 93.74 0.10 86.37 92.54

Urdu UDTB Mono 96.34 0.07 78.57 92.0
Multi 96.08 0.07 79.26 92.44
Multi+Mono 96.92 0.06 80.67 93.45

Vietnamese VTB Mono 99.81 0.00 93.5 92.99
Multi 99.35 0.01 93.96 93.47
Multi+Mono 99.75 0.00 94.54 94.02

Yoruba YTB Mono 97.6 0.02 88.0 85.33
Multi 96.4 0.04 75.6 70.99
Multi+Mono 98.45 0.02 93.02 93.15

Table 6: Main results (part 4 of 4).

language-invariant generalizations, out-of-domain
data providing noise to reduce overfitting, or warm
restarts aiding in improved convergence of model
parameters. More experimentation is necessary to
quantify these possible contributors.

Unlike the results shown by UDify, we see that
the MULTI configuration provides overall infe-
rior predictions on almost every treebank when
compared to both MONO and MULTI+MONO.
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This is likely due to the added LSTM layers and
character-level embeddings, which provide ad-
ditional information that improves monolingual
training representations far more than it improves
multilingual. Our intuition is that the LSTM layers
pose an information bottleneck for massively mul-
tilingual data, unlike the BERT encoder, whose
large capacity has been shown to be able to scale
to more than 100 languages. Predictions using a
smaller vocabulary subset could provide a much
stronger signal to the LSTM layers to incorporate
character-level morphology more accuractely. But
we do see that learning MULTI still learns useful
cross-lingual information, just that it requires the
LSTMs and character embeddings to be reconfig-
ured to the specific treebank at hand to gain the
benefits of both types of training.

Note that we specifically do not perform any ex-
tensive hyperparameter search or use ensembling.
As such, we predict that our evaluation results
could still be raised much higher.

6 Conclusion

We have demonstrated our system consisting of
fine-tuning a multi-task enhanced BERT model
for lemmatization and morphology tagging using a
two-stage multilingual training scheme. We show
that while pretrained BERT does provide word
representations capable of surpassing the base-
line, we are able to improve this significantly by
also incorporating multilingual pretraining on all
available treebanks, allowing the model to regular-
ize and likely incorporate cross-lingual informa-
tion useful for morphological parsing. We leave a
more detailed analysis as to what extent multilin-
gual fine-tuning and BERT pretraining contribute
to model performance for future work.
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Abstract 

In this paper we describe our system for 
morphological analysis and lemmatization 
in context, using a transformer-based 
sequence to sequence model and a biaffine 
attention based BiLSTM model. First, a 
lemma is produced for a given word, and 
then both the lemma and the given word 
are used for morphological analysis. We 
also make use of character level word 
encodings and trainable encodings to 
improve accuracy. Overall, our system 
ranked fifth in lemmatization and sixth in 
morphological accuracy among twelve 
systems, and demonstrated considerable 
improvements over the baseline in 
morphological analysis. 

1 Introduction 

In this paper we present our neural network 
architecture that we have used for the 
SIGMORPHON 2019 shared task 2 (McCarthy et 
al., 2019). We use two models by pipelining them 
in the sequence of operations. Our approach is 
based on the idea that lemmatization is an m-to-n 
mapping task where given a word of m characters 
we need to produce its lemma consisting of n 
characters. Unlike lemmatization, morphological 
analysis calls for a different approach where 
given a sentence consisting of m words, we need 
to choose one label from a fixed set of labels for 
each word. Hence, morphological 
analysis/tagging is a classification task for an 
input sequence. 

2 Task and Dataset 

There are two tasks in SIGMORPHON 2019 
and we chose task 2. The idea of the task is 
simple: the input is a sentence made of words and 
the output is a lemma and morphosyntactic 
description (MSD) for each word. Table 1 shows 
sample data for task 2: the first column is the 
input, the second is the lemma, and the last is the 
MSD for each word. There may be a difference in 
the result if a lemma is used as an additional input 
for MSD tagging. Our experiments showed 
improved performance when a lemma was 
incorporated. 

The dataset consists of initial 98 datasets of 
more than 60 distinct languages, and additional 
nine surprise languages/datasets that were added 
later. Some of the datasets consist of languages 
that are not widespread in terms of their usage and 
amount of available training data. For example, 
Akkadian has only 80 sentences in training data, 
and other low-resource languages similarly have 
small numbers of sentences: Amharic has 859, 
Bambara 820, Buryat 741, Cantonese 520, etc. On 
the other hand, Russian SynTagRus and Czech 
PDT respectively have 49,511 and 70,330 
sentences in their training data. In addition to 
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 Word Lemma MSD 
1 these these PL;DET 
2 guys guy N;PL 
3 were be PST;IND;V;FIN 
4 fantastic fantastic ADJ 
5 ! ! _ 

Table 1: Sample data of SIGMORPHON 2019 
Shared Task 2 
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having less training data, some of the low-
resource languages also do not have pre-trained 
word vectors. In such cases, we use other related 
languages’ word vectors as a substitute, as will be 
discussed later. 

3 Model 

The baseline model (Malaviya et al., 2019) 
provided by the task organizers approaches task 2 
by first finding a MSD tag for a given word and 
incorporating that information in lemmatization. 
Given a sequence of words w, a sequence of 
morphological tags m, and a sequence of lemmas 
l, they define their model as: 

 
𝑝𝑝(𝑙𝑙,𝑚𝑚 | 𝑤𝑤) = 𝑝𝑝 (𝑙𝑙|𝑚𝑚,𝑤𝑤)𝑝𝑝(𝑚𝑚|𝑤𝑤)                (1) 

 
This illustrates the importance of MSD tags in 

the lemmatization process. However, 
lemmatization can be done effectively even 
without consideration of morphological tags. 
Therefore, our approach flips the order of 
operations: we first find the lemma for a given 
word and input the original sentence with the 
generated lemma to the MSD tagger. Equation 2 
summarizes this idea: 

 
𝑝𝑝(𝑚𝑚, 𝑙𝑙 | 𝑤𝑤) = 𝑝𝑝 (𝑚𝑚|𝑙𝑙,𝑤𝑤)𝑝𝑝(𝑙𝑙|𝑤𝑤)                (2) 
 
Overall, given the nature of the required tasks, 

an m-to-n sequence to sequence model for 
lemmatization and a label classifier model for 
morphological analysis are used. The two models 
are trained separately and pipelined as shown in 
Figure 1. As an example, when given an initial 
sentence “these guys are fantastic!”, we 
lemmatize each input word as “these guy be 
fantastic!” We then input the derived lemmas and 
the original input to the MSD tagger. At the end, 
we obtain MSD tag for each input word.  

 

3.1  Lemmatizer 

Our lemmatizer is a sequence to sequence 
model and is based on an encoder-decoder 
architecture using Google’s transformer (Vaswani 
et al., 2017). Lemmatization is a similar task to 
translation, where an input sequence is mapped to 
an output sequence of a different length. 
Therefore, our approach is justified by the 
model’s robust performance in neural machine 

translation, particularly for WMT 2014 English-
to-German and WMT 2014 EN-FR datasets. An 
informal leaderboard at http://nlpprogress.com 
demonstrates that the best performing teams use a 
transformer architecture for their encoder-decoder 
architecture (cf. Edunov et al., 2018, Wu et al., 
2019).  

A more formal leaderboard for the GLUE 
benchmark (Wang et al. 2018) consists of tasks 
that mainly use the encoder part of the encoder-
decoder architecture. Therefore, the tasks of the 
GLUE benchmark are not directly comparable 
with lemmatization, but even in this case, at least 
the top 10 performers use BERT (Devlin et al., 
2018), which uses a transformer encoder 
architecture (cf. Liu et al., 2019, Keskar et al., 
2019).  

The specific code for lemmatization is taken 
from the tensor2tensor library 1  version 1.13.4 
with some modification added for our task. We 
chose the built-in hyperparameter configuration of 
transformer_tiny. The input and the output is a 
sequence of characters and no pre-trained 
embedding is used. One word is input at a time, 
and thus no consideration is taken of context 
words. For instance, in the mentioned example, 
the encoder input is “t h e s e” as a sequence of 
characters and the decoder output is “t h e s e”.  
Likewise, “g u y s” and “g u y”, “w e r e” and “b 
e”, etc. are input and output one by one. Overall, 
the number of attention layers or heads is 4 as 
opposed to 8 in the original paper and hence it 
                                                           
1 https://github.com/tensorflow/tensor2tensor  

 

Figure 1: Pipeline Model 
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requires less computational power without 
substantial loss in the accuracy. The model 
performs quite well and with this basic setup was 
ranked fifth among 12 participating systems. 

3.2 MSD tagger 

The task of morphological analysis uses the 
output of lemmatization after pipelining it.  
Furthermore, MSD tagging is very similar to 
another well researched NLP task: head-
dependent relation labelling in dependency 
parsing. Like head-dependent relation labelling, 
an MSD tag of a word is dependent on the word 
itself and its position within the sentence. As an 
example, let’s consider two sentences: “I live in 
an apartment” and “I like live music”. Even 
though “live” occurs in both sentences, the label 
we attach is dependent on the context. In other 
words, context words and the word itself 
determine its MSD tag. Therefore, we use the 
modified dependency parser reported by Dozat et 
al. (2017), which is based on Kiperwasser et al. 
(2016). The original model won in the CoNLL 
2017 shared task (Nivre et al. 2017a, Nivre et al. 
2017b) and its subsequent modifications won in 
the CoNLL 2018 shared task (Zeman et al., 2018, 
Che et al., 2018). Unlike dependency parsing, for 
the morphological analysis it is not necessary to 
find the head of a word. Therefore, we amend the 
dependency parser by Dozat et al. (2017) and use 
only the model’s head-dependent relation labeling 
functionality for the MSD tagging.  

The model’s input is an elementwise addition 
of four embeddings for an input word. We then 
pass the vector representation for each input word 
through BiLSTM layers with subsequent 
multilayer perceptron (MLP) and biaffine 
attention layers. The MSD tagging assigns a tag to 
each word while the dependency parsing assigns a 
tag to a relation between a pair of words. In the 
latter case, even though we need to tag a relation 
between a pair of words, each word needs a label. 
Furthermore, information from two words only is 
not enough and the parser has to attend actually to 
the whole context to assign the correct label. 
Therefore, we need attention over all input words 
in the dependency parsing and we leave this 
feature for the MSD tagger too. 

The optimization is done by the Adam 
optimizer (Knigma and Ba 2014). We trained the 
model until there were no improvements after 
5000 steps. The number of BiLSTM layers was 

three and the dimension of each LSTM cell as 
well as the word vector was 100 (300 when 
fastText 2  is used). We mainly used pre-trained 
embeddings of words from the CoNLL 2017 
shared task (Nivre et al. 2017a, Nivre et al. 
2017b) trained on word2vec (Mikolov et al., 
2013). For Akkadian, Amharic, and Japanese we 
used fastText (Bojanowski et al., 2017). 
Interestingly, using the pre-trained word vector of 
Dutch from the CoNLL 2017 shared task 
demonstrates better performance than the 
Afrikaans pre-trained word vector of fastText for 
Afrikaans-AfriBooms treebank. Similar results 
were observed for some other datasets and 
therefore we used fastText only for the mentioned 
languages. At the same time, using the word 
vector for a related language is also in the spirit of 
cross-lingual learning transfer from a resource-
rich to a resource-lean language (Ruder et al., 
2017).  

For each word, there are four embeddings, 
which are summed elementwise: pre-trained, 
trainable, character level, and lemma. Trainable 
embeddings are vectors that are initialized 
randomly and then trained as the training 
proceeds. Likewise, lemma vectors are also 
initialized randomly. The process of character 
level embedding generation is more involved and 
is based on the character level word 
representation by Cao and Rei (2016). Character 
level embeddings are a sequence of characters 
that pass through unidirectional LSTM cells 
(Hochreiter and Schmidhuber, 1997) and are then 
                                                           
2 https://fasttext.cc/  

 

Figure 2: Character level embedding 
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summed after the conventional attention layer 
(Bahdanau et al., 2015). Figure 2 summarizes this 
process. 

4 Results 

After experiments with different 
hyperparameter settings, we were able to choose 

optimal settings, as was described earlier. Table 2 
summarizes the results of lemmatization and 
MSD tagging by the sequence to sequence 
transformer model and the biaffine attention based 
BiLSTM model. 

Our choice of lemmatization followed by an 
MSD tagging was an important step for increasing 
MSD tag accuracy. Although, a full-scale ablation 

Treebanks 
lemma 
acc. 

lemma 
Leven. 

morph 
acc. 

morph 
F1 

Afri. AfriBooms 98.49 0.03 98.45 98.66 
Akk.PISANDUB 67.82 0.89 82.18 81.77 
Amharic-ATT 99.91 0.00 88.19 92.41 
A. Greek-Perseus 94.48 0.14 81.75 91.58 
A. Greek-PROIEL 96.75 0.08 83.82 93.86 
Arabic-PADT 94.16 0.16 93.22 96.32 
Arabic-PUD 85.29 0.42 79.16 91.27 
Armenian-ArmTDP 94.34 0.11 76.80 84.91 
Bambara-CRB 83.90 0.30 92.79 94.74 
Basque-BDT 95.75 0.10 87.63 92.80 
Belarusian-HSE 89.81 0.19 58.67 65.26 
Breton-KEB 92.54 0.19 87.36 90.13 
Bulgarian-BTB 96.56 0.09 96.02 98.00 
Buryat-BDT 89.23 0.26 80.48 82.93 
Cantonese-HK 100 0.00 90.00 87.40 
Catalan-AnCora 97.20 0.05 96.19 97.71 
Chinese-CFL 99.76 0.00 91.49 90.37 
Chinese-GSD 99.98 0.00 94.60 94.42 
Coptic-Scriptorium 89.95 0.21 94.81 95.93 
Croatian-SET 95.14 0.09 88.64 94.64 
Czech-CAC 98.22 0.05 91.76 96.86 
Czech-CLTT 98.41 0.03 90.01 94.98 
Czech-FicTree 97.89 0.04 91.49 95.6 
Czech-PDT 98.08 0.03 89.88 95.84 
Czech-PUD 93.06 0.12 76.17 89.38 
Danish-DDT 94.86 0.08 95.52 96.96 
Dutch-Alpino 97.37 0.05 96.45 97.18 
Dutch-LassySmall 96.45 0.07 96.38 97.00 
English-EWT 97.31 0.08 95.82 97.01 
English-GUM 97.09 0.05 95.46 96.54 
English-LinES 97.87 0.04 96.34 97.16 
English-ParTUT 97.30 0.05 94.75 95.56 
English-PUD 94.90 0.07 93.43 94.95 
Estonian-EDT 95.76 0.09 93.08 96.45 
Faroese-OFT 88.28 0.22 81.08 88.28 
Finnish-FTB 95.87 0.09 92.55 95.59 
Finnish-PUD 89.09 0.23 88.52 93.32 
Finnish-TDT 95.68 0.10 93.62 96.22 
French-GSD 97.56 0.04 96.76 97.98 
French-ParTUT 95.81 0.07 93.10 96.54 
French-Sequoia 97.32 0.05 96.27 98.13 
French-Spoken 97.17 0.06 97.25 97.31 
Galician-CTG 97.00 0.04 97.94 97.73 
Galician-TreeGal 94.05 0.08 92.74 95.58 
German-GSD 97.11 0.06 86.05 93.73 
Gothic-PROIEL 96.62 0.09 82.33 91.77 
Greek-GDT 95.98 0.08 93.24 97.26 
Hebrew-HTB 96.83 0.06 95.84 97.22 
Hindi-HDTB 96.40 0.04 91.05 96.65 
Hungarian-Szeged 95.19 0.09 88.11 94.63 
Indonesian-GSD 99.50 0.01 90.17 93.15 
Irish-IDT 91.24 0.20 82.40 88.35 
Italian-ISDT 96.82 0.07 96.81 98.05 
Italian-ParTUT 96.34 0.09 96.08 97.59 
Italian-PoSTWITA 95.26 0.11 95.12 96.33 

 

Treebanks 
lemma 
acc. 

lemma 
Leven. 

morph 
acc. 

morph 
F1 

Italian-PUD 94.14 0.13 93.32 96.40 
Japanese-GSD 98.13 0.02 97.74 97.46 
Japanese-Modern 96.94 0.04 96.74 96.74 
Japanese-PUD 97.46 0.03 97.88 97.65 
Komi_Zyrian-IKDP 80.47 0.30 53.12 42.98 
Komi_Zyrian-Lattice 84.07 0.38 57.14 65.07 
Korean-GSD 93.19 0.12 95.87 95.25 
Korean-Kaist 95.57 0.07 96.71 96.30 
Korean-PUD 97.96 0.04 91.02 93.99 
Kurmanji-MG 91.40 0.17 79.48 87.13 
Latin-ITTB 97.44 0.06 93.32 96.62 
Latin-Perseus 91.16 0.19 78.68 88.54 
Latin-PROIEL 96.51 0.08 87.99 95.16 
Latvian-LVTB 95.77 0.07 91.60 95.10 
Lithuanian-HSE 86.42 0.30 56.03 57.49 
Marathi-UFAL 74.25 0.65 47.43 59.40 
Naija-NSC 99.93 0.00 94.94 93.17 
North_Sami-Giella 91.96 0.16 87.04 91.90 
Norwegian-Bokmaal 97.83 0.03 95.81 97.40 
Norwegian-Nynorsk 97.74 0.04 94.87 96.60 
N.NynorskLIA 97.51 0.04 93.03 94.29 
OCS-PROIEL 96.51 0.08 83.44 91.82 
Persian-Seraji 96.27 0.17 97.06 97.70 
Polish-LFG 95.66 0.08 92.19 96.23 
Polish-SZ 94.99 0.09 89.17 94.58 
Portuguese-Bosque 95.13 0.08 93.39 96.48 
Portuguese-GSD 87.82 0.25 96.91 97.14 
Rom.-Nonstandard 93.40 0.14 91.91 95.60 
Romanian-RRT 95.53 0.09 96.85 97.99 
Russian-GSD 95.89 0.07 88.91 94.20 
Russian-PUD 90.72 0.16 79.88 90.15 
Russian-SynTagRus 96.97 0.06 93.28 96.46 
Russian-Taiga 89.86 0.22 76.53 84.11 
Sanskrit-UFAL 61.81 0.92 33.17 46.19 
Serbian-SET 96.42 0.07 91.76 95.34 
Slovak-SNK 96.24 0.07 89.24 94.68 
Slovenian-SSJ 96.38 0.06 91.56 95.27 
Slovenian-SST 93.79 0.13 83.44 90.24 
Spanish-AnCora 97.69 0.04 96.64 97.98 
Spanish-GSD 98.31 0.03 93.97 96.78 
Swedish-LinES 95.37 0.08 92.57 96.24 
Swedish-PUD 91.65 0.12 92.66 95.43 
Swedish-Talbanken 96.56 0.05 96.66 98.16 
Tagalog-TRG 83.78 0.54 72.97 79.70 
Tamil-TTB 91.52 0.23 79.13 88.48 
Turkish-IMST 96.34 0.07 87.37 91.37 
Turkish-PUD 85.13 0.37 81.89 89.47 
Ukrainian-IU 95.42 0.09 88.70 94.23 
Upper_Sorbian-UFAL 90.66 0.14 66.95 76.85 
Urdu-UDTB 94.25 0.08 79.06 92.21 
Vietnamese-VTB 99.93 0.00 91.79 90.69 
Yoruba-YTB 98.84 0.01 91.47 92.05 
Mean 94.07 0.12 88.09 91.84 
Median 95.87 0.08 91.76 95.16 
Mean – baseline by 
the task organizers 94.17 0.13 72.18 86.25 
Median – baseline 
by the task 
organizers 95.92 0.08 76.40 89.45 

 

Table 2: Test set scores 
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study was not performed due to time constraints, 
an experiment for MSD tagging without lemma 
on English-PUD and Korean-Kaist treebanks 
were performed. On both datasets, a decrease in 
accuracy was observed. For English-PUD’s 
morph accuracy and F1 scores decreased by 1.18 
and 0.43 percentage points, while Korean-Kaist’s 
respective scores decreased by 7.50 and 8.41 
percentage points. We conjecture that the larger 
decrease in Korean is due to its higher 
morphological complexity than English; a lemma 
itself is more important to find MSD tags for 
morphological rich languages.  

In general, as more training data were 
available, higher scores were obtained in absolute 
terms. As an example, for Russian, among four 
available datasets (Russian-GSD, Russian-PUD, 
Russian-SynTagRus, and Russian-Taiga) Russian-
SynTagRus was the largest, and its accuracy was 
best by all four metrics used.  

Some languages have more MSD tags than 
others and therefore present another dimension for 
the task complexity. For instance, Czech-PDT 
treebank has 2895 unique MSD tags while 
English-EWT has only 179, i.e. 16 times less. 
This, therefore, partly affects the accuracy of the 
MSD tagger, where Czech-PDT treebank’s 
morphological accuracy is 89.88% while English-
EWT’s is 95.82%.  

While there is a lot of variance in the number 
of MSD tags among languages, most of the 
languages have around twenty to sixty characters 
in their alphabet. Hence, the number of characters 
in the alphabet does not seem to affect 
lemmatization. At the same time, Chinese uses 
distinct characters for each word and does not 
have word inflections. Despite having 3536 
unique characters, Chinese-GSD treebank’s 
lemma accuracy is 99.98%. It also has only 40 
MSD tags due to the absence of inflections.  

Overall, lemmatization appears to be a slightly 
easier task than MSD tagging, and in our case, 
incorporating lemma information in MSD tagging 
yielded more accurate results for the latter. 

 

5 Conclusion 

Our pipeline model has shown favorable results 
in SIGMORPHON Shared Task 2 and scored fifth 
and sixth place, respectively, for lemmatization 
and MSD tagging. For future work, it would be 
interesting to assess how incorporating the output 

of MSD tagging into lemmatization would affect 
lemma accuracy.  
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Abstract

In this study, we present Morpheus, a joint
contextual lemmatizer and morphological tag-
ger. Morpheus is based on a neural sequential
architecture where inputs are the characters of
the surface words in a sentence and the out-
puts are the minimum edit operations between
surface words and their lemmata as well as the
morphological tags assigned to the words. The
experiments on the datasets in nearly 100 lan-
guages provided by SigMorphon 2019 Shared
Task 2 organizers show that the performance
of Morpheus is comparable to the state-of-the-
art system in terms of lemmatization. In mor-
phological tagging, on the other hand, Mor-
pheus significantly outperforms the SigMor-
phon baseline. In our experiments, we also
show that the neural encoder-decoder architec-
ture trained to predict the minimum edit op-
erations can produce considerably better re-
sults than the architecture trained to predict the
characters in lemmata directly as in previous
studies. According to the SigMorphon 2019
Shared Task 2 results, Morpheus has placed
3rd in lemmatization and reached the 9th place
in morphological tagging among all partici-
pant teams.

1 Introduction

Lemmatization is the process of reducing an in-
flected word into its dictionary form known as the
lemma. Morphological tagging, on the other hand,
is the process of marking up words with their mor-
phological information and part of speech (POS)
tags. Lemmatization and morphological tagging
are essential tasks in natural language processing
since they usually represent initial steps of sub-
sequent tasks such as dependency parsing (Chen
and Manning, 2014; McDonald and Pereira, 2006)
and semantic role labeling (Haghighi et al., 2005).
Morphological information of words is utilized in
various tasks including statistical machine trans-

lation (Huck et al., 2017), neural machine trans-
lation (Conforti et al., 2018) and named entity
recognition (Güngör et al., 2019) to improve the
performance. Morphological tagging and lemma-
tization is crucial especially in morphologically
rich languages such as Turkish and Finnish since
inflected and derived words carry a substantial
amount of information such as number, person,
case, tense and aspect. Moreover, lexical ambigu-
ities can occur in highly inflectional and deriva-
tional languages such as Turkish. The correct
lemma and morphological tags may differ accord-
ing to the context in which words appear. As
shown in table 1, the Turkish word “dolar” may
have different lemma and morphological proper-
ties according to the context it is used.

To achieve lemmatization and morphological
tagging in highly inflectional languages, tradi-
tional approaches employ finite state machines
which are constructed to model grammatical rules
of a language (Oflazer, 1993; Karttunen et al.,
1992). Building a state machine for morphological
analysis is not a trivial task and requires consid-
erable effort necessitating linguistic knowledge.
Furthermore, morphological analyzers frequently
produce multiple analyzes for each word which
introduces morphological ambiguities. Morpho-
logical disambiguation which is the process of se-
lecting correct analyzes of words according to the
context (Yildiz et al., 2016; Shen et al., 2016) is
mostly needed after morphological analysis step.
Morphological disambiguation is also a difficult
problem due to the fact that it requires the clas-
sification of both lemmata and the correspond-
ing labels. Therefore, researchers have studied
language-agnostic data-driven solutions for both
lemmatization and morphological tagging. In
most of the studies, applying machine learning
or statistical methods over morphologically an-

25



Table 1: Different lemmata and morphological properties of Turkish word “dolar” according to the context

Turkish Sentence English Translation Lemma of the word “dolar” Morhoplogical Properties of the word “dolar”

atkıyı boynuna dolar She/he wraps the scarf around his/her neck dola (Eng. wrap) Verb, Third Person Singular, Present Tense
su kovaya dolar The water fills the bucket dol (Eng. fill) Verb, Third Person Singular, Present Tense
dolar yine yükseldi The dollar increased again dolar (Eng. dollar) Noun, Nominative, Singular

notated corpora (mostly on UniMorph dataset1

(Kirov et al., 2018)) have been proposed to per-
form joint morphological tagging and lemmatiza-
tion. One of the early studies, Morfette (Chrupała
et al., 2008) utilized a Maximum Entropy Clas-
sifier to find lemmata and morphological tags of
each word in a sentence. Two separate classifiers
are employed in their architecture: one for assign-
ing morphological tags to the words and one for
predicting the shortest edit script between the sur-
face word and its lemma. Shortest edit script is the
shortest sequence of instructions (insertions, dele-
tions, and replacements) which transforms a string
into another one. In this way, the system is able to
apply lemmatization to out of vocabulary words
by predicting the transformation which should be
applied to the surface word to obtain the lemma
of the word. More recent work, namely Lem-
ming (Müller et al., 2015) has out-performed Mor-
fette by using a Conditional Random Field classi-
fier to classify each candidate sequences of lem-
mata and morphological tags jointly. The feature
space of Lemming differs from Morfette as Lem-
ming also uses external lexical features such as the
occurrences of a candidate lemma in a dictionary.
As deep neural networks gain popularity and lead
state-of-the-art results in various natural language
processing tasks, sequential neural networks have
been successfully employed for lemmatization and
morphological tagging in recent studies (Bergma-
nis and Goldwater, 2018; Malaviya et al., 2019;
Dayanık et al., 2018; Chakrabarty et al., 2017).
Promising results are obtained through standard
encoder-decoder neural architectures where inputs
are the character sequences of the words and out-
puts are the character sequences of lemmata and
morphological tags (Bergmanis and Goldwater,
2018; Dayanık et al., 2018). Neural architectures
which are designed to predict the edit operations
between surface words and lemmata are also pro-
posed in recent works (Chakrabarty et al., 2017).
The current state of the art is held by Malaviya
et al. (2019) using a neural hard attention mecha-
nism to align the characters of surface words and

1https://unimorph.github.io/

lemmata. Morphological tagging and lemmatiza-
tion are jointly modeled in their architecture and a
dynamic programming approach is used to maxi-
mize both morphological tagging and lemmatiza-
tion scores.

In SigMorphon 2019 workshop, a shared
task about morphological tagging and contextual
lemmatization in nearly 100 distinct languages
is organized (McCarthy et al., 2019). In this
study, we propose a neural network architecture,
namely Morpheus for SigMorphon 2019 Shared
Task 2. Our architecture is inspired by Mor-
phNet (Dayanık et al., 2018), which has produced
promising results in Turkish using an encoder-
decoder neural architecture. In MorphNet, all
characters are represented with a vector, and word
vectors are generated by using long short term
memories (LSTM) over character vectors. An-
other bidirectional LSTM is applied over word
vectors to obtain context-aware representations of
each word in a sentence. An LSTM based de-
coder inputs context-aware word representations
and produces lemmata and morphological tags,
respectively. Our architecture differs from Mor-
phNet as we use two separate decoders for gener-
ating lemmata and morphological tags. Another
difference of our architecture is that we follow the
minimum edit script prediction approach consid-
ering the promising performance outputs of prior
work (Chrupała et al., 2008; Müller et al., 2015;
Chakrabarty et al., 2017). The lemma decoder of
our network is optimized to predict the minimum
edit operations between surface words and lem-
mata instead of predicting the character sequences
of the lemmata as in MorphNet and Lematus.

Our experiments show that predicting the min-
imum edit operations instead of characters im-
proves the performance significantly on Uni-
Morph dataset, which is provided in SigMorphon
2019 Shared Task 2. The performance of the pro-
posed architecture is comparable to the current
state-of-the-art system (Malaviya et al., 2019),
which is provided as a strong baseline by Sig-
Morphon 2019 organizers. All of the experiments
in this paper are reproducible using the codes we
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make publicly available2.

2 Method

The input of our neural network based model
is a sentence containing surface form words and
the outputs are edit operations between surface
words and their lemmata and morphological tags
assigned to the words. The problem can be de-
fined as we are searching a function whose in-
puts are surface words of a sentence f([wo, .., wn])
and whose output is the set of (oi,mi) tuples
[(o0,m0), .., (on,mn)] where oi is the set of edit
operations to generate the lemma of the surface
form wi and mi is the set of morphological tags
assigned to the surface form wi. The overall ar-
chitecture of the system is illustrated in Figure 1.
The system comprises 3 neural components that
are running sequentially:

• The first component generates word vectors
using LSTMs over the vector representations
of its characters.

• The second component generates context-
aware word vectors applying bidirectional
LSTMs over word vectors

• Two separate LSTM decoders accept the
same context-aware word vectors. The first
decoder generates edit operations between
surface words and lemmata while the second
decoder generates morphological tags

In the final step, lemmata are generated by apply-
ing predicted edit operations to the surface words.

2.1 Generating minimum edit operations

The proposed model is designed to predict min-
imum edit operations to obtain the lemma from
a surface word. The fundamental edit operations
are Same, Delete, Replace, and Insert operations.
To find minimum edit operations between surface
word and its lemma, we use a dynamic program-
ming approach3 which is based on Levenshtein
distance. Some sample edit operations between
surface words and lemmata are given in Figure
2 for several languages. As seen in Figure 2,
Same and Delete operations have only one version
whereas Replace and Insert operations have mul-
tiple versions combined with the character to be

2https://github.com/erayyildiz/Morpheus/
3https://github.com/faircloth-lab/python-levenshtein

replaced or inserted. So the actual number of ele-
ments in the edit operations set are determined for
each language separately by processing the train-
ing data.

Generally, the length of a lemma is shorter than
or equals to the length of the corresponding sur-
face form and consequently, the number of edit
operations are usually the same as the length of the
surface form. However, for some languages, lem-
mata longer than the corresponding surface forms
are observed. Since our minimum edit prediction
decoder predicts an edit operation label for each
character in the surface (see Section 2.4.1 for de-
tails), it fails in generating lemmata longer than
the surface forms. Thus we make some modifica-
tions over the base operations generated by stan-
dard Levenshtein distance based algorithm. To en-
sure the length of the operation labels is the same
as the length of the surface words, we merge con-
secutive Insert labels in the same position into
one Insert label with multiple characters. We also
combine the Replace labels and the following con-
sequent Insert labels in the same position into one
Replace label with multiple characters. For exam-
ple, the minimum edit operations for the Russian
surface-lemma pair "видна"-"видный" have four
Same operation labels and one Replace_ый la-
bel, respectively. Note that the last character in
the surface word "a" is replaced with the character
"ы" and then the character й is inserted into the
end. The base labels Replace_ы and Insert_й
are merged into one label Replace_ый to ensure
that edit operations and surface words have the
same length (Figure 2).

2.2 Word representations

The first component of our network inputs char-
acter sequences of each word in a sentence and
generates vector representations of the words us-
ing an LSTM network. Let wi represents the ith

word with Li characters in a sentence and wij is
jth character in wi. In our model, each charac-
ter wij is represented by a vector aij ∈ IRda and
we calculate the vector representation of ith word
ei ∈ IRde by applying an LSTM over the vector
representations of its constituent characters from
left to right as shown in eq. (1). The last hidden
state vector of the LSTM hLi ∈ IRde is considered
as the vector representation of the word wi.

ei = hLi = LSTM(aLi , hLi−1) (1)
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Figure 1: The illustration of the proposed neural network architecture which consists of 3 components: (a) word
vector generator (b) context vector generator (c) decoders to generate minimum edit operations for lemmatization
and morphological tags. (N indicates the number of words in the sentence. L indicates both the number of charac-
ters in the word and the number of edit operations between the word and the lemma. K represents the number of
morphological tags assigned to the word)

2.3 Context-aware word representations

The context of the words have a substantial impact
on morphological tagging and lemmatization in
most languages (Shen et al., 2016; Malaviya et al.,
2019). In order to take into account the context of
the words we employ another LSTM which is bidi-
rectional and inputs vector representations ei and
outputs context-aware representations ci ∈ IRdc

for each surface word in the context as shown in
eqs. (2) to (4)

c→i = LSTM(ei, c
→
i−1) (2)

c←i = LSTM(ei, c
←
i+1) (3)

ci = [c→i , c
←
i ] (4)

The final output is context-aware vector repre-
sentation ci for each word wi in the sentence.

2.4 Decoding Components
One of the important differences of the proposed
network from previous studies (Bergmanis and
Goldwater, 2018; Dayanık et al., 2018) is that it
has two separate decoders for lemmatization and
morphological tagging. The parameters of the de-
coders are not shared. However, they are both fed
with the same word vectors ei and context-aware
word vectors ci that are generated in the encoding
step.

2.4.1 Minimum edit prediction decoder
The minimum edit prediction decoder component
consists of a two layer bidirectional LSTM net-
work and an embedding layer which maps each
characterwij in surface word to a one dimensional
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Figure 2: Minimum edit operations between surface
words and their lemmata

vector uij ∈ IRdu . Forward LSTM network inputs
previous hidden states g→1

j−1, g
→2
j−1 ∈ IRdg and out-

puts current hidden states g→1
j , g→2

j and an output
vector y→j ∈ IRdy . Backward LSTM network, on
the other hand, applies the same operations in op-
posite direction and outputs g←1

j , g←2
j ∈ IRdg and

y←j . Softmax function is then applied to the mul-
tiplication of trainable matrix Wo ∈ IRdy×|o| with
the concatenation vector of output vectors y→j and
y←j where |o| represents the number of distinct edit
operations observed in the dataset. The output of
softmax operation is the probabilities of each min-
imum edit operation p(oij) corresponding to the
character wij as shown in eqs. (5) to (7).

y→j , g
→1
j , g→2

j = LSTM(uij , g
→1
j−1, g

→2
j−1) (5)

y←j , g
←1
j , g←2

j = LSTM(uij , g
←1
j+1, g

←2
j+1) (6)

p(oij) = softmax(Wo × [y→j , y
←
j ]) (7)

The first hidden states of both forward and back-
ward LSTMs are initialized with the word vector
ei (see section 2.2) and a linear transformation of
the context-aware word vector: Wc×ci where Wc

is a matrix in IRdc×de (see section 2.3), respec-
tively (see eq. (11)).

g→1
0 = ei (8)

g→2
0 = Wc × ci (9)

g←1
Li

= ei (10)

g←1
Li

= Wc × ci (11)

2.4.2 Morphological tagging decoder
The morphological tagging decoder component is
another LSTM decoder which is able to gener-
ate morphological tags without length restriction.
Each word wi hasKi morphological tags and each
morphological tag mil is represented by a one di-
mensional vector vil ∈ IRdv . A two layer LSTM
network which is unidirectional is initialized same
as in minimum edit prediction component. An
LSTM cell inputs the vector representation vi(l−1)
of previously predicted tag m′il and previous hid-
den states q1l−1, q

2
l−1 ∈ IRdq in each step. The out-

puts of the LSTM cell are current hidden states
q1l , q

2
l and an output vector zij ∈ IRdz . Soft-

max function is then applied to multiplication of
the output vector zij and trainable matrix Wm ∈
IRdz×|m| where m equals to the number of distinct
morphological tags in the dataset. The first input
to the decoder is the vector representation of a spe-
cial start symbol vstart ∈ IRdv . In this way the
probabilities of each morphological tags p(mil)
in given position i, l are calculated as shown in
eqs. (5), (12) and (13).

z1, q
1
1, q

2
1 = LSTM(vstart, ei,Wc × ci) (12)

zl, q
1
l , q

2
l = LSTM(vi(l−1), q

1
l−1, q

2
l−1) (13)

p(mil) = softmax(Wm × zl) (14)

2.5 Character prediction decoder

The character prediction decoder component
which sequentially predicts the characters occur in
lemmata is not employed in the proposed archi-
tecture. However, we build an alternative model
in which the character prediction decoder compo-
nent is used instead of a minimum edit prediction
decoder. In this way, we aim to evaluate the impact
of predicting minimum edit operations instead of
characters in lemmata. The character prediction
decoder used in the experiments has the same ar-
chitecture and parameter set with the morphologi-
cal tagging decoder.

2.6 Training objective

All the parameters in whole architecture includ-
ing all LSTM parameters and the trainable matri-
ces Wc, Wo, Wm are optimized jointly in training
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Method Lemmatization
Accuracy (%)

Morphological Tagging
F1 Score (%)

Turku NLP (Kanerva et al., 2018) 92.18 86.7
UPPSALA Uni. (Moor, 2018) 58.5 88.32

SigMorphon 2019 Baseline (Malaviya et al., 2019) 93.95 68.72
Morpheus (Character Prediction) 88.03 88.94
Morpheus (Edit Operation Prediction) 94.15 90.52

Table 2: Average lemmatization and morphological tagging performances of the systems on UniMorph dataset

phase by minimizing the sum of two cross entropy
losses as follow:

Llemma = − 1

N

N∑

i

1

Li

Li∑

j

log p(oij) (15)

Lmorph = − 1

N

N∑

i

1

Ki

Ki∑

j

log p(mij) (16)

Ltotal = Llemma + Lmorph (17)

The loss for lemmatization is calculated by tak-
ing cross entropy over predicted minimum edit
operations p(oij) as in eq. (15) where N stands
for the number of words in the sentence and Li

stands for the number of characters in the word
wi. The loss for morphological tagging is cross
entropy over predicted tag probabilities p(mil) as
in eq. (16) whereKi stands for the number of mor-
phological tags assigned to the word wi. The total
loss to minimize is the sum of the lemmatization
loss and morphological tagging loss (see eq. (17)).

3 Experiments

In our experiments, we train and evaluate the pro-
posed architecture on UniMorph dataset collection
(Kirov et al., 2018) for each language. Same archi-
tecture with the same hyper-parameters is used for
all the languages. To investigate the impact of the
minimum edit prediction component on the per-
formance, we also train the network in which the
character prediction decoder component is used
instead of a minimum edit prediction component.
The results of the experiments are provided in sec-
tion 3.3 and table 2

3.1 Dataset

UniMorph dataset collection, which includes a
various number of sentences consist of surface
words with annotated lemmata and morphological

tags in 97 different languages are provided in Sig-
Morphon 2019 shared task 2. The dataset for each
language is split into train and validation sets, and
the size of the dataset differs in each language. In
our experiments, we train our architecture on train
sets and evaluate the performances on validation
sets. The experimental results presented in sec-
tion 3.3 are obtained on the validation sets. Note
that final results which are presented in SigMor-
phon paper (McCarthy et al., 2019) are calculated
over the test sets which were not available to the
systems before the final submission stage.

Figure 3: Relative lemmatization accuracy improve-
ment vs dataset size per language

3.2 Experimental Setup
The same settings are used in the training of the
architecture for each language. The input charac-
ter embedding length da is set to 128 while the
length of the word vectors de is set to 1024 and
the length of the context-aware word vectors dc
is set to 2048. The length of character vectors
in the minimum edit prediction component du and
the length of the morphological tag vectors dv are
set to 256 while the hidden unit sizes in decoder
LSTMs dg and dq are set to 1024. We use Adam
optimization algorithm (Kingma and Ba, 2014)
with learning rate 3e − 4 for minimizing the loss
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Lemmatization
Accuracy (%)

Morph. Tagging
F1 (%)

Language Dataset
Size

Character
Pred.

Edit
Pred.

Character
Pred.

Edit
Pred.

North-Sami-Giella 29K 87.53 91.90 88.89 92.83
French-GSD 360K 97.06 98.47 97.58 97.99
Japanese-Modern 14K 85.39 93.88 93.06 92.44
Swedish-PUD 18K 82.79 93.05 89.23 92.09
Arabic-PADT 256K 94.39 95.18 95.01 95.40
Basque-BDT 119K 95.42 96.49 93.06 94.47
Urdu-UDTB 123K 95.20 96.02 90.79 91.20
Irish-IDT 21K 85.07 89.23 80.60 71.52
Bambara-CRB 14K 88.24 88.85 93.47 93.56
Dutch-Alpino 200K 94.97 97.81 95.63 96.45
Czech-FicTree 175K 97.39 98.49 94.15 96.39
Danish-DDT 94K 93.16 97.26 94.17 95.62
Latin-ITTB 332K 98.65 98.75 96.84 97.34
French-Sequoia 64K 95.54 98.17 95.96 96.82
Italian-PoSTWITA 115K 92.71 96.61 94.43 95.62
Polish-SZ 93K 93.59 96.86 90.23 93.26
Czech-CLTT 32K 92.11 98.03 89.03 93.82
Cantonese-HK 7K 90.05 94.17 85.41 86.14
Galician-TreeGal 23K 89.68 95.19 89.78 90.72
Slovenian-SSJ 131K 95.25 96.94 93.47 95.79
French-ParTUT 25K 92.67 96.10 93.09 94.55
Lithuanian-HSE 5K 70.60 83.05 43.37 70.70
French-Spoken 35K 94.47 98.48 95.46 96.66
Russian-Taiga 22K 83.59 90.57 76.62 83.80
Latvian-LVTB 150K 94.29 96.22 93.51 95.87
Czech-PDT 1515K 84.86 98.41 87.65 95.27
Japanese-GSD 168K 95.21 98.91 95.35 95.61
Indonesian-GSD 111K 97.06 99.49 92.69 93.11
Gothic-PROIEL 62K 96.60 96.58 93.04 95.12
Latin-PROIEL 219K 96.31 96.37 93.75 95.05
Czech-PUD 19K 83.55 93.57 81.30 86.70
Dutch-LassySmall 96K 93.44 97.58 94.51 95.47
Romanian-RRT 198K 96.54 97.88 96.81 97.44
Korean-Kaist 346K 93.31 95.07 95.70 95.46
Amharic-ATT 11K 93.80 100.00 91.02 91.39
English-GUM 79K 95.58 97.85 93.92 95.48
Estonian-EDT 421K 93.10 96.27 95.64 96.70
Chinese-GSD 111K 95.22 99.15 89.25 90.78
Korean-GSD 80K 87.55 92.89 93.43 94.16
Marathi-UFAL 4K 74.59 76.94 68.26 69.26
Akkadian 2K 42.22 60.89 78.13 66.52
Faroese-OFT 13K 83.56 89.97 88.08 89.49
English-EWT 246K 96.78 98.11 95.61 95.95
Sanskrit-UFAL 3K 53.61 65.98 52.59 55.36
Turkish-IMST 60K 94.13 96.43 91.67 93.72
English-PUD 20K 89.40 95.22 88.88 89.89
Korean-PUD 18K 87.19 98.86 91.42 92.75
Finnish-PUD 16K 77.72 87.55 85.49 92.05
Russian-SynTag 1036K 95.31 97.76 94.99 95.13
Croatian-SET 179K 94.91 96.01 94.31 95.47
Tagalog-TRG 406 48.00 84.00 74.23 71.74
Slovenian-SST 31K 91.83 94.97 85.34 89.23
Finnish-FTB 172K 90.70 94.46 94.13 95.85
Polish-LFG 174K 93.85 96.09 92.93 95.35
Portuguese-Bosque 218K 96.43 97.86 96.07 96.59
Coptic-Scriptorium 20K 93.47 95.68 95.17 94.76
Chinese-CFL 7K 82.55 92.66 81.51 83.76
Spanish-AnCora 497K 98.32 98.92 98.29 98.46
Greek-GDT 57K 93.73 96.65 94.71 96.12
Serbian-SET 78K 94.82 97.06 94.36 96.06
Naija-NSC 14K 95.80 99.84 91.15 92.02
Vietnamese-VTB 42K 98.17 99.95 89.45 89.71
Yoruba-YTB 2K 83.60 97.20 80.49 70.67
Italian-PUD 22K 89.51 96.11 92.63 94.22
Finnish-TDT 198K 91.37 95.38 95.67 96.76
English-ParTUT 44K 94.87 97.85 92.32 93.46
Upper-Sorbian-U. 11K 77.79 90.74 69.47 77.46
Norwegian-Ny. 14K 93.89 97.42 90.45 92.20
Galician-CTG 121K 97.18 98.69 97.29 97.30
Old-Church-Slv. 66K 96.48 95.66 93.33 94.91
Russian-GSD 92K 92.90 91.51 91.98 93.91
Kurmanji-MG 10K 85.66 92.69 85.99 85.22
Norwegian-Bk. 299K 96.65 98.94 96.75 97.41
Italian-ISDT 273K 96.90 97.90 97.34 97.89
Komi-Zyrian-IKDP 1K 38.55 68.67 45.50 36.89
Hebrew-HTB 144K 96.49 97.35 95.35 95.70
Tamil-TTB 10K 86.77 96.10 83.07 88.50
Buryat-BDT 10K 83.33 89.61 78.24 82.30
Breton-KEB 12K 85.61 92.81 88.65 90.12
Latin-Perseus 29K 87.30 86.26 79.21 82.88
Romanian-Nonstd 189K 96.10 96.37 95.52 96.36
Italian-ParTUT 50K 94.65 97.44 94.83 96.30
Catalan-AnCora 481K 98.17 98.92 98.42 98.65
Arabic-PUD 22K 81.31 80.90 87.23 88.00
Komi-Zyrian-L. 2K 52.75 77.47 55.79 57.02
Japanese-PUD 25K 86.30 97.32 93.46 94.02
Slovak-SNK 119K 94.52 96.95 91.88 94.55
Ukrainian-IU 118K 93.63 96.80 91.24 93.68
Turkish-PUD 17K 78.20 89.19 86.71 91.28
Bulgarian-BTB 152K 95.98 97.58 97.16 97.83
Russian-PUD 19K 83.78 92.54 81.73 87.79
Belarusian-HSE 8K 78.06 89.87 69.39 71.95
Hindi-HDTB 322K 98.15 98.82 96.12 96.60
Czech-CAC 474K 98.01 98.86 96.52 97.54
Hungarian-Szeged 38K 87.89 95.26 89.63 91.65
Swedish-LinES 74K 93.52 96.82 93.25 94.88
Afrikaans-Af.B. 45K 93.75 98.74 95.08 95.96
English-LinES 77K 96.19 98.27 94.57 95.43

Table 3: Lemmatization and Morphological Tagging
performances of minimum edit prediction model and
character prediction model on development sets

function. Dropout rate 0.4 is applied to all connec-
tions during model training for regularization. All
the weights are initialized with Xavier initializa-
tion method (Glorot and Bengio, 2010). We use an
early stop mechanism which stops the training af-
ter four consecutive epochs without improvement
on validation set.

3.3 Results

Table 2 presents the lemmatization and morpho-
logical performances of the proposed method on
UniMorph dataset collection. The lemmatization
accuracy on a dataset is the proportion of the num-
ber of correctly found lemmata over the total lem-
mata count. The lemmatization accuracy given in
table 2 is the average of the accuracies obtained
over the validation sets of all languages. The
performance of morphological tagging is mea-
sured by the F1 score calculated over the pre-
dicted and actual individual morphological tags.
In addition to the performance of the proposed ar-
chitecture with minimum edit prediction decoder,
the performance of the architecture with charac-
ter prediction decoder is also given. The per-
formances of SigMorphon 2019 neural baseline,
Turku NLP system (Kanerva et al., 2018) which is
the best lemmatization performer in CONLL 2018
Shared Task (Zeman and Hajič, 2018) and UPP-
SALA Uni system which is the best morpholog-
ical tagging performer in CONLL 2018 are also
given. Although the dataset provided in CONLL
2018 share the same basis with the dataset pro-
vided in SigMorphon, important differences exist
between them. Hence the performances of Turku
NLP and UPPSALA Uni are not directly compa-
rable to our systems and SigMorphon baselines.
However, we present the performances of those
systems averaged on the same languages in Sig-
Morphon dataset to provide an idea of how much
improvement is achieved over a year.

According to the results, the proposed archi-
tecture, Morpheus performs slightly better than
the SigMorphon neural baseline in terms of the
average lemmatization accuracy. Similarly, for
the morphological tagging task, Morpheus with
a minimum edit prediction decoder significantly
outperforms the baseline and Morpheus with char-
acter prediction decoder The experiments show
that the performance is improved considerably
when the minimum edit prediction decoder is used
instead of the character prediction decoder. An im-
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pressive result is that the performance of morpho-
logical tagging is also enhanced by employing the
minimum edit prediction decoder.

Table 3 shows the lemmatization and morpho-
logical performances of both character prediction
and minimum edit prediction models for each lan-
guage. The performance of the minimum edit
prediction model is better than the character pre-
diction model in almost all languages. Figure
3 shows that there is a correlation between the
size of the training data and the improvement on
the performance when the minimum edit predic-
tion decoder is employed. For instance, the rel-
ative lemmatization improvement is extreme in
languages with relatively small dataset such as
Tagalog-TRG (400 tokens/0.75 relative improve-
ments), Komi-Zyrian (1.1K tokens/0.78 relative
improvement) and Akkadian (1.7 tokens/0.44 rel-
ative improvement). On the other hand, in lan-
guages with large size dataset such as Spanish-
AnCora (496K tokens), Catalan-AnCora (480K
tokens) and French-GSD (359K tokens), the im-
provement is relatively low (0.006, 0.007 and 0.01,
respectively). Although improvement magnitude
is highly correlated with the training dataset size,
there must be other factors specific to the proper-
ties of the language. For instance, the dataset size
of the language Marathi-UFAL is small (4.1K to-
kens). However, the improvement degree is also
small (0.03 relative improvement).

Language Surface
word

Edit pred.
based model

output

Char. pred.
based model

output

Thurlow Thurlow Throughlough
English Cosmic Cosmic Comsic

sorrows sorrow sorw
Vietnam Vietnam Vietman

YPK Ypk YYk
Turkish kokainle kokain koki

Islık ıslık sılık

Table 4: Some examples of the errors made by charac-
ter prediction model and corrected by the edit predic-
tion based model

To investigate in which cases the edit predic-
tion model performs better, we explore the outputs
of the models for English and Turkish languages.
A significant portion of the errors in the charac-
ter prediction model is observed in unseen words
and proper nouns. Some of the errors made by the
character prediction based model and corrected by
the edit prediction based model are shown in Table
4. A possible reason is that the lemmatization of

a singular nominative noun which is rarely seen in
the training data is easier to edit prediction model
since all of the edit operations are Same and the
model should only produce a sequence of Same
labels. Character prediction based model, on the
other hand, have to learn to reproduce the word
from scratch. Additionally, we observe a signifi-
cant amount of samples in which the edit predic-
tion model produced morphological tags and lem-
mata more appropriate to the context than the out-
puts of the character prediction model. As a re-
sult, further research is needed to understand in
which cases the edit prediction decoder helps to
better learning of morphological properties of a
language.

4 Conclusion

In this study, we propose a neural architecture,
namely Morpheus, which is based on sequen-
tial neural encoder-decoders. The input words
are encoded in context-aware vector representa-
tions using two-level LSTM network and the de-
coders initialized with context-aware word vec-
tors generates both morphological tags assigned
to the words and minimum edit operations be-
tween surface words and their lemmata. We per-
form experiments to evaluate the performance of
Morpheus on UniMorph dataset collection (Kirov
et al., 2018), which comprised nearly 100 lan-
guage datasets. The experiments show that the
lemmatization performance of the Morpheus is
comparable to the SigMorphon neural baseline
system (Malaviya et al., 2019), which has ob-
tained current state-of-the-art results on UniMorph
dataset collection. Regarding morphological tag-
ging performance, Morpheus outperforms Sig-
Morphon morphological tagger baseline signifi-
cantly ( 0.3 relative improvement). In lemmati-
zation, Morpheus has placed 3rd in the SigMor-
phon 2019 Shared Task 2, and it has reached the
9th place in morphological tagging. In our experi-
ments, we also show that predicting the minimum
edit operations between surface words and their
lemmata instead of directly predicting the charac-
ters improves the performances of the system sig-
nificantly especially when the dataset is small.
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Abstract
This paper describes our submission to SIG-
MORPHON 2019 Task 2: Morphological
analysis and lemmatization in context. Our
model is a multi-task sequence to sequence
neural network, which jointly learns morpho-
logical tagging and lemmatization. On the
encoding side, we exploit character-level as
well as contextual information. We introduce
a multi-attention decoder to selectively focus
on different parts of character and word se-
quences. To further improve the model, we
train on multiple datasets simultaneously and
use external embeddings for initialization. Our
final model reaches an average morphological
tagging F1 score of 94.54 and a lemma accu-
racy of 93.91 on the test data, ranking respec-
tively 3rd and 6th out of 13 teams in the SIG-
MORPHON 2019 shared task.

1 Introduction

This paper presents our model for the SIGMOR-
PHON 2019 Task 2 on morphological analysis and
lemmatization in context (McCarthy et al., 2019).
The task is to generate a lemma and a sequence of
morphological tags, which are called morphosyn-
tactic descriptions (MSD), for each word in a
given sentence. This task is important because it
can be used to improve several downstream NLP
applications such as grammatical error correc-
tion (Ng et al., 2014), machine translation (Con-
forti et al., 2018) and multilingual parsing (Zeman
et al., 2018). Table 1 shows the lemma and mor-
phological tags of: Johnny likes cats.

The first sub-task, Lemmatization, is to trans-
form an inflected word form to its lemma which is
its base-form (or dictionary form), as in the exam-
ple of likes to like. The second sub-task, morpho-
logical tagging, is to predict morphological prop-
erties of words as a sequence of tags, including a
part of speech tag. These morphological tags spec-
ify the inflections encoded in word-forms. In the

Orig Johnny likes cats .

Lemma Johnny like cat .
MSD PROPN;SG V;SG;3;IND;PRS N;PL

Table 1: Example sentence, annotated with lemmas and
morphological tags.

example sentence, the word likes is annotated with
a morphological tag set of {V,SG,3,IND,PRS}.
Both tasks are dependent on context. For example,
while walking is annotated with the lemma walk
and tag set {N,SG} in the sentence: The beach is
within walking distance; it is annotated with walk-
ing and {V.PTCP;PRS;V} in: I was walking.

These two tasks have a clear relation; in most
languages the categories found in the morpholog-
ical tags indicate how the lemma of the word was
inflected to the word-form. In other words, syn-
tactic inflections have a strong correlation with the
morphological properties of the words.

Our approach to solve both of these tasks
consists of an encoder and two separate de-
coders within a multi-task architecture based on
a sequence-to-sequence network. The shared
encoder reads words and sentences to learn
character-level and word-level representations.
The decoders then separately generate lemmas and
morphological tags using these representations by
using multiple attention mechanisms. Our contri-
butions are threefold:

• We introduce the use of multiple attention
mechanisms that selectively focus character and
word sequences in the sentence context.

• We evaluate the effect of a variety of types of ex-
ternal embeddings for lemmatization and mor-
phological tagging.

• We evaluate the effect of combining annotated
datasets from related languages for both tasks
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using dataset embeddings.

2 Related work

Our system is based on three main approaches
which are heavily studied in existing literature.
These are sequence-to-sequence learning, multi-
task learning and multi-lingual learning.

Recent work on computational morphol-
ogy showed that neural sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014;
Bahdanau et al., 2014) have yielded new state-
of-the-art performance on various tasks including
morphological reinflection and lemmatiza-
tion (Cotterell et al., 2016, 2017, 2018). Building
on this, Dayanık et al. (2018) utilize different
levels of representations such as character-level,
word-level and sentence-level in the encoder of
their seq2seq architecture based on previous work
(Heigold et al., 2017).

Multi-task learning approaches for jointly learn-
ing related tasks have been successfully employed
on syntactic and semantic tasks (Søgaard and
Goldberg, 2016; Plank et al., 2016). In the con-
text of morphological analysis, this has been used
by Kementchedjhieva et al. (2018), who jointly
learn morphosyntactic tags and inflections for a
word in a given context, and use a shared encoder
within a multi-task architecture consisting of mul-
tiple decoder similar to our model.

Multi-lingual learning approaches which ben-
efit from joint learning for multiple languages is
also studied on various tasks with different archi-
tectures. Ammar et al. (2016) uses a language em-
bedding that contains information considering the
language, word-order properties and typological
properties for dependency parsing. In multilingual
neural machine translation, Johnson et al. (2017)
use a special token to indicate the target language.
In this work, our model uses the approach of Smith
et al. (2018) who introduce the treebank embed-
ding approach to combine several treebanks for a
single language or closely related languages.

Most similar to our model, Kondratyuk et al.
(2018) use a joint decoder approach for morpho-
logical tagging and lemmatization. However, our
model differs from theirs in substantial ways. Our
model employs an encoder-decoder architecture
which utilizes different levels of attention com-
ponents with a multi-lingual/multi-dataset signal.
Moreover, our model solves the tagging problem
as a sequential prediction task instead of multi-
layer classification so that we can use the same

architecture for both lemmatization and tagging
which are described in Section 3.2 and 3.3.

3 System Description

Our model is inspired by the architecture
of Dayanık et al. (2018). We employ an encoder-
decoder model over the character and word se-
quences. Following Dayanık et al. (2018), the en-
coder in our model consists of two parts. First, a
word encoder which runs on the character level, is
used to generate embeddings for each word (Sec-
tion 3.1.1). Second, a context encoder is initialized
with these word embeddings, and runs on the sen-
tence level (Section 3.1.4). We also experiment
with two methods to complement the word-level
embeddings (Section 3.1.2 and 3.1.3).

The representations at the different levels which
are generated by the encoder are then passed into
the decoders. Unlike Dayanık et al. (2018) which
uses one decoder for both the lemmas and the mor-
phological tags, we use two different decoders in
a multi-task architecture. The tag decoder pro-
duces a set of morphological tags by using word
representations and joint attention mechanism that
one attention focuses on words and other focuses
on characters (Section 3.2). The lemma decoder
produces a lemma by using the same information
complemented with output embeddings of the tag
decoder (Section 3.3).

Multi-task Learning The decoders work jointly
in a multi-task fashion and they share all internal
representations of the encoder. The whole network
is trained by backpropagating the sum of the losses
of the decoders without any weighting:

L(θ) = Ltag + Llemma (1)

where the morphological tag loss Ltag and the
lemma lossLlemma are separately computed as the
negative log likelihood loss over their softmax out-
puts.

Notation Given a sentence S = w1, ..., wn and
wi = c1, ..., cm where w denotes words and c de-
notes characters, our model processes S and w
in encoders and jointly produces a set of mor-
phological tags ti = ti,1, ..., ti,γ and a lemma
li = li,1, ..., li,φ which is a sequence of characters.

3.1 Encoder
In the following subsections, we explain the dif-
ferent parts of the encoder. An overview of the
encoder architecture is shown in Figure 1.
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<w> c a t s <\w>

Figure 1: Overview of the encoder when processing
the third word of the sentence: “Johnny likes cats .”.
Red:word level embeddings. Green: Character level
embeddings.

3.1.1 Word Encoder
We use a bidirectional GRU layer (Cho et al.,
2014) to encode character sequences in the word
encoder. We first pass each character of a word wi
to an embedding layer to map them into the fixed
dimensional character embeddings. The bi-GRUs
process character embeddings in both directions
and produce the hidden states hci,1, ..., h

c
i,m. The

resulting word embedding eci is computed by con-
catenating the final states of forward and backward
GRUs for the given word:

hci,1:m = bi-GRU(ci,1:m) (2)

eci = [
−−→
hci,m;

←−
hci,1] (3)

3.1.2 Word-Surface Embeddings
In addition to the character-level word embed-
dings, we use surface-level word embeddings
which are either learned in a standalone embed-
ding layer or taken from the pre-trained external
embeddings. Word-surface embeddings are de-
noted by ewi . For the unknown words, we used
a word droupout to overcome the sparsity issue.
Following Kiperwasser and Goldberg (2016), we
replace unknown tokens with a probability that is
inversely proportional to the frequency of the word
so that the word representation for an unknown to-
ken is learned based on infrequent words and their
context.

3.1.3 Dataset Embeddings
In order to train our model on multiple datasets
at once, we use dataset embedding eda for each

N PL <\w>

character attention

context attention

eci

esn

ti,1:γ

Figure 2: An overview of the morphological tag de-
coder.

dataset awhich is mapped into a fixed dimensional
vector in an embedding layer. The idea of dataset
embeddings is introduced by Smith et al. (2018).
These embeddings enable us to combine multiple
datasets without losing their monolingual and het-
erogeneous characters. The strategy that we use
to pick and combine datasets is described in Sec-
tion 4.2

3.1.4 Context Encoder
In order to encode sentence level contextual infor-
mation, we use another bidirectional GRU layer.
For a given sentence, we first concatenate the out-
put of the word encoder eci , the word-surface em-
bedding ewi and the dataset embedding eda, for each
word in the sentence. The resulting embedding se-
quence ein1 , ..., e

in
n is then passed into the bi-GRU.

The output of the bi-GRU is a sequence of em-
beddings es1, ..., e

s
n each representing a word in the

sentence:

eini = [eci ; e
w
i ; e

d
a] (4)

es1:n = bi-GRU(ein1:n) (5)

3.2 Tag Decoder
As the tag decoder shows in Figure 2, we use a 2
layer stacked bidirectional GRU as the tag decoder
to generate morphological tags ti = ti,1, ..., ti,γ
for the target word wi in a given sentence. In or-
der to utilize both character-level representations
and contextual representations during decoding,
we initialize the first layer of the decoder with
the context-level word embedding esi and the sec-
ond layer of the decoder with the character-level
word embedding eci after passing them through a
relu layer. The decoder outputs the morphological
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tags over a softmax layer based on the final hidden
states h̃t, which are computed in a joint attention
mechanism described in the following section.

h̃t = decoder(ht, cct , c
s
t ) (6)

p(ti,t|h̃t) = softmax(h̃t) (7)

3.2.1 Joint Context and Character Attention
We employ two different attention mechanisms to
allow the decoder to focus on multiple parts of the
sentence and the target word at the same time. We
use the attention mechanism introduced by Bah-
danau et al. (2014) for the context attention layer.
In the context attention, the alignment vector ast ,
which consists of weights for each word in the
sentence, is computed based on the previous hid-
den state ht−1 at the top layer of the stacked bi-
GRU and context-level embeddings es of words
by using the concat function described in Luong
et al. (2015). The sentence-level context vector
cst which is calculated as a weighted average over
word embeddings, is then passed into a simple
concatenation layer W s

c to produce the new hid-
den state ht through the stacked bi-GRU:

ast (i) = aligns(ht−1, esi ) (8)

cst =
∑

i

aste
s
i (9)

ht = bi-GRU(W s
c [c

s
t ;ht−1], ht−1) (10)

Together with the context attention, we also em-
ploy a character-level attention model to take into
account the entire output of the word encoder.
We use the global attention mechanism with the
general score function for alignment vectors (Lu-
ong et al., 2015), for the character attention. The
source-side character-level attention vector cct is
computed as a weighted average of the outputs
of the word encoder, each denoted by hci,j . The
resulting output state h̃t of the tag decoder is
then generated by concatenating the current hid-
den state at the top of the stacked bi-GRU ht
and the context vector cct in a concatenation layer
which has a tanh activation:

act(j) = alignc(ht, hci,j) (11)

cct =
∑

j

acth
c
i,j (12)

h̃t = tanh(W c
c [c

c
t ;ht]) (13)

3.3 Lemma Decoder
The lemma decoder (Figure 3) produces one char-
acter at a time to sequentially form a lemma li =

c a t <\w>

character attention

eci

esn

ti,1:γ

Figure 3: An overview of the lemma decoder.

li,1, ..., li,φ for a target word wi. Similar to the
tag encoder, we use a 2 layer stacked bi-GRU as
lemma decoder. The initial states of the decoder
layers are taken from the word encoder output eci
and the context encoder output esi through a relu
layer similarly as in the tag decoder. The output of
the lemma decoder li,t is conditioned on the cur-
rent state of the decoder ht, the character attention
cct and the morphological tags ti,1:γ of the target
word. The probability of the output lemma char-
acters are then predicted through a softmax layer.

h̃t = decoder(ht, cct , ti,1:γ) (14)

p(li,t|h̃t) = softmax(h̃t) (15)

In order to exploit morphological features during
lemmatization, we give the morphological tags ti:γ
which are predicted by the tag decoder, as part of
input to the lemma decoder. Independent of their
order, the entire set of the tags are encoded by a
simple feed-forward layer as described in the base-
line model (Malaviya et al., 2019) and the result-
ing vector is concatenated with the input embed-
dings for each target word.

The last part of the lemma decoder is the atten-
tion network which is the same character-level at-
tention model as in the tag decoder. The character
attention mechanism allows the lemma decoder to
compute an attention vector cct based on the output
states of the word encoder. The attention vector is
then passed into a concatenation layer to generate
the output state h̃t of the decoder for each lemma
character li,t.

act(j) = alignc(ht, hci,j) (16)

cct =
∑

j

acth
c
i,j (17)

h̃t = tanh(W c
c [c

c
t ;ht]) (18)
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Parameter Val. Parameter Val.

teacher forcing ratio 0.5 dataset embbedding size (eda) 32
dropout 0.25 word enc. hidden size (hci ) 1,024
patience 4 context enc. hidden size (hsi ) 1,024
word enc. input size 128 dec. input size 128
word embedding size (ewi ) 256 dec. hidden size (ht) 1,024

Table 2: Default hyperparameter settings. Encoder and
decoder are denoted by enc and dec respectively.

4 Setup

In this section we will give the details regarding
our experimental setup. The hyperparameters we
used in our experiments are shown in Table 2.
These hyperparameters have been tuned on the
datasets described in Section 5.1. For the train-
ing, we used ADAM (Kingma and Ba, 2014) and
we applied an early stopping strategy with a min-
imum number of 100 epochs. We stop training if
there is no improvement in the development set for
4 consecutive epochs (patience).

4.1 External Embeddings

Because of time-constraints and the large num-
ber of languages in the dataset, we used out-of-
the-box embeddings. We compared the perfor-
mance of three well-known pre-trained embedding
repositories for different training methods. We
use two word-based embeddings: Polyglot em-
beddings (Al-Rfou et al., 2013), and FastText em-
beddings (Grave et al., 2018). For FastText, two
sets of pre-trained embeddings are available: one
is trained only on Wikipedia (Bojanowski et al.,
2017), whereas the newer versions are also trained
on CommonCrawl (Grave et al., 2018). Whenever
available, we pick the newer embeddings, but for
many low-resource languages we fall back to the
older, smaller version. We also experiment with
context-based embeddings, namely ELMo embed-
dings (Peters et al., 2018), we use the pre-trained
models from Che et al. (2018).

All of these embeddings have been trained us-
ing the default settings for the embedding type,
hence their dimensions are substantially different
(Polyglot; 64, FastText:300, ELMo:1,024) . We
decided not to transform these, as their default di-
mensions are tuned towards their training algo-
rithm and we want to provide a fair comparison
for all out-of-the-box settings.

4.2 Dataset Embeddings

For the dataset embeddings, we only consider
combining pairs of two for efficiency reasons. To
ensure that we match datasets which are informa-
tive, we use word overlap (excluding numberals
and punctuation). As this method is expected to be
most benficial for small datasets, we searched for
datasets which are closest (ie. have a large word
overlap) to the 50 smallest datasets. The final pairs
of datasets can be found in Appendix A.

5 Experiments

In this section, we will describe the data used in
our experiments as well as evaluate the effective-
ness of our external embeddings setup and the
dataset embeddings with in a variety of settings.
In all experiments we use +E and -E to indicate
the model with and without external embeddings,
and +D and -D for dataset embeddings.

5.1 Data

The test data of SIGMORPHON 2019 task 2 con-
sists of a collection of datasets released in the Uni-
versal Dependencies project (Nivre et al., 2018),
which are automatically converted to the Uni-
Morph Schema (McCarthy et al., 2018). In total,
we evaluate our model on 107 datasets, covering
66 languages.

After empirically looking at the trade-off be-
tween data-size and training time, we decided to
limit each dataset to its first 250,000 tokens for all
experiments. This speeded up the training consid-
erably, with almost no loss in performance.

For the tuning of our model, we selected a
sub-set of datasets from the main benchmark.
More specifically, we aimed to get a diversion of
language-family, size, and morphological richness
(here proxied by the average amount of morpho-
logical tags per word). To ensure we do not overfit
on a specific dataset/annotation, we selected two
datasets for each of these languages. The selected
datasets are shown in Table 3.

5.2 Baseline

The baseline consists of two separate parts: a mor-
phological tagger and a lemmatizer. The morpho-
logical tagger, which predicts a set of morpholog-
ical features (as one tag) for each word, is a biL-
STM model with character level layers. The k-
best predicted morphological tags are then used
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Figure 4: Results of our model when using a variety of
types of external embeddings.

as extra information to improve the lemmatiza-
tion. The lemmatizer, which is based on Wu et al.
(2018), uses a hard attention mechanism within an
encoder-decoder model. Unlike the previous mod-
els, the morphological tags are explicitly given to
the lemmatizer to indicate the morpho-syntactic
features of words. The lemmatizer combines the
given morphological tags with a character encod-
ing to predict the lemma.

5.3 External Embeddings

In Figure 4, we plotted the average performance
of our model when the different types of embed-
dings are used to initialize the word-surface em-
beddings (detailed results are in Appendix B). The
results show that a performance boost of approx-
imately 2.5% can be obtained for lemmatization
and 5% for morphological tagging. Especially the
ELMo embeddings perform very well, and result
in an improvement of 3.77 and 6.35 percentage
points. The Polyglot embeddings perform surpris-
ingly well, considering they only have an embed-
ding size of 64. In addition to the reported settings,
we also experimented with concatenating the vec-
tors from all types of external embeddings. How-
ever, our empirical results showed that this per-
formed worse compared to using any of the em-

Dataset Language Family Sents words tag/word

en ewt IE,Germanic 13,297 204,857 1.95
en pud IE,Germanic 800 16,927 1.88
tr imst Turkic,Southwestern 4,508 46,417 3.58
tr pud Turkic,Southwestern 800 13,380 2.78
zh cfl Sino-Tibetan 360 5,688 1.00
zh gsd Sino-Tibetan 3,997 98,734 1.06
fi pud Uralic,Finnic 800 12,556 2.97
fi ftb Uralic,Finnic 14,978 127,536 3.07

Table 3: The datasets which we used to tune our mod-
els, with data properties based on the training split. IE:
Indo-European
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Figure 5: Average results of our model when using sim-
ple dataset concatenation versus using dataset embed-
dings (+D) on 4 small datasets and 4 large datasets

beddings in isolation.
Because not all types of embeddings are avail-

able for all languages, we use fallback options for
the test data. We choose embeddings in the fol-
lowing order: ELMo, Polyglot, FastText. After
this selection, three languages still have no embed-
dings (Akkadian, Coptic and Naija), we omitted
datasets in these languages from the external em-
bedding experiments.

5.4 Dataset Embeddings
To test whether the dataset embeddings are neces-
sary, we compare them with a naive approach to
combine datasets: simply training on the concate-
nation of both datasets. The average results on 4
small datasets and 4 large datasets which are given
in Table 3, are compared separately in Figure 5. In
both small and large settings, using dataset embed-
dings improves the performance in both morpho-
logical tagging and lemmatization, however the
effect of dataset embeddings is higher on small
datasets, especially in the morphological tagging
task. For the detailed results on our tune datasets,
we refer to Appendix C.

6 Results

In this section, we will compare our final results
for two settings with the baseline. In general, we
compare two setups: use of external data (exter-
nal embeddings, +E) and a constrained setup (-E),
which only uses training data. For the dataset em-
beddings, we could only run for the smallest 50
datasets because of time limitations, so for the de-
velopment data, we only report results for these
datasets. For the test data, we used dataset embed-
dings for datasets for which they have shown to be
beneficial on the development data. Our average
results are shown in Table 7. For the results for all
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four settings per dataset, we refer to Appendix D;
here we see that the best setting is generally to use
dataset embeddings when available.

6.1 Morphological Tagging

For the morphological tagging task, external em-
beddings show to be more beneficial for the tag-
ging task, whereas the dataset embeddings are par-
ticularly beneficial for lemmatization, but combin-
ing them leads to the best scores for both tasks.
Furthermore, our model outperforms the baseline
by a large margin. This is because, while the
baseline has a separate component for morpholog-
ical tagging, our model learns both tasks jointly.
This approach implicitly enables the decoder to
access lemma information for morphological tag-
ging. Besides, we use a multi-attention strategy
which combines word level and character level at-
tentions which improves the tagging performance.

6.2 Lemmatization

In contrast to the results on the development
data, the baseline outperforms our model on the
test data (Table 7). Especially on small datasets
which are not paired with another dataset, such
as UD Akkadian-PISANDUB, the baseline per-
forms better with a large margin.

There are two main reasons for this perfor-
mance difference. First, the baseline uses a hard
attention to model alignment distribution explic-
itly, whereas, our model uses soft attention for
both tasks. The results show that a hard attention
mechanism performs better on the lemmatization,
confirming the findings of Wu et al. (2018). In-
tegrating a lemma decoder having hard attention
with a morphological tag decoder which employs
soft attention, could be explored in future studies.
Second, as explained in the previous section, we
optimize for both tasks jointly without any weight-
ing. Although this is more elegant, as only one
model is trained, it might not lead to the most op-
timal performance.

7 Conclusion

In this paper, we presented our model for the Sig-
morphon 2019 Task 2 on morphological analysis
and lemmatization. We use an encoder-decoder
model by utilizing multi-task learning approach.
A shared encoder runs on the character and sen-
tence level and two separate decoders jointly learn
to generate morphological tags and the lemma for

Morph. tags Lemma

Models Acc F1 Acc Lev

dev (small)

base 69.66 85.38 91.53 0.19
-E -D 83.16 89.45 86.75 0.29
+E -D 85.84 91.54 87.65 0.28
-E+D 85.58 91.26 89.70 0.27
+E+D 88.03 92.96 91.29 0.24

test (all)

base 73.16 87.92 94.17 0.13
-E 89.00 93.35 93.05 0.16
+E 90.61 94.57 93.94 0.15

Table 7: Average results for all evaluation metrics
for development and test data. +E: use external em-
beddings for initialization, +D: use dataset embedding
strategy. On the development data, we report the aver-
age over the datasets where predictions of all settings
were available.

each word.
Our system achieved an average morphological

tagging F1 score of 94.57 and an average lemma
accuracy score of 93.94 on the test data. The ex-
perimental analysis showed that:

• Employing a multi-task achitecture having mul-
tiple levels of attention mechanism improved
the morphological tagging over the baseline
strategy.

• Using the pre-trained embeddings substantially
improved our scores for both tasks.

• Applying a multi-lingual/dataset strategy by
learning special embeddings also improved our
scores, specifically for small datasets. On 50
datasets (Table 7), the multi-dataset strategy im-
proved the performance of our model substan-
tially, by 2.95 (accuracy) on lemmatization and
1.81 (F1) on morphological tagging.

• Furthermore, these improvements are highly
complementary: using dataset embeddings si-
multaneously with external embeddings leads to
superior performance.

The code to re-run all experiments can
be found on: https://bitbucket.org/
ahmetustunn/morphology_in_context
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Lemma Morph. tags Lemma Morph. tags
Dataset Acc. Lev. F1 Acc. +E +D Dataset Acc. Lev. F1 Acc. +E +D

af afribooms 96.44 0.10 98.05 98.45 + + it postwita 95.20 0.18 95.42 96.64 + -
akk pisandub 47.52 1.35 76.24 75.84 - + it pud 97.11 0.06 93.73 96.96 - +
am att 98.49 0.02 87.81 91.52 - - ja gsd 98.98 0.01 98.00 97.76 + +
ar padt 94.65 0.14 94.16 96.90 + + ja modern 96.87 0.04 96.74 96.80 - +
ar pud 82.53 0.41 83.61 94.16 + + ja pud 99.01 0.02 98.56 98.39 + +
be hse 90.28 0.18 82.20 91.52 + + kmr mg 91.31 0.14 83.51 89.44 + -
bg btb 97.19 0.08 97.27 98.79 + - ko gsd 90.09 0.21 95.93 95.35 + -
bm crb 87.47 0.21 91.42 93.77 + - ko kaist 94.62 0.09 96.84 96.46 + -
br keb 92.24 0.18 86.57 89.50 + + ko pud 99.13 0.01 92.38 95.59 + +
bxr bdt 87.12 0.31 83.65 86.57 + + kpv ikdp 85.94 0.26 66.41 75.96 - +
ca ancora 99.00 0.02 97.94 99.04 + - kpv lattice 81.87 0.46 69.23 82.21 + +
cop scriptorium 96.13 0.08 94.67 96.31 - - la ittb 98.33 0.04 95.01 97.77 + -
cs cac 98.39 0.03 95.21 98.36 + - la perseus 92.73 0.15 83.75 93.01 + +
cs cltt 97.60 0.29 93.30 97.59 + + la proiel 96.76 0.07 90.28 96.60 + -
cs fictree 97.78 0.04 93.84 97.57 + - lt hse 80.14 0.46 67.23 83.26 + +
cs pdt 97.94 0.04 94.36 97.97 + - lv lvtb 95.02 0.09 92.96 96.91 + +
cs pud 96.84 0.05 91.19 97.21 + + mr ufal 72.63 0.67 62.33 76.02 + +
cu proiel 95.54 0.10 88.67 95.48 - - nl alpino 96.25 0.08 95.10 96.05 + -
da ddt 96.96 0.05 96.05 97.49 + + nl lassysmall 94.30 0.12 93.45 94.26 - -
de gsd 95.24 0.10 84.99 93.71 + - no bokmaal 97.72 0.04 95.21 97.05 + -
el gdt 94.64 0.11 92.79 97.47 + + no nynorsk 95.86 0.08 94.05 96.27 - -
en ewt 98.39 0.08 96.18 97.24 + + no nynorsklia 97.58 0.04 94.53 96.62 + +
en gum 97.85 0.04 95.95 96.95 + + pcm nsc 99.48 0.02 94.79 93.01 + +
en lines 97.96 0.04 96.45 97.32 + - pl lfg 97.06 0.06 94.55 97.76 + +
en partut 97.97 0.03 95.40 96.27 + + pl sz 97.11 0.05 90.88 96.56 + +
en pud 97.20 0.04 95.44 96.85 + + pt bosque 98.24 0.03 94.83 97.53 + -
es ancora 99.03 0.02 97.83 98.91 + - pt gsd 98.14 0.10 98.24 98.37 + -
es gsd 98.75 0.02 94.60 97.37 - + ro nonstandard 96.44 0.07 92.74 96.18 - +
et edt 95.07 0.11 94.51 97.24 + - ro rrt 98.29 0.03 97.47 98.42 + -
eu bdt 96.03 0.09 90.15 95.38 + - ru gsd 96.79 0.05 90.69 96.05 + -
fa seraji 95.20 0.23 97.76 98.23 + - ru pud 94.31 0.10 87.93 95.50 + +
fi ftb 94.65 0.12 95.17 97.37 + - ru syntagrus 96.76 0.07 95.10 97.71 + -
fi pud 89.35 0.28 95.24 97.51 + + ru taiga 93.44 0.15 86.33 93.83 + +
fi tdt 93.61 0.14 95.31 97.52 + - sa ufal 52.26 1.18 42.21 64.45 + +
fo oft 85.59 0.29 80.60 90.62 - + sk snk 95.61 0.08 91.49 96.75 + -
fr gsd 98.12 0.04 97.31 98.43 + - sl ssj 97.84 0.03 93.65 97.13 + -
fr partut 96.54 0.05 94.96 97.71 + + sl sst 96.24 0.07 90.72 95.09 + +
fr sequoia 98.27 0.03 97.18 98.77 + - sme giella 87.54 0.27 86.22 91.38 + +
fr spoken 99.52 0.01 98.15 98.18 + + sr set 96.09 0.07 92.38 96.27 + -
ga idt 89.07 0.26 83.95 90.82 + - sv lines 96.43 0.08 93.13 97.03 + -
gl ctg 98.31 0.03 97.80 97.59 + - sv pud 94.19 0.11 94.97 97.09 + +
gl treegal 96.56 0.06 93.97 96.93 + - sv talbanken 96.65 0.07 96.32 98.20 + -
got proiel 95.04 0.10 85.99 94.39 - - ta ttb 88.17 0.28 81.14 91.29 + -
grc perseus 92.42 0.18 88.90 95.69 + - tl trg 75.68 2.24 86.49 91.30 + +
grc proiel 96.70 0.08 91.15 97.37 + - tr imst 96.09 0.07 90.79 95.52 + +
he htb 96.61 0.06 95.86 97.35 + - tr pud 86.46 0.34 87.63 94.96 + +
hi hdtb 98.61 0.02 91.80 97.30 + - uk iu 95.45 0.09 91.92 96.42 + -
hr set 94.18 0.11 89.41 96.02 + - ur udtb 95.91 0.07 77.31 92.02 + -
hsb ufal 87.11 0.21 77.12 86.73 + + vi vtb 99.20 0.03 89.55 88.18 - +
hu szeged 94.17 0.12 87.95 96.22 + + yo ytb 98.06 0.02 92.64 93.27 - -
hy armtdp 92.15 0.15 84.64 91.66 + + yue hk 99.29 0.01 92.32 90.23 - +
id gsd 99.09 0.02 89.32 93.04 - - zh cfl 96.57 0.04 91.61 90.35 + +
it isdt 97.83 0.04 96.78 98.01 - - zh gsd 99.02 0.01 94.61 94.59 + +
it partut 98.25 0.04 97.30 98.45 - + average 93.94 0.15 90.61 94.57

Table 6: All four evaluation metrics for the test data of our best system. E: use of external embeddings. D: use of
dataset embeddings. Results might be different compared to the ones in the overview paper, as we did not have
enough time to run all experiments before the deadline. +E: whether external embeddings were used. +D: whether
dataset embeddings were used.
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A Matching of Datasets

Src Data Additional Emb. type Src Data Additional Emb. type

af afribooms nl alpino poly it postwita it isdt elmo
akk pisandub cs pdt elmo it pud it isdt elmo
am att ja gsd ja pud elmo
ar padt ar pud elmo ja modern ja gsd elmo
ar pud ar padt elmo ja pud ja gsd elmo
be hse ru syntagrus poly kmr mg es gsd poly
bg btb ru syntagrus elmo ko gsd ko kaist elmo
bm crb cs pdt fast ko kaist ko gsd elmo
br keb no bokmaal poly ko pud ko kaist elmo
bxr bdt ru syntagrus fast kpv ikdp ru syntagrus fast
ca ancora es ancora elmo kpv lattice ru syntagrus fast
cop scriptorium la ittb la proiel elmo
cs cac cs pdt elmo la perseus la proiel elmo
cs cltt cs pdt elmo la proiel la ittb elmo
cs fictree cs pdt elmo lt hse lv lvtb poly
cs pdt cs cac elmo lv lvtb hr set elmo
cs pud cs pdt elmo mr ufal hi hdtb poly
cu proiel ru syntagrus elmo nl alpino nl lassysmall elmo
da ddt no bokmaal elmo nl lassysmall nl alpino elmo
de gsd fr gsd elmo no bokmaal no nynorsk elmo
el gdt grc proiel elmo no nynorsk no bokmaal elmo
en ewt en gum elmo no nynorsklia no nynorsk elmo
en gum en ewt elmo pcm nsc en ewt elmo
en lines en ewt elmo pl lfg pl sz elmo
en partut en ewt elmo pl sz pl lfg elmo
en pud en ewt elmo pt bosque pt gsd elmo
es ancora es gsd elmo pt gsd pt bosque elmo
es gsd es ancora elmo ro nonstandard ro rrt elmo
et edt cs pdt elmo ro rrt ro nonstandard elmo
eu bdt es ancora elmo ru gsd ru syntagrus elmo
fa seraji ur udtb elmo ru pud ru syntagrus elmo
fi ftb fi tdt elmo ru syntagrus ru gsd elmo
fi pud fi tdt elmo ru taiga ru syntagrus elmo
fi tdt fi ftb elmo sa ufal hi hdtb poly
fo oft no nynorsk poly sk snk cs pdt elmo
fr gsd fr sequoia elmo sl ssj hr set elmo
fr partut fr gsd elmo sl sst sl ssj elmo
fr sequoia fr gsd elmo sme giella no nynorsk poly
fr spoken fr gsd elmo sr set hr set poly
ga idt cs pdt elmo sv lines sv talbanken elmo
gl ctg es ancora elmo sv pud sv talbanken elmo
gl treegal gl ctg elmo sv talbanken sv lines elmo
got proiel no nynorsk none ta ttb
grc perseus grc proiel elmo tl trg es gsd poly
grc proiel grc perseus elmo tr imst tr pud elmo
he htb ru gsd elmo tr pud tr imst elmo
hi hdtb mr ufal poly uk iu ru syntagrus elmo
hr set sr set poly ur udtb fa seraji elmo
hsb ufal cs pdt poly vi vtb en ewt elmo
hu szeged et edt elmo yo ytb es gsd poly
hy armtdp ru pud poly yue hk zh gsd poly
id gsd es gsd elmo zh cfl zh gsd elmo
it isdt it partut elmo zh gsd ja gsd elmo
it partut it isdt elmo

Table 8: This shows for each dataset, with which dataset it has the highest word overlap, and what their best
common embeddings type is. Three datasets could not be paired, as they had 0% overlap with all other datasets
(ignoring punctuation and numericals).
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B External Embeddings per Dataset
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Figure 6: Results of different types of embeddings on the development splits of our tune datasets.
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C Dataset Embeddings per Dataset
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Figure 7: Results of dataset embeddings on the development splits of our tune datasets. We compare the dataset
embeddings with a simple concatenation of the datasets.
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D Results of External and Treebank Embeddings on Development Data

Dataset Base -E-D -E+D +E-D +E+D Lem Mor Dataset Base -E-D -E+D +E-D +E+D Lem Mor

af afribooms 95.48 95.14 95.95 96.63 97.03 96.49 97.57 it postwita 92.19 95.12 0.00 96.19 0.00 95.24 97.14
akk pisandub 74.76 63.65 64.76 59.64 63.07 46.67 82.85 it pud 94.14 94.06 97.02 90.29 96.80 97.25 96.79
am att 93.53 95.51 0.00 93.77 0.00 98.90 92.12 ja gsd 93.98 96.96 97.27 98.08 98.21 98.91 97.52
ar padt 93.40 93.74 90.05 93.93 95.92 94.90 96.94 ja modern 94.26 94.61 96.55 94.19 96.47 96.45 96.65
ar pud 86.58 84.28 76.56 88.02 88.65 82.70 94.60 ja pud 92.91 95.16 98.34 97.02 99.02 99.46 98.59
be hse 84.82 80.69 88.10 81.32 89.13 87.48 90.78 kmr mg 89.17 87.36 0.00 87.81 0.00 88.57 87.06
bg btb 95.57 97.43 0.00 97.97 0.00 97.15 98.79 ko gsd 89.38 91.49 0.00 92.82 0.00 90.45 95.19
bm crb 88.86 91.34 0.00 91.50 0.00 88.70 94.30 ko kaist 91.99 94.89 0.00 95.57 0.00 94.69 96.45
br keb 91.00 86.51 0.00 89.14 91.39 91.49 91.29 ko pud 93.89 94.02 96.57 96.32 97.55 98.80 96.30
bxr bdt 83.66 83.46 86.34 84.33 86.36 86.83 85.89 kpv ikdp 67.44 61.19 73.16 60.82 72.83 71.08 75.24
ca ancora 96.91 98.43 0.00 99.08 0.00 99.11 99.06 kpv lattice 75.14 63.65 74.16 62.89 76.29 78.57 74.01
cop scriptorium 94.53 95.53 0.00 94.54 0.00 95.12 95.94 la ittb 95.85 97.89 0.00 98.17 0.00 98.39 97.94
cs cac 95.86 97.31 0.00 98.30 0.00 98.34 98.26 la perseus 83.11 82.97 89.34 87.26 91.25 90.80 91.70
cs cltt 95.53 94.32 97.20 93.19 97.67 97.82 97.51 la proiel 94.03 95.05 0.00 96.74 0.00 96.88 96.59
cs fictree 94.10 96.09 0.00 97.85 0.00 97.99 97.72 lt hse 76.09 70.49 74.93 76.93 81.48 80.69 82.27
cs pdt 95.26 96.96 0.00 98.00 0.00 98.02 97.98 lv lvtb 92.38 93.88 0.00 95.67 95.70 94.73 96.67
cs pud 89.85 88.22 96.04 94.17 96.94 97.05 96.83 mr ufal 76.22 74.79 76.64 74.80 77.87 76.71 79.02
cu proiel 93.47 94.94 0.00 94.78 0.00 95.00 94.87 nl alpino 94.25 95.77 0.00 96.17 0.00 96.35 95.99
da ddt 93.74 91.53 95.66 97.19 97.35 97.01 97.68 nl lassysmall 92.62 95.05 0.00 94.19 0.00 95.16 94.95
de gsd 0.00 93.59 94.35 94.44 0.00 95.23 93.64 no bokmaal 95.53 97.45 0.00 97.62 0.00 97.91 97.32
el gdt 95.23 95.83 95.36 95.76 96.00 94.50 97.50 no nynorsk 0.00 97.23 0.00 96.26 0.00 97.34 97.13
en ewt 93.99 94.49 96.41 97.66 97.78 98.26 97.29 no nynorsklia 91.80 95.52 95.25 95.61 96.99 97.79 96.18
en gum 93.74 92.04 96.04 93.90 97.53 97.80 97.26 pcm nsc 89.24 95.87 96.10 95.86 96.17 100.00 92.35
en lines 94.61 96.24 0.00 97.60 0.00 98.01 97.20 pl lfg 92.07 95.56 95.66 96.82 97.43 97.03 97.84
en partut 93.33 95.15 96.05 96.11 97.24 98.24 96.25 pl sz 91.10 93.78 95.00 96.15 97.09 97.37 96.80
en pud 91.62 92.70 95.00 96.23 97.07 97.20 96.94 pt bosque 94.88 97.08 0.00 97.91 0.00 98.32 97.50
es ancora 96.87 98.27 98.38 98.89 0.00 98.96 98.83 pt gsd 0.00 97.44 0.00 98.14 0.00 97.94 98.35
es gsd 0.00 97.62 98.14 98.13 0.00 98.68 97.59 ro nonstandard 93.62 95.73 96.20 96.11 0.00 96.32 96.09
et edt 93.31 94.50 0.00 96.20 0.00 94.99 97.42 ro rrt 95.56 97.39 97.46 98.20 0.00 98.23 98.16
eu bdt 91.94 94.76 0.00 95.80 0.00 96.03 95.57 ru gsd 55.99 94.85 0.00 96.93 0.00 97.10 96.75
fa seraji 0.00 95.90 0.00 96.61 0.00 95.27 97.96 ru pud 89.25 88.21 94.70 94.07 95.94 95.06 96.82
fi ftb 92.27 94.23 94.65 96.13 0.00 94.81 97.45 ru syntagrus 94.37 96.66 0.00 97.25 0.00 96.75 97.75
fi pud 88.69 86.82 92.50 90.42 93.12 87.97 98.27 ru taiga 85.09 85.38 92.94 91.17 94.70 94.28 95.13
fi tdt 89.32 94.30 94.31 95.56 0.00 93.43 97.70 sa ufal 68.45 61.87 64.32 62.96 67.69 63.92 71.46
fo oft 88.93 88.18 89.65 87.98 89.28 88.11 91.19 sk snk 92.44 93.12 0.00 96.52 0.00 96.20 96.85
fr gsd 96.43 97.93 97.73 98.30 0.00 98.13 98.47 sl ssj 92.97 95.59 0.00 97.35 0.00 97.60 97.09
fr partut 94.09 94.62 96.89 96.54 97.47 97.10 97.83 sl sst 89.78 89.19 94.26 93.20 95.98 96.89 95.06
fr sequoia 95.59 96.64 97.98 98.49 0.00 98.43 98.54 sme giella 89.69 89.60 87.56 88.27 90.44 88.32 92.56
fr spoken 96.34 96.71 97.92 97.94 98.63 99.41 97.84 sr set 93.82 95.64 0.00 95.91 0.00 95.84 95.98
ga idt 86.92 84.13 0.00 90.14 0.00 89.15 91.13 sv lines 93.54 93.97 95.07 96.98 0.00 96.90 97.07
gl ctg 95.09 97.48 97.97 98.15 0.00 98.38 97.92 sv pud 91.08 89.84 93.61 95.03 95.68 94.48 96.88
gl treegal 92.77 93.38 95.64 96.29 94.91 96.03 96.55 sv talbanken 0.00 96.13 95.95 97.61 0.00 96.85 98.38
got proiel 94.19 95.40 0.00 95.00 0.00 95.63 95.17 ta ttb 93.31 89.73 0.00 91.46 0.00 91.15 91.76
grc perseus 0.00 93.48 0.00 94.02 0.00 92.46 95.57 tl trg 68.66 73.36 70.36 69.13 78.62 76.00 81.25
grc proiel 0.00 95.73 0.00 97.06 0.00 96.72 97.41 tr imst 90.73 93.46 93.81 95.40 95.43 95.50 95.35
he htb 94.31 95.82 96.55 96.87 0.00 96.47 97.27 tr pud 87.86 88.63 90.39 90.83 91.74 87.96 95.52
hi hdtb 96.36 97.43 97.55 97.93 97.71 98.53 97.32 uk iu 91.39 92.41 94.06 95.75 0.00 95.24 96.25
hr set 93.21 93.27 0.00 95.25 0.00 94.20 96.30 ur udtb 92.12 92.85 0.00 93.59 0.00 95.61 91.57
hsb ufal 84.64 82.83 82.98 84.67 84.79 86.28 83.31 vi vtb 89.39 93.37 94.48 94.13 0.00 99.40 89.56
hu szeged 91.06 91.65 91.03 90.94 94.70 93.42 95.98 yo ytb 88.72 92.41 91.38 89.07 0.00 94.40 90.42
hy armtdp 0.00 92.02 0.00 92.69 93.08 93.16 93.01 yue hk 85.19 90.97 94.10 89.32 93.94 98.97 89.22
id gsd 92.75 96.05 0.00 95.89 0.00 99.08 93.03 zh cfl 85.31 89.34 93.05 91.33 93.86 96.26 91.46
it isdt 95.73 97.83 97.62 97.12 97.80 97.63 98.02 zh gsd 91.34 94.15 95.04 96.57 96.79 99.06 94.52
it partut 95.36 95.59 98.11 97.84 97.73 97.85 98.37

Table 9: Results on all development datasets. The average of lemma accuracy and morphological F1 score is used
as main metric. base: baseline. E: external embeddings. D: dataset embeddings. Bold indicates which model is
used on the test data. Lem: lemma accuracy of the bold model. Mor: morphologic tagging F1 score of bold model.
A score of 0.00 means that we did not have time to run the model for this setting.
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Abstract
This paper presents the Instituto de
Telecomunicações–Instituto Superior Técnico
submission to Task 1 of the SIGMORPHON
2019 Shared Task. Our models combine
sparse sequence-to-sequence models with a
two-headed attention mechanism that learns
separate attention distributions for the lemma
and inflectional tags. Among submissions to
Task 1, our models rank second and third.
Despite the low data setting of the task (only
100 in-language training examples), they
learn plausible inflection patterns and often
concentrate all probability mass into a small
set of hypotheses, making beam search exact.

1 Introduction

Morphological inflection is the task of producing
an inflected form, given a lemma and a set of
inflectional tags. A widespread approach to the
task is the attention-based sequence-to-sequence
model (seq2seq; Bahdanau et al., 2015; Kann and
Schütze, 2016); such models perform well but are
difficult to interpret. To mitigate this shortcom-
ing, we employ an alternative architecture which
combines sparse seq2seq modeling (Peters et al.,
2019) with two-headed attention that attends sep-
arately to the lemma and inflectional tags (Ács,
2018). The attention and output distributions are
computed with the sparsemax function and mod-
els are trained to minimize sparsemax loss (Mar-
tins and Astudillo, 2016). Sparsemax, unlike soft-
max, can assign exactly zero attention weight to
irrelevant source tokens and exactly zero probabil-
ity to implausible hypotheses. We apply our mod-
els to Task 1 at the SIGMORPHON 2019 Shared
Task (McCarthy et al., 2019), which extends mor-
phological inflection to a cross-lingual setting. We
present two sparse seq2seq architectures:

• DOUBLEATTN (it-ist-01-1) is a reim-
plementation of the two-headed attention

model (Ács, 2018) which substitutes sparse-
max and its loss for softmax and cross en-
tropy loss. It uses separate encoders and at-
tention heads for the lemma and inflections,
and concatenates the outputs of the attention
heads.

• GATEDATTN (it-ist-02-1) replaces the
attention concatenation with a sparse gate
which interpolates the lemma and inflection
attention. The intuition is that the lemma and
inflectional tags are not likely to be equally
important at all time steps. For example, in
a suffixing language, the first several gener-
ated characters are likely to be identical to the
lemma; inflectional tags are not relevant. The
sparse gate allows the model to learn to shift
focus between the two attentions while ignor-
ing the other at a given time step.

GATEDATTN and DOUBLEATTN rank second
and third, respectively, among submissions to
Task 1. In addition, their behavior is highly in-
terpretable: they mostly learn to attend to a single
lemma hidden state at a time, progressing mono-
tonically from left to right, while their inflection
attention learns patterns which reflect underlying
morphological structure. The sparse output layer
often allows the model to concentrate all probabil-
ity mass into a single hypothesis, providing a cer-
tificate that decoding is exact. Our analysis shows
that sparsity is also highly predictive of perfor-
mance on the shared task metrics, showing that the
models “know what they know”.

2 Models

Our architecture is mostly the same as a standard
RNN-based seq2seq model with attention. In this
section, we outline the changes needed to extend
this model to use sparsemax and two-headed at-
tention in a multilingual setting.
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2.1 Sparsemax

Our models’ sparsity comes from the sparsemax
function (Martins and Astudillo, 2016), which
computes the Euclidean projection of a vector z ∈
Rn onto the n–dimensional probability simplex
4n := {p ∈ Rn : p ≥ 0,1>p = 1}:

sparsemax(z) := argmin
p∈4n

‖p− z‖2 (1)

Like softmax, sparsemax converts an arbitrary
real-valued vector into a probability distribution.
The critical difference is that sparsemax can as-
sign exactly zero probability, whereas softmax is
strictly positive. Sparsemax is differentiable al-
most everywhere and can be computed quickly,
allowing its use as a drop-in replacement for soft-
max. It has previously been used in seq2seq
for computing both attention weights (Malaviya
et al., 2018) and output probabilities (Peters et al.,
2019). Sparse attention is attractive in morpholog-
ical inflection because it resembles hard attention,
which has been successful on the task (Aharoni
and Goldberg, 2017; Wu et al., 2018).

2.2 Encoder–Decoder Model

Multilingual embeddings Each encoder and
decoder uses an embedding layer to convert one-
hot token representations into dense embeddings.
To account for the bilingual nature of Task 1, each
of our embedding layers contains two look-up ta-
bles: one for the sequence of input tokens, and
the other for the language of the sequence. At
each time step, the current token’s embedding is
concatenated to a language embedding.1 Each
encoder and decoder uses a separate embedding
layer; no weights are tied. Characters and inflec-
tional tags use embeddings of size Dc, while lan-
guage embeddings are of size D`. Thus the total
embedding size is D = Dc +D`.

Encoders The lemma and inflection encoders
are both bidirectional LSTMs (Graves and
Schmidhuber, 2005). An encoder’s forward and
backward hidden states are concatenated, forming
a sequence of source hidden states. We set the size
of these hidden states as D in all experiments.

Decoder The decoder is a unidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with input

1The language embedding is the same at all time steps
within an example; there is no code-switching in this task.

feeding (Luong et al., 2015). At time step t, it
computes a hidden state st ∈ RD. Conditioned
on st and the hidden state sequences from the
lemma and inflection encoders, a two-headed at-
tention mechanism then computes an attentional
hidden state s̃t ∈ RD. The decoder LSTM is ini-
tialized only with the lemma encoder’s state.

Attention head At time t, an attention head
computes a context vector ct ∈ RD conditioned
on the decoder state st and an encoder state se-
quence H = [h1, . . . ,hJ ]. A head consists of
two modular components:

1. Alignment Compute a vector a ∈ RJ of
alignment scores between st and H . We
use the general attention scorer (Luong et al.,
2015), which computes aj := s>t Wahj .

2. Context Compute the context vector ct as
a weighted sum of H: ct :=

∑J
j=1 πjhj ,

where π = sparsemax(a) is a sparse vector
of alignment scores in the simplex.

In Luong et al.’s single-headed attention, the at-
tentional hidden state s̃t = tanh(Ws[ct; st]) is
computed by a concatenation layer from the con-
text vector and pre-attention hidden state. How-
ever, our two-headed attention mechanism pro-
duces two context vectors and so must be com-
puted differently. We use two different formula-
tions, which we describe next.

DOUBLEATTN uses the same strategy for com-
bining multiple context vectors as Ács (2018): the
lemma and inflection context vectors ut and vt
and the target hidden state st are inputs to a con-
catenation layer:

s̃t = tanh(Wd[ut;vt; st]) (2)

whereWd ∈ RD×3D.

GATEDATTN, on the other hand, computes sep-
arate candidate attentional hidden states for the
two context vectors:

s̃ut = tanh(Wu[ut; st]) (3)

s̃vt = tanh(Wv[vt; st]) (4)

where Wu,Wv ∈ RD×2D. We define gate
weights Wg ∈ R2×3D and gate bias bg ∈ R2 and
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Model Acc. ↑ Lev. Dist. ↓
DOUBLEATTN 48.999 1.2918
GATEDATTN 50.179 1.3209

Baseline (Wu and Cotterell, 2019) 48.549 1.3281

Table 1: Task 1 test results on the SIGMORPHON
2019 Shared Task, averaged across language pairs.

use a sparse gate to compute weights pt ∈ 42 for
the two candidate states:

pt = sparsemax(Wg[ut;vt; st] + bg) (5)

We then stack the two candidate states s̃ut and s̃vt
into a matrix S̃t ∈ R2×D and use the gate weights
to compute s̃t as a weighted sum of them:

s̃t = ptS̃ (6)

Just as a two-dimensional softmax is equivalent
to a sigmoid, this two-dimensional sparsemax is
a hard sigmoid, as was pointed out by Martins and
Astudillo (2016). It provides extra interpretability
in the form of a three-way answer about what is
relevant at a time step: the lemma, the inflections,
or both.

Sparse outputs After the attentional hidden
state is computed, an output layer computes scores
for each output type z = Wzs̃ + bz . These are
then converted into a sparse probability distribu-
tion p? = sparsemax(z). The model is trained
to minimize the sparsemax loss (Martins and As-
tudillo, 2016), defined as

Lsparsemax(y,z) :=
1

2
(‖ey − z‖2 − ‖p? − z‖2)

(7)
where y is the index of the gold target and ey is
a one-hot vector. The sparsemax loss is differen-
tiable, convex, and has a margin, and its gradient
is sparse. Although softmax-based models use the
cross entropy loss, this is not possible for our mod-
els because the cross entropy loss is infinite when
the model assigns zero probability to the gold tar-
get.

3 Results

Our test results are shown in Table 1. Our two
models ranked second and third among official
submissions to Task 1.

Hyperparameter Value

Character embedding size 180
Tag embedding size 180
Language embedding size 20
RNN size 200
Lemma encoder layers 2
Inflection encoder layers {1, 2}
Dropout {0.3, 0.4, 0.5}

Table 2: Hyperparameters for all models. Bracketed
values were tuned individually for each language pair.

3.1 Experimental set-up

Each model was trained with early stopping for a
maximum of 30 epochs with a batch size of 64. We
used the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 10−3, which was halved
when validation accuracy failed to improve for
three consecutive epochs. We tuned the dropout
and the number of inflection encoder layers on a
separate grid for each language pair. Our hyperpa-
rameter ranges are shown in Table 2. At test time,
we decoded with a beam size of 5. We oversam-
pled the low resource training data 100 times and
did not use synthetic data or filter the corpora. We
implemented our models in PyTorch (Paszke et al.,
2017) with a codebase derived from OpenNMT-py
(Klein et al., 2017).2

Hyperparameters for Uzbek The Uzbek train-
ing set contains only 1060 examples, much
smaller than the other high resource corpora, and
initial results with Uzbek language pairs were
poor. We improved performance by oversampling
the Uzbek data 10 times (yielding roughly the
same high-low balance as the other pairs) and re-
ducing the initial learning rate to 10−4.

4 Analysis

Next we interpret our models’ behavior on a selec-
tion of language pairs from Task 1.

4.1 Sparse Attention

Table 3 shows the sparsity of our attention mech-
anisms, averaged across language families. The
attention is extremely sparse, especially over the
lemma: models attend to fewer than 1.1 lemma
characters per target character on average. Spar-
sity is more varied between language families in
the inflection attention. This may be explained by

2Our code is available at https://github.com/
deep-spin/SIGMORPHON2019.
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DOUBLEATTN GATEDATTN

Family Lemma Infl. Lemma Infl. Total #Langs

Afro-Asiatic 1.11 1.55 1.14 1.27 1.62 5
Baltic 1.02 1.33 1.02 1.34 1.54 1
Celtic 1.23 1.54 1.20 1.59 2.00 12
Dravidian 1.69 1.42 1.86 1.35 1.95 1
Germanic 1.05 1.56 1.05 1.39 1.61 17
Greek 1.15 1.52 1.18 1.62 2.11 1
Indo-Iranian 1.10 1.35 1.11 1.37 1.67 7
Murrinhpatha 1.16 1.28 1.15 1.35 1.71 1
Niger-Congo 1.07 1.30 1.04 1.09 1.11 1
NW Caucasian 1.02 1.08 1.02 1.20 1.25 2
Quechua 1.24 1.19 1.09 1.23 1.42 1
Romance 1.01 1.27 1.02 1.30 1.39 10
Slavic 1.08 1.31 1.07 1.35 1.55 9
Turkic 1.06 1.09 1.08 1.15 1.35 20
Uralic 1.03 1.21 1.04 1.31 1.48 12

Overall 1.09 1.33 1.09 1.33 1.56 100

Table 3: Average number of positions with nonzero attention per target time step on the Task 1 development sets,
grouped by the family of the low resource language. For DOUBLEATTN, this is simply averaged over all target
time steps. For GATEDATTN, the lemma attention nonzeros are summed only over time steps in which the gate
is active for the lemma, and similarly for the inflection attention nonzeros. The ‘Total’ column for GATEDATTN
indicates the average number of nonzeros over all time steps after accounting for the gate.

typological differences between languages, which
we next analyze in detail.

Turkic languages are characterized by concate-
native inflections (Bickel and Nichols, 2013b)
which represent individual features (monoexpo-
nence; Bickel and Nichols, 2013a). Monoexpo-
nence should allow the inflection attention to con-
centrate on a single tag at a time, and Table 3 con-
firms that Turkic inflection attention is among the
sparsest for both DOUBLEATTN and GATEDATTN

models. The Azeri attention plot in Figure 1 illus-
trates that the inflection attention usually focuses
on a single morpheme at a time, with some dis-
crepancies at morpheme boundaries, where other
tags may be relevant because of voicing assimi-
lation rules. Furthermore, the sparse gate gener-
ally allows the model to focus on only one atten-
tion head at a time: in the Azeri example, there
is only one position at which both attention heads
are used. This position is the final consonant of
the lemma, which appears to change because of
a phonological environment created by the suffix.
The shared task results suggest that sparse inflec-
tion attention is a good inductive bias for aggluti-
native languages: one of our models has the best

test accuracy among task submissions on 11 of
20 pairs where the low resource language is Tur-
kic and 11 of 12 pairs in the typologically similar
Uralic languages.

Germanic languages present different chal-
lenges, which may explain our models’ less sparse
inflection attention. Often several inflections are
fused into a single affix; a familiar example is the
German suffix st, which marks a verb as present
tense, second person, and singular, but has no sep-
arable parts that represent these features individ-
ually. The North Frisian plot in Figure 1 demon-
strates the less sparse nature of Germanic inflec-
tion attention. Producing “wulst” from the lemma
“wel” requires both a suffix and a change to the
lemma, and multiple inflectional tags are attended
to at several time steps. The fusional nature of
the morphology means there is not a clear align-
ment between the inflected sequence and the tags.
This in reflected in the fact that at many time steps,
DOUBLEATTN and GATEDATTN disagree about
which tags to attend to. Unlike in the Turkic ex-
ample, GATEDATTN’s gate usually gives weight
to both attention heads. This makes sense because
the inflection requires a change to the lemma, not
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Figure 1: Pairs of attention plots for Azeri (left) and North Frisian (right) words with models trained on the Turkish–
Azeri and Danish–North Frisian language pairs. Within each pair, the left plot comes from the DOUBLEATTN
model and the right plot from GATEDATTN. Gray squares have zero attention weight. The dashed vertical line
separates the lemma and inflection attention heads. Attention values in the GATEDATTN plots are scaled by gate
weights, which is why there is no inflection attention for the first several positions of the Azeri word.

just a suffix that follows it.

4.2 Sparse Output Layer

Sparse output probabilities provide tools for anal-
ysis that are not available to softmax-based mod-
els: when no hypotheses are pruned, they provide
a certificate that beam search is exact; when only
one hypothesis is possible, this gives an indication
of the model’s certainty; and when probability is
distributed among a small set of hypotheses, it is
easy to reason about what phenomena continue to
confuse the model.

Certainty When the probability distribution is
completely concentrated at each time step, the
model will be able to generate only one hypoth-
esis, regardless of the beam width. When this
happens for a particular input, the model can be
said to be certain for that input. This also triv-
ially guarantees that beam search is exact because
no hypotheses have been pruned. As Figure 2
shows, certainty is a strong indication of perfor-
mance. This suggests future work using certainty
as a validation metric alternative to accuracy and
loss.

Interpretable ambiguity Our Turkish–Azeri
GATEDATTN model demonstrates that there is
also useful information to be gleaned from the
cases where the model produces multiple hypothe-
ses. Of the 100 examples in the development set,
GATEDATTN concentrated all probability mass
into a single hypothesis for 79 of them, but the
other 21 examples exhibit ambiguities that have
linguistically plausible interpretations:

0 20 40 60 80
Certainty Rate

0

25

50

75

100
Ac

cu
ra

cy

Figure 2: Percentage of inputs for which the selected
GATEDATTN model concentrates all probability into a
single hypothesis compared to the word-level accuracy
on the development set. Each point is a language pair.

• Consonant alternations In 13 of the 21 ex-
amples, the hypotheses differ in their treat-
ment of stop consonants, which have very
similar phonological alternations in the two
languages that are represented in orthogra-
phy. The ambiguity is a sign that the model
has not mastered Azeri phonological rules.
Nine of the examples concern lemma-final
“k” and “q”, which have slightly different
rules in Azeri than Turkish.3

3This judgment is based on inspection of the Azeri data
and prior knowledge of Turkish.
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i ç e c e k </s>

@ k </s>

@ c e k </s>

@ k </s>

72.7%

27.3%

67.5%

32.5%

52.0%

48.0%

Figure 3: The Turkish–Azeri GATEDATTN model’s full
beam search for the Azeri lemma “içmek” and the tags
V 3 SG FUT. All other sequences have zero proba-
bility. The correct form is “iç@c@k”, while the model
prefers “içecek”, which would be correct with Turkish
vowel harmony rules.

• Vowel harmony In two other examples, the
model produced multiple guesses for the
vowels in the future tense marker. One of
these examples is shown in Figure 3. In both
instances, Azeri vowel harmony rules would
generate “@” in the suffix, but the model in-
stead produced “e”, which is correct with
Turkish vowel harmony. This shows the in-
fluence of the high resource language.

• Other cases The last six non-certain exam-
ples consist of a loanword with an unusual
character sequence, two instances where one
hypothesis has the wrong possessive suffix,
and two where a hypothesis inserts or drops
a character. The top prediction was nonethe-
less correct in all six.

This sort of analysis is not possible with tradi-
tional dense models because probability can never
become concentrated in a small set of hypotheses
and it is impossible to separate legitimate ambigu-
ities from the long tail of implausible hypotheses.

Paradigm completion Figure 3 suggests that
our models do a good job of concentrating prob-
ability in a small number of hypotheses. This
raises the question of whether, by underspecify-
ing the inflectional tags, the set of possible hy-
potheses in the beam can be made to resemble
a lemma’s complete paradigm. To investigate,
we trained monolingual models with the English,
German, and Turkish data from the high resource
setting of Task 1 of the CoNLL–SIGMORPHON
2018 Shared Task (Cotterell et al., 2018). We used
mostly the same hyperparameters as for this year’s
submission, except that there are no language em-
beddings, and the inflection tags are not used and
the models have single-headed attention over the
lemma sequences. We increased the beam width to

10 in order to accomodate the models’ greater un-
certainty. With English, this often works well: for
the regular verb “jitter”, the model’s only possible
hypotheses are “jittered”, “jittering”, “jitters”, and
“jitter”, which is the complete paradigm. Irregu-
lar verbs often have a handful of other hypotheses,
and sometimes the beam gives some probability
to misspellings. Something similar can be seen
in German, although the beam rarely contains all
surface forms. For German nouns, the beam often
shows uncertainty about plural formation: the hy-
potheses for “Nadelbaum” include “Nadelbaume”,
“Nadelbäume”, and “Nadelbäumer”, all of which
are plausible German plurals. Turkish has very
large paradigms, so in general it is not possible
to fit all forms into a beam of any reasonable size.
However, the hypotheses in the beam do typically
correspond to correct forms.

5 Conclusion

We presented a new style of seq2seq model which
brings together two-headed attention (Ács, 2018)
and sparse modeling for morphological inflection
(Peters et al., 2019). Our models learn sparse at-
tention distributions in both attention heads. Their
sparse probability distribution over hypotheses of-
ten allows beam search to become exact, while the
remaining ambiguities often have a clear linguistic
interpretation. The two versions of our model rank
second and third among submissions to Task 1.
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Abstract

This paper presents the submission by the
CMU-01 team to the SIGMORPHON 2019
task 2 of Morphological Analysis and Lemma-
tization in Context. This task requires us to
produce the lemma and morpho-syntactic de-
scription of each token in a sequence, for 107
treebanks. We approach this task with a hierar-
chical neural conditional random field (CRF)
model which predicts each coarse-grained fea-
ture (eg. POS, Case, etc.) independently.
However, most treebanks are under-resourced,
thus making it challenging to train deep neu-
ral models for them. Hence, we propose a
multi-lingual transfer training regime where
we transfer from multiple related languages
that share similar typology.1

1 Introduction

Morphological analysis (Hajic and Hladká, 1998;
Oflazer and Kuruöz, 1994) is the task of predicting
morpho-syntactic properties along with the lemma
of each token in a sequence, with several down-
stream applications including machine translation
(Vylomova et al., 2017), named entity recognition
(Güngör et al., 2018) and semantic role labeling
(Strubell et al., 2018). Advances in deep learn-
ing have enabled significant progress for the task
of morphological tagging (Müller and Schuetze,
2015; Heigold et al., 2017) and lemmatization
(Malaviya et al., 2019) under large amounts of an-
notated data. However, most languages are under-
resourced and often exhibit diverse linguistic phe-
nomena, thus making it challenging to generalize
existing state-of-the-art models for all languages.

In order to tackle the issue of data scarcity, re-
cent approaches have coupled deep learning with
cross-lingual transfer learning (Malaviya et al.,
2018; Cotterell and Heigold, 2017; Kondratyuk,

1The code is available at https://github.com/
Aditi138/MorphologicalAnalysis/.

2019) and have shown promising results. Previous
works (e.g., Cotterell and Heigold, 2017) combine
the set of morphological properties into a single
monolithic tag and employ multi-sequence classi-
fication. This runs the risk of data sparsity and
exploding output space for morphologically rich
languages. Malaviya et al. (2018) instead pre-
dict each coarse-grained feature, such as part-of-
speech (POS) or Case, separately by modeling de-
pendencies between these features and also be-
tween the labels across the sequence using a fac-
torial conditional random field (CRF). However,
this results in a large number of factors leading to
a slower training time (over 24h).

To address the issues of both data sparsity and
having a tractable computation time, we propose
a hierarchical neural model which predicts each
coarse-grained feature independently, but without
modeling the pairwise interactions within them.
This results in a time-efficient computation (5–6h)
and substantially outperforms the baselines. To
more explicitly incorporate syntactic knowledge,
we embed POS information in an encoder which
is shared with all feature decoders. To address
the issue of data scarcity, we present two multi-
lingual transfer approaches where we train on a
group of typologically related languages and find
that language-groups with shallower time-depths
(i.e., period of time during which languages di-
verged to become independent) tend to benefit the
most from transfer. We focus on the task of con-
textual morphological analysis and use the pro-
vided baseline model for the task of lemmatization
(Malaviya et al., 2019).

This paper makes the following contributions:
1. We present a hierarchical neural model

for contextual morphological analysis with a
shared encoder and independent decoders for each
coarse-grained feature. This provides us with the
flexibility to produce any combination of features.
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2. We analyze the dependencies among dif-
ferent morphological features to inform model
choices, and find that adding POS information to
the encoder significantly improves prediction ac-
curacy by reducing errors across features, particu-
larly Gender errors.

3. We evaluate our proposed approach on 107
treebanks and achieve +14.76 (accuracy) average
improvement over the shared task baseline (Mc-
Carthy et al., 2019) for morphological analysis.

2 Contextual Morphological Analysis

In this section, we formally define the task (§2.1)
and describe our proposed approach (§2.2).

2.1 Task Formulation
Formally, we define the task of contextual mor-
phological analysis as a sequence tagging prob-
lem. Given a sequence of tokens x =
x1, x2, · · · , xn, the task is to predict the morpho-
logical tagset y = y1, y2, · · · , yn where the target
label yi for a token xi constitutes the fine-grained
morpho-syntactic traits {N;PL;NOM;FEM}.

2.2 Our Method
In line with Malaviya et al. (2018), we formulate
morphological analysis as a feature-wise sequence
prediction task, where we predict the fine-grained
labels (e.g N, NOM, ...) for the correspond-
ing coarse-grained features F ={POS,Case,...} as
shown in Figure 1. However, we only model the
transition dependencies between the labels of a
feature. This is done for two reasons: 1) As per
Malaviya et al. (2018)’s analysis, the removal of
pairwise dependencies led to only a -0.93 (avg.)
decrease in the F1 score. We further observe in our
experiments that our formulation performs better
even without explicitly modeling pairwise depen-
dencies; 2) The factorial CRF model gets compu-
tationally expensive to train with pairwise depen-
dencies since loopy belief propagation is used for
inference.

Therefore, we propose a feature-wise hierarchi-
cal neural CRF tagger (Lample et al., 2016; Ma
and Hovy, 2016; Yang et al., 2016) with indepen-
dent predictions for each coarse-grained feature
for a given time-step, without explicitly modeling
the pairwise dependencies.

2.2.1 Hierarchical Neural CRF model
The hierarchical neural CRF model comprises of
two major components, an encoder which com-

bines character and word-level features into a con-
tinuous representation and a multi-class multi-
label decoder. Given an unlabeled sequence x,
the encoder computes the context-senstive hidden
representations for each token xi. These represen-
tations are shared across |F | independent linear-
chain CRFs for inference. We refer to this model
as MDCRF.

Decoder: Our decoder comprises of |F | inde-
pendent feature-wise CRFs whose objective func-
tion is given as follows:

p(y|x) =
F∏

j=1

pf (yf |x)

pf (yf |x) =
∏n

t=1 ψi(yf,t−1, yf,t,x, t)
Z(x)

where F = {POS, Case, Gender,...} is the set
of coarse-grained features observed in the train-
ing dataset. pf (yf |x) is a feature-wise CRF tag-
ger with ψi(yt−1, yt,x) = exp(Wf

T
yf,t−1,yf,t

xi +
bf yf,t−1,yf,t) being the energy function for each
feature f . During inference the predictions from
each feature-wise decoder is concatenated to-
gether to output the complete morphological anal-
ysis of the sequence x.

Encoder: We adopt a standard hierarchical se-
quence encoder which is shared among all the |F |
feature-wise decoders. It consists of a character-
level bi-LSTM that computes hidden representa-
tions for each token in the sequence. These sub-
word representations help in capturing informa-
tion about morphological inflections. To further
enforce this signal, we add a layer of self-attention
(Vaswani et al., 2017) on top of the character-
level bi-LSTM. Self-attention provides each char-
acter with a context from all the characters in the
token. A bi-LSTM modeling layer is added on
top of the self-attention layer which produces a
token-level representation. These representations
are then concatenated with a word embedding vec-
tor and fed to another bi-LSTM to produce context
sensitive token representations which are then fed
to all the |F | CRFs for inference.

2.2.2 Adding Linguistic Knowledge
Part-of-speech (POS) is perhaps the most impor-
tant coarse-grained feature. Not only is every to-
ken annotated for POS, but most other features de-
pend on it. For instance, verbs do not have Case,
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Cumartesi				günü																				Singapur'dan

d					e

Char	

Word	

POS	

Bi-LSTM

Bi-LSTM

Encoder

Cumartesi				günü				de								Singapur'dan

NOM NOM _ AT	+
ABL

SG SG _ SG

3 3 _ 3

Case	CRF	

Number	CRF	

Person	CRF	

Decoder

self-attention

Bi-LSTM

Figure 1: Hierarchical neural model for contextual morphological analysis with independent CRF decoders for
each coarse-grained feature F . For the model MDCRF+POS, POS embeddings are concatenated to the word and
char-level representations as depicted above. This model has |F |-1 decoders since POS tagger is run separately as
a prior step. MDCRF refers to the above model without POS embeddings having all |F | decoders.

Token: de

Language: <tr>
vector 

 tl:Typological Feature vector

Wl

Encoder Decoder

Figure 2: Polyglot model being used for the token “de”
in Turkish, denoted by language vector <tr>.

nouns do not have Tense. In order to leverage
these linguistic constraints, we incorporate POS
information for each token into our shared en-
coder. We refer to this variant of the model as
MDCRF+POS, as shown in Figure 1.

Since POS tags are not available as input, we
first run a separate hierarchical neural CRF tagger
for POS alone and use the model predictions as
input to the MDCRF+POS. For each token, we en-
code its predicted POS tag into a continuous repre-
sentation and concatenate it with the character and
word-level token representations. Finally, these
concatenated representations are fed to the word-
level bi-LSTM and inference is performed using
|F |-1 decoders, excluding the POS decoder. Go-
ing forward, we use this model architecture for all
our experiments unless otherwise noted.

2.2.3 Multi-lingual Transfer

So far, we have described our model architec-
ture for a monolingual setting. However, the per-
formance of neural models is highly dependent
on the availability of large amounts of annotated
data, making it challenging to generalize to low-
resource languages. Cross-lingual transfer learn-
ing attempts to alleviate this challenge by trans-
ferring knowledge from high-resource languages.
Prior work (Cotterell and Heigold, 2017; Malaviya
et al., 2018; Buys and Botha, 2016) has shown
the benefits of cross-lingual transfer for morpho-
logical tagging. Malaviya et al. (2018) restrict to
transferring from one language, whereas Cotterell
and Heigold (2017) show that multi-source trans-
fer performs better than single-source. Inspired
by this, we experiment with two approaches for
multi-lingual transfer learning.

MULTI-SOURCE: In this method, we augment
the training data from related languages with the
target language data. Similar to Cotterell and
Heigold (2017), we perform a hard clustering of
languages based on the typological and ortho-
graphic similarity of the source languages with
the target language. For instance, we construct
a language cluster Indo-Aryan, which comprises
of all the languages in the dataset that belong to
the Indo-Aryan language family which are Hindi,
Marathi and Sanskrit. For some larger language
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families such as Germanic and Slavic, we con-
struct language clusters from a subset of lan-
guages. For instance, the North-Germanic lan-
guage cluster comprises of treebanks from Ger-
man, Norwegian, Swedish and Danish. Some lan-
guages such as Urdu, Tamil are the only represen-
tative languages of their respective language fam-
ilies in the dataset. For these languages, we create
a cluster with the next closest language with re-
spect to typology or orthography. For Urdu, we
add Hindi because of typological similarity. For
other such isolates, we add Turkish because of its
extensive agglutination. A total of 24 language
clusters were defined based on the literature and
with help from a linguist, the details of which can
be seen in the Appendix Section §6.

Given a language cluster, all the training data
from each language within it is first concatenated
together. Then, for each language we concatenate
the language embedding vector with the token rep-
resentation in the encoder by adding the language
id <LANG ID> at the beginning and end of each se-
quence. Given a sequence x, the encoder produces
contextualized hidden representation hi for each
token xi:

hi =Wencoder(ei, ci, pi, li)

where ei is the word embedding vector, ci is the
character-level representation, pi is the POS em-
bedding and li is the language embedding vec-
tor. This is done to help the model disambiguate
languages as often same tokens have different
morpho-syntactic description across languages.
For example, the token “ ” is a part of both Hindi
and Marathi vocabulary. In Hindi it denotes a
CONJ whereas in Marathi it is a pronoun with the
following description: 3;MASC;PRO;NOM;SG.

POLYGLOT: Languages are often related to
multiple languages along different dimensions.
For instance, Swedish is lexically similar to Ger-
man, but it is morpho-syntactically closer to En-
glish. To enable a model to utilize these relation-
ships, we feed explicit typological information to
the encoder, drawing inspiration from the poly-
glot model proposed by Tsvetkov et al. (2016).
In this multilingual model, we first concatenate all
the training data from the source languages, simi-
lar to the MULTI-SOURCE setting and compute hi
for each token. Then context vector hi is factored
by the typology feature vector tl to integrate these

manually defined features as follows:

fl = tanh(Wltl + bl)

gli = hi ⊗ fTl
where Wl, bl are language-specific parameters
which project the typology vector into a low-
dimentional space. Finally, gli computes the
global-context language matrix which is vector-
ized into a column vector and fed to the decoder,
as shown in Figure 2.

Tsvetkov et al. (2016) derive their typology vec-
tors from the URIEL database (Littell et al., 2017).
We consider a subset of these typology features
which are most relevant to the task of morpho-
syntactic analysis and obtain 18 Syntax-WALS
features.2 However, we observed that for most
language clusters, these typology feature values
within a cluster were not discriminating, which
defeats the purpose of using POLYGLOT for dis-
ambiguating languages across typological dimen-
sions. Therefore, we construct custom typologi-
cal vector per each language cluster based on the
training data global statistics.

For every coarse-grained feature, this con-
structed vector contains the proportion of words in
the training data that are annotated with that fea-
ture. We also experiment with calculating these
proportions separately for words for each POS la-
bel (N, V, ...). Given the importance of POS, we
also include the number of fine-grained POS la-
bels that the most frequent coarse-grained features
(Gender, Number, Person, Case) can take. This
results in bi-gram features such as N-FEM, N-
NOM, N-SG. We remove features which do not
occur within a given cluster to avoid sparse fea-
tures. Table 1 shows a portion of the example vec-
tor constructed for the Indo-Aryan cluster. From
the table we can see that, some features such as
ADJ-Gender-FEM and V-Person-1 are present in
all the three languages within the cluster. Whereas
some features such as ADJ-Gender-NEUT is ab-
sent from Hindi because Hindi only has two gen-
ders which are MASC and FEM.

2S-SVO, S-SOV, S-VSO, S-VOS, S-OVS, S-OSV,
S-SUBJECT-BEFORE-VERB, S-SUBJECT-AFTER-
VERB, S-OBJECT-AFTER-VERB, S-OBJECT-BEFORE-
VERB, S-SUBJECT-BEFORE-OBJECT, S-SUBJECT-
AFTER-OBJECT,S-ADPOSITION-BEFORE-NOUN, S-
ADPOSITION-AFTER-NOUN, S-POSSESSOR-BEFORE-
NOUN, S-POSSESSOR-AFTER-NOUN, S-ADJECTIVE-
BEFORE-NOUN, S-ADJECTIVE-AFTER-NOUN
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Feature Hindi Marathi Sanskrit
ADJ-Gender-FEM 0.054 0.144 0.080

V-Person-1 0.004 0.037 0.0736
ADJ-Gender-NEUT 0.0 0.144 0.159

ADJ-Case-DAT/GEN 0.0002 0.0 0.0

Table 1: Example of manually constructed typology
features for the Indo-Aryan cluster.

Training Regime: For both the multi-lingual
transfer methods, we train one model per language
cluster and fine-tune this model for each individ-
ual language. which saves time and compute for
training 107 individual models from scratch. Fur-
thermore, since a language cluster can have mul-
tiple high-resource languages, we take min (5000,
#training data-points) for each language to have
a tractable training time. We up-sample the low-
resource languages to match the number of train-
ing data-points of the high-resource languages.

3 Contextual Lemmatization

We use the neural model from Malaviya et al.
(2019) for contextual lemmatization. This is a
neural sequence-to-sequence model with hard at-
tention, which takes both the inflected form and
morphological tag set for a token as input and pro-
duces a lemma, both at the character level. The de-
coder uses the concatenation of the previous char-
acter and the tag set to produce the next charac-
ter in the lemma. The lemmatization model is
jointly trained with an LSTM-based tagger using
jackknifing to reduce exposure bias in training:
Malaviya et al. (2019) report significantly lower
lemmatization results training with gold tags and
using predicted tags only at test time. We use their
tagger for training and our contextual morpholog-
ical analysis models’ predicted tags at evaluation
time. This model served as the baseline lemma-
tizer for Task 2; we refer readers to the shared task
paper for model details (McCarthy et al., 2019).

4 Experiments

We conduct the following experiments: We com-
pare our multi-lingual transfer approach with the
baselines Malaviya et al. (2018) and Cotterell and
Heigold (2017) under the same experimental set-
tings. Next, we compare our approach with the
shared task baseline (McCarthy et al., 2019). Fi-
nally, we analyze the contributions of different
components of our proposed method.

Baselines: Cotterell and Heigold (2017) formu-
late this task as a sequence prediction problem
with the output space being the set of all possi-
ble tagsets seen in the training data. Specifically,
they construct a neural network based multi-class
classifier where each tagset {N;PL;NOM;FEM}
forms a class. Since the output space is only re-
stricted to the tagsets seen in the training data,
this method cannot generalize to unseen tagsets.
Furthermore, for morphologically rich languages
such as Russian or Turkish, the output space of
the tagset is huge leading to sparse training data.
(McCarthy et al., 2019) follow a similar approach.

To overcome these drawbacks Malaviya et al.
(2018) consider a feature-wise model which
predicts fine-grained labels for corresponding
coarse categories {POS,Case,...}. Since morpho-
syntactic properties are often correlated, they
model these inter-dependencies using a factorial
CRF and define two inter-dependencies: 1) a pair-
wise dependency, which models correlations be-
tween the morpho-syntactic properties within a to-
ken, and 2) a transition dependency, which models
label correlations across all tokens in a sequence.
Although this formulation provides the flexibility
to produce any combination of tagsets, this model
is computationally expensive to train since the fac-
tors model dependencies between all labels of all
coarse-grained features, leading to >20k factors.

Data processing: We use the train/dev/test
split provided in the shared task (McCarthy
et al., 2018).3 Since we model feature-wise
prediction for each coarse-grained feature, our
model requires the provided data to be anno-
tated for coarse-grained features. Therefore,
we construct a feature-label dictionary based on
the UM documentation4 to map the individual
fine-grained traits, which are in the UM schema,
to their respective coarse-grained categories.
This transforms the tagset {N;PL;NOM;FEM} as
{POS=N;Number=PL;Case=NOM;Gender=FEM}.
We note that usually a token has a subset of the
coarse-grained categories, therefore we extend the
morphological tagset for each token by adding the
remaining features observed in the training set and
assigning them a special value “ ” which denotes
null.

3https://github.com/sigmorphon/2019/
tree/master/task2

4https://unimorph.github.io/doc/
unimorph-schema.pdf

61



Language Model tgt-size=100 tgt-size=1,000

Accuracy F1-Macro F1-Micro Accuracy F1-Macro F1-Micro

RU/BG MDCRF + POS + MULTI-SOURCE 69.13 85.78 85.86 82.72 92.15 92.17
(Malaviya et al., 2018) 46.89 64.75 64.46 67.56 82.06 82.11

(Cotterell and Heigold, 2017) 52.76 58.23 58.41 71.90 77.89 77.97

FI/HU MDCRF + POS + MULTI-SOURCE 57.32 80.11 78.86 70.24 85.44 84.86
(Malaviya et al., 2018) 45.41 68.63 68.07 63.93 85.06 84.12

(Cotterell and Heigold, 2017) 51.74 68.15 66.82 61.8 75.96 76.16

Table 2: Comparing our model for bilingual transfer with previous baselines.

Hyper-parameters: We use a hidden size of 200
for each direction of the LSTM with a dropout of 0.5.
For the character-level bi-LSTM we use a hidden size
of 25. We use 100 dimentional size for word and
language embeddings with 64 dimensional POS em-
beddings, all randomly initialized. SGD was used as
the optimizer with learning rate of 0.015. The mod-
els were trained until convergence. For POLYGLOT,
we project the constructed typology vector into 20
dimension hidden size.

5 Results and Discussion

Table 2 shows the comparison results of our proposed
approach with the baselines (Malaviya et al., 2018;
Cotterell and Heigold, 2017) using cross-lingual
transfer. Here MDCRF+POS refers to our model ar-
chitecture and MULTI-SOURCE refers to our multi-
lingual transfer approach. Malaviya et al. (2018) and
Cotterell and Heigold (2017) test their approach on
UD v2.1 (Nivre et al., 2017) under two settings: tgt
size = 100 and tgt size = 1000, where tgt size de-
notes the number of target language data-points used
during training. Malaviya et al. (2018) transfer from
one related high-resource language. We use the same
experimental resources for comparison and for a fair
comparison we do not fine-tune on the target lan-
guage. Of the four language pairs tested by Malaviya
et al. (2018), we choose RU/BG and FI/HU for com-
parison, where BG and HU are the target languages
and RU and FI are the respective transfer languages,
since these languages are morphologically challeng-
ing. We see that under both settings our approach
outperforms the baselines by a significant margin for
both the language pairs.

Next, we compare our multi-lingual transfer ap-
proaches MULTI-SOURCE and MULTI-SOURCE +
POLYGLOT in order to decide the model for our fi-
nal submission. We conduct experiments on three
low-resource languages: Marathi (mr-ufal), Sanskrit
(sa-ufal) and Belarusian (be-hse), all of which have

< 400 training data-points. The italicized text de-
notes the treebank used in the experiments. For mr-
ufal and sa-ufal, we transfer from a related high-
resource language of Hindi (hi-hdtb). For be-hse,
we transfer from two related languages, Russian (ru-
gsd) and Ukrainian (uk-iu). However, from Table
3, we see that the performance of the two models
is comparable. Therefore, for our final submission
we use only MULTI-SOURCE which is much faster to
train than the MULTI-SOURCE + POLYGLOT. We dis-
cuss their comparative performance in greater detail
in Section §5.1.

Model mr-ufal sa-ufal be-hse
MULTI-SOURCE 63.52 / 78.22 42.78 / 67.64 77.07 / 82.89

+POLYGLOT 61.18 / 77.42 43.81 / 65.94 76.51 / 83.27

Table 3: Multi-lingual comparison results for Marathi
(mr-ufal), Sanskrit (sa-ufal) and Belarusian (be-hse) on
the validation set.

Finally, we compare our approach with the shared
task baseline. Table 5, 6 in the Appendix shows our
results for all 107 treebanks. We observe that out
system achieves an average improvement of +14.70
(accuracy) and +4.63 (F1) over the provided base-
line (McCarthy et al., 2019). We note that for the
shared task submission, we did not use self-attention
over the character-level representations. Therefore,
we additionally show the results after adding self-
attention. We observe that the addition gives an aver-
age improvement of +0.60 (accuracy) and +0.30 (F1)
over our previous best submission.

5.1 Analysis

Here we analyze the different components of our
model in an effort to understand what it is learning.

Why does adding POS help? As discussed ear-
lier (§2), we explicitly add the POS feature in the
form of embeddings into the shared encoder. To
evaluate the contribution of POS alone, we conduct
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monolingual experiments without concatenating the
POS embeddings with the token-level representa-
tions. Table 4 outlines the ablation results for three
treebanks with varying training size. We observe that
our monolingual model MDCRF significantly outper-
forms the baseline (McCarthy et al., 2019) by +13.72
accuracy and +3.82 F1 (avg). On adding POS, we
further gain +3.56 accuracy and +0.71 F1 over MD-
CRF across the three treebanks. We note that this im-
provement is more pronounced for the low-medium
resource languages of Marathi (+6.12 accuracy) and
Ukrainian (+3.57 accuracy).

Model mr-ufal uk-iu hi-hdtb
MDCRF+POS 64.71 / 79.40 84.79 / 92.03 90.46 / 96.69

MDCRF 58.59 / 77.91 81.22 / 91.35 89.45 / 96.73
McCarthy et al. (2019) 43.76 / 73.38 63.36 / 87.01 80.96 / 94.14

Table 4: Ablation results for Marathi (mr-ufal),
Ukrainian (uk-iu) and Hindi (hi-hdtb) with training size
of 373, 5441, 13381 respectively on the validation set.
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Figure 3: Number of errors per coarse-grained feature
for Marathi comparing the addition of POS to the en-
coder. The rows at the bottom denote the total number
of predictions per each feature for both the models.

To understand where the addition of POS helps,
we analyse the number of errors made per each
coarse-grained feature. For the example of Marathi,
POS helped the most in reducing Gender errors (Fig-
ure 3). For some word forms, the gender may be in-
ferred from inflectional form alone, but for others,

this information may be insufficient, e.g. “ �क� मत ”
(price.N.FEM.SG.ACC) in Marathi which does not
have the traditional female suffix “ ”. We observe
that this behavior corresponds to POS: verbs and
adjectives are more predictable from surface forms
alone than nouns. The addition of POS information
in the encoder helps the model learn to weigh differ-
ent encoded information more heavily when assign-
ing gender to different parts of speech. For Ukrainian
and Sanskrit, POS information also helped reduce er-
rors in Case and Number. More details can be found
in Appendix Section §6.

Tkachenko and Sirts (2018) also model depen-
dence on POS with a POS-dependent context vec-
tor in the decoder. However, they observe no signif-
icant improvement; we hypothesize that incorporat-
ing POS information into the shared encoder instead
provides the model with a stronger signal.

What is the model learning? One of the major
advantages of our model’s use of self-attention is that
it enables us to provide insights into what the model
has learned. As seen in Figure 4, we found evi-
dence of the model learning language-specific inflec-
tional properties. Both Marathi and Belarusian dis-
play morphological inflections predominantly in the
form of suffix and the attention maps for both these
languages demonstrate the same. For the Marathi ex-
ample, the last three characters denote the ergative
case and we can see that the attention weights are
concentrated on these three characters. Similarly for
the Belarusian example, the last two characters de-
note the genitive case with plural number and is the
focus of the attention. For Indonesian, inflections can
be also found as circumfixes where the affix is at-
tached at both the beginning and end of the token.
For instance, both ke- and -an affixes are appended
to form nouns and we can see from Figure 4 that the
attention is focused both on the prefix and the suf-
fix. Interestingly for Indonesian, the model seems to
have also discovered the stem camat, as evidenced
from the attention pattern.

Does time-depth matter for transfer learning?
As discussed earlier, we train one model per lan-
guage cluster for multi-lingual transfer learning. We
compare different clusters to see if time-depth of
the languages within a cluster affects the extent of
transfer. Time depth is the period of time that has
elapsed since all languages in the group were a sin-
gle language (in other words, the time since di-
vergence). We consider the following three clus-
ters: Hindi-Marathi-Sanskrit (Indo-Aryan), Russian-
Ukrainian-Belarusian (Slavic) and Arabic-Hebrew-
Amharic-Akkadian (Semitic). These three clusters
were chosen because the languages in them became
separate languages at varying time-depths. For in-
stance, in the Semitic cluster the languages diverged
roughly 5000 years ago, whereas for the Slavic clus-
ter the time-depth is <1000 years. Therefore, we ex-
pect transfer to help more for languages where the
time-depth is more recent. In Figure 5, we com-
pare the MULTI-SOURCE model with our best mono-
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◌े
न ◌ो क र ◌ा न ◌े

  नोकराने     =     नोकर              +  ◌ा न ◌े
  ‘servant’      servant.N.MASC.SG         by.ERG  

(a) Marathi

  kecamatan =   ke +     camat                + an
  ‘district office’   NOM      district.head.N         NOM  

(b) Indonesian

  выпадкаў  =         выпадак                           + аў
‘of occassions’  occassion.MASC.N.INAN    GEN.PL

(c) Belarusian

Figure 4: Character-level attention maps for three typologically different languages. Marathi and Belarusian dis-
play morphological inflections pre-dominantly as suffix. Indonesian displays inflections in the form of prefix,
suffix and circumfix where the affix is found both at the beginning and end of a token.

lingual model MDCRF+POS and we see that transfer
helps most for the Slavic cluster by +2.9 accuracy.
For the Indo-Aryan cluster it helps by +0.32 accu-
racy and for the Semitic cluster we observe a slight
negative effect with transfer (-0.0176 accuracy). This
supports our hypothesis that time-depth does affect
the extent of transfer learning with language clusters
having lower time-depths benefiting the most.

One particular advantage that the Slavic cluster
has over both the Indo-Aryan and Semitic clusters
is the similarity of script. Russian, Belarusian, and
Ukrainian use variants of the same script; Hindi,
Sanskrit, and Marathi do, as well, but the Semitic
languages all use different scripts. This is also at-
tributed to the shallower time-depths of the Slavic
and Indo-Aryan clusters. Therefore, as suggested by
the anonymous reviewers, we add Czech and Polish
to the Slavic cluster and see to what extent the scripts
are confusing the model. Czech and Polish use dif-
ferent script as compared to Russian, Belarusian, and
Ukrainian. We observe that MULTI-SOURCE model
like before, achieves similar improvements over the
monolingual models for Belarusian (+8.17 accuracy)
and Ukrainian (+1.2 accuracy). However, a slight de-
crease is observed for Russian ( -0.45 accuracy). This
suggests that the MULTI-SOURCE model is robust to
scriptal changes and benefits the low-resource lan-
guages by learning from typologically similar lan-
guages, more so for language clusters with shallow
time-depths.
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Figure 5: Absolute gain of multi-lingual transfer over
monolingual models. Blue denotes the Indo-Aryan
cluster, pink the Slavic, and yellow the Semitic.

Why did POLYGLOT not help further? We hy-
pothesize that one reason why POLYGLOT did not
help over MULTI-SOURCE is because the language
embedding vector probably learns the same typo-
logical information which the typology vector en-
codes. Hence, the typological vector doesn’t seem
to add any new information. As evidence, we look at
the transition weights learned in both the models; as
shown in Figure 7, we see that the transition weights
learned for the Case feature are very similar for both
MULTI-SOURCE and MULTI-SOURCE + POLYGLOT.
In the future, we plan to explore the contextual pa-
rameter generation method (Platanios et al., 2018)
for leveraging the typology vectors to inform the de-
coders during inference.
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Figure 6: Transition weights for the Case feature for Hindi across MULTI-SOURCE (left) and MULTI-SOURCE +
POLYGLOT (right) models trained with Hindi (hi-hdtb), Marathi (mr-ufal) and Sanskrit (sa-ufal).

5.2 Error Analysis

In this section, we analyze the major error categories
for the MULTI-SOURCE model for the Indo-Aryan
cluster. We observe that Gender, Case, Number, Per-
son features account for the most number of errors
(65% for Marathi, 49% for Sanskrit). One reason
for this is the non-overlapping output label space
across the languages within a cluster. For instance,
in the Indo-Aryan cluster, Hindi is a high-resource
language (> 13k training sentences) with Marathi
(373) and Sanskrit (184) being the low-resource lan-
guages. We observe that the label space for Case,
Gender, Number overlap the least among the three
languages. Marathi and Sanskrit have three gen-
ders: NEUT, FEM, MASC whereas Hindi only has
FEM, MASC. Furthermore, only two Hindi Case la-
bels (ACC, NOM) overlap with Marathi and Sanskrit
because in Hindi the labels often have alternatives
such as ACC/ERG, ACC/DAT. These differences in
the output space negatively affect the transfer. For
the Slavic cluster, we observe that almost all the fea-
ture labels overlap nicely for the languages therein,
which is probably another reason why we see a gain
of +6.89 for Belarusian in Figure 5 and only +0.32
increase for Marathi.

We also note that for some languages such as Be-
larusian and Russian, the POS errors increased by
25.3% and 4.4% respectively for the MDCRF+POS

model. This suggests that decoupling POS feature
from the other feature decoders harmed the model. In
future, we plan to improve the MDCRF+POS model
by jointly training POS decoder with the other fea-

ture decoders which use the latent representation of
POS in an end-to-end fashion.

6 Conclusion and Future Work

We implement a hierarchical neural model with in-
dependent decoders for each coarse-grained morpho-
logical feature and show that incorporating POS in-
formation in the shared encoder helps improve pre-
diction for other features. Furthermore, our multi-
lingual transfer methods not only help improve re-
sults for related languages but also eliminate the need
of training individual models for each dataset from
scratch. In future, we plan to explore the use of
pre-trained multi-lingual word embeddings such as
BERT (Devlin et al., 2019), in our encoder.
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Appendix

Comprehensive Results
Table 5 and 6 document the comprehensive results
of our submissions. MULTI-SOURCE was our pre-
vious submission to the shared task. We conducted
additional experimentas with the addition of self-
attention and also report the results for MULTI-
SOURCE+SELF-ATTENTION. We report both the ac-
curacy and F1 metric.

Language Clusters
We train one model per language cluster for the
multi-lingual transfer learning. Each language clus-
ter was constructed based on the typological similar-
ity of the languages therein. Table 5, 6 show the lan-
guage clusters.

Analysis
In order to understand where the addition of POS
helps, we plot the number of errors per each coarse-
grained feature for three languages in Figure 7. For
Sanskrit and Ukrainian we see that POS generally
helps reduce the errors predominantly for the fea-
tures: Case, Gender, Number. For Belarusian, we
did not observe a clear trend since the POS accuracy
actually decreased for MDCRF+POS.
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Language Target MULTI-SOURCE MULTI-SOURCE (McCarthy et al., 2019) # Training
Cluster + SELF-ATTENTION Sentences

Accuracy / F1 Accuracy / F1 Accuracy / F1
armenian UD-Armenian-ArmTDP 83.74 / 88.54 83.83 / 88.17 - / - 825

austronesian UD-Indonesian-GSD 90.05 / 93.13 90.01 / 93.11 71.49 / 86.02 4475

baltic UD-Latvian-LVTB 89.0 / 93.04 89.0 / 93.08 70.21 / 89.53 7937
UD-Lithuanian-HSE 70.29 / 76.38 68.08 / 74.56 43.13 / 67.41 211

celtic UD-Breton-KEB 85.97 / 88.78 85.07 / 88.07 77.41 / 88.58 711
UD-Irish-IDT 76.75 / 84.1 76.5 / 84.11 67.45 / 81.72 817

dravidian UD-Tamil-TTB 82.92 / 89.91 82.48 / 89.77 75.64 / 90.23 481

egyptian UD-Coptic-Scriptorium 92.02 / 95.28 92.17 / 95.33 87.99 / 93.78 673

germanic UD-Afrikaans-AfriBooms 96.92 / 97.37 96.94 / 97.35 84.05 / 92.32 1548
UD-Dutch-Alpino 94.85 / 95.69 94.35 / 95.4 82.15 / 91.26 10867
UD-Dutch-LassySmall 93.48 / 94.08 93.53 / 94.2 76.24 / 88.13 5873
UD-English-EWT 94.08 / 95.46 93.9 / 95.4 79.19 / 90.46 13298
UD-English-GUM 93.44 / 94.38 93.56 / 94.47 79.63 / 90.04 3520
UD-English-LinES 94.37 / 95.19 93.75 / 94.93 81.03 / 90.99 3652
UD-English-ParTUT 92.01 / 92.69 91.95 / 92.61 79.57 / 89.04 1673
UD-English-PUD 89.41 / 91.42 89.8 / 91.6 78.85 / 88.8 801
UD-Faroese-OFT 80.6 / 89.27 77.52 / 87.87 67.11 / 87.27 967
UD-Gothic-PROIEL 84.53 / 92.93 83.0 / 92.47 83.01 / 91.3 4321

north- UD-German-GSD 83.72 / 92.73 82.82 / 92.5 - / - 12473
germanic UD-Danish-DDT 91.78 / 93.72 91.34 / 93.61 77.89 / 90.89 4410

UD-Norwegian-Nynorsk 94.39 / 96.35 94.29 / 96.33 71.8 / 88.16 14061
UD-Norwegian-NynorskLIA 93.03 / 94.55 93.75 / 94.89 - / - 1117
UD-Swedish-LinES 89.92 / 93.61 89.62 / 93.59 77.97 / 91.02 3652
UD-Swedish-PUD 87.72 / 90.01 87.13 / 89.8 77.78 / 89.32 801

hellenic UD-Ancient-Greek-Perseus 84.79 / 92.1 84.27 / 91.88 - / - 11136
UD-Ancient-Greek-PROIEL 88.1 / 95.55 86.01 / 94.67 - / - 13665
UD-Greek-GDT 91.15 / 96.23 90.73 / 96.0 78.14 / 93.49 2017

indo-iranian UD-Urdu-UDTB 77.77 / 92.12 78.05 / 92.16 67.99 / 88.42 4105

indoaryan UD-Hindi-HDTB 90.76 / 96.77 91.05 / 96.85 80.96 / 94.14 13318
UD-Marathi-UFAL 57.99 / 73.54 57.72 / 73.04 43.76 / 73.38 373
UD-Sanskrit-UFAL 43.72 / 64.9 46.73 / 68.08 44.33 / 68.34 185

isolate UD-Basque-BDT 75.2 / 88.07 75.14 / 87.91 67.61 / 87.63 7195

italic UD-Latin-ITTB 94.57 / 97.26 94.25 / 97.11 77.62 / 93.19 16809
UD-Latin-Perseus 76.17 / 86.32 75.76 / 85.92 53.23 / 77.5 1819
UD-Latin-PROIEL 86.78 / 94.39 86.18 / 94.19 82.27 / 91.38 14721

jako UD-Japanese-GSD 96.8 / 96.4 96.8 / 96.4 85.25 / 90.31 6557
UD-Japanese-Modern 95.27 / 95.32 95.27 / 95.32 94.29 / 95.2 658
UD-Japanese-PUD 95.94 / 95.44 95.94 / 95.44 84.73 / 89.63 801
UD-Komi-Zyrian-IKDP 51.56 / 61.03 51.56 / 62.27 33.73 / 62.59 70
UD-Komi-Zyrian-Lattice 53.85 / 64.85 54.4 / 65.23 45.6 / 70.61 153
UD-Korean-GSD 92.56 / 91.68 92.56 / 91.68 80.18 / 86.08 5072
UD-Korean-Kaist 95.54 / 94.99 95.54 / 94.99 84.32 / 89.4 21891
UD-Korean-PUD 84.27 / 89.02 84.46 / 89.28 81.6 / 91.15 801
UD-Kurmanji-MG 80.82 / 87.79 80.82 / 87.81 70.2 / 85.85 604

niger-congo UD-Bambara-CRB 91.65 / 94.76 92.41 / 94.86 78.86 / 89.41 821
UD-Naija-NSC 94.56 / 92.71 94.56 / 92.71 68.66 / 78.96 759
UD-Yoruba-YTB 93.41 / 93.88 93.8 / 94.19 71.2 / 81.83 81

persian UD-Persian-Seraji 96.15 / 96.85 95.95 / 96.69 - / - 4798

phillipine UD-Tagalog-TRG 83.78 / 92.09 83.78 / 92.75 44.0 / 69.31 45

sinotibetan UD-Cantonese-HK 89.64 / 86.82 89.64 / 86.82 70.15 / 77.76 521
UD-Chinese-CFL 88.65 / 86.96 88.65 / 86.96 74.65 / 79.91 361
UD-Chinese-GSD 90.83 / 90.54 90.9 / 90.56 76.81 / 84.35 3998
UD-Vietnamese-VTB 90.1 / 88.84 90.1 / 88.84 70.71 / 79.01 2401

semitic UD-Akkadian-PISANDUB 79.21 / 78.65 79.21 / 78.65 84.0 / 84.19 81
UD-Amharic-ATT 87.24 / 91.13 86.58 / 90.91 76.0 / 88.16 860
UD-Arabic-PADT 91.77 / 95.44 91.52 / 95.36 77.03 / 92.03 6132
UD-Arabic-PUD 77.63 / 89.06 77.89 / 89.0 63.81 / 86.29 801
UD-Hebrew-HTB 94.33 / 95.81 94.03 / 95.65 81.59 / 91.84 4973

Table 5: Comprehensive results
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Cluster Target MULTI-SOURCE MULTI-SOURCE (McCarthy et al., 2019) # Training
+ SELF-ATTENTION Sentences

Accuracy / F1 Accuracy / F1 Accuracy / F1
turkic UD-Turkish-IMST 85.68 / 90.64 85.02 / 90.43 62.04 / 85.33 4509

UD-Turkish-PUD 79.78 / 90.88 79.33 / 90.54 66.92 / 88.05 801

romance UD-Catalan-AnCora textbf96.68 / 98.26 96.63 / 98.24 85.77 / 95.7 13343
UD-French-GSD 96.19 / 97.51 95.76 / 97.32 84.44 / 94.81 13074
UD-French-ParTUT 93.04 / 96.05 93.04 / 96.12 81.32 / 92.08 817
UD-French-Sequoia 95.08 / 96.95 94.96 / 96.96 82.64 / 93.42 2480
UD-French-Spoken 96.05 / 96.08 96.05 / 96.08 94.57 / 94.85 2229
UD-Galician-CTG 96.65 / 96.31 96.66 / 96.32 87.23 / 91.81 3195
UD-Galician-TreeGal 89.69 / 93.2 89.3 / 93.25 76.85 / 90.05 801
UD-Italian-ISDT 95.91 / 97.24 95.96 / 97.27 83.62 / 94.34 11334
UD-Italian-ParTUT 95.0 / 96.39 94.87 / 96.39 84.03 / 93.42 1673
UD-Italian-PoSTWITA 92.13 / 93.13 92.03 / 93.02 70.23 / 88.18 5371
UD-Italian-PUD 87.55 / 92.4 87.38 / 92.46 80.89 / 92.66 801
UD-Portuguese-Bosque 92.28 / 95.57 92.06 / 95.5 63.14 / 86.12 7493
UD-Portuguese-GSD 97.33 / 97.54 97.33 / 97.54 - / - 9663
UD-Romanian-Nonstandard 91.13 / 95.33 91.07 / 95.29 74.31 / 91.5 8056
UD-Romanian-RRT 94.67 / 96.58 94.82 / 96.63 81.45 / 93.96 7620
UD-Spanish-AnCora 96.97 / 98.25 96.86 / 98.22 84.27 / 95.3 14145
UD-Spanish-GSD 94.05 / 97.08 94.07 / 97.1 - / - 12811

slavic UD-Belarusian-HSE 79.63 / 85.37 77.28 / 84.11 54.99 / 79.07 315
UD-Bulgarian-BTB 94.22 / 96.44 93.99 / 96.37 79.75 / 93.91 8911
UD-Buryat-BDT 78.85 / 81.24 75.96 / 78.66 63.26 / 78.53 742
UD-Old-Church-Slavonic-PROIEL 87.22 / 94.13 86.94 / 94.03 82.86 / 90.34 5070
UD-Russian-GSD 84.26 / 91.91 83.25 / 91.55 64.42 / 88.77 4025
UD-Russian-PUD 76.77 / 87.55 77.25 / 87.49 63.15 / 85.52 801
UD-Russian-SynTagRus 91.65 / 95.96 92.74 / 96.5 73.9 / 92.84 49512
UD-Russian-Taiga 74.14 / 80.23 75.24 / 81.25 52.99 / 78.71 1412
UD-Ukrainian-IU 86.02 / 92.41 85.33 / 92.2 63.36 / 87.01 5441
UD-Upper-Sorbian-UFAL 74.04 / 82.45 70.12 / 81.21 55.66 / 78.3 517

ugric UD-Estonian-EDT 87.71 / 94.58 88.47 / 94.93 74.56 / 91.71 24579
UD-Finnish-FTB 83.24 / 90.38 83.63 / 90.7 73.16 / 89.51 14979
UD-Finnish-PUD 77.05 / 86.33 77.49 / 86.77 71.65 / 88.87 801
UD-Hungarian-Szeged 80.57 / 90.88 79.16 / 90.13 63.72 / 87.29 1441
UD-North-Sami-Giella 84.35 / 88.8 83.78 / 88.65 67.04 / 85.6 2498
UD-Norwegian-Bokmaal 94.97 / 96.68 94.58 / 96.51 81.44 / 93.19 16037
UD-Swedish-Talbanken 93.94 / 96.01 93.64 / 95.9 - / - 4821
UD-Finnish-TDT 86.51 / 92.63 85.55 / 92.2 75.13 / 90.92 12109

westslavic UD-Croatian-SET 87.23 / 94.04 86.88 / 93.91 72.71 / 90.99 7112
UD-Czech-CAC 90.66 / 96.72 91.38 / 96.99 77.15 / 93.92 19768
UD-Czech-CLTT 91.29 / 96.15 91.07 / 96.22 73.92 / 92.37 901
UD-Czech-FicTree 90.05 / 95.42 90.0 / 95.49 68.28 / 90.37 10209
UD-Czech-PDT 89.78 / 96.37 54.13 / 73.56 76.69 / 94.28 70331
UD-Czech-PUD 75.65 / 88.19 77.72 / 89.37 59.54 / 85.5 801
UD-Polish-LFG 87.76 / 93.7 87.81 / 93.65 - / - 13797
UD-Polish-SZ 82.27 / 91.38 81.01 / 90.88 65.58 / 88.29 6582
UD-Serbian-SET 91.89 / 95.46 91.35 / 95.29 75.73 / 91.19 3113
UD-Slovak-SNK 85.59 / 93.12 84.99 / 92.83 64.24 / 88.16 8484
UD-Slovenian-SSJ 89.05 / 94.03 87.92 / 93.55 73.73 / 89.95 6401
UD-Slovenian-SST 85.13 / 90.16 85.51 / 90.02 73.4 / 84.74 2551

Table 6: Comprehensive results
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(c) Sanskrit (sa-ufal)

Figure 7: Number of errors per coarse-grained feature for models comparing the addition of POS to the encoder.
The rows at the bottom denote the total number of predictions per each feature for both the models.
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Abstract

This paper describes two related systems
for cross-lingual morphological inflection for
SIGMORPHON 2019 Shared Task participa-
tion. Both sets of results submitted to the
shared task for evaluation are obtained using
a simple approach of predicting transducer ac-
tions based on initial alignments on the training
set, where cross-lingual transfer is limited to
only using the high-resource language data as
additional training set. The performance of the
system does not reach the performance of the
top two systems in the competition. However,
we show that results can be improved with fur-
ther tuning. We also present further analyses
showing that the cross-lingual gain is rather
modest.

1 Introduction

Morphological inflection generation is the task of
generating a word based on its lemma and mor-
phological features. For example, given the Ger-
man lemma aufgeben ‘to give up’ and the mor-
phological tags {V.PTCP, PST}, the task is to
predict the inflected form aufgegeben (morpho-
logical tags are described in McCarthy et al.,
2019; Kirov et al., 2018). Traditionally, finite-
state methods (Koskenniemi, 1985) are used for
morphological generation (and analysis). Since
such systems typically require man-months of ex-
pert work, and difficult to maintain and adapt to
changes in the language, data driven approaches to
inflection generation have recently become popu-
lar (Durrett and DeNero, 2013; Nicolai et al., 2015;
Ahlberg et al., 2015; Faruqui et al., 2016). The task
is further popularized by the past three SIGMOR-
PHON morphological (re)inflection shared tasks
(Cotterell et al., 2016, 2017, 2018). The primary
focus of the task tackled in this paper, the task 1
of the present SIGMORPHON shared task (Mc-
Carthy et al., 2019), is the cross-lingual transfer

learning of the inflection generation.
The dominant approach to morphological

inflection has been sequence-to-sequence neu-
ral networks with attention (e.g., Kann and
Schütze, 2016; Makarov et al., 2017; Makarov
and Clematide, 2018). Furthermore, there seems
to be a shift from soft attention models towards
models with monotonic attention (Ahlberg et al.,
2015; Makarov and Clematide, 2018; Wu and
Cotterell, 2019), which indicate that the predic-
tions of the decoder benefit most from a (short)
window in the output. Although we do not use an
encoder-decoder architecture, the simple systems
presented here are similar to hard-monotonic
attention models in the sense that they predict
the transduction actions based on a window on
the input and output. The method presented here
is much simpler, however. The predictions are
not conditioned on any hidden (continuous or
discrete) state or variable.
A particular reason of interest for data-driven

approaches to morphological inflection genera-
tion is to avoid the considerable amount of expert
time required for building rule-based finite-state
systems. This is particularly important for low-
resource languages, where experts, and maybe
even native speakers, are hard to come by. As
past SIGMORPHON shared tasks demonstrated,
however, satisfactory results in the morphologi-
cal inflection task requires relatively large amount
of data. The low-resource settings in earlier SIG-
MORPHON shared tasks often resulted in much
worse accuracy compared to the high-resource
settings. A potential solution to this problem,
the focus of the current inflection shared task,
is cross-lingual or transfer learning, which has
been demonstrated to be useful a number of lan-
guage processing tasks (e.g., Yarowsky et al.,
2001; Faruqui and Kumar, 2015; Johnson et al.,
2017; Barnes et al., 2018). In cross-lingual learn-
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ing, the data or resources that exist for a related
language are leveraged to improve the learning
in low-resource setting. The method we use for
cross-lingual learning is rather simple. We only
use the (related) high-resource language as addi-
tional training data.

2 The method

The inflection systems in this study operate by
predicting a number of transduction actions based
on current position in the lemma, morphological
tags, and the output produced so far. The general
idea is similar to transition-based parsers (Yamada
and Matsumoto, 2003; Nivre et al., 2004) where
the aim is to predict the parsing action in a given
state of the parser. The similar ideas were used
in the past for morphological inflection generation
as well. The system presented here is most simi-
lar to the baseline system of SIGMORPHON 2016
shared task (Cotterell et al., 2016), and also shares
many aspects of the inflection generation systems
that follow an align-and-transduce strategy in the
earlier SIGMORPHON shared tasks (e.g., Alegria
and Etxeberria, 2016; Nicolai et al., 2016; Liu and
Mao, 2016). Our current models do not make use
of any hidden representations, such as the parser
state in transition based parsing, or hidden repre-
sentations learned in a recurrent neural network.

2.1 Alignment

During training, we need to determine the gold-
standard transduction actions, which requires
aligning the lemmas and word forms. Better se-
quence alignment is one of the concerns for the
similar inflection systems cited above, as well
as the sequence-to-sequence models that operate
with hard monotonic attention. Better alignments
are also a common concern and studied exten-
sively in other areas of computational linguistics
such as dialectometry (Wieling et al., 2009; Prokić,
2010) and historical linguistics (List, 2012; Jäger,
2013). Standard alignment algorithms that use
equal penalties for edit operations often fail to cap-
ture the similarities and differences between char-
acters (or phonetic segments). As a result, often
a weighted method is used such that similar char-
acters in one of the sequences are more likely to
be aligned with the similar characters in the other.
The weights are most often learned from the data
using an unsupervised method. The data-driven
weights are found to be more effective than manu-

e r i m e k - - - - -
e r i y e c e k l e r

e r i m - - e k - - -
e r i y e c e k l e r

- - a u f g e b e n
a u f g e g e b e n

a u f - - g e b e n
a u f g e g e b e n

Figure 1: Example alignments of two lemma–form
pairs from Turkish (top) and German (bottom). In each
box, upper part shows the alignment based on longest
common substring, while lower part shows minimum
edit distance solution.

ally assigned weights based on linguistic knowl-
edge/intuitions (Sofroniev and Çöltekin, 2018).
We tried a few of these more informed weighted
alignment methods. However, in preliminary ex-
periments, a simple alignment mechanism based
on longest common substring (LCS) worked best.
Hence, in all the experiments reported here, align-
ments are performed first by finding the longest
common substring of lemma and the word from,
and aligning the two strings such that the LCS is
aligned correctly. The rest of the characters are
aligned disregarding whether they match or not.
The method introduces gaps only at the beginning
and end of the sequences. If there are two match-
ing substrings of equal length, we pick the first se-
quence.
Figure 1 presents two example alignments based

on the LCS and the edit distance. In the first exam-
ple (top figure), minimum edit distance aligns sub-
string ek, part of the infinitive marker mek used in
verbal lemmas in the data set, to a substring string
that matches accidentally in the word form. The
intuition here is that even if we do not have a good
reason for aligning the infinitive marker mek with
the initial part of the suffix, doing this consistently
facilitates learning. The example from German
(and in general infixes) is a potentially problematic
case for the LCS-based aligner. Minimum edit dis-
tance here produces an alignment that is intuitively
better. However, since in most cases we expect a
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Lemma (input) Form (output) Action

s s copy
c c copy
h h copy
r r copy
e i replace(i)
i e replace(e)
b b copy
e e copy
n s replace(s)
# t insert(t)
# # copy

Table 1: The sequence of actions mapping the German
lemma schreiben ‘to write’ to its second person singular
past form schriebst.

limited number prefixes to precede ‘infixed’ ma-
terial, the LCS solution still provides reasonably
regular patterns to predict.

2.2 Transduction actions

The inflection systems use four character-to-
character transduction actions:

copy copies the current character of the lemma to
the word form, and advances to the next char-
acter on the lemma

replace(c) inserts the character c to the word form,
and advances to the next character on the
lemma

insert(c) inserts the character c to the word form,
without advancing the current lemma pointer

delete deletes the current character of the lemma,
and advances to the next character on the
lemma

All actions are character-to-character operations
based on one-to-one alignments, and each action is
represented individually, i.e., we do not compress
consecutive actions of the same type to a single
complex action. Table 1 demonstrates the series
of transductions for an example lemma–word form
pair. Both lemmas and words are appended with
a special end-of-sequence symbol (indicated with
‘#’ in Table 1). The decoding stops when any of
the actions predict the end-of-sequence symbol.

2.3 Classifiers
Given the gold standard action sequences extracted
from a training set as described above, we can use
any multi-class classification method for predict-
ing the next action. We experimented both with
traditional linear classifiers, in particular SVMs,
and feed-forward neural network classifiers. Re-
gardless of the classification method, however, the
features are based on the morphological tags, char-
acters within a local window around the current
lemma character, and the last few (predicted) char-
acters of the word form. During training we use
the gold-data for extracting features from the word
forms.
Since the linear methods cannot represent non-

linear combinations of the features, we use the fol-
lowing feature (combinations).

• The current lemma character.

• The varying-length, overlapping n-grams to
the left and right of the current lemma charac-
ter. For example, at the fourth step in Table 1,
with current lemma character r, and assum-
ing a window size of three, we include h, ch,
and sch as n-grams before the current point,
and e, ei, and eib as n-grams after the cur-
rent point.

• The varying-length, overlapping n-grams of
the last part of the output already predicted.
For the same position, this would amount to
n-grams h, ch, and sch.

• Morphological tags, including a special tag
indicating the language, and all binary com-
bination of tags. For example, with input
tags {V, PST, S} we also include {V-PST,
V-S, PST-S} as additional tag features.

• Cross product of all tag features with the other
features.

All features for the linear classifiers are com-
bined as a single sparse feature vector. The fea-
tures are weighted using TF-IDF, but no pruning
or any other feature selection step is employed.
As well as the choice of the window size, the

choice of the features and feature combinations
clearly is important for the linear models. Vari-
ations on this feature scheme, e.g., also includ-
ing interactions between the n-grams, and includ-
ing skip-grams may improve model’s predictions.
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However, they also increase the feature set size,
resulting in an increases in the time it takes to tune
the classifiers. The choice above was a compro-
mise between accuracy and demands on computa-
tion (which may be an important factor when tun-
ing models for 100 language pairs).
Intuitively, and also shown in similar tasks ear-

lier, the neural models here have an expected ad-
vantage as they can learn useful combinations of
arbitrary features automatically. The features for
the neural classifier used in this study are based on
the same set of characters and the tags, but without
explicit combinations of the features.
For both type classifiers, a straightforward op-

tion is to train a single multi-class classifier is pre-
dicting all possible actions (including the compos-
ite actions such as replace(i)). Alternatively, one
can first predict one of the four action types, and
then predict the parameter of the action if the ac-
tion is replace or insert. For the linear classifier,
this means training three separate classifiers, and
applying two of them in correct order at predic-
tion time. For the neural model, a similar approach
is used. The model first predicts the action, and
then the parameter of the action, for which action is
also given as an additional predictor. The different
parts of the network are trained jointly, and share
some of the weights which may provide additional
benefits. We experimented with both approaches.
Initial experiments produced mixed results, one or
the other option performing better in different data
sets. The results presented here are based on the
two-level classifiers, chosen somewhat arbitrarily.
At prediction time we decode the sequence

greedily, choosing the single-best action according
to the model at each step. However, both systems
can produce multiple outputs with minor modifi-
cation to the decoding algorithm.

2.4 Cross lingual transfer
The main focus of the present task is cross-lingual
transfer. Although we entertained a few ideas,
including the use of cross-lingual character em-
beddings and translation of transition sequences,
the approach used at the end was straightforward
inclusion of the high-resource language data in
training the models. During cross-lingual training,
however, we include an additional hyperparame-
ter that determines the weight training instances
belonging to the source language. This way the
model also learns ‘how much to learn from the
source language’ during tuning.

Since a sizable number of language pairs do not
use the same writing system, a learner relying on
categorical character inputs cannot learn from the
source language data. Even when the script used
by both languages are the same, there are often
differences in the writing traditions that make the
transfer difficult. Without success from our pre-
liminary experiments with cross-lingual character
embeddings, we used the inputs as is, only experi-
menting with transliteration of the source language
input to the target language input for a limited set
of language pairs.
Performing the correct, or useful, translitera-

tions for this task seems difficult. There are no
standard transliteration methods defined for most
language pairs in the data. The standard translit-
eration methods for some languages exists, where
the standard typically defines how to transliterate
a language written with a non-Latin script to some
version of the Latin script. However, the stan-
dard methods are often designed for easy read-
ing/phonetization by English speakers. Even in
cases of target languages that use a version of the
Latin script, there are significant differences to
hinder cross-lingual learning considerably. As a
result, we report below some of the experiments
with transliterations between Latin and Cyrillic
scripts for only eight language pairs (all Turkic lan-
guages) to demonstrate the potential gains that can
be obtained with transliteration. The translitera-
tion method follows Çöltekin and Barnes (2019).
The method does not follow any transliteration
standards (e.g., one set by ISO), but tries to max-
imize the similarities of the writing traditions in
these particular languages.

3 Experimental setup

3.1 Data and preprocessing

The shared task data used in this study consists
of 100 language pairs, which is described in de-
tail in McCarthy et al. (2019). Here we only
provide a basic overview that is relevant to our
discussion below. All language pairs feature a
high-resource training set from the source lan-
guage, a low-resource training set and a develop-
ment set, both from the target language. Num-
ber of unique source and target languages are both
44. The number of source languages for a target
language, and number of target languages for a
source language differ. Some languages also ap-
pear as both source and target languages in dif-
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ferent pairs. Most source languages have 10 000

training instances, with a few exceptions (notably
Uzbek with only 1 060 word forms). The num-
ber of training instances for all target languages
is 100, with a single exception of Telugu with 61

word forms. Development set sizes vary more be-
tween 50, 100 and 1 000 word forms. The number
of unique lemmas and tag combinations also vary
among different training and development sets.
The relation of language pairs also differ. Most

pairs have shared ancestry, ranging from very
close (e.g., Turkish–Azeri) to rather far modern
relatives (e.g., Russian–Portuguese), or histori-
cal relatives (e.g., Polish–Old Church Slavonic).
There are also a few pairs where the relation is
rather through geographical contact (e.g., Italian–
Maltese). As noted above, one obstacle for cross-
lingual learning is the different writing systems
used in these languages. The data set includes 11
different scripts, and 30 of language pairs do not
use the same script. It should be noted, however,
that the use of common script does not necessar-
ily solve all the problems regarding mapping char-
acter sequences across languages reliably. Even
when they use the same script, e.g., Latin or Cyril-
lic, the differences adopted in the writing tradition
of each languages may still introduce difficulties.
To overcome the differences in scripts, we

transliterated source language data in eight
pairs (Bashkir–Azeri, Bashkir–Crimean-Tatar,
Bashkir–Tatar, Bashkir–Turkmen, Turkish–
Kazakh, Turkish–Khakas, Uzbek–Kazakh, and
Uzbek–Khakas) into the script used by the target
language. The transliteration method used tries
to maximize the similarity of the transliterations
with the writing system of the target language.

3.2 Classifier tuning
For both classifiers we performed a random search
through the hyperparameter space, which included
the weight of the source language instances.
Hence, both classifiers are tuned to make use of
the source language based on their usefulness. The
other common parameter for both the linear and the
neural classifier included window size, which de-
termines the number of characters to the left and
right of the current lemma position, the number of
characters from the end of the word form predicted
so far. For linear models the only other hyperpa-
rameter we tune is the regularization constant.
For the neural model we fixed the architecture

after some initial experimentation, where the ac-

tion classifier had two hidden layers of 100 units
with ReLU activation, followed by a softmax clas-
sifier. The part of the network that predict the pa-
rameter of insert and replace actions had one layer
with ReLU activation followed by a softmax clas-
sifier. The input to the parameter classifier was the
output of the hidden layer of the activity classifier,
as well as the activity prediction. We used early
stopping, stopping when the mean edit distance on
the development set did not improve. We use only
a single-best system, without any weight averag-
ing or ensembling.
Both models are tuned on the training sets of tar-

get language, and both source and target combi-
nation with a parameter controlling the weight of
the source language instances. Random search for
transfer model includes the best model parameters
tuned on mono-lingual low-resource setting with a
source weight parameter set to 0. Hence, the trans-
fer models for each language pair does at
All linear models were implemented in scikit-

learn Python library (Pedregosa et al., 2011) using
liblinear back end (Fan et al., 2008). The neural
model was implemented with Tensorflow (Abadi
et al., 2015) using Keras API (Chollet et al., 2015).

4 Results

The official results obtained by our linear and neu-
ral model alongside the best and worst baseline
results published by the organizers presented in
Table 2. The organizers offer a large number of
baseline results. We only present the best (unpub-
lished transformermodel) and theworst (‘untuned’
monotonic alignment model). The best system in
the competition (CMU-03) achieves an accuracy
of 58.79 and mean edit distance of 1.52.
Besides the official results, we also present re-

sults obtained after the competition in Table 2. The
row labeled ‘∗Linear’ presents the results obtained
with the same linear classifier after fixing a bug
in feature extraction and further tuning. The row
marked as ‘target only’, presents results that are
obtained using only the target language, without
any attempt of cross-lingual learning. Both scores
are obtained using the official evaluation script on
the test data released after the end of the evaluation
period.
The neural predictor performed worse than the

linear predictor, within the (rather limited) effort
and computational resources put into developing
it. Although the performance is still below the top
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Figure 2: Detailed accuracy scores obtained using the linear predictor with and without source language data. The
language pairs are sorted by the target language.
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System Accuracy MED

Linear 34.49 1.88

Neural 20.86 2.36
∗Linear 43.67 1.43
∗Linear, target only 41.00 1.50

Baseline (worst) 28.76 2.07

Baseline (best) 54.25 1.13

Table 2: Overall results obtained by our systems in
comparison to the official state-of-the-art baseline (Wu
and Cotterell, 2019). The scores are word-form accu-
racy and mean edit distance (MED) averaged over all
100 language pairs. The rows marked with asterisk in-
dicate post-evaluation scores obtained using the linear
predictor, after fixing a bug and further tuning.

performing systems, the post-evaluation fixes and
tuning results in a dramatic increase in the perfor-
mance of the linear model. The more interesting
result, however, is the small difference between
the transfer learning results and the ‘target only’
results. We present the target-only and transfer ac-
curacy scores for each language pair in Figure 2. In
general, the gains from cross-lingual learning are
modest. There is no improvement at all for 59 of
the language pairs. As expected, this includes all
30 pairs with writing system mismatch, excluding
some of the language pairs for which we translit-
erated the source data. The effect of transliteration
is rather modest as well, yielding an improvement
between 4 to 12 percentage points of accuracy for
four of the eight language pairs where it was used.
The effect of the transliteration to the overall score
is a 0.29% increase in accuracy. Not surprisingly,
the highest increases due to cross-lingual learn-
ing are obtained when source and target languages
are closely related. The highest increase is ob-
tained from Turkish to Azeri with 33%, followed
by Turkish–Turkmen and Adyghe–Kabardian with
26% and 18% respectively.

5 Summary and outlook

We presented a simple inflection system based on
predicting transduction actions. Of the predictors
we tried, the linear predictor performs reasonably
well. Although its performance is lower than the
top performing systems in the shared task, the sys-
tem is far from being well-tuned, and as demon-
strated above simple improvements may have a
major effects on the performance. Furthermore,

the linear predictor has the advantage of requir-
ing relatively less computational resources, which
may be advantageous in some cases. One further
advantage is the ease of analyses of linear learn-
ers. What the linear model learns is often much
simpler to understand and interpret, and although
the need for crafting feature combinations is one
of its weaknesses, it may also provide further in-
sight through more interpretable ablation studies.
Our neural predictor did not perform as well as the
linear predictor. This, however, is by no means a
conclusive result. If tuned well, neural networks
should in fact work well in this task because of
their capability of learning arbitrary combinations
of their inputs.
On the cross-lingual side of the problem, the

improvements we get are rather modest. In fact,
there is a only small overall improvement due
to cross-lingual learning over learning only from
low-resource target language. Since our relatively
simple system can get up to 40% accuracy by
learning only from the small target language train-
ing sets, there is also a good chance that more suc-
cessful systems are also relying more on the target
language data rather than benefiting from trans-
fer learning. Some of the reasons for low suc-
cess is probably the make up of the data. Not all
language pairs are close enough to facilitate the
transfer learning. However, there are many possi-
ble directions for exploiting the cross-lingual sig-
nal better. The simple method used in this study
can be improved in many ways. Although our ini-
tial experiments were not successful. We believe
cross-lingual character embeddings, and ’translat-
ing’ transduction actions from source language to
target language may be potential ways to get a bet-
ter cross-lingual input.
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Abstract
This paper describes the OSU submission
to the SIGMORPHON 2019 shared task,
Crosslinguality and Context in Morphology.
Our system addresses the contextual morpho-
logical analysis subtask of Task 2, which is
to produce the morphosyntactic description
(MSD) of each fully inflected word within
a given sentence. We frame this as a se-
quence generation task and employ a neu-
ral encoder-decoder (seq2seq) architecture to
generate the sequence of MSD tags given the
encoded representation of each token. Follow-
up analyses reveal that our system most sig-
nificantly improves performance on morpho-
logically complex languages whose inflected
word forms typically have longer MSD tag se-
quences. In addition, our system seems to cap-
ture the structured correlation between MSD
tags, such as that between the verb V tag and
TAM-related tags.

1 Introduction

For many natural language processing (NLP) ap-
plications such as parsing and machine translation,
correctly analyzing the part-of-speech and fine-
grained morphological information (e.g. tense,
mood, and aspect) of a given string of words is
crucial for satisfactory performance. This task de-
pends on the system’s ability to learn reliable rep-
resentations of the sequence on two distinct levels
– one at the character-level, which is indicative of
the morphosyntactic values of the word, and the
other at the word-level, which is informative of
subsequent words that are likely to appear in the
sequence. In addition, the system needs to have
representational flexibility in order to be used in
a cross-linguistic setting, as languages with typo-
logically distinct morphological systems (e.g. iso-
lating, agglutinative, and fusional) have different
methods of realizing morphological information.

∗First authors. Ordering determined by dice roll.

Input They buy and sell books .
MSD tags N;NOM;PL | V;SG;1;PRS | CONJ

| V;PL;3;PRS | N;PL | PUNCT

Table 1: Example English contextual morphological
analysis problem from SIGMORPHON 2019 Shared
Task 2 (McCarthy et al., 2019).

Task 2 of the SIGMORPHON 2019 Shared
Task, Morphological Analysis and Lemmatization
in Context (McCarthy et al., 2019), provides an
appropriate setting to examine the applicability
of morphological analyzers on typologically dis-
tinct languages. As mentioned on the shared task
webpage,1 the goal of the contextual morpholog-
ical analysis subtask of Task 2 is to produce the
morphosyntactic description (MSD) of each word
within a given sentence (i.e. “context,” see Table 1
for example).2 The system’s performance is eval-
uated on a total of 107 treebanks from the Uni-
Morph dataset (McCarthy et al., 2018), which cov-
ers more than 70 languages. Again, this requires
the system to generalize across typologically dif-
ferent languages without being biased towards a
particular morphological system.

In this paper, we present our approach of treat-
ing contextual morphological analysis as the gen-
eration of the correct sequence of MSD tag di-
mensions. To address the task, we take a sim-
ilar approach as the shared task baseline system
(Malaviya et al., 2019) in encoding each word in
the sequence with a representation learned by a

1https://sigmorphon.github.io/sharedtasks/
2019/task2/

2For the other subtask of contextual lemmatization, the
goal of which is to return the correct lemmata of the fully
inflected forms, we generated the predictions using the pre-
trained shared task baseline lemmatizer (Malaviya et al.,
2019). As the baseline system conducts lemmatization by
conditioning on predicted MSD tags, we provided the system
with the predictions from our seq2seq model as input.
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Figure 1: The encoder based on bidirectional LSTM for the baseline, binary relevance, and seq2seq models.

(a) The decoder of the binary relevance model,
which makes independent binary decisions for
each possible tag dimension.

(b) The GRU decoder of the seq2seq model, which
predicts the next tag dimension given the encoder
representation and the prediction at the previous
timestep.

Figure 2: Overview of the decoder architectures.

character-level recurrent neural network (RNN).
With the baseline system that treats each possi-
ble combination of MSD tag dimensions sepa-
rately and chooses the most likely combination,
we first demonstrate that modifying the system to
make multiple independent binary decisions over
each possible tag dimension results in higher per-
formance. Furthermore, we present an encoder-
decoder (seq2seq) model that decodes the repre-
sentation of each input word into a sequence of
MSD tag dimensions. The use of the seq2seq
model further improves model performance, espe-

cially in terms of exact match accuracy for tokens
that have long sequences of MSD tag dimensions.
Our best-performing model outperforms the offi-
cial baseline by 14.25 on exact match accuracy
and by 4.6 on micro-averaged F1.

2 Model Description

Baseline model The baseline model takes as in-
put each sentence in the training data, and uses
a bidirectional LSTM (Long Short-Term Memory,
Hochreiter and Schmidhuber, 1997) to learn a rep-
resentation for each word by attending to its in-
dividual characters. The learned representation is
then subsequently fed into a fully connected lin-
ear layer, which maps the representation of the
word to the space of every observed combina-
tion of MSD tag dimensions. The network is up-
dated based on the cross-entropy loss between the
model’s prediction and the correct combination of
MSD tag dimensions.

Binary relevance model An obvious limitation
to the above baseline approach is that the num-
ber of observed combinations of MSD tag dimen-
sions is typically large for most languages, and es-
pecially for agglutinative and fusional languages
whose words contain relatively more morpholog-
ical information than those of other languages
(see Table 2). In addition, treating each combi-
nation separately prevents the model from gener-
alizing to other instances of the same MSD tag
dimension that might simply appear in a differ-
ent combination. We hypothesize that this would
most unfavorably impact system performance on
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Sents Tokens Tags Combinations

en 13297 204857 36 178
es 14144 439925 40 419
hi 13317 281948 43 1508
ru 4024 79989 47 1385
tr 4508 46417 55 1896

zh 3997 98734 21 39

Table 2: Descriptive statistics for the six UniMorph
treebanks used for training. Number of tags refers to
the number of different MSD tag dimensions, and the
number of combinations refers to the number of differ-
ent MSD tag combinations present in each training set.

agglutinative languages, which typically have a
clear correspondence between surface string and
MSD tag dimension. In order to mitigate this is-
sue, we mapped the learned representation of each
word to the space of individual MSD tag dimen-
sions, where independent binary decisions about
the presence of each tag dimension are made.

Encoder-decoder (seq2seq) model3 Nonethe-
less, given the fact that particular MSD tag dimen-
sions tend to co-occur within a same word (e.g. the
“verb” tag dimension frequently co-occurs with
tense- or aspect-related tag dimensions), the inde-
pendence assumption between individual tag di-
mensions made in the binary relevance model may
be too strong to capture this inherent structure. To
account for the potential dependence between pre-
dicted tag dimensions, we feed the encoded repre-
sentation of each word as the initial hidden states
of a GRU (Gated Recurrent Unit, Cho et al., 2014)
decoder, which is then trained to predict one tag
dimension at each decoding timestep. The use
of such a seq2seq model is also partly motivated
by its state-of-the-art performance in various NLP
tasks such as machine translation (Bahdanau et al.,
2015; Luong et al., 2015), document classifica-
tion (Nam et al., 2017; Yang et al., 2018), mor-
phological reinflection (Kann and Schütze, 2016;
Kann et al., 2017), and morphological analysis
like the current shared task (Tkachenko and Sirts,
2018). Our seq2seq model resembles Tkachenko
and Sirts’s (2018) SEQ model, with the primary
difference being the use of a GRU decoder (instead
of their unidirectional LSTM) and the sorting of
tag dimensions in decreasing order of frequency

3The predictions from this model were submitted to the
shared task. The code repository can be found at https:
//github.com/njjiang/THOMAS

Baseline Bin. Rel. Seq2seq
Acc. F1 Acc. F1 Acc. F1

en 80.17 90.91 92.53 95.75 93.72 95.41
es 84.35 95.35 96.39 98.42 96.77 98.31
hi 80.60 93.92 87.59 96.37 88.13 95.99
ru 63.37 87.49 81.42 92.92 84.92 92.92
tr 62.94 86.10 84.15 93.87 87.08 93.84
zh 75.97 83.79 89.61 91.18 91.57 91.35

Table 3: Exact match accuracy and micro-averaged F1
scores of the models evaluated on the test portion of
each respective UniMorph treebank. For each dataset,
the best results under each metric are in bold.

during training. An overview of our model archi-
tecture is presented in Figures 1 and 2.

Our seq2seq model strongly outperforms the of-
ficial baseline, scoring 14.25 and 4.6 points higher
on average across 107 datasets on exact match ac-
curacy and micro-averaged F1 scores respectively.
For an in-depth analysis of each model, we focus
on 6 languages and compare the performance of
our two models (binary relevance and seq2seq) to
that of the baseline model.

3 Experimental Design

Training data Following the shared task guide-
lines, six different treebanks from the UniMorph
dataset (McCarthy et al., 2018) provided the
data for training and evaluating the model. The
six treebanks – English-EWT, Spanish-Ancora,
Hindi-HDTB, Russian-GSD, Turkish-IMST, and
Chinese-GSD – cover a wide spectrum of morpho-
logical typology, thus making it suitable to assess
the generalizability of each morphological analy-
sis system. The descriptive statistics of each train-
ing set are outlined in Table 2.

Training and evaluation procedure For the bi-
nary relevance model, most of the hyperparam-
eters followed the default settings of the base-
line system code4; characters were embedded into
128-dimension representations, and the character-
level biLSTM was trained to output a 256-
dimension representation. Adam (Kingma and Ba,
2015) was used as the optimizer, using the de-
fault settings of the PyTorch deep learning library
(Paszke et al., 2017). The model was trained for
five epochs using batches of size 16, with early
stopping.5 The same hyperparameters were used

4https://github.com/sigmorphon/
contextual-analysis-baseline

5As the task organizers do not explicitly mention the hy-
perparameters used to train the baseline models, it is assumed
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Figure 3: Exact match accuracy and micro-averaged F1 scores of the models on tokens with different numbers of
MSD tag dimensions.

Bin. Rel. Seq2seq

en 459 89
es 559 70
hi 439 199
ru 423 166
tr 124 63

zh 117 0

Table 4: Number of instances where two tag dimen-
sions that do not co-occur in the test portion of the
dataset were predicted together by each model.

to train the encoder portion of the seq2seq model.
As for the GRU decoder, the maximum se-

quence length was fixed as the maximum se-
quence length seen during training. Following
prior work (Yang et al., 2018), the order of the out-
put tags was fixed to be in decreasing order of fre-
quency of occurrence in the training set. Decoding
took place in a greedy manner, and only the high-
est scoring hypothesis at the previous timestep was
further pursued. The model was trained without
any teacher forcing, as preliminary results showed
that a teacher forcing ratio of 0.5 resulted in a de-
crease in model performance.

After training was complete, the models’ accu-
racy was evaluated on the held-out test portion of
the six treebanks that were used to train the mod-
els. As per the shared task guidelines, the ex-
act match accuracy and micro-averaged F1 scores
were calculated for each of the trained models.

that the default settings of the code were used to train them.
The only changes to the default settings when training the bi-
nary relevance model were in the training epochs (default 10
epochs) and batch size (not implemented, therefore default
size 1).

4 Results and Discussion

As can be seen in Table 3, having the model
make independent binary decisions for each pos-
sible MSD tag dimension (i.e. the binary rele-
vance model) significantly increases model perfor-
mance. This is most likely the result of having nar-
rowed down the output space and thereby allow-
ing the model to generalize over instances of the
same tag dimension that appear in different com-
binations. In addition, using a neural decoder to
generate a sequence of tag dimensions further im-
proves model performance in terms of exact match
accuracy, which is sensitive to predicting the cor-
rect number of tag dimensions. This corroborates
the results of Tkachenko and Sirts (2018), who
found that their sequence generation model out-
performed other neural classifiers in terms of ac-
curacy on most languages. The increase in perfor-
mance is especially salient in Russian and Turk-
ish, which typically have more tag dimensions
per word than other languages. An analysis of
the distribution of predicted tag dimensions (Ta-
ble 4) shows that the seq2seq model predicts sig-
nificantly less “invalid” combinations that are not
attested in the gold test set,6 indicating that the
seq2seq model is more capable of capturing the
structured dependence compared to the binary rel-
evance model.

Lengths of tag sequences To further examine
where the seq2seq model makes significant im-
provement, the exact match accuracy and micro-
averaged F1 scores were calculated according to

6These include combinations of tag dimensions that are
either in complementary distribution (e.g. the singular SG and
plural PL tags) or linguistically irrelevant (e.g. the noun N tag
and tense-related tags).
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Bin. Rel. Seq2seq
en P < G P = G P > G P < G P = G P > G

0 - 3199 14 - 3201 12
1 0 7819 252 0 7872 199
2 386 9296 164 165 9605 76
3 61 1017 44 58 1037 27
4 125 1995 20 150 1986 4
5 3 384 2 1 386 2
6 27 704 6 20 716 1

ru P < G P = G P > G P < G P = G P > G

0 - 1712 1 - 1712 1
1 0 1751 91 0 1770 72
2 11 165 17 3 176 14
3 21 126 11 4 138 16
4 48 341 29 3 381 34
5 448 3906 235 48 4512 29
6 12 89 0 7 90 4
7 19 386 2 14 389 4
8 11 191 4 4 202 0
9 40 97 5 17 124 1

tr P < G P = G P > G P < G P = G P > G

0 - 1034 0 - 1034 0
1 0 1198 87 0 1183 102
4 175 1382 35 63 1484 45
5 143 477 10 81 538 11
6 28 209 6 9 225 9
7 81 470 26 36 506 35
8 53 257 10 29 279 12
9 24 27 0 18 33 0

Table 5: Comparison of the number of MSD tag di-
mensions predicted by each model and that in the gold
annotation, sorted according to the number of tags in
the gold annotation. P refers to the number of tags pre-
dicted by the model, and G refers to the number of tags
that are in the gold annotation.

the number of MSD tag dimensions in the test por-
tion of the dataset. In Figure 3, the scores are pre-
sented for English, Russian, and Turkish.7 Addi-
tionally, we compared the number of tag dimen-
sions predicted by each model to that of the gold
annotation in order to investigate whether there
was a tendency for the models to over- or under-
predict the correct number of tag dimensions (Ta-
ble 5). Although there is no clear pattern as to
sequences of what length (i.e. short or long) the
seq2seq model helps the most, it is clear from the
scores that the seq2seq model has the capability to
reproduce longer sequences of tag dimensions in
comparison to the binary relevance model. Fur-
thermore, while both models predict the correct
number of tag dimensions for the vast majority
of test examples, the seq2seq model makes more
accurate predictions across sequences of nearly

7There was only one token each with two or three tag di-
mensions in the test portion of the Turkish dataset (and none
in the development portion). As such, the scores for tokens
with two or three tag dimensions were omitted in the figure.

Bin. Rel. Seq2seq
Tag Freq. Acc. F1 Acc. F1

COND 18 27.78 86.09 66.67 94.82
FUT 62 72.58 95.85 69.35 93.72
HAB 106 75.47 94.74 77.36 92.67
IMP 32 59.38 77.34 75.0 84.79
IND 1022 81.12 96.08 85.71 96.51
OPT 14 71.43 88.4 85.71 95.24
PFV 944 78.18 94.93 84.43 95.98
POT 56 67.86 96.91 62.5 94.19

PROG 134 88.81 98.98 90.3 99.13
PROSP 3 66.67 95.24 100.0 100.0

PRS 646 75.54 93.29 82.82 94.47
PST 439 84.28 98.11 87.7 98.39

PST+PRF 38 89.47 97.95 97.37 99.26
FUT/PST 3 66.67 95.24 100.0 100.0

Table 6: Performance of the two models on TAM-
related tokens in the Turkish test set. For each TAM-
related tag dimension, the best results under each met-
ric are in bold.

all lengths. There is also a general tendency for
the two models to under-predict rather than over-
predict distinct tag dimensions, with the exception
of the seq2seq model on Russian examples with
four tag dimensions or less.

Dependence between tag dimensions We hy-
pothesize that the neural decoder of the seq2seq
model helped it correctly predict tag dimensions
that are low in frequency but often co-occur with a
more frequent tag dimension. Such highly depen-
dent examples can be found in the verbal paradigm
of a language, where tag dimensions that indi-
cate a particular tense, aspect, and mood (TAM;
e.g. present, progressive, indicative) always co-
occur with the verb (V) tag dimension. We ex-
pect that the prediction of the higher-frequency V
tag dimension during decoding would have helped
the model accurately predict these specific TAM-
related tag dimensions. As a case study testing this
hypothesis, we compared the performance of the
two models on TAM-related tokens present in the
Turkish test set. The results in Table 6 reveal that
the seq2seq model generally outperforms the bi-
nary relevance model, indicating that the seq2seq
model captures the dependence between the V tag
dimension and TAM-related tag dimensions.

While the above analyses clearly demonstrate
that the seq2seq model learns the structure behind
MSD tag dimensions and thus predicts more lin-
guistically plausible sequences in comparison to
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Gold Prediction

INAN;GEN;PL;V;IPFV;PRS;V.PTCP;PASS INAN;GEN;PL;ADJ
PL;V;FIN;IND;IPFV;PRS;2 SG;INAN;N;FEM;DAT
PL;V;FIN;IND;IPFV;PRS;2 SG;V;FIN;PFV;2;IMP
PL;V;FIN;IND;IPFV;PRS;MID;2 SG;V;FIN;IND;IPFV;3;PRS
PL;V;FIN;IND;PFV;1;FUT SG;INAN;MASC;N;NOM
PL;V;FIN;IPFV;MID;2;IMP SG;N;NOM;FEM;V
SG;INAN;FEM;V;ESS;IPFV;PRS;V.PTCP;PASS SG;INAN;N;NEUT;ESS
SG;INAN;GEN;FEM;V;PST;PFV;V.PTCP;PASS SG;INAN;GEN;FEM;ADJ
SG;INAN;NOM;V;NEUT;PST;PFV;V.PTCP;PASS SG;INAN;N;NOM;NEUT
SG;MASC;NOM;ANIM;V;PST;PFV;V.PTCP;PASS SG;MASC;N;NOM;ANIM
SG;MASC;V;FIN;IND;PST;PFV SG;MASC;N;NOM;ANIM;PST;PFV;V.PTCP;PASS
SG;V;FIN;IND;IPFV;PRS;1 SG;N;NOM;V;FIN

Table 7: Representative errors from the seq2seq model on Russian test examples with seven or more tag dimensions
in the gold annotation.

the binary relevance model, the binary relevance
model slightly outperforms the seq2seq model in
terms of micro-averaged F1 score. We conjec-
ture that this is due to the nature of the decoder
employed in the seq2seq model. Because the de-
coder conditions on its prediction at the previous
timestep, once the decoder predicts an erroneous
tag dimension, it is likely to continue to deviate
from the correct sequence. This will result in pre-
dictions that do not have many tag dimensions in
common with the gold annotation. On the other
hand, as the binary relevance model is optimized
to predict each individual tag dimension indepen-
dently, it is more likely to generate “partially cor-
rect” sequences that are penalized less severely
by the F1 score. Representative errors from the
seq2seq model on the Russian test set presented in
Table 7 demonstrate this tendency; in general, the
prediction of an incorrect tag dimension results in
predictions that have little overlap with the gold
annotation.

In order to alleviate such decoding errors of
the seq2seq model, a beam search could be con-
ducted to pursue multiple hypotheses simultane-
ously. This could help the model recover from an
initial erroneous prediction, albeit at the cost of
computational efficiency. Furthermore, to explic-
itly incorporate the underlying structure between
MSD tag dimensions, the binary relevance model
could be extended to a multiclass multilabel classi-
fier, which selects one tag among those that are in
complementary distribution for each morphologi-
cal category (e.g. part-of-speech, case, number) as
in Tkachenko and Sirts (2018). Finally, a more rig-

orous search for the optimal hyperparameters (e.g.
hidden state sizes, training epochs, learning rate)
of each model could further enhance their perfor-
mance. We leave these directions to future work.

5 Conclusion

In this paper, we present our approach to the SIG-
MORPHON 2019 contextual morphological anal-
ysis shared task. Expanding from the baseline
model that chooses the most likely combination
from all those present in the training data, we
demonstrate that having the model make indepen-
dent binary decisions over each tag dimension al-
leviates data sparsity and improves model perfor-
mance. Furthermore, based on the linguistic in-
sight that certain tag dimensions often co-occur
together, we employed a neural decoder to turn
contextual morphological analysis into a sequence
generation task and aimed to capture this depen-
dence. This again improved model performance in
terms of exact match accuracy, especially for mor-
phologically rich languages that generally have
more MSD tag dimensions for every token. A
follow-up case study of Turkish verbal inflections
demonstrates that the seq2seq model captures the
correlation between the more frequent V tag di-
mension and the less frequent TAM-related tag di-
mensions.
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Abstract

This paper presents the UNT HiLT+Ling sys-
tem for the Sigmorphon 2019 shared Task
2: Morphological Analysis and Lemmatiza-
tion in Context. Our core approach focuses
on the morphological tagging task; part-of-
speech tagging and lemmatization are treated
as secondary tasks. Given the highly multi-
lingual nature of the task, we propose an ap-
proach which makes minimal use of the sup-
plied training data, in order to be extensible
to languages without labeled training data for
the morphological analysis task. Specifically,
we use a parallel Bible corpus to align contex-
tual embeddings at the verse level. The aligned
verses are used to build cross-language trans-
lation matrices, which in turn are used to map
between embedding spaces for the various lan-
guages. Finally, we use sets of inflected forms,
primarily from a high-resource language, to
induce vector representations for individual
UniMorph tags. Morphological tagging is per-
formed by matching vector representations to
embeddings for individual tokens. While our
system results are dramatically below the aver-
age system submitted for the shared task eval-
uation campaign, our method is (we suspect)
unique in its minimal reliance on labeled train-
ing data.

1 Introduction

This paper describes the UNT HiLT+Ling sys-
tem submission for the Sigmorphon shared task on
morphological analysis and lemmatization in con-
text (McCarthy et al., 2019). We focus primarily
on the morphological tagging task, treating part-
of-speech tagging and lemmatization as secondary
tasks. We approach morphological analysis from
the perspective of low-resource languages, aim-
ing to develop an approach which exploits exist-
ing language resources in order to make morpho-
logical analysis in context feasible for languages

without annotated training data. We propose a
model to perform morphosyntactic annotation for
any language with a translation of the Bible. Ac-
cording to Wycliffe1, there are currently 683 lan-
guages in the world which contain a translation of
the entire Bible, and an additional 1534 languages
for which the entire New Testament, and some-
times other sections, are available.

We train contextual word representations using
ELMo (Peters et al., 2018) and align embedding
spaces for language pairs using Bible verse num-
bers as an alignment signal. We then compute vec-
tor representations for UniMorph tags in English
and project those representations into the target
language. The projected morpheme tag embed-
dings are used to identify morphological features
and label tokens in context with UniMorph tags.

We give a system overview in Section 2, with
more detailed model descriptions in Section 5.
The system’s performance is currently poor; we
outline known limitations and make some sugges-
tions for improvement.

2 System Overview

The system we developed for Sigmorphon 2019
Task 2 can be divided into two parts: the core
model and two additional non-core components.
The core model is responsible for the morpholog-
ical tagging task, our main focus. The two non-
core components are part-of-speech tagging and
lemmatization.

Core model: Minimally-supervised morpho-
logical analysis in context. Following task
specifications, we aim to predict UniMorph tags
for words in context. Our approach is designed
to work on new languages with minimal super-
vision. Specifically, the base model uses the fol-
lowing forms of supervision: a) multilingual bible

1http://www.wycliffe.net/statistics
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data, verse-aligned; and b) roughly twenty words
per from the training data per UniMorph tag. Once
this model has been developed, it can be applied
for a new language with no annotated training data
for the task; the only data needed is a Bible in that
language.

The steps in the process (explained in detail in
Section 5.1) are as follows:

1. Learn sentence-level ELMO embeddings
(Peters et al., 2018) for each language.

2. Use verse-aligned data to learn a vector
translation matrix (following Mikolov et al.,
2013a) between each language and English.

3. Compute a vector representation for each
UniMorph tag.

4. For UniMorph tags found in English, map
tag vectors into the other languages which
use the tag, by way of the relevant translation
matrix. For tags not found in English, com-
pute vector representations for each tag in the
language-specific space.

5. Identify all UniMorph tags represented in the
embedding for a given word, treating mor-
phological analysis in the style of analogy
tasks (Mikolov et al., 2013b).

POS tagging and lemmatization. POS tagging
and lemmatization are treated as non-core compo-
nents of the model. In other words, we incorpo-
rate these tasks into our model in order to meet the
requirements of the competition. For these two
tasks, greater supervision is allowed, and mod-
els are learned from the training data provided.
The POS tagger in our system is a straightforward
HMM model, and lemmatization is done with a
seq2seq neural architecture. See Section 5.2 for
more detailed descriptions of the models.

3 Related Work

The core idea of using the Bible as parallel data
in low-resource settings is largely inspired by pre-
vious work. The Bible has been used as a means
of alignment for cross-lingual projection, both for
POS tagging (Agic et al., 2015) and for depen-
dency parsing (Agic et al., 2016), as well as for
base noun-phrase bracketing, named-entity tag-
ging, and morphological analysis (Yarowsky et al.,
2001) with promising results.

Peters et al. (2018) introduce ELMo embed-
dings, contextual word embeddings which incor-
porate character-level information using a CNN.

Both of these properties - sensitivity to context
and the ability to capture sub-word information -
make contextual embeddings suitable for the task
at hand.

In order to make embeddings useful across lan-
guages, we need a method for aligning embedding
spaces across languages. Ruder et al. (2017) pro-
vide an excellent survey of methods for aligning
embedding spaces. Mikolov et al. (2013a) intro-
duce a translation matrix for aligning embeddings
spaces in different languages and show how this
is useful for machine translation purposes. We
adopt this approach to do alignment at the verse
level. Alignment with contextual embeddings is
more complicated, since the embeddings are dy-
namic by their very nature (different across differ-
ent contexts). In order to align these dynamic em-
beddings, Schuster et al. (2019) introduce a num-
ber of methods, however they all require either a
supervised dictionary for each language, or access
to the MUSE framework for alignment, neither of
which we assume in our work.

The UniMorph 2.0 data-set (Kirov et al., 2018)
provides resources for morphosyntactic analysis
across 111 different languages. The work de-
scribed here uses the tag set from UniMorph.

4 Data

This section describes the data resources used for
training and evaluating the system.

4.1 Bible data

The main data used for building our core model
is a multilingual Bible corpus. For as many of
the shared task languages as possible (41), we use
the corpus from Christodouloupoulos and Steed-
man (2015). Bibles for an additional 19 languages
were sourced elsewhere. Of the remaining 11 lan-
guages, we use proxy languages (Section 4.2) for
9. For two languages (Akkadian and Sanskrit),
we were unable to locate a suitable Bible in time.
Where there are multiple data sets for a given lan-
guage, we use the same Bible for all data sets.

For some languages we have access to the en-
tire Bible, and for others only the New Testament
(NT). This introduces discrepancies in the amount
of data used to train embeddings from language
to language, as the Old Testament is much longer
than the New Testament.

The Bible is a natural source of parallel data,
as it is available (either in whole or in parts) in
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Shared task language ISO code Proxy language ISO code
UD Belarusian-HSE bel Russian rus
UD Breton-KEB bre Irish Gaelic gle
UD Galician-CTG glg Portuguese por
UD Galician-TreeGal glg Portuguese por
UD Gothic-PROIEL got Icelandic isl
UD Norwegian-Nynorsk nno Icelandic isl
UD Norwegian-NynorskLIA nno Icelandic isl
UD Upper Sorbian-UFAL hsb Czech ces

Dialect
UD Armenian-ArmTDP hy Eastern Armenian hye
UD Irish-IDT ga Irish Gaelic gle
UD Persian-Seraji fa Western Persian pes

No Bible
UD Akkadian-PISANDUB akk
UD Sanskrit-UFAL san

Table 1: Shared task languages for which a proxy language or close dialect was used, and languages for which no
Bible was used.

over one thousand languages, including many low-
resource languages. One advantage of using the
Bible, beyond its wide availability in translation
for free, is that its verses are fairly well-aligned in
meaning across languages (unlike words or even
sentences). One drawback to using Bible data is
the archaic nature of the language. For example,
even if we use a modern translation, the English
Bible contains fewer than 15,000 different word
types, and no occurrences of modern words (e.g.
Republican, computer, or NASA).

The limited domain of the text offers both ad-
vantages and disadvantages. On the one hand,
much of the vocabulary found in the shared task
evaluation data does not occur in the Bible. Us-
ing embeddings trained on the Bible, then, results
in an extremely large number of out-of-vocabulary
tokens at test time. On the other, the semantic
territory covered by the embedding spaces varies
remarkably little from language to language, in-
creasing the feasibility of aligning embedding
spaces across multiple languages.

4.2 Proxy languages

In order to do morphological analysis for a
given language, our method requires access to a
digitally-available version of at least portions of
the Bible for that language. At the time the model
was developed, we did not have access to Bibles
for all shared task languages. For each missing

language, we select a proxy language (Table 1).
For example, we don’t have a Bible for Galician,
so at every stage in the process where the Galician
Bible would be used, we substitute the Portuguese
Bible, treating Portuguese as pseudo-Galician. We
identify two different cases of proxy language sub-
stitution. In some cases, we are able to select a
closely-related dialect for the target language. In
others, the proxy language is selected based on a
combination of morphological similarity (typolog-
ically speaking) and language relatedness.2

4.3 Sigmorphon data

We use the provided training data (McCarthy
et al., 2018) primarily to train a part-of-speech tag-
ger and lemmatizer for each shared task data set,
and the provided test data is used to evaluate the
system. We use portions of the training data for
three other purposes: a) to build contrasting sets
of words for each UniMorph tag (Section 5.1.3);
b) to build lists of UniMorph tags relevant for each
language; and c) to create a simple baseline for the
two languages for which we have no Bible, proxy
language or otherwise.

2In an early experiment, we investigated the effectiveness
of similarity measures over language vectors (Malaviya et al.,
2017; Littell et al., 2017) for selecting proxy languages. The
results were mixed, so we opted for expert selection of proxy
languages instead. Lin et al. (2019) discusses some of the
issues involved.
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5 Models

The model description consists of two parts: the
core model, for morphological analysis, and two
non-core components, for part-of-speech tagging
and lemmatization.

5.1 Core model: morphological analysis

Our core system addresses the task of morpho-
logical analysis with minimal supervision from la-
beled training data. The approach exploits parallel
data in the form of a multilingual Bible corpus.

5.1.1 Contextual embeddings for every Bible
Prior research has shown embedded word vector
representations are capable of capturing contex-
tual nuances in meaning beyond one sense per
word (Arora et al., 2018, for example). Because
context variance is an important factor affecting
morphological analysis, we use ELMo embed-
dings (Peters et al., 2018) as our base representa-
tion. As a first step, we train separate ELMo mod-
els on each of the Bible translations in our cor-
pus. For each language, we hold out four books
(Mark, Ephesians, 2 Timothy, and Hebrews) for
model evaluation and train on all remaining books.
Models are trained at the sentence level, using de-
fault parameter settings and following recommen-
dations from the AllenNLP bilm-tf repository.3

5.1.2 Verse alignment for embedding
projection

The next step is to use the natural verse align-
ment of the Bible to learn projections from one
embedding space to another, treating English as
the source language and learning projections into
the embedding spaces for each of our non-English
Bible languages in turn.

Mikolov et al. (2013a) show that type-level em-
bedding spaces (e.g. word2vec) can be projected
across languages by calculating a translation ma-
trix from a set of type-level translation word pairs.
The translation matrix is a vector of dimension-
wise factors by which word representations from
a source language can be multiplied to transform
them into parallel word representations in the tar-
get language embedding space.

Aligning contextual representations such as
ELMo is more complicated, as there is no good
way of aligning words between two language em-
bedding spaces without a dictionary and without

3https://github.com/allenai/bilm-tf

losing the encoded information about contextual
polysemy, for which ELMo is particularly useful.

Schuster et al. (2019) propose using context-
free anchors to align contextually-dependent em-
bedding spaces (such as ELMo). We propose in-
stead to calculate translation matrices at the verse
level, computing the representation for each verse
as the unweighted average of its constituent con-
textual word embeddings.

First, we compute ELMo embeddings for each
token in a small subset of the Bible: Psalms (OT)
and Romans (NT). For a given language pair, we
compute a verse embedding for each verse that ap-
pears in both Bibles (some verses are missing in
some languages, and some languages have extra
verses)4 and derive the translation matrix for that
language pair using the standard method, as intro-
duced by Mikolov et al. (2013a).

Given pairs of verse vectors in a source and tar-
get language {xi, zi}ni=1 respectively, we calculate
the translation matrix (W ) between the two lan-
guages utilizing gradient descent, as follows:

min
W

n∑

i=1

‖Wxi − zi ‖2

5.1.3 Inducing vectors for UniMorph tags
In lieu of using supervised, annotated data for
training the model with morphological informa-
tion, we work from the hypotheses that each of the
42 UniMorph tags can be isolated in the embed-
ding space and that we can derive a vector repre-
sentation for each tag, applying a process similar
to the well-known analogy tasks of Mikolov et al.
(2013b). For this purpose, we build small hand-
curated data sets (only in English), with contrast-
ing sets of words for each tag. In other words,
for each UniMorph tag found in English, we col-
lect from the training data one set of words with
the tag and a parallel set without it. The word
sets do not necessarily contain minimal pairs, but
rather groups of words that are matched for part-
of-speech. For example, for the plural tag PL, we
build a list of 10 plural tokens (e.g. [women, cats,
dogs, deer, ...]) and another list of 10 singular to-
kens (e.g. [man, car, dog, apple, ...]). The (vectors
for) the set of words with the tag are subtracted

4Even though the differences of diverse and distant lan-
guages result in occasional discrepancies in the verse align-
ment, we believe that verse-level alignment offers closer se-
mantic matching than unsupervised sentence-level alignment
could achieve. Across the 60 languages for which we have
Bibles, the average ratio of sentences to verses is 1.27 to 1.
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from (vectors for) the set of words without the tag.
More precisely, we take the weighted average of
both sets of words, in which those with the tag are
weighted 1, and those without it are weighted -1.

Having derived a vector representation for each
UniMorph tag, these vectors can now be projected
from English into the target language using the re-
spective translation matrix. Rather than projecting
every tag into every language, we project only the
tags that are seen in a given language’s training
data.

Of course, only a subset of all UniMorph tags
are found in English. For those which do not ap-
pear in the English data (e.g. Ergative), an addi-
tional method was developed using the Sigmor-
phon training data in other languages. When tag-
ging a language that has the tag ERG in the train-
ing data, we build new word list pairs specific to
that language and calculate the UniMorph tag rep-
resentation as described above.

5.1.4 Morphological analysis

To assign UniMorph tags to words at test time, a
sequence of tokens in context (one sentence at a
time) is fed into ELMo using the target language
ELMo model, generating contextual embeddings
for each word in the sequence. Next, for each to-
ken, we iteratively subtract each of the target lan-
guage’s possible UniMorph vectors and search for
another word in the target language whose embed-
ding is within 0.1 cosine distance of the resulting
vector. For example, when tagging the German
word Kinder (children), subtracting the vector rep-
resentation for the Plural tag should result in a vec-
tor that is close to that for Kind (child). This sub-
traction process is applied to every word, for every
UniMorph tag found in the language. Whenever a
word is found within the threshold of the derived
embedding, the tag that resulted in the successful
transformation is assigned to that token. In the ex-
ample above, Kinder gets tagged with PL.

Intuitively, this method is plausible because
words, their inflected forms, synonyms, and
closely related terms tend to occur in tight clus-
ters in embedding spaces. Therefore, subtracting
the embedding for the PL tag from the embedding
for the should not produce a close match in En-
glish, since the plural tag is never associated with
the. This would not be a grammatically meaning-
ful transformation.

5.1.5 Baselines
We use two different baselines for the morpholog-
ical analysis task.

No-embedding baseline. This method is used to
tag the two languages for which we have no Bible,
not even for a proxy language, and thus have no
Bible-trained word embeddings for the language.
Under this approach, each word is simply labeled
with all tags it has been seen with in the training
data.

Embedding baseline. This method makes use
of the verse embeddings described above and was
deployed to do tagging where time constraints pro-
hibited implementation of the full model for a
given language.

The contextualized word representations built
to support the embedding projection process are
collected into a set of dictionaries (one for each
language) of seen tokens and their associated vec-
tors. In this setting, instead of re-training the
ELMo model on test data in context, we retrieve
stored vectors for tokens to be tagged. This
method has clear shortcomings, both with respect
to coverage of the model and regarding the han-
dling of polysemous tokens.

5.2 Non-core components: POS tagging and
lemma generation

For part-of-speech tagging, we implement a Hid-
den Markov Model Viterbi algorithm trained
on the Sigmorphon training and development
datasets. Given our interest in methods which re-
duce the need for large labeled corpora and super-
vised learning, we additionally implemented some
simple heuristics based on previously-generated
morpheme tags.

For example, a word is given a higher proba-
bility of being tagged as a verb if it has a modal,
tense, or other conjugative tag already assigned to
it (e.g., V.PTCP or PRS). These heuristics were
designed to be entirely language-neutral, general-
izing to the full set of test languages.

As a final task, we perform lemma generation
using a joint neural model following Malaviya
et al. (2019)’s proposed method. The joint model
consists of a simple LSTM-based tagger to recover
the morphology of a sentence and a sequence-to-
sequence model with hard attention mechanism
as a lemmatizer. The lemmatization model trains
over words and their morphological information
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Lemma Accuracy Lemma Levenshtein Morph Accuracy Morph F1
Mean 83.143 0.5511 15.689 51.870

Median 90.66 0.16 13.98 55.18

Table 2: Shared task results for our models, across all languages.

Morph Accuracy Morph F1
Full Bible (n=77) 16.08 52.64
NT only (n=17) 13.12 48.68
Bible from close dialect (n=3; 2 NT, 1 full) 20.55 57.06
Bible from proxy language, (n=8; all full Bible) 12.88 51.57
No Bible 26.6 42.23

Table 3: Morphological analysis results. Macro-average for subgroups of data sets, categorized according to
resources available for embedding training, alignment, and projection.

recovered with the tagger. To counter exposure
bias, all training is done with Jackknifing.

5.3 Limitations - there are many
The models as described above are subject to
many limitations, and we have many ideas for im-
proving the system.

First, the model is computationally intensive
and time intensive, to an extent that meant we only
applied the full model to a fraction of the data.

Because producing ELMo embeddings on-the-
fly is so time consuming, we took some short-
cuts in order to get results in time for submission.
Word types already tagged were stored together
with their tags after the first encounter, and the tags
retrieved for later occurrences. Also, only a subset
of the test sentences were in fact tagged with the
ELMo approach at all. These two things together
resulted in many false positives and redundant tags
(e.g. the same noun tagged as both nominative and
accusative). We feel confident that a full run of the
system, however long it takes, will result in much
better performance.

Second, our method for tagging words with
UniMorph tags does nothing to constrain the set
of possible tags, allowing multiple conflicting tags
to be simultaneously assigned. Application of out-
put constraints could go a long way toward solving
this issue.

Third, we would like to rework our method for
collecting pairs of word lists for derivation of vec-
tor representations for UniMorph tags. A problem
with the current method is that it assumes the exis-
tence of inflected/non-inflected word pairs for all
tags, and in all languages. In fact, many morpho-
logical paradigms do not consist of contrasts be-

tween inflected and un-inflected forms (these are
perhaps more common in English than in most
languages), but rather of sets of inflectional op-
tions, one of which is likely to occur. Our model
does not currently account well for this aspect of
morphology.

For example, when tagging the German article
dem (definite, masculine, dative), subtracting the
vector representation for the Dative tag under our
current model results in an ill-defined form; there
is no article that is definite and masculine and with
undefined case. Instead, we would like for the pro-
cess to yield a set of vectors, close to those for the
articles der (definite, masculine, nominative); den
(definite, masculine, accusative); and des (defi-
nite, masculine, genitive).

Fourth, the system is very bad at handling mor-
phological analysis for out-of-vocabulary tokens,
and there are many out-of-vocabulary tokens.

6 Results

Table 2 provides an overview of our system re-
sults. Additional discussion of results can be
found in McCarthy et al. (2019). The results are
uncontroversially bad, particularly for the mor-
phological analysis task. For this portion of the
task, our accuracies are dramatically lower than all
other teams (at least 50% worse than every other
team, on most languages). Some of this perfor-
mance gap surely can be attributed to the fact that
we make very minimal use of the training data
supplied, but not all of it! We strongly believe
that the limitations described in Section 5.3 have
severely decreased our results, and we look for-
ward to giving our method a true test in the near
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future.
For lemmatization, we come closer to average

performance, coming in at roughly 12 percent less
accurate on average (across languages) than the
top-performing submitted system.

Table 3 looks at results compared to the amount
and type of Bible data used to train embeddings for
each language. Performance suffers when train-
ing on only the New Testament, compared to the
full Bible. Surprisingly, proxy language training
shows only a slightly lower average performance
compared to training and testing on the same lan-
guage. Of course, all results need to be inter-
preted with respect to the limitations previously
discussed.

7 Discussion

In addition to the model and implementation lim-
itations discussed in Section 5.3, there are a num-
ber of extensions which could be considered for
improving the model.

Our current model allows a mismatch between
granularity for training of the embedding spaces
(sentences) and granularity for alignment of the
embedding spaces (verses). We’d like to experi-
ment with verse-trained models as well.

We would also like to train on all of our Bible
data, without holding out any data for evaluation
of the embedding space (i.e. the four books men-
tioned in Section 4). For languages for which we
don’t have a Bible, we will investigate new meth-
ods for identifying transfer languages (Lin et al.,
2019).

Even though our models as implemented prior
to submission failed to attain reasonable accuracy
on the morphological analysis task, we believe that
performance can be improved and that the gen-
eral architecture deserves further exploration. Ide-
ally, our model could extend to any of the 800
(or more) languages that has a translation of the
entire bible, opening new frontiers for minimally-
supervised morphological analysis.

Acknowledgments

Thanks to the reviewers for helpful feedback.
Computational resources were provided by UNT
office of High-Performance Computing.

References
Zeljko Agic, Dirk Hovy, and Anders Sgaard. 2015. If

all you have is a bit of the Bible: Learning POS tag-
gers for truly low-resource languages. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 268–272.

Zeljko Agic, Anders Johannsen, Barbara Plank, Hc-
tor Martnez Alonso, Natalie Schluter, and Anders
Sgaard. 2016. Multilingual Projection for Pars-
ing Truly Low-Resource Languages. Transactions
of the Association for Computational Linguistics,
4:301–312.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association of Computational
Linguistics, 6:483–495.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the Bible in
100 languages. Language Resources and Evalua-
tion, 49(2):375–395.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
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Abstract

We present our contribution to the SIGMOR-
PHON 2019 Shared Task: Crosslinguality and
Context in Morphology, Task 2: contextual
morphological analysis and lemmatization.

We submitted a modification of the UDPipe
2.0, one of best-performing systems of the
CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies
and an overall winner of the The 2018 Shared
Task on Extrinsic Parser Evaluation.

As our first improvement, we use the pre-
trained contextualized embeddings (BERT) as
additional inputs to the network; secondly, we
use individual morphological features as reg-
ularization; and finally, we merge the selected
corpora of the same language.

In the lemmatization task, our system exceeds
all the submitted systems by a wide margin
with lemmatization accuracy 95.78 (second
best was 95.00, third 94.46). In the morpho-
logical analysis, our system placed tightly sec-
ond: our morphological analysis accuracy was
93.19, the winning system’s 93.23.

1 Introduction

This work describes our participant system in the
SIGMORPHON 2019 Shared Task: Crosslingual-
ity and Context in Morphology. We contributed a
system in Task 2: contextual morphological analy-
sis and lemmatization.

Given a segmented and tokenized text in a
CoNLL-U format with surface forms (column 2)
as in the following example:
# sent-id = 1
# text = They buy and sell books.
1 They _ _ _ _ ...
2 buy _ _ _ _ ...
3 and _ _ _ _ ...
4 sell _ _ _ _ ...
5 books _ _ _ _ ...
6 . _ _ _ _ ...

the task is to infer lemmas (column 3) and mor-
phological analysis (column 6) in the form of con-
catenated morphological features:
# sent-id = 1
# text = They buy and sell books.
1 They they _ _ N;NOM;PL ...
2 buy buy _ _ V;SG;1;PRS ...
3 and and _ _ CONJ ...
4 sell sell _ _ V;PL;3;PRS ...
5 books book _ _ N;PL ...
6 . . _ _ PUNCT ...

The SIGMORPHON 2019 data consists of 66
distinct languages in 107 corpora (McCarthy et al.,
2018).

We submitted a modified UDPipe 2.0 (Straka,
2018), one of the three winning systems of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies (Zeman
et al., 2018) and an overall winner of the The 2018
Shared Task on Extrinsic Parser Evaluation (Fares
et al., 2018).

Our improvements to the UDPipe 2.0 are three-
fold:
• We use the pretrained contextualized embed-

dings (BERT) as additional inputs to the net-
work (described in Section 3.3).
• Apart from predicting the whole POS tag, we

regularize the model by also predicting indi-
vidual morphological features (Section 3.4).
• In some languages, we merge all the corpora

of the same language (Section 3.5).
Our system placed first in lemmatization and

closely second in morphological analysis.
We give an overview of the related work in Sec-

tion 2, we describe our methodology in Section 3,
the results with ablation experiments are given in
Section 4 and we conclude in Section 5.

2 Related Work

A new type of deep contextualized word repre-
sentation was introduced by Peters et al. (2018).
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The proposed embeddings, called ELMo, were ob-
tained from internal states of deep bidirectional
language model, pretrained on a large text corpus.
The idea of ELMos was extended by Devlin et al.
(2018), who instead of a bidirectional recurrent
language model employ a Transformer (Vaswani
et al., 2017) architecture.

The Universal Dependencies project (Nivre
et al., 2016) seeks to develop cross-linguistically
consistent treebank annotation of morphology and
syntax for many languages. In 2017 and 2018
CoNLL Shared Tasks Multilingual Parsing from
Raw Text to Universal Dependencies (Zeman
et al., 2017, 2018), the goal was to process raw
texts into tokenized sentences with POS tags, lem-
mas, morphological features and dependency trees
of Universal Dependencies. Straka (2018) was
one of the winning systems of the 2018 shared
task, performing the POS tagging, lemmatization
and dependency parsing jointly. Another winning
system of Che et al. (2018) employed manually
trained ELMo-like contextual word embeddings
and ensembling, reporting 7.9% error reduction in
LAS parsing performance.

The Universal Morphology (UniMorph) is also
a project seeking to provide annotation schema
for morphosyntactic details of language (Sylak-
Glassman, 2016). Each POS tag consists of a
set of morphological features, each belonging to
a morphological category (also called a dimension
of meaning).

3 Methods

3.1 Architecture Overview

Our baseline is the UDPipe 2.0 (Straka,
2018). The original UDPipe 2.0 is available at
http://github.com/CoNLL-UD-2018/
UDPipe-Future. Here, we describe the overall
architecture, focusing on the modifications made
for the SIGMORPHON 2019. The resulting model
is presented in Figure 1.

In short, UDPipe 2.0 is a multi-task model pre-
dicting POS tags, lemmas and dependency trees.
For the SIGMORPHON 2019, we naturally train
and predict only the POS tags (morphosyntac-
tic features) and lemmas. After embedding input
words, three shared bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) layers are performed.
Then, softmax classifiers process the output and
generate the lemmas and POS tags (morphosyn-
tactic features).

Input word cat

Pretrained
regular

embeddings.

Trained
embeddings.

c a t

GRU GRU GRU

Character-level word
embeddings.

Word 1
embeddings

...

...

LSTM ...
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tanh
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tanh tanh

Feat 1 Feat 2

...
tanh

Feat M...
Regularization with Morphological Features

Figure 1: The overall system architecture

The lemmas are generated by classifying into a
set of edit scripts which process input word form
and produce lemmas by performing character-
level edits on the word prefix and suffix. The
lemma classifier additionally takes the character-
level word embeddings as input. The lemmatiza-
tion is further described in Section 3.2.

The input word embeddings are the same as in
the UDPipe 2.0 (Straka, 2018):

• end-to-end word embeddings,
• word embeddings (WE): We use FastText

word embeddings (Bojanowski et al., 2017)
of dimension 300, which we pretrain for each
language on plain texts provided by CoNLL
2017 UD Shared Task, using segmentation
and tokenization trained from the UD data.1

For languages not present in the CoNLL 2017
UD Shared Task, we use pretrained embed-
dings from (Grave et al., 2018), if available.
• character-level word embeddings (CLE):

We employ bidirectional GRUs (Cho et al.,
2014; Graves and Schmidhuber, 2005) of di-
mension 256 in line with (Ling et al., 2015):
we represent every Unicode character with
a vector of dimension 256, and concatenate
GRU output for forward and reversed word
characters. The character-level word embed-
dings are trained together with UDPipe net-
work.

We refer the readers for detailed description
of the architecture and the training procedure to

1We use -minCount 5 -epoch 10 -neg 10 options.
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Lemma Rule Casing Script Edit Script Most Frequent Examples
↓0;d¦ all lowercase do nothing the→the to→to and→and
↑0¦↓1;d¦ first upper, then lower do nothing Bush→Bush Iraq→Iraq Enron→Enron
↓0;d¦- all lowercase remove last character your→you an→a years→year
↓0;abe all lowercase ignore form, use be is→be was→be ’s→be
↑0;d¦ all uppercase do nothing I→I US→US NASA→NASA
↓0;d¦-- all lowercase remove last 2 chars been→be does→do called→call
↓0;d¦--- all lowercase remove last 3 chars going→go being→be looking→look
↓0;d--+b¦ all lowercase change first 2 chars to b are→be ’re→be Are→be
↓0;d¦-+v+e all lowercase change last char to ve has→have had→have Has→have
↓0;d¦---+e all lowercase change last 3 chars to e having→have using→use making→make
↓0;d¦-+o→ all lowercase change last but 1 char to o n’t→not knew→know grew→grow

Table 1: Eleven most frequent lemma rules in English EWT corpus, ordered from the most frequent one.

Straka (2018).
The main modifications to the UDPipe 2.0 are

the following:

• contextualized embeddings (BERT): We
add pretrained contextual word embeddings
as another input to the neural network. We
describe this modification in Section 3.3.
• regularization with individual morpholog-

ical features: We predict not only the full
POS tag, but regularize the model by also
predicting individual morphological features,
which is described in Section 3.4.
• corpora merging: In some cases, we merge

the corpora of the same language. We de-
scribe this step in Section 3.5.

Furthermore, we also employ model ensem-
bling, which we describe in Section 3.6.

3.2 Lemmatization

The lemmatization is modeled as a multi-class
classification, in which the classes are the com-
plete rules which lead from input forms to the lem-
mas. We call each class encoding a transition from
input form to lemma a lemma rule. We create a
lemma rule by firstly encoding the correct casing
as a casing script and secondly by creating a se-
quence of character edits, an edit script.

Firstly, we deal with the casing by creating a
casing script. By default, word form and lemma
characters are treated as lowercased. If the lemma
however contains upper-cased characters, a rule is
added to the casing script to uppercase the corre-
sponding characters in the resulting lemma. For
example, the most frequent casing script is “keep
the lemma lowercased (don’t do anything)” and
the second most frequent casing script is “upper-
case the first character and keep the rest lower-
cased”.

As a second step, an edit script is created to con-
vert input lowercased form to lowercased lemma.
To ensure meaningful editing, the form is split to
three parts, which are then processed separately: a
prefix, a root (stem) and a suffix. The root is dis-
covered by matching the longest substring shared
between the form and the lemma; if no match-
ing substring is found (e.g., form went and lemma
go), we consider the word irregular, do not pro-
cess it with any edits and directly replace the word
form with the lemma. Otherwise, we proceed
with the edit scripts, which process the prefix and
the suffix separately and keep the root unchanged.
The allowed character-wise operations are charac-
ter copy, addition and deletion.

The resulting lemma rule is a concatenation of a
casing script and an edit script. The most common
lemma rules in English EWT corpus are presented
in Table 1, and the number of lemma rules for ev-
ery language is displayed in Tables 5 and 6.

Using the generated lemma rules, the task of
lemmatization is then reduced to a multiclass clas-
sification task, in which the artificial neural net-
work predicts the correct lemma rule.

3.3 Contextual Word Embeddings (BERT)

We add pretrained contextual word embeddings
as another input to the neural network. We
use the pretrained contextual word embeddings
called BERT (Devlin et al., 2018).2 For En-
glish, we use the native English model (BERT-Base
English), for Chinese use use the native Chi-
nese model (BERT-Base Chinese) and for all
other languages, we use the Multilingual model
(BERT-Base Uncased). All models provide con-
textualized embeddings of dimension 768.

2https://github.com/google-research/
bert

97



We average the last four layers of the BERT
model to produce the embeddings. Because BERT
utilizes word pieces, we decompose words into ap-
propriate subwords and then average the generated
embeddings over subwords belonging to the same
word.

Contrary to finetuning approach used by the
BERT authors (Devlin et al., 2018), we never fine-
tune the embeddings.

3.4 Regularization with Individual
Morphological Features

Our model predicts the POS tags as a unit, i.e.,
the whole set of morphological features at once.
There are other possible alternatives – for exam-
ple, we could predict the morphological features
individually. However, such a prediction needs
to decide which morphological categories to use
and should use a classifier capable of handling de-
pendencies between the predicted features, and all
our attempts to design such a classifier resulted
in systems with suboptimal performance. Using
a whole-set classifier alleviates the need for find-
ing a correct set of categories for a word and han-
dling the feature dependencies, but suffers from
the curse of dimensionality, especially on smaller
corpora with richer morphology.

Nevertheless, the performance of a whole-set
classifier can be improved by regularizing with
the individual morphological feature prediction.
Similarly to Kondratyuk et al. (2018), our model
predicts not only the full set of morphological
features at once, but also the individual features.
Specifically, we employ as many additional soft-
max output layers as the number of morphological
categories used in the corpus, each predicting the
corresponding feature or a special value of None.
The averaged cross-entropy loss of all predicted
categories multiplied by a weightw is added to the
training loss. The predicted features are not used
in any way during inference and act only as model
regularization.

The number of full POS tags (complete sets
of morphological features), individual morpho-
logical features and number of used morphologi-
cal categories for every corpus is provided in Ta-
bles 5 and 6.

3.5 Corpora Merging
Given that the shared task data consists of multiple
corpora for some of the languages, it is a natural
approach to concatenate all corpora of the same

language and use the resulting so-called merged
model for prediction on individual corpora.

In theory, concatenating all corpora of the same
language should be always beneficial consider-
ing the universal scheme used for annotation.
Nonetheless, the merged model exhibits worse
performance in many cases, compared to a spe-
cialized model trained on the corpus training data
only, supposedly because of systematically dif-
ferent annotation. We consequently improve the
merged model performance during inference by
allowing only such lemma rules and morphologi-
cal feature sets that are present in the training data
of the predicted corpus.

3.6 Model Ensembling

For every corpus, we consider three model config-
urations – the regular model with BERT embed-
dings trained only on the corpus data, the merged
model with BERT embeddings trained on all cor-
pora of the corresponding language, and the no-
BERT model trained only on the corpus data.

To allow automatic model selection and to ob-
tain highest performance, we use ensembling.
Namely, we train three models for every model
configuration, obtaining nine models for every
language. Then, we choose a model subset whose
ensemble achieves the highest performance on
the development data. The chosen subsets then
formed the competition entry of our system.

However, post-competition examination using
half of development data for ensemble selection
and the other for evaluation revealed that the
model selection can overfit, sometimes choosing
one or two models with high performance caused
by noise instead of high-quality generalization.
Therefore, we also consider another model selec-
tion method – we ensemble the three models for
every configuration, and choose the best configu-
ration out of three ensembles on the development
data. This second system has been submitted as
a post-competition entry.

4 Results

4.1 SIGMORPHON 2019 Test Results

Table 2 shows top 5 results in lemma accuracy,
lemma Levenshtein, morphological accuracy and
morphological F1 in Task 2 of the SIGMORPHON
2019, averaged over all 107 corpora. Our system
is called UFALPRAGUE-01.
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Lemma Accuracy
UFALPRAGUE-01 95.78
CHARLES-SAARLAND-02 95.00
ITU-01 94.46
baseline-test-00 94.17
CBNU-01 94.07

Morph Accuracy
CHARLES-SAARLAND-02 93.23
UFALPRAGUE-01 93.19
RUG-01 90.53
EDINBURGH-01 88.93
RUG-02 88.80

Lemma Levenshtein
UFALPRAGUE-01 0.098
CHARLES-SAARLAND-02 0.108
ITU-01 0.108
CBNU-01 0.127
baseline-test-00 0.129

Morph F1
CHARLES-SAARLAND-02 96.02
UFALPRAGUE-01 95.92
RUG-01 94.54
RUG-02 93.22
EDINBURGH-01 92.89

Table 2: Top 5 results in lemma accuracy, lemma Levenshtein, morphological accuracy and morphological F1.

Word
BERT

Feature Lemma Morph
Embeddings Regularization Acc Lev Acc F1
7 7 7 94.251 0.168 90.506 93.585
3 FT only 7 7 95.229 0.109 91.704 94.745
3 7 7 95.294 0.107 91.828 94.849
7 3 7 95.440 0.106 92.789 95.614
3 3 7 95.534 0.104 92.980 95.755
7 7 3 w = 1 95.120 0.111 91.468 94.672
3 7 3 w = 1 95.365 0.104 92.135 95.189
3 3 3 w = 1 95.516 0.105 93.148 95.957
3 3 3 w = 0.5 95.534 0.105 93.172 95.939
3 3 3 w = 2 95.539 0.105 93.175 95.965

Table 3: Lemma accuracy, lemma Levenshtein, morphological accuracy, and morphological F1 results of ablation
experiments. For comparison, the FT only embeddings denote the pretrained embeddings of (Grave et al., 2018).

Regular Merged Without
Ensembling

Lemma Morph
Model Model BERT Acc Lev Acc F1
3 7 7 7 95.516 0.105 93.148 95.957
3 3 7 7 95.702 0.101 93.322 96.081
3 7 3 7 95.524 0.104 93.177 95.966
3 3 3 7 95.709 0.100 93.353 96.090
3 7 7 3 Every model 95.606 0.102 93.257 95.997
3 3 7 3 configuration 95.785 0.098 93.422 96.123
3 7 3 3 has independent 95.598 0.102 93.300 96.035
3 3 3 3 3-model ensemble 95.776 0.099 93.464 96.160

The competition entry, which allows ensembling any combination of the 9 models
3 3 3 3 Any combination 95.776 0.098 93.186 95.924

Table 4: Lemma accuracy, lemma Levenshtein, morphological accuracy, and morphological F1 results of model
combinations. When not specified otherwise, all models utilize pretrained word embeddings, BERT, and feature
regularization with weight w = 1.
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Our participant system placed as one of the win-
ning systems of the shared task. In the lemmati-
zation task, our system exceeds all the submitted
systems by a wide margin with lemmatization ac-
curacy 95.78 (second best was 95.00, third 94.46).
In the morphological analysis, our system placed
tightly second: our morphological analysis accu-
racy was 93.19, the winning system’s 93.23.

4.2 Ablation Experiments
The effect of pretrained word embeddings, BERT
contextualized embeddings and regularization
with morphological features is evaluated in Ta-
ble 3. Even the baseline model without any of the
mentioned enhancements achieves relatively high
performance and would place third in both lemma-
tization and tagging accuracy (when not consider-
ing our competition entry).

Pretrained word embeddings improve the per-
formance of both the lemmatizer and the tagger
by a substantial margin. For comparison with
the embeddings we trained on CoNLL 2017 UD
Shared Task plain texts, we also evaluate the em-
beddings provided by Grave et al. (2018), which
achieve only slightly lower performance than our
embeddings – we presume the difference is caused
mostly by different tokenization, given that the
training data comes from Wikipedia and Com-
monCrawl in both cases.

BERT contextualized embeddings further con-
siderably improve POS tagging performance, and
have minor impact on lemmatization improve-
ment.

When used in isolation, the regularization with
morphological categories provides quite consid-
erable gain for both lemmatization and tagging,
nearly comparable to the effect of adding precom-
puted word embeddings. Combining all the en-
hancements together then produces a model with
the highest performance.

4.3 Model Combinations
For every corpus, we consider three model config-
urations – a regular model, then a model trained on
the merged corpora of a corresponding language,
and a model without BERT embeddings (which
we consider since even if BERT embeddings can
be computed for any language, the results might be
misleading if the language was not present in the
BERT training data). For every model configura-
tion, we train three models using different random
initialization.

The test set results of choosing the best model
configuration on a development set are provided
in Table 4. Employing the merged model in ad-
dition to the regular model increases the perfor-
mance slightly, and the introduction of no-BERT
model results in minimal gains. Finally, ensem-
bling the models of a same configuration provides
the highest performance.

As discussed in Section 3.6, our competition en-
try selected the ensemble using arbitrary subset of
all the nine models which achieved best perfor-
mance on the development data. This choice re-
sulted in overfitting on POS tag prediction, with
results worse than no ensembling.

4.4 Detailed Results

Tables 5 and 6 present detailed results of our best
system from Table 4. Note that while this sys-
tem is not our competition entry, it utilizes the
same models as the competition entry, only com-
bined in a different way. Furthermore, because
one model configuration was chosen for every lan-
guage, we can examine which configuration per-
formed best, and quantify what the exact effect of
corpora merging and BERT embeddings are.

5 Conclusions

We described our system which participated in the
SIGMORPHON 2019 Shared Task: Crosslingual-
ity and Context in Morphology, Task 2: contextual
morphological analysis and lemmatization, which
placed first in lemmatization and closely second
in morphological analysis. The contributed archi-
tecture is a modified UDPipe 2.0 with three im-
provements: addition of pretrained contextualized
BERT embeddings, regularization with morpho-
logical categories and corpora merging in some
languages. We described these improvements and
published the related ablation experiment results.
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Treebank Words Lemma POS Feats/ Lemma Morph Model Merged ∆ BERT ∆ B
Rules Tags /Cats Acc Lev Acc F1 R M N LAcc MAcc LAcc MAcc T

Afrikaans-AfriBooms 38 843 185 41 29/ 9 99.10 0.01 99.26 99.40 3 7 7 0.15 0.64 3
Akkadian-PISANDUB 1 425 548 12 11/ 1 55.94 1.50 86.63 86.46 7 7 3 0.99 -4.45 7
Amharic-ATT 7 952 1 54 35/10 100.00 0.00 89.70 93.24 3 7 7 0.00 0.57 3
Ancient Greek-PROIEL 171 478 6 843 887 49/14 94.04 0.15 92.99 97.92 7 3 7 0.65 0.30 -0.04 -0.01 7
Ancient Greek-Perseus 162 164 9 088 795 44/11 91.91 0.21 91.91 96.74 7 3 7 0.78 0.26 -0.05 0.01 7
Arabic-PADT 225 494 3 174 287 35/12 96.09 0.11 95.38 97.48 3 7 7 -0.09 0.02 0.35 0.66 3
Arabic-PUD 16 845 3 919 371 39/12 79.26 0.78 86.52 95.30 3 7 7 0.46 3.22 3
Armenian-ArmTDP 18 595 277 360 65/16 95.91 0.08 93.63 96.54 3 7 7 0.62 1.90 3
Bambara-CRB 11 205 311 43 32/ 9 92.10 0.12 94.00 95.62 3 7 7 -0.84 0.07 7
Basque-BDT 97 336 1 168 865 136/15 97.14 0.06 93.56 96.47 3 7 7 0.53 4.37 3
Belarusian-HSE 6 541 229 291 46/14 92.39 0.15 90.28 95.24 3 7 7 0.00 3.16 3
Breton-KEB 8 062 329 87 36/13 93.03 0.15 91.44 93.95 3 7 7 0.09 0.89 3
Bulgarian-BTB 124 749 605 316 44/15 98.34 0.05 97.84 99.03 3 7 7 0.25 0.21 3
Buryat-BDT 8 029 132 167 41/12 90.38 0.23 87.98 89.94 3 7 7 0.76 1.35 7
Cantonese-HK 5 121 17 13 12/ 1 100.00 0.00 91.25 88.86 3 7 7 0.00 0.54 3
Catalan-AnCora 427 672 579 145 41/13 99.32 0.01 98.66 99.35 3 7 7 0.09 0.34 3
Chinese-CFL 5 688 14 13 12/ 1 99.76 0.00 94.21 93.34 3 7 7 0.00 -0.12 0.00 3.43 3
Chinese-GSD 98 734 26 27 21/ 8 99.98 0.00 96.64 96.51 3 7 7 0.00 0.11 -0.01 2.61 3
Coptic-Scriptorium 17 624 181 53 26/ 9 97.31 0.06 95.85 96.82 3 7 7 -0.05 -0.56 7
Croatian-SET 157 446 578 818 51/16 97.45 0.05 94.16 97.67 3 7 7 0.22 0.83 3
Czech-CAC 395 043 929 960 57/15 99.31 0.01 97.78 99.20 3 7 7 -0.18 -0.37 0.06 0.73 3
Czech-CLTT 28 649 229 350 48/15 99.22 0.02 95.42 98.30 7 3 7 0.11 -0.06 0.37 1.00 3
Czech-FicTree 133 300 692 971 53/15 98.80 0.02 96.30 98.53 3 7 7 0.36 -0.23 0.12 0.65 3
Czech-PDT 1 207 922 1 661 1 123 57/15 99.37 0.01 98.02 99.25 3 7 7 -0.05 -0.15 0.04 0.44 3
Czech-PUD 14 814 349 549 56/15 98.13 0.03 94.46 98.14 7 3 7 2.59 3.94 0.77 3.84 3
Danish-DDT 80 964 426 128 41/14 98.30 0.03 97.76 98.49 3 7 7 0.44 0.84 3
Dutch-Alpino 167 187 631 43 33/10 98.45 0.03 97.59 98.20 7 3 7 -0.03 -0.03 0.12 0.39 3
Dutch-LassySmall 78 638 527 41 31/10 98.34 0.03 97.86 98.29 7 3 7 0.28 0.18 0.07 0.56 3
English-EWT 204 839 235 76 36/12 99.01 0.02 97.53 98.27 3 7 7 -0.18 -0.38 0.30 0.99 3
English-GUM 63 862 160 74 37/12 98.53 0.02 97.29 98.01 3 7 7 -0.84 -1.23 0.26 1.23 3
English-LinES 66 428 166 78 36/12 98.62 0.02 97.52 98.14 3 7 7 -0.83 -1.13 0.22 0.87 3
English-PUD 16 921 70 66 35/12 97.79 0.03 96.32 97.28 3 7 7 -1.76 -0.54 0.83 2.55 3
English-ParTUT 39 302 115 83 33/10 98.37 0.03 96.25 96.92 3 7 7 -0.48 -2.36 0.21 1.19 3
Estonian-EDT 346 986 3 294 494 52/14 96.59 0.06 96.72 98.37 3 7 7 0.35 0.44 3
Faroese-OFT 7 994 297 234 36/13 90.30 0.18 88.28 94.29 3 7 7 1.64 2.11 7
Finnish-FTB 127 536 1 211 660 53/12 96.05 0.08 96.55 97.98 3 7 7 0.37 0.44 3
Finnish-PUD 12 553 889 284 50/12 88.90 0.19 96.58 98.33 7 3 7 2.15 1.97 1.21 2.09 3
Finnish-TDT 161 582 2 650 565 51/12 95.91 0.08 96.81 98.21 3 7 7 -0.20 -0.08 0.34 0.39 3
French-GSD 320 404 736 134 40/13 98.82 0.02 97.82 98.71 3 7 7 0.01 -0.15 0.11 0.38 3
French-ParTUT 22 627 219 111 34/10 96.66 0.06 95.84 98.02 3 7 7 0.12 0.88 3
French-Sequoia 56 484 317 126 35/12 99.01 0.02 98.15 99.13 3 7 7 0.14 0.56 3
French-Spoken 28 182 208 13 12/ 1 98.91 0.02 98.12 98.15 3 7 7 0.14 0.25 3
Galician-CTG 111 034 160 14 13/ 2 98.87 0.02 98.28 98.12 3 7 7 0.00 -0.04 0.11 0.29 3
Galician-TreeGal 20 566 147 161 44/13 98.49 0.03 95.71 97.63 3 7 7 -0.03 -11.16 0.38 1.27 3
German-GSD 234 161 841 600 41/12 97.70 0.05 89.89 95.64 3 7 7 0.21 0.79 3
Gothic-PROIEL 44 660 1 130 540 43/13 95.61 0.09 90.50 96.39 7 7 3 -0.04 -0.13 7
Greek-GDT 50 567 1 285 243 40/12 96.85 0.08 95.89 98.36 3 7 7 0.09 0.86 3
Hebrew-HTB 129 425 387 236 38/13 98.18 0.03 97.51 98.24 3 7 7 0.19 0.45 3
Hindi-HDTB 281 948 286 738 49/12 98.89 0.01 93.23 97.83 3 7 7 0.07 0.53 3
Hungarian-Szeged 33 463 329 427 59/14 97.45 0.05 95.22 98.32 3 7 7 0.25 2.21 3
Indonesian-GSD 97 213 65 129 27/ 9 99.62 0.01 92.06 94.75 3 7 7 0.05 0.67 3
Irish-IDT 18 996 476 163 37/12 92.06 0.18 86.41 91.51 3 7 7 0.00 0.49 3
Italian-ISDT 239 381 321 142 38/11 98.86 0.02 98.30 99.03 7 3 7 0.01 0.19 0.13 0.33 3
Italian-PUD 18 834 167 159 38/14 97.57 0.05 96.33 98.34 3 7 7 0.41 -11.18 0.46 2.19 3
Italian-ParTUT 44 556 194 110 34/11 99.26 0.02 98.66 99.16 7 3 7 0.78 0.85 0.04 0.58 3
Italian-PoSTWITA 99 067 945 122 33/10 97.82 0.05 96.52 97.49 3 7 7 -0.13 -0.10 0.33 0.67 3

Table 5: For every corpus, its size, the number of unique lemma rules, the number of unique POS tags, and the
number of morphological features and morphological categories is presented. Then the test set results of lemma
accuracy, lemma Levenshtein, morphological accuracy and morphological F1 follow, using a model achieving best
score on the development set. We consider the regular model R, or a model on the merged corpus M and a model
without BERT embeddings N. Finally, we show the increase of the merged model to the regular model, the increase
of the regular model to the no-BERT model, and indicate if the language is present in BERT training data (BT).
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Japanese-GSD 147 897 104 13 12/ 1 99.65 0.00 98.14 97.91 7 3 7 0.03 -0.02 -0.01 0.23 3
Japanese-Modern 11 556 44 14 12/ 2 98.67 0.01 96.80 96.87 3 7 7 -0.14 -0.20 -0.20 0.33 3
Japanese-PUD 21 650 51 12 11/ 1 99.77 0.00 99.32 99.25 7 3 7 0.64 0.99 0.19 0.34 3
Komi Zyrian-IKDP 847 85 114 40/11 85.94 0.25 76.56 86.19 7 3 7 2.35 0.78 1.56 5.47 7
Komi Zyrian-Lattice 1 653 58 184 46/13 87.36 0.28 73.63 85.36 7 3 7 1.10 3.85 0.55 1.10 7
Korean-GSD 64 311 1 470 13 12/ 1 93.77 0.12 96.47 95.92 3 7 7 -0.63 -5.78 0.59 1.08 3
Korean-Kaist 280 494 3 137 13 12/ 1 95.65 0.07 97.31 96.98 3 7 7 -0.03 -0.23 0.17 0.31 3
Korean-PUD 13 306 9 109 29/11 99.07 0.01 94.06 96.23 3 7 7 -10.90 -16.72 0.06 2.67 3
Kurmanji-MG 8 077 275 148 41/14 94.71 0.10 85.57 91.52 3 7 7 0.09 0.80 7
Latin-ITTB 281 652 726 539 46/12 98.99 0.02 96.85 98.49 3 7 7 0.10 0.02 0.04 0.13 3
Latin-PROIEL 160 257 1 555 872 48/13 97.28 0.06 92.40 97.23 7 3 7 0.07 0.12 0.02 0.06 3
Latin-Perseus 23 339 879 427 43/11 93.32 0.14 86.97 94.28 7 3 7 2.99 2.60 0.17 0.48 3
Latvian-LVTB 121 760 677 644 49/15 97.22 0.05 95.48 97.74 3 7 7 0.04 0.22 3
Lithuanian-HSE 4 301 209 337 45/13 87.27 0.26 82.34 89.59 3 7 7 0.68 2.88 3
Marathi-UFAL 3 055 236 222 45/11 76.42 0.66 67.21 79.00 3 7 7 -0.54 0.54 3
Naija-NSC 10 280 7 13 12/ 1 99.93 0.00 96.28 95.06 3 7 7 0.00 0.45 7
North Sami-Giella 21 380 1 019 314 51/13 92.18 0.16 91.78 94.96 3 7 7 -0.25 0.04 7
Norwegian-Bokmaal 248 922 445 142 42/14 99.14 0.01 97.88 98.77 3 7 7 0.03 0.31 3
Norwegian-Nynorsk 241 028 478 138 40/12 98.96 0.02 97.48 98.49 7 3 7 0.05 -0.01 0.11 0.43 3
Norwegian-NynorskLIA 10 843 111 100 37/14 98.15 0.03 96.30 97.25 7 3 7 0.35 0.35 -0.07 0.43 3
Old Church Slavonic

-PROIEL 45 894 1 796 726 48/13 94.71 0.11 92.92 97.06 3 7 7 -0.07 0.13 7

Persian-Seraji 122 574 772 104 31/10 96.86 0.16 98.30 98.67 3 7 7 0.27 0.60 3
Polish-LFG 104 730 819 609 50/14 97.79 0.04 96.42 98.55 3 7 7 -0.07 -0.89 0.18 0.72 3
Polish-SZ 66 430 695 717 51/15 97.45 0.04 94.61 97.89 3 7 7 0.34 1.94 3
Portuguese-Bosque 180 773 402 247 43/12 98.70 0.02 96.09 98.18 3 7 7 -4.84 -5.27 0.19 0.76 3
Portuguese-GSD 255 690 175 19 17/ 5 99.07 0.05 98.88 98.96 3 7 7 -2.49 -0.62 0.19 0.49 3
Romanian-Nonstandard 156 320 2 094 288 45/14 96.78 0.06 94.62 97.27 7 3 7 0.02 -0.02 0.23 0.38 3
Romanian-RRT 174 747 678 254 47/14 98.50 0.03 97.97 98.68 3 7 7 -0.03 -0.05 0.15 0.30 3
Russian-GSD 79 989 553 668 47/14 97.93 0.04 94.38 97.64 3 7 7 0.89 4.05 3
Russian-PUD 15 433 309 525 46/15 94.69 0.09 90.24 96.45 3 7 7 0.96 -7.25 1.88 7.14 3
Russian-SynTagRus 886 711 1 744 678 48/13 98.92 0.02 98.05 99.05 3 7 7 -0.04 -0.08 0.24 1.02 3
Russian-Taiga 16 762 434 383 47/13 95.33 0.10 89.36 94.74 7 3 7 2.64 -0.40 2.14 7.02 3
Sanskrit-UFAL 1 450 244 232 54/14 64.82 0.89 50.25 68.99 7 7 3 0.00 0.00 7
Serbian-SET 68 933 359 421 39/12 98.27 0.03 96.68 98.40 3 7 7 0.50 1.04 3
Slovak-SNK 85 257 598 830 52/15 97.49 0.04 94.96 97.96 3 7 7 0.28 1.30 3
Slovenian-SSJ 112 136 369 744 52/15 98.84 0.02 96.99 98.59 7 3 7 0.06 0.14 0.28 1.03 3
Slovenian-SST 23 759 214 473 49/14 97.74 0.05 93.52 95.96 7 3 7 1.53 1.68 0.35 0.66 3
Spanish-AnCora 439 925 594 173 42/13 99.48 0.01 98.63 99.28 3 7 7 -0.24 -0.19 0.17 0.35 3
Spanish-GSD 345 545 310 239 52/14 99.31 0.01 95.67 97.97 3 7 7 -0.27 -0.50 0.05 0.26 3
Swedish-LinES 63 365 332 135 38/11 98.05 0.04 94.66 97.47 3 7 7 -0.19 -0.56 -0.02 0.57 3
Swedish-PUD 14 952 171 94 36/11 95.85 0.07 95.39 97.25 7 3 7 0.00 -0.04 0.74 2.21 3
Swedish-Talbanken 77 238 291 119 38/11 98.60 0.02 97.84 98.87 3 7 7 -0.16 -0.21 0.08 0.69 3
Tagalog-TRG 230 19 33 31/11 91.89 0.30 91.89 95.04 3 7 7 -5.41 0.00 3
Tamil-TTB 7 634 99 172 47/13 96.65 0.07 91.85 96.11 3 7 7 1.45 2.01 3
Turkish-IMST 46 417 211 985 56/13 96.84 0.06 92.83 96.60 3 7 7 -0.31 -0.83 0.15 0.82 3
Turkish-PUD 13 380 103 503 62/13 88.02 0.30 88.69 95.07 3 7 7 1.23 -2.39 0.33 2.67 3
Ukrainian-IU 93 264 629 597 49/14 97.84 0.04 95.40 97.93 3 7 7 0.25 1.51 3
Upper Sorbian-UFAL 8 959 222 417 49/14 93.46 0.11 87.11 93.71 3 7 7 0.56 2.89 7
Urdu-UDTB 110 682 448 740 49/12 97.10 0.05 80.95 93.44 3 7 7 0.34 0.82 3
Vietnamese-VTB 35 237 51 13 11/ 2 99.91 0.00 93.49 92.71 3 7 7 0.05 1.06 3
Yoruba-YTB 2 158 3 29 19/ 4 97.67 0.02 91.86 92.66 3 7 7 0.00 0.00 3

Table 6: For every corpus, its size, the number of unique lemma rules, the number of unique POS tags, and the
number of morphological features and morphological categories is presented. Then the test set results of lemma
accuracy, lemma Levenshtein, morphological accuracy and morphological F1 follow, using a model achieving best
score on the development set. We consider the regular model R, or a model on the merged corpus M and a model
without BERT embeddings N. Finally, we show the increase of the merged model to the regular model, the increase
of the regular model to the no-BERT model, and indicate if the language is present in BERT training data (BT).
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ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
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Abstract

This paper presents the submission by the
Charles University-University of Malta team
to the SIGMORPHON 2019 Shared Task on
Morphological Analysis and Lemmatization in
context. We present a lemmatization model
based on previous work on neural transduc-
ers (Makarov and Clematide, 2018b; Aharoni
and Goldberg, 2016). The key difference is
that our model transforms the whole word
form in every step, instead of consuming it
character by character. We propose a merg-
ing strategy inspired by Byte-Pair-Encoding
that reduces the space of valid operations by
merging frequent adjacent operations. The
resulting operations not only encode the ac-
tions to be performed but the relative position
in the word token and how characters need
to be transformed. Our morphological tag-
ger is a vanilla biLSTM tagger that operates
over operation representations, encoding op-
erations and words in a hierarchical manner.
Even though relative performance according
to metrics is below the baseline, experiments
show that our models capture important asso-
ciations between interpretable operation labels
and fine-grained morpho-syntax labels.

1 Introduction

Tasks related to morphological analysis have been
traditionally formulated as string transduction
problems tackled by weighted finite state trans-
ducers (Mohri, 2004; Eisner, 2002). More re-
cently, however, the problem has been tackled
with neural architectures featuring sequence-to-
sequence architectures (Kann and Schütze, 2016)
and neural transducers (Aharoni and Goldberg,
2016; Makarov and Clematide, 2018b,a).

In this paper we describe our submission for
the SIGMORPHON 2019 Shared Task related
to morphological analysis and lemmatization in
context (McCarthy et al., 2019). We focus on

an operation-based word formation process using
a neural transducer which consumes more than
one character at a time. Our main motivation
for this approach stems from neural transducers
that normally consume one character at a time
using context-enriched representation of charac-
ters.1 In language modelling, character-based
RNNs have a difficulty capturing long dependen-
cies between characters, especially dependencies
in words which are separated by several tokens.
This can be a crucial piece of information for mor-
phological analysis in context. This type of ap-
proach has already been extend effectively to Neu-
ral Machine Translation by (Sennrich et al., 2016),
who employ simple character n-gram models and
a segmentation based on the byte pair encoding
(BPE) compression algorithm.

2 Related Work

In the last few years, efforts on the analysis of
endangered low-resourced languages and the de-
velopment of basic language tools for them (Rios,
2016; Pereira-Noriega et al., 2017; Cardenas and
Zeman, 2018) have once more brought atten-
tion into the latent necessity for research of less
language-dependent models that are not unreason-
ably data hungry.

On the other hand, more recent efforts have
proposed combined strategies to bring together
the transducer paradigm and neural architectures
(Rastogi et al., 2016; Aharoni and Goldberg, 2016;
Lin et al., 2019). For example, the neural trans-
ducer proposed by (Aharoni and Goldberg, 2016)
presents a sequence to sequence architecture that
decodes one character at a time while attending at
the input character under a hard-monotonic con-
strain. However, their method relies on out-of-

1We release our code at https://github.com/
ronaldahmed/morph-bandit
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the-pipeline alignment of the input and output
string at the character level. Subsequent work
by Makarov and Clematide (2018b) proposed a
transition-based architecture instead, although still
operating under the same conditions, i.e. consum-
ing one character at a time and relying on pre-
alignment. More recently, however, Makarov and
Clematide (2018a) proposed to learn alignment
lattices along the transduction mechanism under
an imitation learning framework, hence eliminat-
ing the need for single, noisy alignments.

In this work, we propose a neural architecture
that encodes more expressive, interpretable trans-
ducer operations. We relax the condition of con-
suming one character at a time, and derive oper-
ations meant to be applied at the word level in-
stead. These operations are obtained by merging
initial character-level operations using the BPE al-
gorithm (Gage, 1994).

3 Task Description

The SIGMORPHON 2019 Shared Task (Mc-
Carthy et al., 2019) features three main tasks: (i)
cross-lingual transfer for inflection generation, (ii)
morphological analysis and lemmatization in con-
text, and (iii) an open challenge over past editions
of the shared tasks.

We participated in Task II for which a com-
plete sentence of word forms is presented and lem-
mas and feature bundles (morpho-syntantic de-
scription labels) are to be predicted for each to-
ken. This task features an outstanding diverse pool
of 66 languages from a total of 107 treebanks.
Data (forms, lemmas, and feature bundles) are
obtained from UniversalDependencies v.2.3 tree-
banks (Nivre et al., 2018). However, the feature
bundles are translated into the UniMorph tagset
(Kirov et al., 2018) using the mapping strategy
proposed by McCarthy et al. (2018).

4 Problem Formulation

Let w ∈ V and z ∈ V L be a word type and
its corresponding lemma; and let A be a set of
string transformation actions. We define the func-
tion T : V × Am 7→ V L that receives as input a
word form w and a sequence of string transforma-
tions a = 〈a0, ., ai, .., am〉. T iteratively applies
the transformations one at a time and returns the
resulting string. The objective is to obtain a se-
quence of actions a such that a form w gets trans-
formed into its lemma z, i.e. T (w, a) = z.

4.1 String transformations at the word level

We encode every string transformation -
henceforth, action- ai ∈ A as follows:
〈operation-position-segment〉. The ad-
ditional information encoded such as position and
segment (characters) involved, allows actions to
operate at the word level and act upon a segment
of characters instead of a single character. This
is a key difference between A and the action sets
of most previously proposed neural transducers
(Aharoni and Goldberg, 2017; Makarov and
Clematide, 2018b,c) which only encode the
operation to perform and consume one character
at a time.

4.2 Obtaining gold action sequences

We discuss now how to deterministically popu-
late A. We start off with operations that act upon
one character at a time. We derive these oper-
ations with the Damerou-Levenshtein (DL) dis-
tance algorithm which adds the transposition op-
eration in addition to the traditional set of the edit
distance algorithm. However, the set A of the
form 〈operation-position-segment〉 di-
rectly derived by this algorithm is too large and
sparse to be learned effectively, especially because
of the position component.

Hence, we simplify A by merging the k most
frequent operations performed at adjacent posi-
tions by using Byte-Pair-Encoding (BPE) (Gage,
1994). Furthermore, we replace the position
component of actions performed at the beginning
of a token with the label A, indicating that it is a
prefixing action. Analogously, we use the label A
to indicate it is a suffixing action. Table 1 presents
a description of the licensed values of each com-
ponent, including the operation set considered.

Finally, actions are sorted so that prefix actions
are performed first, followed by inner-word ac-
tions (positions i ), and lastly, suffix actions. In
addition, prefix and suffix actions are sorted so that
T would process the word form from the outside
in. Consider the example presented in Table 2, a
sequence of suffix actions. The form visto (Span-
ish for ‘seen’, past participle) is transformed into
the lemma ver (‘to see’), with all actions operating
at the right border of the current token.

5 System Description

In this section we describe the models presented
for Task 2 on morphological tagging and lemma-
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Component Label Description
operation INS insert

DEL delete
SUBS substitute
TRSP transpose
STOP stop

position A at the beginning (prefix)
A at the end (suffix)
i at position i

segment c c ∈ Σ∗\{∅}

Table 1: Description of components encoded in action
labels. Σ: set of characters observed in the training
data.

Token Action
visto DEL-A -o
vist DEL-A -t
vis SUBS-A -er
ver STOP
visto DEL-A -o DEL-A -t SUBS-A -er STOP

Table 2: Example of step-by-step transformation from
form visto (Spanish for ‘seen’, past participle) to
lemma ver (‘to see’). Bottom row presents the final
token representation as the initial form followed by the
action sequence.

tization in context. We tackle the tasks of lemma-
tization and analysis with two separate, pipelined
models, as follows.

5.1 Lemmatization Model
We posit the task of lemmatization as a language
modelling problem over action sequences. Let
w = 〈w0, ..., wi, ..., wn〉 be a sequence of word to-
kens, z = 〈z0, ..., zi, ..., zn〉 the lemma sequence
associated with w, and ai = 〈ai0, ..., aij , ...aim〉
the action sequence such that T (wi, ai) = zi.
We encode ai using an RNN with an LSTM cell
(Hochreiter and Schmidhuber, 1997), as follows
hij = LSTM(eij , h

i
j−1)

where eij is the embedding of action aij . Then, the
probability of action aij is defined as

P (aij |ai1:j−1, θ) = softmax(g(W ∗hj + b)) (1)

where g(x) is the ReLU activation function, and
W and b are network parameters. As a way to in-
troduce the original word form into the encoded
sequence, we prepend wi to ai. Hence, the prob-
ability of the first action is determined by h0 =
LSTM(ei0, h

i−1
m ) where hi−1m is the last state of

the encoded action sequence of the previous word
wi−1, and ei0 is the embedding of word wi.

wi ai
1 ai

2 ai
3

ai
1 ai

2 ai
3 STOP

Figure 1: Architecture of the lemmatization model
posited as a language model over action sequences.

The network is then optimized by minimiz-
ing the negative log-likelihood of the action se-
quences, as follows,

L(W, θ) = −
∑

w∈W

n∑

i=0

P (wi|θ)·

m∑

j=1

P (aij |ai1:j−1, θ)

where W is the set of all sentences in the train-
ing set and θ represents the parameters of the net-
work. Figure 1 presents a representation of the
lemmatizer model architecture. Note that aim is
the special action label STOP . During decoding,
we construct the lemma zi by running T over the
predicted action sequence of wi.

5.2 Morphological Tagging Model
Let F i = {f i0, ..., f ik, f iK} be the morpho-syntactic
description (MSD) label associated with word
form wi, defined as the concatenation of all indi-
vidual features fk such as N or Pl, and F i. We
tackle the task of morphological tagging as a se-
quence labeling problem over aggregated repre-
sentations of word forms.

We starts off by encoding the action sequence
using a bidirectional LSTM (Graves et al., 2013)
in order to obtain a word level representation xi =
[fm; b0], where fm is the the last forward state and
b0 is the first backward state. We use action em-
beddings trained by the lemmatizer and we freeze
them during training.

Then, the sequence x0, .., xn, ui =
biLSTM(xi, ui−1) is encoded by a word-
level biLSTM
ui = biLSTM(xi, ui−1) Then, the probablity of
feature label F i is given by

P (F i|x1:i−1, θ) = softmax(g(W ∗ui + b)) (2)

where g(x) is a ReLU activation function, and W
and b are network parameters. The network is op-
timized using cross-entropy loss.
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6 Experimental Setup

We follow a two step approach to morphological
analysis by first obtaining the action sequence us-
ing the lemmatizer model, and then obtaining the
feature label sequence over these action represen-
tations. All models were implemented and trained
using PyTorch 1.0.0. 2

6.1 Action sequence preprocessing
We lowercase forms and lemmas before running
the DL-distance algorithm. Following the BPE
training procedure described by Sennrich et al.
(2016), we obtain the list of merged operations
from the action sequences derived from the train-
ing data. We limit the number of merges to
50. Then, these merges are applied to action se-
quences on the development and test data.

6.2 Training and optimization of details
Both the lemmatizer and analyzer models were
trained using Adam (Kingma and Ba, 2017), regu-
larized using dropout (Srivastava et al., 2014), and
employing an early stopping strategy. We tune the
hyper-parameters of both models over the devel-
opment set of Spanish (es ancora)3 and then we
use the optimal configuration to train on all tree-
banks except kpv ikdp, kpv lattice, and sa ufal.
Preliminary experiments showed that these tree-
banks needed a smaller analyzer model to perform
well. In this case, we choose kpv ikdp as our ref-
erence to obtain an optimal hyper-parameter con-
figuration.

In each case, hyper-parameters were optimized
over 30 iterations of random search guided by a
Tree-structured Parzen Estimator (TPE).4 Table 3
presents the hyper-parameters for the lemmatizer,
analyzer, and the small version of the analyzer.

For decoding of lemmas, we follow a greedy
approach to action sequence decoding. We also
experimented with beam search but the improve-
ments were not significant. Furthermore, we im-
plement heuristics to prune a predicted sequence
of actions. In addition to the heuristic of halt-
ing decoding if a PAD or STOP action is found,
we halt if the action is not valid given the current
string. For example, the action DEL- 5 -o can-
not be applied to string who for the simple reason

2https://pytorch.org/
3We wanted to use a language that is morphologically

more complex than English as our reference.
4We use HyperOpt library (http://hyperopt.

github.io/hyperopt/)

Hyper-parameter Lem Anlz Anlz-
small

Batch size 128 24 40
Learning rate 6.90E-05 1.00E-04 0.01
Dropout 0.19 0.05 0.07
Epochs / patience 20 / 5 100 / 30 100 / 30
Action embedding 140 140 140
Action-LSTM cell 100 100 10
Word-LSTM cell - 100 40
FF layer size 100 100 100
Clipping threshold - - 0.38

Table 3: Hyper-parameters of all models proposed.
Lem = Lemmatizer; Anlz = Analyzer

that the string is not long enough and, hence, the
action is not valid.

6.3 Baseline model
We consider the baseline neural model provided
by the organizers of the shared task. The architec-
ture, proposed by Malaviya et al. (2019), performs
lemmatization and morphological tagging jointly.
The morphological tagging module of the model
employs an LSTM-based tagger (Heigold et al.,
2017), whilst the lemmatizer module employs a
sequence-to-sequence architecture with hard at-
tention mechanism (Xu et al., 2015).

6.4 Co-occurrence of actions and
morphological features

We further investigate the co-occurrence of ac-
tion labels with individual morphological features.
Given the word form wi and its associated mor-
phological tag F i = {f i0, ..., f ik, f iK} and action
sequence ai = 〈a0, ..., aj , ..., am, let us define
the joint probability distribution between individ-
ual features and action labels, as

p(f ik, a
i
j) = P (f ik|x1:i) · P (aij |ai1:j−1) (3)

We consider P (F i|x1:i) = P (f ik|x1:i),∀f ik ∈ F i.
Note that P (F i|x1:i) and P (aij |ai1:j−1) are the
probabilities obtained by the lemmatizer and tag-
ger in equations 1 and 2, respectively.

7 Results and Discussion

7.1 Lemmatization and Morphological
Tagging

Table 4 presents results on all metrics for the top
5 and bottom 5 scored treebanks according to the
MSD-F1 scores on the official test evaluation. Re-
sults for the development set are presented as av-
eraged over 10 runs with standard deviation value
in parenthesis.
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In lemmatization, our model underperforms the
baseline for most treebanks, incurring in an error
increase ranging from 0.27% to 35.14% in lemma
accuracy. However, we improve over the base-
line on the following languages: Tagalog (tl trg),
Chinese (zh gsd, zh cfl), Cantonese (yue hk), and
Amharic (am att).

We hypothesize that the relative poor perfor-
mance in lemmatization stems from the input rep-
resentation, i,e. the action sequences. Combina-
tions of position information inside the token
( i ) and segment characters produces an action
setA that is too fine-grained and sparse, even after
the BPE merging of adjacent actions.

In morphological tagging, we observe an error
increase ranging from 0.31% to 7.34% in MSD-F1
score. The exception were Russian (ru gsd) and
Finnish (fi tdt) for which we obtain an error de-
crease of 34.88% and 46.71% in MSD-accuracy,5

respectively.

7.2 Actions and Morphological Features

Figure 2 shows the distribution of individual mor-
phological features over action labels, as defined
in Eq.3 for Czech (cs pdt). Every row represents
how likely a fine-grained feature label is to co-
occur with an action performed during lemmatiza-
tion of a token. On the left, we have co-occurrence
distributions of gold actions and gold feature la-
bels. On the right, we have co-occurrence distri-
butions of predicted actions and predicted feature
labels. For ease of visualization, we only plot the
20 most frequent action labels and the 30 most fre-
quent features in the development set. We can ob-
serve the lemmatizer and tagger succeed in fitting
the gold distribution. This is to be expected since
the distribution in Eq.3 depends on P (F i|x1:i) and
P (aj |a1:j), which are directly optimized by our
models. We obtain similar plots for Spanish, En-
glish, Turkish, German, and Arab.

This analysis also sheds light on which ac-
tions and morphological features the model learns
to associate. For example, action del-A -y
is strongly associated with features PL, N, and
MASC, in accordance with the suffix y being a
plural marker. Another notable example is that
of the prefix ne which negates a verb. We ob-
serve that action del- A-ne is strongly associ-
ated with feature V. We also observe ubiquitous

5We noticed that the official MSD-F1 score of the baseline
for these treebanks is reported as 0.

features such as POS (positive polarity), which
shows an annotation preference unless the bound
morpheme of negation is observed (ne).

8 Limitations

8.1 Fixed gold action sequences

Obtaining gold action sequences as a previous, in-
dependent step presents a drawback, as pointed
out by Makarov and Clematide (2018a). The op-
timal action sequence obtained for certain word-
lemma pair might not be unique. Hence, if the
lemmatizer predicts an alternative valid action se-
quence, the loss function would still penalize it
during training. Given that we consider only one
optimal sequence per word-lemma pair, our model
cannot take advantage of all the possible valid al-
ternative gold sequences.

8.2 Monotonic correspondence assumption

Previous work on neural transducers for morphol-
ogy tasks (Aharoni and Goldberg, 2017; Makarov
and Clematide, 2018b,a) rely on the fact that an
almost monotonic alignment of input and output
characters exists. This assumption also includes
that both words and lemmas are presented in the
same writing system (same-script condition), if no
off-the-shelf character mapper is used. Our ac-
tion sequencer relies on the same-script condition
in order to not produce too long sequences and in
turn, our lemmatizer relies on it to learn meaning-
ful sequences.

However, upon inspection, we identify a cou-
ple of treebanks that violate this condition. In the
first one, Arabic-PUD (ar pud), lemmas are ro-
manized, i.e. presented in Latin rather than Arabic
script. For the second one, Akkadian-PISANDUB
(akk pisandub), different writing systems (ideo-
graphic vs. syllabic) are encoded in the forms but
are not preserved in the lemmas. This encoding in-
cludes extra symbols such as hyphens and square
brackets as well as capitalization of continuous
segments. This kind of mismatch between word
forms and lemmas forces our lemmatizer to learn
action sequences that transform one character at a
time, leading to poor performance given our archi-
tecture (16.75% and 14.36% on lemmata accuracy
for ar pud and akk pisandub, respectively).

8.3 Lemmatizer biased to copy word forms

Languages with little to no morphology such as
Chinese or Vietnamese will bias a transducer into
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Treebank Dev Test
LAcc Lev-Dist MAcc M-F1 LAcc Lev-Dist MAcc M-F1

UD Catalan-AnCora 83.25(0.46) 0.27(0.01) 80.56(0.44) 85.59(0.35) 83.47 0.26 81.94 86.79
UD Spanish-GSD 93.78(0.34) 0.11(0.01) 77.58(0.31) 84.64(0.18) 93.83 0.10 78.44 85.06
UD Spanish-AnCora 85.68(0.28) 0.23(0.01) 78.42(0.24) 84.07(0.16) 84.68 0.24 79.66 84.72
UD French-GSD 86.49(0.45) 0.23(0.01) 79.95(0.16) 85.44(0.17) 86.85 0.21 78.59 84.51
UD Hindi-HDTB 92.73(0.26) 0.15(0.01) 69.02(0.42) 84.35(0.20) 92.92 0.15 69.43 84.38
UD Latin-Perseus 57.14(0.65) 1.12(0.01) 31.97(0.86) 33.77(1.46) 56.02 1.14 30.96 32.14
UD Lithuanian-HSE 49.47(0.58) 1.13(0.03) 22.53(6.82) 24.87(4.19) 35.82 1.24 21.39 28.57
UD Cantonese-HK 98.68(0.19) 0.02(0.00) 23.23(0.18) 25.11(0.17) 98.57 0.01 23.57 25.76
UD Chinese-CFL 100.00(0.00) 0.00(0.00) 24.21(0.06) 25.73(0.05) 99.53 0 23.29 24.71
UD Yoruba-YTB 96.80(0.00) 0.03(0.00) 24.40(0.31) 22.06(0.96) 96.12 0.04 20.54 17.5
Mean 74.39 0.62 44.07 53.79 74.94 0.62 50.37 58.81
Median 78.46 0.43 45.96 55.13 78.42 0.44 52.77 62.26

Table 4: Results on Task2 for the best and worst 5 treebanks. Scores over the development set are presented as mean
(std) values over 10 runs. Scores over test set are taken from the official results. LAcc = lemmatization accuracy;
Lev-Dist = Levenshtein distance of lemmas; MAcc = accuracy of morphosyntactic descriptions (features); M-F1
= F1 score of morphosyntactic descriptions.
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Figure 2: Probability distribution of gold and predicted morphological features given a certain action label, for the
Czech-PDT treebank (cs pdt). For ease of visualization, we only plot the 20 most frequent action labels and the 30
most frequent features in the development set.
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copying the whole input to the output, as pointed
out by Makarov and Clematide (2018b). Our pro-
posed lemmatizer exhibits the same kind of bias,
obtaining up to 99.53% of lemmata accuracy for
Chinese-CFL and Levenshtein distance of 0.0 in
test set and 100% and 0.0 in the development set.
Other languages benefit from this bias also, as can
be observed in Figure 3. We note that, on average,
the lemmatizer predicts no more than 3 actions be-
fore halting.
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Figure 3: Average number of predicted actions over de-
velopment set, not including the STOP operation, one
data point per treebank.

9 Conclusions

We presented our submission to the SIGMOR-
PHON 2019 Shared Task on Morphological Anal-
ysis and Lemmatization in context. We presented
a lemmatization strategy based on word formation
operations derived from extended edit-distance
operations that operate at the word level instead of
at the character leve. These operations are merged
using a BPE-inspired algorithm in order to encode
segment (prefix, suffix) information in addition to
the action to perform. Most notably, the proposed
models are capable of associate the derived inter-
pretable operations with morpho-syntactic feature
labels. We find that the proposed architectures un-
derperform the shared task baseline for most tree-
banks, showing plenty of room for improvement
in this regard.
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Mărănduc, David Mareček, Katrin Marheinecke,
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Abstract

We present de-lexical segmentation, a lin-
guistically motivated alternative to greedy or
other unsupervised methods, requiring lan-
guage specific knowledge, but no direct su-
pervision. Our technique involves creating a
small grammar of closed-class affixes which
can be written in a few hours. The gram-
mar over generates analyses for word forms
attested in a raw corpus which are disam-
biguated based on features of the linguis-
tic base proposed for each form. Extending
the grammar to cover orthographic, morpho-
syntactic or lexical variation is simple, mak-
ing it an ideal solution for challenging corpora
with noisy, dialect-inconsistent, or otherwise
non-standard content. We demonstrate the
utility of de-lexical segmentation on several
dialects of Arabic. We consistently outper-
form competitive unsupervised baselines and
approach the performance of state-of-the-art
supervised models trained on large amounts of
data, providing evidence for the value of lin-
guistic input during preprocessing.

1 Introduction

Non-standard domains, dialectal variation, and
unstandardized spelling make segmentation chal-
lenging, though morphologically rich languages
require good segmentation to enable downstream
applications from syntactic parsing to machine
translation (MT). For domains lacking sufficient
annotated data to train segmenters, one must re-
sort to language specific greedy techniques or lan-
guage agnostic unsupervised techniques. Greedy
techniques use maximum matching to identify
base words, leveraging large dictionaries (Guo,
1997). Yet such dictionaries are often unavailable
or too expensive for low resource languages. Lan-
guage agnostic unsupervised options like MOR-
FESSOR (Creutz and Lagus, 2005) and byte pair
encoding (BPE) (Sennrich et al., 2016) assume no

resources beyond raw text but can yield lower per-
formance on downstream tasks (Vania and Lopez,
2017; Kann et al., 2018). They also suffer from
typological biases and favor intended applications
at the expense of others.

To this end, we present De-lexical Segmenta-
tion (DESEG), a slightly more expensive but pow-
erful alternative to language agnostic morpholog-
ical segmentation, realizing most of the benefits
of supervised segmentation at far less a cost. DE-
SEG requires language specific input in the form
of a small grammar describing the combinatorics
of closed-class affixes. We demonstrate that such
a grammar can be constructed easily and rapidly
for a new language or dialect. Hence, DESEG ad-
dresses the scenario in which there is no super-
vised segmenter available for a given language or
dialect (or no segmenter trained on a domain with
sufficient lexical overlap with the target domain in
its training data), but the user does have linguistic
knowledge of the target language/dialect.

The user-provided grammar is employed in con-
junction with a large, raw corpus. The grammar
over generates analyses for all words therein, al-
lowing for maximal recall not only of the possible
affix combinations, but also variant spellings and
dialectal idiosyncrasies. The preferred analysis is
disambiguated based on the fertility with which its
proposed base attaches to different affixes in anal-
yses of other words throughout the corpus. This
follows from the logic that valid bases are more
likely to productively combine with more expo-
nents1 (Bertram et al., 2000). By leveraging lan-
guage specific resources but learning to disam-
biguate empirically without supervision, we mit-
igate much of the sparsity inherent in processing

1Exponents refer to recurring means by which morpho-
syntactic properties are realized within classes of words, e.g.,
adding suffix +s to get the third person singular present tense
for verbs like WALK, TALK, and SKIP.
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non-standard domains.
Using a corpus of several Arabic dialects ex-

hibiting rich and complex morphology, unstan-
dardized spelling, and variation bordering on mu-
tual unintelligibility, we evaluate DESEG intrin-
sically on language modeling (LM) and extrin-
sically on MT. DESEG consistently outperforms
MORFESSOR and BPE while only costing a few
hours of grammar-building labor; and in some en-
vironments it outperforms state-of-the-art super-
vised Arabic tokenizers MADAMIRA (Pasha et al.,
2014) and FARASA (Abdelali et al., 2016). The
success of such a simple model is strong evidence
for the value of linguistic input during preprocess-
ing. DESEG is publicly available at github.
com/CAMeL-Lab/deSeg.

2 Related Work

Many morphologically rich languages lack crucial
preprocessing resources like morphological ana-
lyzers or segmenters. Even well resourced lan-
guages often lack such resources for non-standard
dialects and domains. There have been many ap-
proaches to address this problem, varying along a
number of dimensions: the degree of language in-
dependence or specificity, the required amount of
machine learning supervision, the degree of depth
and richness of the morphological representations.

Language agnostic unsupervised models
There are many works using minimally super-
vised to unsupervised models of morphology
for connecting morphologically related words
and identifying optimal (and at times application
dependent) segmentations (Smith and Eisner,
2005; Creutz and Lagus, 2005; Snyder and Barzi-
lay, 2008; Poon et al., 2009; Dreyer and Eisner,
2011; Stallard et al., 2012; Sirts and Goldwater,
2013; Narasimhan et al., 2015; Sennrich et al.,
2016; Eskander et al., 2016b; Ataman et al.,
2017; Ataman and Federico, 2018; Eskander
et al., 2018). In this paper, we compare to two
popular language agnostic segmentation systems:
MORFESSOR (Creutz and Lagus, 2005) and BPE

(Sennrich et al., 2016). Both train on large corpora
of unannotated text in an unsupervised manner.

Standard Arabic models Modern Standard
Arabic (MSA) morphological analysis, disam-
biguation and tokenization has been the focus of
a large number of efforts. Khoja and Garside
(1999) was one of the earliest published efforts

on automatic shallow and deterministic segmen-
tation for MSA. Darwish (2002) used limited re-
sources and greedy techniques to automatically
learn rules and statistics to build a shallow mor-
phological analyzer. There are many MSA mor-
phological analyzers with rich representations and
good coverage that required very intensive efforts
to create (Beesley, 1998; Buckwalter, 2004; Attia,
2006, 2007; Smrž, 2007; Boudchiche et al., 2017).
Buckwalter (2004) is perhaps the most commonly
used among them, as it contributed the repre-
sentations for the Penn Arabic treebank (PATB)
(Maamouri and Bies, 2004). The PATB has been
the most used resource for supervised morpho-
logical disambiguation (Diab et al., 2004; Habash
and Rambow, 2005; Pasha et al., 2014; AlGah-
tani and McNaught, 2015; Zalmout and Habash,
2017). Some efforts have used other annotated
resources and/or large unannotated data sets (Lee
et al., 2003; Abdelali et al., 2016; Freihat et al.,
2018). More closely related to this paper, Erd-
mann and Habash (2018) demonstrated that de-
lexicalized information provides a cheap means
of inducing morphological knowledge and thereby
predicting lexical information in MSA. They em-
ploy a de-lexicalized grammar which is similar to
ours, but they do not handle dialectal variants or
spelling variation. They also do not use the gram-
mar for segmentation, but for pruning word em-
bedding clusters in order to predict the paradigm
membership of forms encountered in raw text.

Dialectal Arabic models Work on dialectal
Arabic morphology and tokenization is relatively
newer than work on MSA. Some of the earlier ef-
forts worked on rule-based approaches to model
dialectal morphology directly (Habash and Ram-
bow, 2006; Habash et al., 2012), or exploiting
existing MSA resources (Salloum and Habash,
2014). Later, a number of annotation efforts
have led to the creation of varying sizes of di-
alectal annotated corpora following the style of
the PATB (Maamouri et al., 2014; Jarrar et al.,
2016; Al-Shargi et al., 2016; Khalifa et al., 2018;
Alshargi et al., 2019). The created annotations
supported models for dialectal Arabic analysis,
disambiguation and tokenization building on the
same successful approaches in MSA (Eskander
et al., 2016a; Habash et al., 2013; Pasha et al.,
2014; Zalmout et al., 2018; Zalmout and Habash,
2019). More closely related to this paper, El-
desouki et al. (2017) used de-lexicalized analy-
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sis strategy for four colloquial varieties of Arabic,
though they also use minimal training data and ex-
tract features from an open class lexicon to learn
either an SVM or bi-LSTM-CRF disambiguation
model. They further show that domain adapta-
tion from existing MSA training data is benefi-
cial. Also, Samih et al. (2017) applied a related
model to segmentation, allowing different Arabic
dialects to inform one another, thus avoiding the
need to perform dialect identification during pre-
processing.

We compare our model to MADAMIRA (Pasha
et al., 2014) and FARASA (Abdelali et al., 2016),
which represent the fully supervised state of the art
for segmenting Arabic in the standard domain, but
have limited support for multiple colloquial vari-
ants of the language.

Finally, we note that, linguistically, our work is
inspired by Bertram et al. (2000) who find that
prolific stems with large derivational families are
accessed more quickly. Their work suggests that
stem fertility—or the productivity with which a
stem can combine with different affixes—is cog-
nitively relevant to morphological organization.

3 De-lexical Segmentation for Arabic

In this section, we introduce a case study on seg-
menting a multi-dialect Arabic corpus and explain
the linguistic challenges it presents for popular ap-
proaches to segmentation. Furthermore, we dis-
cuss the construction of DESEG’s grammar and its
disambiguation algorithm.

3.1 Arabic and its Dialects

Arabic is highly diaglossic (Ferguson, 1959), with
the relatively consistent high register of Modern
Standard Arabic being learned in schools across
the Arab World. Meanwhile the often mutually
unintelligible low register variants—collectively
known as dialectal Arabic (DA)—are spoken col-
loquially. The phonological, morpho-syntactic,
and lexical variation within the Arabic sprachbund
is comparable to that among Romance languages
(Chiang et al., 2006; Rouchdy, 2013; Erdmann
et al., 2017), leading to problematic noise in multi-
dialect corpora (Erdmann et al., 2018). Further-
more, lack of spelling conventions in DA exacer-
bates data sparsity, as does a rich morphology fea-
turing templatic phenomena and robust cliticiza-
tion, making it challenging to train quality seg-
menters even with much supervised data.

3.2 Data

To demonstrate how our model handles such chal-
lenging phenomena, we apply it to the CORPUS6
subset of the MADAR-BTEC (Takezawa et al.,
2002) corpus of Arabic dialects (Salameh et al.,
2018). This consists of 12,000 sentences in the
travel domain (9,000 for training) parallel between
English, MSA, and the DA varieties spoken in
Beirut, Cairo, Doha, Rabat, and Tunis. This com-
prises a representative sample of the breadth of
intra-DA variation (Bouamor et al., 2018).

In addition to CORPUS6, we also use large
amounts of raw monolingual data to train our
segmenter and the unsupervised baselines. To
avoid introducing even more noise, we restrict our
monolingual datasets as much as possible to sim-
ilar domains. For DA, we use the four subsets of
Almeman and Lee (2013)’s web crawl of forums,
comments and blogs, consisting of over 10 mil-
lion words for each subset’s dialect region. It is
worth noting however, that the granularity of their
dialect regions is coarser than the granularity of
CORPUS6. Hence, their Maghrebi dialect corre-
sponds to two dialects in CORPUS6, Tunis and Ra-
bat, while the remaining three dialect regions have
rather obvious one-to-one correspondences with
CORPUS6, i.e., Egyptian to Cairo, Levantine to
Beirut, and Gulf to Doha. For MSA, which rarely
occurs consistently (i.e., outside of brief instances
of code-mixing) in such casual domains, we used
the TED corpus (Cettolo and Girardi, 2012) for
our monolingual data set, finding a compromise
between domain relevance and corpus size. It con-
tains about 2.5 million words.

Obviously, CORPUS6 is small relative to other
MT corpora, but this is exactly why it is a mean-
ingful evaluation corpus. Larger parallel cor-
pora are often only available for better resourced
languages/domains where fully supervised seg-
menters are also more likely to be available, negat-
ing the need to build one’s own segmenter. Fur-
thermore, as parallel data becomes less sparse, to-
kenization necessarily has less of an effect since
models can memorize and effectively use longer
sequences. With that said, CORPUS6 is commis-
sioned, and in future work we would like to also
test DESEG’s performance on natural corpora.

3.3 De-lexical Analysis

The DESEG grammar provides all possible de-
lexical analyses of words by assuming any n-gram
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(A)
Morph.Feat. Prefix Suffix

PV.1US ∅ +t �H+
PV.1UP ∅ +nA A 	K+
PV.2MS ∅ +t �H+
PV.2FS ∅ +t/ty ú


�G/ �H+

PV.2US ∅ +ty ú

�G+

PV.2UP ∅ +twA @ñ�K+
PV.3MS ∅ ∅
PV.3FS ∅ +t �H+
PV.3UP ∅ +wA @ð+

IV.1US A/n+ + 	à/ @ ∅
IV.1UP n+ + 	à +wA/∅ ∅/ @ð+
IV.2MS t+ + �H ∅
IV.2FS t+ + �H +y/yn/∅ ∅/ 	áK
/ø
 +

IV.2UP t+ + �H +wA/wn 	àð/ @ð+
IV.3MS y+ +ø
 ∅
IV.3FS t+ + �H ∅
IV.3UP y+ +ø
 +wA/wn 	àð/ @ð+

CV.2MS ∅ ∅
CV.2FS ∅ +y/∅ ∅/ø
 +

CV.2UP ∅ +wA @ð+

NOM.MS ∅ ∅
NOM.FS ∅ +~ �è+
NOM.MD ∅ +yn 	áK
+
NOM.FD ∅ +tyn 	á�
�K+
NOM.MP ∅ +yn 	áK
+
NOM.FP ∅ +At �H@+

PART ∅ ∅

(B)
Proclitics Orth POS

ART Al+ +È@ DET
ART h+Al+ +È@+ è DEM_PART+DET

PARTn š+ + �� INTERROG_PART
PARTn ς+ +¨ PREP

PARTn b+ +H. PREP
PARTn d+ +X PREP
PARTn f+ +

	¬ PREP
PARTn k+ +¼ PREP
PARTn w+ +ð PREP
PARTn yA+ + AK
 VOC_PART
PARTn Ā/A+ +

�
@/ @ VOC_PART

PARTn l+ +È PREP
PARTv H+ +h FUT_PART

PARTv b/m+ +Ð/H. PROG_PART
PARTv b+ +H. FUT_PART
PARTv g+ +

	̈
FUT_PART

PARTv h+ + è FUT_PART
PARTv k+ +¼ PROG_PART
PARTv t+ + �H PROG_PART
PARTv l+ +È JUS_PART

m_NEG m/mA+ + AÓ/Ð NEG_PART

CONJ f+ +
	¬ CONJ

CONJ f+ +
	¬ CONNEC_PART

CONJ f+ +
	¬ RC_PART

CONJ t+ + �H SUB_CONJ
CONJ w+ +ð CONJ
CONJ w+ +ð SUB_CONJ

(C)
Enclitics Orth POS
PRONn,v +kw ñ»+ 2UP
PRONn,v +ky ú
»+ 2UP

PRONn,v +km Õ»+ 2MP/2UP

PRONn,v +h/w ð/ è+ 3MS
PRONn,v +hA Aë+ 3FS
PRONn,v +hm Ñë+ 3UP
PRONn,v +hn 	áë+ 3FP
PRONn,v +hn/n 	áë/ 	à+ 3UP
PRONn,v +j h. + 2FS

PRONn,v +k ¼+ 2MS/2FS
PRONn,v +kn 	á»+ 2UP/2FP
PRONn,v +nA A 	K+ 1UP
PRONn,v +y ø
 + 1US

PRONv +ny ú

	G+ 1US

IOBJ +l+h/w ð/ è+È+ PREP+3MS
IOBJ +l+hA Aë+È+ PREP+3FS
IOBJ +l+hm Ñë+È+ PREP+3MP/3UP
IOBJ +l+hn/n 	à/ 	áë+È+ PREP+3FP/3UP
IOBJ +l+j h. +È+ PREP+2FS

IOBJ +l+k ¼+È+ PREP+2MS/2FS
IOBJ +l+km Õ»+È+ PREP+2MP/2UP

IOBJ +l+kn 	á»+È+ PREP+2FP/2UP
IOBJ +l+nA A 	K+È+ PREP+1UP
IOBJ +l+y ø
 +È+ PREP+1US

NEG_PART +š ��+ NEG_PART

(D) WORD → CONJ? (NOM|VERB|PART)
PART → PART0 PRONn?
NOM → PARTn? (ART? NOM0|NOM0 PRONn?)
VERB → m_NEG? VERB1 NEG_PART?

VERB1 → (PARTv? VERB0.iv |VERB0.pv |VERB0.cv) PRONv? IOBJ?

Table 1: All the elements needed to build a de-lexicalized morphological analyzer for the five dialects. (A) rep-
resents all the abstract meta paradigms for the basic Arabic POS: verbs (perfective (PV), imperfective (IV), and
command (CV)), nominals (NOM), and particles (PART). (B) and (C) are the set of clitics along with their re-
spective POS, categorized by their morphological role. The CFG in (D) describes the valencies of the clitics
surrounding the base form.

of some minimum length can be an open class
base, provided the remaining characters comprise
a supported affix pattern. Hence, a simple gram-
mar which only supports words without affixes or
with a single suffix, +s, would return two analyses
for wugs: wugs and wug +s, and one for foo: foo.
To build such a grammar for an Arabic dialect, we
target clitic affixation, as this phenomenon is non-
templatic with minimal fusional edits, making it
easier to model with a smaller grammar, yet it ac-
counts for a great deal of sparsity, as Arabic clitics
are as productive as regular inflectional exponents.

We use our grammar to build a de-lexicalized
morphological analyzer for all DA dialects target-
ing the D3 segmentation scheme (Habash, 2010),
which separates all clitics and only clitics from the
base forms to which they attach. We chose D3

as Sadat and Habash (2006) demonstrate it to be
the most effective scheme for low resource Ara-
bic MT. 2 While Arabic exhibits many other non-
concatenative, templatic phenomena which com-
plicate segmentation and tokenization, clitics are
always concatenated to the outsides of base forms
after the templatic pattern has been applied and
are thus easier to separate. Occasionally, fusional
processes can alter phonemes/graphemes on either
side of base–clitic or clitic–clitic boundaries, but
no templatic process is ever invoked to alter the
internal structure of bases by affixing any clitic.

We follow Khalifa et al. (2017)’s approach to

2With more data, the more effective schemes are ATB and
D2 (Sadat and Habash, 2006). ATB resembles D3 but does
not separate the definite article proclitic. D2 resembles ATB
but does not separate the pronominal enclitic.
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extending paradigms with possible clitic combi-
nations, though we don’t require any stem lexi-
cal information. Hence, we cheaply enable the
grammar to over generate, accommodating more
spelling variants and removing the need to con-
struct an open class lexicon. Instead, we simply
provide meta paradigms for abstractions over base
forms with the same combinatorics. Each cell in
a meta paradigm represents a unique exponent, or
possible mapping of clitics to positions surround-
ing the abstract base, such that the inflected form
would be valid for any real base represented by
that meta paradigm. Considering verbal affixation
in English, walk and talk would be two real bases
taking the same meta paradigm with four cells,
represented by exponents _+ing _+s, _, and _+ed.
Thus, any two bases exhibiting distinct exponent
signatures will belong to distinct meta paradigms.

In Arabic, by contrast, paradigms are enu-
meratively and integratively more complex than
the TALK/WALK meta paradigm (Ackerman and
Malouf, 2013). Table 13 exemplifies Arabic’s enu-
merative complexity, as verbs, for instance, de-
pending on dialect, can take some 20 affixes ac-
cording to (A), realizing various combinations of
aspect, person, gender, and number.

Having taken an affix, the verb can participate
in myriad possible additional combinations with
clitics in (B) and (C) as dictated by the bottom
two rules in the CFG in (D). Arabic is thus, in-
tegratively complex in that rich exponents can be
comprised of many interacting morphemes whose
meanings are often affected by each other’s pres-
ence. Furthermore, fusional processes acting on
such complex forms results in frequent allomor-
phy. Allomorphy is mostly limited to internal,
non-clitic morphemes, which enables us to greatly
reduce sparcity without propagating error by fo-
cusing on clitics. Hence, we can represent all
verbs with a single meta paradigm which is large,
but can be described in two CFG rules. In prac-
tice then, each of the 20 possible affixes in (A)
will correspond to distinct abstract bases, though
this eliminates the need to specify 20 distinct meta
paradigms for single lexemes. We target relat-
ing these abstract bases to each other via non-
concatenative modeling in future work.

In terms of the effort required to create the
grammar, there are a total of 98 unique affixes for

3POS tags in Table 1 are presented in the Buckwalter
scheme used in annotating the Penn Arabic Treebank (PATB)
(Maamouri and Bies, 2004)

all dialects. We include the non-clitic affixes in Ta-
ble 1 (A) in this count as they are used to restrict
the set of possible meta paradigms. Of these, 45%
appear in at least two dialects and 33% appear in
all dialects. The total number of affix–dialect pairs
is 288. On average, 88% of each dialect’s affixes
are shared by at least one other dialect and 45%
by all dialects. The average dialect specific list
contains 58 affixes and adding a second dialect re-
quires an additional 16. Adding a third, fourth, and
fifth dialect requires 10, 8, and 7 additional affixes
on average, respectively. Thus, building a sin-
gle dialect grammar is cheap and adding dialects
is even cheaper. Our final grammar contains five
meta paradigms, one for each of the basic Arabic
parts-of-speech—verbs (PV, IV, and CV), nomi-
nals, and particles—compiled into an analyzer like
that of Buckwalter (2004).

3.4 Unsupervised Disambiguation

DESEG supports two simple, fast models for dis-
ambiguating the grammar’s analyses. The first,
DESEGg, greedily selects the maximum match
analysis, or that with the smallest base after match-
ing affixes. The second, DESEGf , selects the anal-
ysis with the most fertile base. The fertility of each
candidate base is calculated in the raw corpus by
counting the possible combinations of adjacent af-
fixes with which it appears over all analyses for all
words in which it is proposed as a base.

For example, consider the three-word toy cor-
pus in Table 2. AêËñ�®J
K. byqwlhA, correctly seg-
mented as b+ yqwl +hA, PROG+ say.3MS +it, ‘he
is saying it’, has six possible analyses, each with
a different candidate base. Two candidate bases,
yqwl and byqwl, are also candidate bases for an-
other word, Èñ�®J
K. byqwl ‘he’s not saying’, but only
yqwl exhibits multiple unique adjoining affix sets.
In byqwlhA, it takes the circumfix b | hA, while in
byqwl, it takes the prefix b. The fertility of base
yqwl suggests it is more likely to be a productive
stem in the language, whereas the lack of fertil-
ity for the base byqwl suggests it is not systemat-
ically utilized in the language as a base might be
expected to be used, and that it is more likely a
simple coincidence that enables the over permis-
sive grammar to allow such a candidate.

The final word in the vocabulary, ú
Íñ�®J. K
 ybqwly,

correctly segmented as ybqw +l +y, remain.3MP
+to +me ‘they remain for me’, is challenging be-
cause no other inflection of the lexeme is attested.
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Vocabulary Candidate Segmentations Candidate Bases Attested Adjoining Affixes Fertility Base Length

byqwlhA AêËñ�®J
K.

b+ yqwl +hA Aë+ Èñ�®K
 +H. yqwl Èñ�®K
 b | ∅∅∅ , b | hA Aë | H. , ∅∅∅ | H. 2 4
byqwlhA AêËñ�®J
K. byqwlhA AêËñ�®J
K. 0 7
b+ yqwlhA AêËñ�®K
 +H. yqwlhA AêËñ�®K
 b | ∅ ∅ | H. 1 6
b+ yqw +l +hA Aë+ È+ ñ�®K
 +H. yqw ñ�®K
 b | l È | H. 1 3
byqwl +hA Aë+ Èñ�®J
K. byqwl Èñ�®J
K. ∅ | hA ∅ | Aë 1 5
byqw +l +hA Aë+ È+ ñ�®J
K. byqw ñ�®J
K. ∅ | l ∅ | È 1 4

byqwl Èñ�®J
K.
b+ yqwl Èñ�®K
 +H. yqwl Èñ�®K
 b | ∅∅∅ , b | hA Aë | H. , ∅∅∅ | H. 2 4
byqwl Èñ�®J
K. byqwl Èñ�®J
K. ∅ | hA ∅ | Aë 1 5

ybqwly ú
Íñ�®J. K

ybqw +l +y ø
 + È+ ñ�®J. K
 ybqw ñ�®J. K
 ∅∅∅ | l ∅∅∅ | È 1 4
ybqwly ú
Íñ�®J. K
 ybqwly ú
Íñ�®J. K
 0 6
ybqwl +y ø
 + Èñ�®J. K
 ybqwl Èñ�®J. K
 ∅ | y ∅ | ø
 1 5

Table 2: Calculating fertility in a toy Arabic corpus of three words given all possible candidate analyses of the
input corpus vocabulary. Correct analyses are depicted in bold.

Yet, by maximum matching on the affixes, we
choose the correct analysis—ybqw plus the com-
plex suffix of prepositional l followed by object
y—as the proposed base ybqw is shorter than the
other candidate base which is produced by erro-
neously assuming a nominal meta paradigm. The
nominal analysis re-analyzes y as the first person
possessive enclitic and crucially extends the base
with l, as l is not a viable nominal enclitic. Thus,
choosing the shortest base can help to eliminate
coincidentally feasible analyses.

Each model, DESEGf and DESEGg, breaks ties
using the other. Thus, DESEGf would correctly
segment the entire toy corpus, as the correct anal-
yses in byqwlhA and byqwl feature the uniquely
most fertile candidate bases, and while there is a
fertility tie for ybqwly, backing off to the candi-
date segmentation with the smallest base length
correctly selects the segmentation with ybqw as
the base. DESEGg correctly segments byqwl and
ybqwly, but incorrectly predicts that the stem-final
l in byqwlhA is actually the same enclitic preposi-
tion present in ybqwly and thus, over segments.

In the event of ties after considering both
fertility and base length, both models back off
again to the analysis with the base that most fre-
quently occurs as a full word in the raw corpus.
Prioritizing this frequency above either fertility
or base length minimization always hurt perfor-
mance, even though it proved quite useful as a fea-
ture for Narasimhan et al. (2015). We attribute this
seeming discrepancy to the interaction of Arabic’s
rich morphology with the noise of unstandardized
DA data. Many gold bases actually cannot appear
as stand-alone words due to the fusional morphol-
ogy and various writing conventions greatly affect

the frequency with which bases that can manifest
as stand-alone words actually do.

4 Evaluation

We compare DESEG to several alternative segmen-
tation models. We use the CORPUS6 dev set to
pick the optimal minimum base length on an in-
trinsic LM perplexity evaluation, and then perform
an extrinsic MT evaluation on the test set.

4.1 Models

We evaluate the following models:

PLAIN This baseline segments only punctuation.

MADAMIRA Egyptian and MSA versions are
available for MADAMIRA, which disambiguates a
rule-based morphological analyzer’s output with
an SVM trained on morphologically annotated
data. We use the Egyptian version as it is pre-
trained on a superset of the MSA data to capture
code switching. Thus, performance does not sig-
nificantly drop when testing on MSA, and perfor-
mance is significantly greater when testing on DA
varietes—even those far outside of Egypt—due to
many shared intra-DA linguistic traits not present
in MSA (Khalifa et al., 2017). MADAMIRA is a
tokenizer in that it not only segments but also mit-
igates data sparsity due to allomorphy by recover-
ing the canonical underlying morpheme for each
segment. We run MADAMIRA in D3 tokenization
mode, facilitating comparison with DESEG.

FARASA Similar to MADAMIRA, FARASA is a
pre-trained, SVM-based system leveraging gold
annotations and external dictionaries. Together,
FARASA and MADAMIRA represent the state of
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Invariable Trainable
Rule-based Pre-trained Unsupervised Unsupervised + De-lexical Grammar

PLAIN MADAMIRA FARASA BPE MORFESSOR DESEGg3 DESEGf3 DESEGg2 DESEGf2

Tokens 42,125 54,559 58,728 53,617 53,509 62823 64708 72644 70704
OOV% 6.8% 3.0% 2.60% 0.7% 2.6% 2.0% 2.1% 1.8% 1.7%

Perplexity 163.0 75.0 59 132.2 96.5 52.6 48.0 33.5 36.2

Table 3: Out of vocabulary (OOV) and perplexity for all tokenization models in the pooled dialects environment.

Dialects
used to Train
Segmenter(s)

Dialects
used to Train
MT System(s)

Invariable Trainable
Rule-based Pre-trained Unsupervised Unsupervised + De-lexical Grammar

PLAIN MADAMIRA FARASA BPE MORFESSOR DESEGg2 DESEGf2

Pooled Pooled 29.8 31.5 32.7 29.9 30.6 32.0 32.3
Individual Individual 28.7 31.4 31.2 28.4 30.1 30.9 31.3
Individual Pooled 29.8 31.5 32.7 30.6 31.8 32.5 32.9

Table 4: Macro BLEU scores for each tokenization model on CORPUS6 in three environments distinguishing how
dialects are pooled or treated separately when training the tokenizer and MT system.

the art for a number of morphological tasks in
Arabic. FARASA differs from MADAMIRA in that
only one version is publicly available, it segments
only, not attempting to tokenize, and the segmen-
tation scheme is linguistically ad hoc, tending to
be slightly more granular than D3.

BPE Byte pair encoding uses an algorithm origi-
nally designed for file compression to perform un-
supervised segmentation. BPE was originally pro-
posed to reduce vocabulary size to make neural
MT tractable (Sennrich et al., 2016), as the algo-
rithm’s simplicity enables easy application to any
language. It separates all characters in the corpus,
then performs a pre-determined number of join
operations, merging all instances of specified bi-
grams. Joins are determined such that the resulting
corpus will contain as few tokens as possible given
the number of join operations allowed. Thus,
while the algorithm is unsupervised and easy to
apply to any language, it is linguistically naive, as-
suming that morphological organization is driven
solely by enumerative efficiency concerns. Likely
for this reason, BPE has not been demonstrated to
be particularly useful for applications beyond neu-
ral MT (Kann et al., 2018).

MORFESSOR The de facto publicly available
unsupervised segmentation system is MORFES-
SOR. Like BPE, MORFESSOR trains in an unsu-
pervised fashion on large amounts of data and is
easily run on any language. Efficient encoding of
morphology is also at the center of MORFESSOR’s
objective function, though it considers not only
how compact the corpus can be represented, but

also how compact the grammar describing mor-
pheme combinatorics can be represented. Stem
morphemes are distinguished from affixal mor-
phemes as the model seeks to limit the number
of unique signatures—the sets of unique affixes
which can occur with a given stem—that result
from the learned segmentation scheme. While
MORFESSOR performs well on a number of unsu-
pervised segmentation tasks, it is known to have
typological biases toward the languages for which
it was originally developed (Kirschenbaum, 2015).

DESEG Our model, described in Section 3, finds
a compromise between the convenience of lan-
guage agnostic unsupervised systems and the per-
formance of systems leveraging language specific
resources. DESEG can be run with a minimum
base length of either 2 or 3 characters and a prior-
ity of base fertility maximization (f ) over greedy
base length minimization, or vice versa (g). Min-
imum base length and priority are represented as
subscripts in all relevant tables.

4.2 Intrinsic Language Modeling Evaluation

Table 3 shows the LM results for tokenizing COR-
PUS6 where all trainable segmenters are trained on
all of the raw data pooled together instead of train-
ing dialect specific tokenizers on relevant subsec-
tions of the 40+ million word corpus. To enable
pooled DESEG grammars, each dialect’s grammar
is merged into one highly permissive, over gener-
ating pan-Arabic grammar. In the unpooled train-
ing scenario, perplexity rankings were consistent
with those displayed here. Our model greatly re-
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duces both perplexity and out of vocabulary over
all competitive models, though we also exhibit a
tendency to over segment. Our best DESEG vari-
ants use a minimum base length of two, which is
logical because while Arabic features mainly tri-
radical roots, gemination causes many base forms
to reduce to only two graphemes. In the intrinsic
evaluation, it is difficult to tell whether the prefer-
ence for greed (DESEGg2) or fertility (DESEGf2) is
better. Our success is likely due to the fact that we
alone cover all the dialects, yet that coverage was
achieved in a fraction of the time spent construct-
ing the annotated data upon which state-of-the-art
systems rely to cover just a single dialect.

4.3 Extrinsic Machine Translation
Evaluation

We conduct MT experiments translating Ara-
bic dialects to English in three environments.
Pooled–pooled trains segmenters (only trainable
segmenters) on the monolingual corpus with all
dialects pooled and the MT system on all the di-
alects pooled. Individual–individual trains six seg-
menters on relevant subsections of the monolin-
gual data and six MT systems on the relevant par-
titions of CORPUS6. Individual–pooled trains in-
dividual segmenters but one pan-Arabic MT sys-
tem, which is reasonable to reduce the over gen-
eration of the morphological model but leverage
shared information during MT. Neural MT has
been used with dialects (Hassan et al., 2017),
but given the extreme scarcity of in-domain data,
statistical MT (Koehn et al., 2007) is the better
choice (Farajian et al., 2017) for comparing qual-
ity of segmentation in our setting. DESEG consis-
tently outperforms unsupervised alternatives BPE

and MORFESSOR in Table 4 while approaching
and even beating state-of-the-art systems FARASA

and MADAMIRA in the individual–pooled environ-
ment. The Fertility-based model DESEGf2 outper-
forms its greedy counterpart, supporting the argu-
ment that base fertility plays a meaningful role in
morphological organization.

5 Error Analysis

We performed a quantitative error analysis on 100
sentences randomly selected from CORPUS6 for
each variety, creating a gold segmentation set.
In Table 5, accuracy is computed given the two
modes of training DESEGf2 (i.e., pooled or indi-
vidual), and compared with the PLAIN input base-

line. Average segmentation accuracy over all va-
rieties correlates with the extrinsic evaluation for
both modes of training DESEGf2. In both modes,
the best performance is on MSA and the worst is
on Rabat then Tunis.

In individual mode, the poor performance of
Rabat and Tunis is expected as we could not ob-
tain sufficiently large monolingual data sets that
distinguish these two quite linguistically distinct
North African varieties. Thus, we were forced to
train both grammars’ disambiguators on the same
data, propagating error whenever a form occurred
in the Rabat dialect not analyzable by the Tunis
grammar or vice versa. As for pooled mode, care-
ful inspection revealed an exceptional amount of
inconsistent spellings in the Tunis and Rabat par-
titions of CORPUS6 that were not anticipated when
constructing the grammar. The definite article pro-
clitic +È@ Al+ for example, frequently appears as
its own word, reduced to just È l, or deleted al-
together when preceded by another proclitic, es-
pecially when the È l assimilates phonologically
to the following phoneme. In MSA, by contrast,
the definite article is always attached to the follow-
ing noun, the È l is never deleted, and the @ A can
only be deleted following the prepositional pro-
clitic +È l+, ‘for’. It is not surprising then that
MSA performs the best in both modes as there
is only negligible inconsistency in MSA spelling,
meaning that the grammar need not anticipate an
unbounded set of spelling alternatives exacerbat-
ing over generation and putting more stress on the
disambiguator.

The best DA performance is achieved on Beirut
for the pooled mode and Doha for the Individual.
Beirut is the least verbose of all dialects in unseg-
mented space, and also exhibits the lowest ratio
of unsegmented tokens to gold segmented tokens,
meaning that it rewards over segmenting, which
we know DESEGf2 is biased toward given its sec-
ondary preference for short bases. As for the high
performance on Doha, it is worth noting that Doha
is also the highest performing dialect on all MT
experiments, even recording higher BLEU scores
than MSA. It is thus likely that the Doha partition
of CORPUS6 is simply more internally consistent
than the others, not just in terms of spelling, but
also lexical choices and syntactic structure. This
could be idiosyncratic to CORPUS6 more than it is
characteristic of the Doha dialect, though an inde-
pendent test corpus would be needed to investigate
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this further.
While the extrinsic MT results vouch for the

effectiveness of pooled grammars when training
data cannot be separated by dialect, the pooled
training mode consistently fails to outperform
PLAIN on the harsh evaluation metric of segmen-
tation accuracy. On average, the pooled mode is
15% less accurate than individual—which does
consistently improve over PLAIN—demonstrating
that reducing the grammar’s capacity to over gen-
erate by determining the dialect before segmenting
greatly facilitates disambiguation. Indeed, there is
a 94% correlation between the verbosity reduction
and accuracy increase going from the pooled to in-
dividual mode, indicating that the pooled model is
over segmenting as more options for mistakenly
identifying segmentable clitics become available
across different dialects.

This is especially problematic for words like the
noun XQ 	̄ frd, ‘individual’, which contain highly
fertile, analyzable bases within their true base.
That is, XQ 	̄ frd can also be analyzed out of con-
text as a conjunction followed by a verb XP +

	¬
f+ rd ‘so he responded’, where the verbal base XP
is highly fertile, especially since it is identical to
the nominal XP rd, ‘response’ and thus can par-
ticipate in a large number of clitic combinations
as licensed by three feasible meta paradigms (ver-
bal PV, verbal CV, or nominal). Furthermore, the
increased uncertainty caused by greater over gen-
eration of the analyzer in pooled mode gives the
base length minimization back off more influence.
Base length minimization as a disambiguation
strategy will always over segment by definition if
the analyzer permits it. Thus, low frequency or
unknown words like the proper name ñ	Kð@ Awnw,
‘Ono’ are frequently over segmented, as occurs in
all dialects except Doha and MSA, where the lead-
ing or trailing sequences of graphemes happen to
not be confusable with any viable clitics according
to the grammar.

Considering context will be crucial to improv-
ing the model’s handling of such cases in future
work, as the Cairene sentence ?ñ	Kð@ Ð@YÓ ø
 X ù
 ë
hy dy mdAm Awnw?, ‘Is this Madame Ono?’
provides a blatant clue in the title ‘Madame’,
that ñ	Kð@ Awnw is a name and need not be
segmented. Similarly, the Beiruti sentence,
... �é 	̄ A �� XQ 	̄ �é�Ò 	j« PBðX �èQå��ªËAë ú
Î

	̄Qå� YK
Q��K. @ 	P @
AzA btryd Srfly hAlςšr~ dwlAr ςxms~ frd šÂf~ ...,

Seg Verbosity Accuracy Best
Input Pooled Indiv Input Pooled Indiv ER

Beirut 0.69 1.22 1.13 56.7 68.7 79.7 53
Cairo 0.80 1.29 1.15 77.8 65.9 81.3 16
Rabat 0.72 1.30 1.19 66.1 57.9 70.0 11
Tunis 0.81 1.32 1.15 79.4 62.9 78.5 0
Doha 0.79 1.27 1.11 77.3 67.6 85.2 35
MSA 0.80 1.24 1.07 76.3 69.6 88.3 50

Average 0.77 1.27 1.13 72.3 65.4 80.5 30

Table 5: Segmentation accuracy of DESEG trained on
Pooled versus Indiv(idual) dialects/grammars and eval-
uated on CORPUS6 against the PLAIN input baseline.
Seg(mentation) verbosity is the ratio of segmented to-
kens over gold segmented tokens while accuracy and
error reduction (ER) are reported as percentages.

‘Please exchange for me this ten dollar [bill] for a
single five...’ indicates that a noun should follow
the numerical modifier �é�Ô 	g xms~, ‘five’, not the
proclitic conjunction +

	¬ f+, ‘so’.

6 Conclusion and Future Work

We present an effective unsupervised means of in-
troducing linguistic information for segmentation
that greatly improves performance over other un-
supervised systems as evaluated both intrinsically
and extrinsically. We target robust handling of
rich morphological phenomena and noisy corpora,
achieving performance on a multi-dialect Arabic
corpus comparable to state-of-the-art supervised
systems. The success of our simple system is
strong evidence for the value of linguistic input
during preprocessing.

In the future, we plan to evaluate our models on
natural (uncommissioned) dialectal corpora. We
also plan to enhance our delexicalize models with
non-concatenative components. And we also in
tend to develop models that consider context.
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Abstract

We show that MaxEnt is so rich that it can dis-
tinguish between any two different mappings:
there always exists a nonnegative weight vec-
tor which assigns them different MaxEnt prob-
abilities. Stochastic HG instead does admit
equiprobable mappings and we give a com-
plete formal characterization of them. We
compare these different predictions of the two
frameworks on a test case of Finnish stress.

1 Introduction

This paper compares two frameworks for prob-
abilistic constraint-based phonology: Stochastic
Harmonic Grammar (SHG; Boersma and Pater,
2016)1 and Maximum Entropy (ME; Goldwater
and Johnson, 2003; Hayes and Wilson, 2008).
Recent literature has documented a few realistic
quantitative patterns which seem to admit a bet-
ter fit in ME than in SHG (Smith and Pater, 2017;
Zuraw and Hayes, 2017; Hayes, 2017). These
findings suggest that ME is a richer probabilistic
framework than SHG (relative to the same con-
straint set). But how much richer? Can these
anecdotal observations reported in the literature
be systematized into a principled formal compar-
ison between SHG and ME probabilistic typolo-
gies? This paper is part of a larger project try-
ing to address this question. In particular, this pa-
per compares ME and SHG from the perspective
of their equiprobable mappings. That is phono-
logical mappings which are always assigned the
same probability and are therefore phonologically
equivalent despite being distinguished by the con-
straint set.

1 Boersma and Pater (2016) actually use the term “noisy
HG” instead of “stochastic HG”. We prefer “stochastic HG”
to stress the complete analogy with Boersma’s (1997; 1998)
earlier framework of stochastic OT. Furthermore, we prefer
to use “stochastic” to describe a property of the framework,
reserving “noisy” to describe a property of the learning sce-
nario (as opposed to noise-free).

Section 2 motivates this notion of equiproba-
bility within phonological theory. Section 4 then
shows that the ME typology is so rich that it ad-
mits no equiprobable mappings: for any two map-
pings distinguished by the constraints, there exists
an ME grammar that distinguishes between them,
namely assigns them different probabilities. This
typological richness is peculiar to ME and does
not extend to other implementations of probabilis-
tic constraint-based phonology such as SHG. In-
deed, Section 5 shows that the equiprobable SHG
mappings are exactly those mappings which are
indistinguishable by categorical Harmonic Gram-
mars (HG; Legendre et al., 1990a,b; Smolensky
and Legendre, 2006) and thus provides a complete
characterization of SHG equiprobability.

These formal results are presented informally.
A detailed proof of the ME result is provided
in a final appendix. The proof of the SHG re-
sult is analogous and it is omitted for reasons of
space (see the longer version of this paper avail-
able on the authors’ websites). Our discussion
rests on some earlier results on uniform SHG and
ME probability inequalities from Anttila and Ma-
gri (2018), recalled in Section 3.

Is the richness of ME relative to SHG typolo-
gies an empirical advantage or a case of unmo-
tivated overgeneration? Section 6 provides some
preliminary evidence that the latter might be the
case, by looking at the case of Finnish stress. We
compute SHG equiprobable mappings using the
formal characterization obtained in Section 5. We
show that a large corpus of Finnish provides pre-
liminary empirical support for these mappings in-
deed being equiprobable. Finally, we show that
ME breaks up these equiprobabilities in a way that
is phonologically counterintuitive.

2 Equiprobability

A typical phonological process applies uniformly
to all forms that share some relevant property, but
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ignores the irrelevant ways in which they differ.
For example, in Latin, stress targets heavy syl-
lables, but ignores vowel quality; in English, as-
piration targets voiceless stops, but ignores place
of articulation; in Finnish, vowel harmony tar-
gets [±back], but ignores the number of syllables.
This means that words with the same distribu-
tion of heavy and light syllables are stressed alike;
voiceless stops are aspirated alike; and words of
any length harmonize alike. These phonological
equivalences are a key property of phonological
systems.

Derivational phonology captures these equiva-
lences straightforwardly: phonological rules are
allowed to refer to only the shared property that
defines a natural class, ignoring everything else.
To illustrate, the Finnish vowel harmony rule can
be simply written as V → [αback]/V[αback]C0 .
This rule directly encodes the fact that harmony
targets [±back] but ignores any other properties
such as, say, the number of syllables. Thus, the
monosyllabic /maa/ ‘country’ and the disyllabic
/kaava/ ‘formula’ trigger back harmony on the suf-
fix /-nä/ ‘ESSIVE’ in exactly the same way. In other
words, they are equivalent for vowel harmony.

The situation is prima facie less obvious in
constraint-based phonology. A candidate may
contain multiple constraint violations, some rele-
vant, some irrelevant, but all simultaneously vis-
ible and potentially interacting. Yet, categori-
cal implementations of constraint-based phonol-
ogy are well known to readily predict these desired
phonological equivalences. To illustrate, consider
an HG grammar for Finnish vowel harmony based
on the constraints in Table 1, from Ringen and
Heinämäki (1999). The back harmony mappings
/maa-nä/ → [maana] and /kaava-nä/ → [kaavana]
can be shown to be HG equivalent: no matter the
weighting, no HG grammar succeeds on one but
fails on the other.

How should phonological equivalence be ex-
tended from the categorical to the probabilistic set-
ting? We submit that equiprobability provides an
answer to this question. In fact, let us recall that
a probabilistic phonological grammar is a func-
tion which assigns to each underlying represen-
tation (UR) x a probability distribution P(y | x)
over the corresponding set of candidate surface
representations (SRs) y. We consider two map-
pings (x, y) and (̂x, ŷ) of the two URs x, x̂ to the
two SRs y, ŷ. We say that these two mappings

*INT[+back]: No vowel between [+back] and
right word edge

*INT[-back]: No vowel between [-back] and
right word edge

IDENT-ROOT: Be faithful to /a, ä/ in roots

IDENT: Be faithful to /a, ä/

Table 1: Constraints for Finnish vowel harmony

are (uniformly) equiprobable provided there is no
probabilistic grammar in the typology considered
which assigns a different probability to those two
mappings, namely such that P(y | x) 6= P(̂y | x̂).
To illustrate, the equivalence between the two
mappings /maa-nä/ → [maana] and /kaava-nä/ →
[kaavana] is captured in a probabilistic setting
through the requirement that their probabilities
P([maana] | /maa-nä/) and P([kaavana] | /kaava-nä/)
always coincide. In other words, the probability
of vowel harmony does not depend on the number
of syllables.2

As we will see in Section 5, two mappings are
equivalent according to categorical HG if and only
if they are equiprobable in SHG. This result sug-
gests that equiprobability is indeed the right ex-
tension of the notion of phonological equivalence
from the categorical to the probabilistic setting.
Surprisingly, we will see in Section 4 that ME in-
stead allows for no equiprobable mappings and
thus fails to capture the notion of phonological
equivalence.

3 Formal background

Our characterization of ME and SHG equiproba-
bility in sections 4-5 rests on some results from
Anttila and Magri (2018; A&M) recalled here.

HG A weight vector w = (w1, . . . , wn) assigns
nonnegative weights w1, . . . , wn ≥ 0 to n under-
lying phonological constraints C1, . . . , Cn. The
phonological quality of a phonological mapping
(x, y) of a UR x and a candidate SR y is quan-
tified by its harmony Hw(x, y). This quantity is
defined as the weighted sum of the constraint vi-

2 Note that this is quite different from the well-known
case of Hungarian vowel harmony where suffixes show dif-
ferent degrees of back-front variation after stems with both
back and neutral vowels depending on the number of neu-
tral vowels; see, e.g., Hayes and Londe (2006), Hayes et al.
(2009), and Zymet (2015). In our Finnish example, all the
stem vowels are unambiguously back, yet our Proposition 1
below says that ME fails to guarantee that the suffix harmony
is invariably back.
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olations multiplied by −1, namely Hw(x, y) =
−∑n

k=1wkCk(x, y). Mappings with large har-
mony have small constraint violations. The HG
grammar corresponding to a weight vector w
maps a UR x to the candidate SR y such that the
mapping (x, y) has a larger harmony than the map-
ping (x, z) corresponding to any other candidate z
of x. In this case, we say that y is the winner while
any other candidate z is a loser.

HG thus has an intrinsic comparative nature:
absolute numbers of violations are irrelevant, what
matters is only the comparison between the viola-
tions of the loser and those of the winner. To bring
out this intuition, we define the difference vector
C(x, y, z) for a UR x, an intended winner candi-
date y, and an intended loser candidate z as in (1).
This vector has a component for each constraint
Ck defined as the difference between the number
Ck(x, z) of violations assigned by Ck to the loser
mapping (x, z) minus the number Ck(x, y) of vio-
lations assigned to the winner mapping (x, y).

C(x, y, z) =




C1(x, z)− C1(x, y)
...

Ck(x, z)− Ck(x, y)
...

Cn(x, z)− Cn(x, y)




(1)

SHG and ME are two probabilistic extensions of
this underlying categorical HG model.

SHG The SHG probability PSHG
w (y | x) that a UR

x is mapped to a SR y according to the weight
vector w is the probability of sampling n num-
bers ε = (ε1, . . . , εn) independently according to
a distribution D in such a way that the HG gram-
mar corresponding to the weight vector w + ε =
(w1 + ε1, . . . , wn + εn) indeed maps x to y. A&M
prove the following Lemma 1 about uniform prob-
ability inequalities in SHG, namely inequalities
which hold for every choice of the weight vector.

Lemma 1 Consider two mappings (x, y) and
(̂x, ŷ). Assume that the UR x comes with only a fi-
nite number m of loser candidates z1, . . . , zm (be-
sides the winner candidate y) and that the map-
ping (x, y) is possible in HG (namely, y beats
the losers z1, . . . , zm relative to some nonneg-
ative weight vector). The SHG probability in-
equality PSGH

w (y | x) ≤ PSGH
w (̂y | x̂) holds uniformly

for every choice of the nonnegative weight vec-
tor w if and only if for every loser candidate ẑ of
the UR x̂, there exist m nonnegative coefficients

•z1

•z2
• z3

• z4
•z1

•z2
• z3

• z4

(a) (b)
Figure 1: Geometric representation of (a) the SHG Lemma
1 and (b) the ME Lemma 2.

λ1, . . . , λm ≥ 0 (one for each loser candidate
z1, . . . , zm of the UR x) such that

C(̂x, ŷ, ẑ) ≥
m∑

i=1

λi C(x, y, zi) (2)

namely the difference vector C(̂x, ŷ, ẑ) is at least
as large (constraint by constraint) as the sum of
the difference vectors C(x, y, zi) each rescaled by
a corresponding nonnegative coefficient λi.3 2

Lemma 1 admits the following geometric in-
terpretation, which will be used below. Suppose
there are only n = 2 constraints and m = 4 losers
zi. The difference vectors C(x, y, zi) which appear
on the right hand side of (2) can therefore be rep-
resented as the four black dots in Fig. 1. The re-
gion {∑m

i=1 λiC(x, y, zi) |λi ≥ 0} is the convex
cone generated by these four difference vectors
C(x, y, zi), depicted in dark gray in Fig. 1a. The
region in light gray singles out the points which
are at least as large as some point in this cone.
Condition (2) thus says that the difference vector
C(̂x, ŷ, ẑ) belongs to this light gray region.

ME The ME probability PME
w (y | x) that a UR x

is mapped to a SR y according to a nonnegative
weight vector w is the exponential of the harmony

3 The two assumptions made by the lemma—-that the UR
x comes with only a finite number of losers and that the map-
ping (x, y) is possible in HG—-are non-restrictive. In fact, if
a mapping (x, y) is impossible in HG, then its SHG proba-
bility PSGH

w (y | x) can be shown to be equal to zero for every
choice of the nonnegative weight vector w. The probability
inequality PSGH

w (y | x) ≤ PSGH
w (ŷ | x̂) thus holds uniformly,

because its left hand side is always equal to zero. The as-
sumption made by the lemma that the mapping (x, y) is pos-
sible in HG is therefore non-restrictive. Furthermore, HG has
the property that only a finite number of candidates of any
given UR win according to some weights (Magri, 2019). All
other candidates are redundant because impossible no matter
how the weights are chosen. Since HG impossible mappings
have zero SHG probability, the candidate set of any under-
lying form can always be assumed to be finite without loss
of generality in SHG. The assumption made by the lemma
that the UR x comes with only a finite number of losers is
therefore non-restrictive.

127



Hw(x, y) of that mapping, normalized through
a constant Z = Z(w, x), namely PME

w (y | x) =
eHw(x,y)/Z. A&M show that also in ME uni-
form probability inequalities can be characterized
in terms of difference vectors, as stated by Lemma
2 below. This ME Lemma is analogous to the SHG
Lemma 1 above, but for two differences. The first
difference is that condition (2) is only necessary in
ME while it is also sufficient in SHG. The second
difference is that ME requires the normalization
condition (3) on the coefficients λi.

Lemma 2 Consider two mappings (x, y) and
(̂x, ŷ). Assume that the UR x comes with a finite
number m of loser candidates z1, . . . , zm (besides
the winner candidate y). If the ME probability in-
equality PME

w (y | x) ≤ PME
w (̂y | x̂) holds uniformly for

every choice of the nonnegative weight vector w,
then for every loser candidate ẑ of the UR x̂, there
exist m nonnegative coefficients λ1, . . . , λm ≥ 0
(one for each loser candidate z1, . . . , zm of the UR
x) which add up to 1

λ1 + . . .+ λm = 1 (3)

and furthermore satisfy condition (2). 2

The normalization condition (3) admits the
following geometric interpretation. As seen
above, the region {∑i λiC(x, y, zi) |λi ≥ 0}
is the convex cone generated by the differ-
ence vectors C(x, y, zi), represented by the dark
gray region in Fig. 1a. The smaller region
{∑i λiC(x, y, zi) |λi ≥ 0,

∑
i λi = 1 }, which

differs for the (boxed) normalization condition (3)
on the coefficients λi, is instead the convex hull
generated by the difference vectors C(x, y, zi),
represented by the smaller dark gray region in
Fig. 1b. The effect of the normalization condition
(3) is thus to shrink from the larger convex cone
to the smaller convex hull. Finally, the region in
light gray in Fig. 1b singles out the points which
are at least as large as some point in this convex
hull. Lemma 2 thus requires the difference vector
C(̂x, ŷ, ẑ) to belong to this light gray region.

4 ME has no equiprobable mappings

Lemmas 1 and 2 say that ME differs from SHG
because of the normalization condition (3). This
apparently small technical difference has substan-
tial phonological implications. Indeed, this Sec-
tion shows that the normalization condition (3)
makes the ME typology so rich that it can distin-
guish between any two mappings. In other words,

equiprobability is impossible in ME. The reason-
ing is presented here informally, split up into three
steps formalized in the final appendix.

Step 1 Let us suppose that the two mappings
(x, y) and (̂x, ŷ) are equiprobable in ME, namely
that the ME probability identity PME

w (y | x) =
PME
w (̂y | x̂) holds for every choice of the nonneg-

ative weight vector w. Let z1, . . . , zm be the
loser candidates of the UR x. They define a light
gray region as in Fig. 1b, namely the region of
points which are at least as large as the points
in the convex hull generated by the difference
vectors C(x, y, zi). Let us denote this light gray
region as LGRME(z1, . . . , zm). Analogously, let
ẑ1, . . . , ẑm̂ be the loser candidates of the other UR
x̂. They as well define the light gray region of
points which are at least as large as the points in
the convex hull generated by the difference vectors
C(̂x, ŷ, ẑj). Let us denote this light gray region as
LGRME(̂z1, . . . , ẑm̂).

The probability identity PME
w (y | x) = PME

w (̂y | x̂)
is equivalent to the two reverse inequalities
PME
w (y | x) ≤ PME

w (̂y | x̂) and PME
w (y | x) ≥ PME

w (̂y | x̂).
By lemma 2 above, the former inequality re-
quires each difference vector C(̂x, ŷ, ẑj) to belong
to LGRME(z1, . . . , zm). And the latter inequality
requires each difference vector C(x, y, zi) to be-
long to LGRME(̂z1, . . . , ẑm̂). A simple convexity
argument deduces from these two facts the iden-
tity LGRME(z1, . . . , zm) = LGRME(̂z1, . . . , ẑm̂) be-
tween the two light gray regions.

Step 2 To proceed, let us suppose for concrete-
ness that m = 4 and that the light gray region
LGRME(z1, z2, z3, z4) is the one plotted in light
gray in Fig. 1b. The difference vectors corre-
sponding to the two losers z1 and z2 are extreme
points (or vertices) of this light gray region. In
the sense that they crucially contribute to shape it:
if these two points were shifted even slightly in
any direction, the corresponding light gray region
would change. The identity between the two light
gray regions established in step 1 thus entails that
the two light gray regions share the same set of
extreme points. In conclusion, the two difference
vectors corresponding to losers z1 and z2 which
are extreme points of the light gray region in fig-
ure Fig. 1b must be shared by the two equiprob-
able mappings considered. Since these difference
vectors are shared by the two equiprobable map-
pings, they can be “peel off” the two sides of the
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Figure 2: Steps 1-2 for the remaining losers z3 and z4.

ME probability identity.

Step 3 We are thus left with the difference vec-
tors corresponding to the other two losers z3 and
z4 in Fig. 1b. These latter two vectors are not ex-
treme points of the original light gray region but
rather sit in the interior of the light gray region.
Indeed, they can be shifted around without affect-
ing the shape of the light gray region. Yet, once
the two losers z1 and z2 have been “peeled off” at
step 2, we can repeat the reasoning in steps 1 and 2
ignoring the two losers z1 and z2 and instead con-
sidering only the other two losers z3 and z4.

Thus, we construct the convex hull of the dif-
ference vectors corresponding to just these two
remaining losers z3 and z4. This convex hull is
the segment which connects the two correspond-
ing dots. Next, we construct the light gray re-
gion of points which are at least as large as some
point in that segment, as depicted in Fig. 2. Now
the difference vectors corresponding to the two
losers z3 and z4 are extreme points of the new light
gray region. We can therefore repeat the reason-
ing in steps 1-2 and conclude that these two dif-
ference vectors as well must be shared by the two
equiprobable mappings considered. And so on.

The reasoning informally sketched above leads
to the following Proposition 1, which is the first
main result of this paper. It says that two mappings
are equiprobable in ME if and only if they share all
difference vectors. This entails in particular that
the two mappings must have the same number of
loser candidates. In other words, the ME typol-
ogy is so rich that the only case where ME fails
to come up with at least one weight vector which
assigns different probabilities to the two mappings
(x, y) and (̂x, ŷ) is when the two mappings are the
same mapping, in the sense that they are indistin-
guishable by the constraints, as they have the same
difference vectors.4

4 To illustrate, suppose that the constraint set only con-
sists of the two constraints NOVOICEDOBSTRUENT and
IDENT(voice). The mappings (x, y) = (/mab/, [map]) and
(x̂, ŷ) = (/bam/, [pam]) will always have the same ME proba-

Proposition 1 Two mappings (x, y) and (̂x, ŷ) are
equiprobable in ME if and only if the correspond-
ing sets of difference vectors coincide. 2

5 SHG allows for equiprobable mappings

The preceding Section has shown that ME is so
rich that it can distinguish between any two dif-
ferent mappings. Crucially, this typological rich-
ness is peculiar to ME, not intrinsic to probabilis-
tic constraint-based phonology. In this section, we
illustrate this point with the case of SHG. As in
the preceding section, the discussion is kept infor-
mal. The formalization rests on the same convex
geometric tools used for ME in the final appendix.
The details are omitted here for reasons of space
(see the longer version of this paper available on
the authors’ website).

Let us consider two mappings (x, y) and (̂x, ŷ).
Again, let z1, . . . , zm be the loser candidates of the
UR x. They define a light gray region as in Fig. 1a,
namely the region of points which are at least as
large as the points in the convex cone generated
by the difference vectors C(x, y, zi). Let us de-
note this light gray region as LGRSHG(z1, . . . , zm).
This region is different from (and larger than)
the light gray region LGRME(z1, . . . , zm) consid-
ered above for ME, because the latter ME re-
gion is restricted through the normalization con-
dition (3) and therefore defined in terms of convex
hulls rather than convex cones. Analogously, let
ẑ1, . . . , ẑm̂ be the loser candidates of the other UR
x̂ and let LGRSHG(̂z1, . . . , ẑm̂) be the corresponding
SHG light gray region.

Again as in the case of ME, Lemma 1
says that the uniform SHG probability identity
PSHG
w (y | x) = PSHG

w (̂y | x̂) entails that the two
SHG light gray regions coincide, namely that
LGRSHG(z1, . . . , zm) = LGRSHG(̂z1, . . . , ẑm̂). Yet,
these SHG light gray regions have different geo-
metric properties than the ME light gray regions.
As a result, in the case of SHG the identity be-
tween the two light gray regions tells us much less
about the difference vectors that generate them
than in the case of ME.

To see that concretely, let us consider for in-
stance the SHG light gray region in Fig. 1a. The
loser candidates z2, z3 and z4 have difference vec-
tors which sit in the interior of this light gray re-
gion. These losers thus contribute nothing to shape

bility, because they and their losers have the same constraint
violation profiles.
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the light gray region: their difference vectors can
be shifted around without affecting the shape of
the region. Identity of the light gray regions thus
tells us nothing about identity of these difference
vectors which sit in the interior.

Interestingly, the loser candidates whose differ-
ence vectors sit in the interior of the SHG light
gray region can be characterized phonologically
as those losers which are HG redundant given the
rest of the losers. In the sense that, for every non-
negative weight vector w, if the HG harmony of
the winner y is larger than that of the nonredun-
dant losers, then it is in particular larger than the
harmony of the redundant losers. In other words,
these redundant losers carry no interesting phono-
logical content as they do not in any way affect the
weight vectors consistent with the mapping (x, y).

The case of the loser z1 in Fig. 1a is instead dif-
ferent. Its difference vector sits on the border of
the light gray region and therefore contributes to
its shape. Yet, its position is not completely de-
termined by the shape of the region. In fact, the
shape of the region is not affected if this differ-
ence vector is slid closer to or further away from
the origin. Equivalently, the shape of the region
is not affected if the difference vector correspond-
ing to the nonredundant loser z1 is rescaled by a
nonnegative constant λ ≥ 0. This means that the
identity of the two SHG light gray regions does
not entail identity of the difference vectors which
generate them, not even for those difference vec-
tors which sit on the boundary of the regions and
therefore correspond to nonredundant losers. The
identity of the two SHG light gray regions only
entails that the difference vectors of the nonredun-
dant losers are one the rescaling of the other. This
informal reasoning leads to the following Proposi-
tion, which is our second main result.

Proposition 2 Two mappings (x, y) and (̂x, ŷ) are
equiprobable in SHG if and only if each nonredun-
dant difference vector C(x, y, zi) is a rescaling of
some nonredundant difference vector C(̂x, ŷ, ẑj),
namely C(x, y, zi) = λC(̂x, ŷ, ẑj) for some λ ≥ 0;
analogously, each nonredundant difference vector
C(̂x, ŷ, ẑj) is a rescaling of some nonredundant dif-
ference vector C(x, y, zi). 2

Interestingly, this characterization of SHG
equiprobability coincides with the characteriza-
tion of equivalence in categorical HG obtained
by A&M. We conclude that two mappings are
equiprobable in SHG (namely are always assigned

FTBIN Feet are disyllabic.
PKPROM No unstressed light syllables.
ALIGN-L All feet left.
*REV No trochees with sonority reversal.
*FLAT No trochees with a flat sonority profile.
*H.X No stress next to a heavy syllable.
WSP No unstressed heavy syllables.
WSP/VV No unstressed heavies with long vowel.

Table 2: Constraints for foot structure in Finnish nouns

the same probability) if and only if they are equiv-
alent in categorical HG (namely no HG grammar
succeeds on one but fails on the other).

6 Equiprobability in Finnish stress

This section brings the preceding formal results to
bear on Finnish word stress.

The phonological system The basic general-
izations about Finnish word stress can be stated
as follows (Carlson, 1978; Hanson and Kiparsky,
1996; Elenbaas, 1999; Elenbaas and Kager, 1999;
Karvonen, 2005): (a) primary stress falls on the
initial syllable; (b) secondary stress falls on ev-
ery other syllable after that, (c) except that a
light syllable is skipped if the syllable after that
is heavy, unless the heavy syllable is final. Ex-
amples are ı́l.moit.tàu.tu.mı̀.nen ‘registering’ and
ı́l.moit.tàu.tu.mi.sès.ta ‘from registering’.

However, the skipping clause turns out to be a
coarse approximation of the actual facts. Skip-
ping is sometimes optional and we find variable
stress in cases like pró.fes.so.rı̀l.la∼pró.fes.sò.ril.la
‘professor-ADE’, where the basic rule fails at the
second variant. This optional pattern turns out to
depend on two additional conditions that affect the
outcome in a gradient manner (Anttila, 2012): (a)
low vowels (/a, ä, o, ö/) attract stress and high vow-
els (/e, i, u, y/) repel stress; (b) stress is avoided next
to a heavy syllable.5

In addition to native speaker intuitions about
syllable prominence, empirical support for these
soft conditions can be obtained from the optional
rule of Stop Deletion (Keyser and Kiparsky, 1984)
which deletes singleton stops in extrametrical syl-
lables (Anttila, 2012). In particular, the /t/ in
the partitive suffix /-tA/ is deleted vs. retained

5 The categories “low” and “high” are morphophonemic,
not phonetic. In Finnish, low vowels alternate morphophono-
logically with rounded mid vowels (a ∼ o, ä ∼ ö) and the un-
rounded high vowel alternates with the unrounded mid vowel
(i ∼ e). For this reason we consider o, ö low and e high.
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(j, (kon.sul)(taa.ti.o)ja) 0.5%
(i, (kom.mu)(ni.ke.o)ja) 0.3%

(g, (o.pe)(raa.ti.o)ja) 0.0%
(h, (al.le)(go.ri.o)ja) 0.0%

≤
(c, (sym.po)(si.u.me)ja) 98.6%
(e, (po.ly)(a.mi.de)ja) 95.7%
(f, (in.ku)(naa.be.le)ja) 9.5%

(d, (lii.rum)(laa.ru.me)ja) 18.6%

≤ (b, (pro.pa)(gan.dis.te)ja) 100%
(a, (ak.va)(rel.lis.te)ja) 100%

(k, (ter.mos)(taat.te)ja) 100%
(l, (mar.ga)(rii.ne)ja) 100%
(m, (af.fri)(kaat.to)ja) 99.7%

(b, (pro.pa)(gan.dis)(tei.ta)) 0.0%
(a, (ak.va)(rel.lis)(tei.ta)) 0.0% ≤

(e, (po.ly)(a.mi)(dei.ta)) 4.3%
(d, (lii.rum)(laa.ru)(mei.ta)) 81.4%
(c, (sym.po)(si.u)(mei.ta)) 1.4%
(f, (in.ku)(naa.be)(lei.ta)) 90.5%

≤
(h, (al.le)(go.ri)(oi.ta)) 100%

(i, (kom.mu)(ni.ke)(oi.ta)) 99.7%
(j, (kon.sul)(taa.ti)(oi.ta)) 99.5%

(g, (o.pe)(raa.ti)(oi.ta)) 100%

≤

≤

Table 3: Seven blocks of equiprobable mappings predicted by SHG

(c, (sym.po)(si.u)(mei.ta)) 1.4% ≤ (e, (po.ly)(a.mi)(dei.ta)) 4.3% ≤ (d, (lii.rum)(laa.ru)(mei.ta)) 81.4% ≤ (f, (in.ku)(naa.be)(lei.ta)) 90.5%

(c, (sym.po)(si.u.me)ja) 98.6% ≤ (e, (po.ly)(a.mi.de)ja) 95.7% ≤ (d, (lii.rum)(laa.ru.me)ja) 18.6% ≤ (f, (in.ku)(naa.be.le)ja) 9.5%

Table 4: SHG’s two red blocks are split into two chains of uniform inequalities in ME

depending on the location of secondary stress
feet. Given the input /professori-i-tA/ ‘professor-
PL-PAR’ we have two possible foot structures:
(pró.fes.so)(rèi.ta) where /t/ falls inside a foot and
is retained vs. (pró.fes)(sò.re)ja where /t/ falls out-
side a foot and is deleted. The metrical free vari-
ation is thus reflected in segmental free variation.
This provides a valuable diagnostic for foot struc-
ture, especially because the segmental variation is
present even in the written standard language read-
ily available in large quantities.

The constraints necessary for deriving the foot
structure in Finnish nouns are shown in Table 2.
These constraints were applied to 48 types of par-
titive plural nouns, systematically varying stem
length, syllable weight, and vowel sonority. All
in all, the test set contains 4 types of three-syllable
stems, 12 types of 4-syllable stems, and 32 types
5-syllable stems (stem types are briefly denoted as
“(a), (b), . . . ” in what follows).

SHG We computed the uniform probability in-
equalities predicted by SHG for this Finnish
stress test case using CoGeTo (Magri and Anttila,
2019), a suite of tools for studying constraint-
based typologies of categorical and probabilistic
phonological grammars based on their underlying
rich convex geometry. The key observation is that
SHG predicts seven blocks of equiprobable map-
pings, shown in Table 3. These blocks are further-
more organized into two chains of uniform proba-
bility inequalities. The predicted probabilities in-
crease from left to right. The symbol “≤” between
two boxes means that the candidates in the box on
the left are predicted to have a probability at most
as large as the candidates in the box on the right.

To evaluate the empirical accuracy of the

equiprobabilities predicted by SHG, we examined
Finnish /t/-deletion in a corpus of approximately
9 million nouns (tokens) harvested from Finnish
internet sites on April 12, 2005. The percent-
ages reported in Table 3 represent the token fre-
quency of /t/-retention vs. /t/-deletion variants for
each phonologically distinct stem type. The cor-
pus data are consistent with the equiprobability
prediction in five out of the seven blocks, namely
those in black. These blocks turn out to be em-
pirically nearly categorical, with almost all stems
undergoing either /t/-deletion or /t/-retention, con-
sistently with the equiprobability prediction.

However, the two red blocks in Table 3 bun-
dle together the stem types (c)-(f) despite them
showing rather different empirical frequencies,
providing prima facie evidence against SHG’s
equiprobability prediction. The stem types are il-
lustrated by /symposiumi/ ‘symposium’, /polyamidi/
‘polyamide’, /liirumlaarumi/ ‘nonsense’, and /inku-
naabeli/ ‘incunable’. The stems differ in the weight
and quality of the preantepenultimate and an-
tepenultimate syllables (heavy vs. light, [+low]
vs. [−low]), which results in constraint violation
differences, yet HG predicts that all four should
undergo /t/-deletion/retention at identical rates. In
order to reconcile SHG’s equiprobability predici-
tions with corpus frequencies, we make the fol-
lowing observations. First, the difference be-
tween types (d) /liirumlaarumi/ and (f) /inkunaabeli/
is not statistically significant (χ2 = 2.9849, df
= 1, p = 0.08404). Second, type (c) contains
only two stems: /symposiumi/ ‘symposium’ and /im-
periumi/ ‘empire’, both potentially syllabifiable as
four-syllable stems, e.g., im.pe.ri.u.mi ∼ im.pe.riu.mi
(Anttila and Shapiro, 2017), which is consistent
with their unexpectedly high /t/-deletion rate. This
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leaves us with type (e) /polyamidi/ ‘polyamide’ (N =
69), again with an unexpectedly high deletion rate
for which we have no plausible explanation. We
conclude that by and large our Finnish corpus data
support SHG’s equiprobability predictions.

ME One might wonder whether ME with its
ability to make fine-grained distinctions might ac-
tually offer a more principled solution to the dif-
ficulties just discussed. This turns out not to be
the case. On the retention side, ME predicts the
uniform probability inequalities in the top row of
Table 4. For example, the retention probability of
/polyamidi/ is predicted to be at most as high as that
of /liirumlaarumi/, no matter the choice of the weight
vector. That seems initially promising: these in-
equalities are in fact exactly what we observe in
the data. Puzzlingly, on the deletion side, ME re-
verses the probabilities, yielding the uniform prob-
ability inequalities in the bottom row of Table 4.
For example, the deletion probability of /polyamidi/
is predicted to be at most as high as that of /liirum-
laarumi/. This is exactly the opposite of what we
observe in the data. We submit there is simply no
way to reconcile ME’s predictions with the corpus
data. Such counterintuitive probability reversals
appear in other blocks as well.

7 Summary and conclusions

We have shown that ME predicts typologies so
rich that ME grammars can distinguish between
any two different mappings and therefore admit
no equiprobable mappings (Proposition 1). This
richness does not extend to other implementations
of probabilistic constraint-based phonology, such
as SHG (Proposition 2), revealing a fundamental
difference between the two frameworks.

We have then applied these results to the test
case of Finnish word stress. Our corpus data
provide preliminary evidence in favor of SHG’s
equiprobability predictions. In the two blocks
where SHG appeared to run into problems, ME
did not help refine the analysis empirically, but in-
stead split the SHG equiprobable stem types apart
in a counterintuitive fashion. Our study thus pro-
vides some preliminary empirical support in favor
of SHG, which permits equiprobable mappings,
against ME, which does not.
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A Proof of Proposition 1

We write ci and ĉj as shorthands for the difference
vectors C(x, y, zi) and C(̂x, ŷ, ẑj) corresponding to
the losers zi and ẑj . The ME probability inequality
PME
w (x, y) = PME

w (̂x, ŷ) can be made explicit as in
(4) through some elementary manipulations. As
usual, aTb denotes the scalar product of a and b.

∑m
i=1 e

wTci =
∑m̂

j=1 e
wTĉj (4)

Once the ME probability identity PME
w (x, y) =

PME
w (̂x, ŷ) is made explicit as in (4), it is obvious

that it holds uniformly for every weight vector w
when the two sets of difference vectors coincide,
namely {c1, . . . , cm} = {ĉ1, . . . , ĉm̂}. To com-
plete the proof of Proposition 1, we thus only have
to prove the reverse. We split the proof into three
steps, corresponding to those in Section 4.
Step 1. We start from the assumption that the ME
probability identity PME

w (x, y) = PME
w (̂x, ŷ) holds

uniformly. This means in particular that the prob-
ability inequality PME

w (x, y) ≤ PME
w (̂x, ŷ) holds uni-

formly. The necessary condition for this uniform
ME inequality provided by Proposition 2 can be
rewritten as the inclusion (1). As usual, R+ is
the set of nonnegative real numbers and A+B =
{a + b | a ∈ A,b ∈ B} is the vector sum of two
sets A and B of Rn. The region on the right hand
side of (1) is the light gray region in Fig. 3.b.

(1) {ĉ1, . . . , ĉm̂} ⊆ conv(c1, . . . , cm) + Rn
+

The set conv(c1, . . . , cm) + Rn
+ on the right

hand side of (1) is convex because the two sets
conv(c1, . . . , cm) and Rn

+ are both convex and the
sum of two convex sets is convex (Boyd and Van-
denberghe, 2004, Section 2.3.2). The inclusion (1)
thus extends from the points ĉ1, . . . , ĉm̂ to their
convex hull conv(ĉ1, . . . , ĉm̂), yielding the inclu-
sion conv(ĉ1, . . . , ĉm̂) ⊆ conv(c1, . . . , cm)+Rn

+.
Finally, by adding Rn

+ at both sides, the lat-
ter inclusion entails conv(ĉ1, . . . , ĉm̂) + Rn

+ ⊆
conv(c1, . . . , cm) +Rn

+. Analogously, the reverse
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probability inequality PME
w (̂x, ŷ) ≤ PME

w (x, y) re-
quires the reverse inclusion conv(c1, . . . , cm) +
Rn
+ ⊆ conv(ĉ1, . . . , ĉm̂) + Rn

+, yielding (5).

conv(c1 . . . cm)+Rn
+︸ ︷︷ ︸

P

=conv(ĉ1 . . . ĉm̂)+Rn
+︸ ︷︷ ︸

P̂

(5)

Step 2. This identity (5) says in particular that
the two sets P and P̂ on its left and right hand
side have the same set of extreme points, namely
ext(P ) = ext(P̂ ). The set ext(P ) of extreme
points of the set P is nonempty. In fact, a set
which is closed, convex, nonempty, and does not
contain a line admits at least an extreme point
(Bertsekas, 2009, Proposition 2.1.2). Indeed, P
is closed, because conv(c1, ..., cm) is compact,
Rn
+ is closed, and the sum of a compact set

with a closed set is closed (Bertsekas, 2009, Sec-
tion 1.3). Furthermore, P is convex, because
conv(c1, ..., cm) and Rn

+ are both convex and the
sum of two convex sets is convex. Finally, P is
obviously nonempty and it does not contain a line.

The set ext(P ) of extreme points of the set
P is a subset of the set of difference vec-
tors {c1, . . . , cm}. In fact, the set of ex-
treme points of the finitely generated polyhedron
conv(c1, . . . , cm) is a subset of {c1, . . . , cm} (by
the Krein-Milman theorem). The set of extreme
points of the pointed cone Rn

+ only consists of
the zero vector 0. And the set ext(A + B) of
extreme points of the vector sum A + B of any
two polyhedra A and B is a subset of the vec-
tor sum ext(A) + ext(B) of the two sets ext(A)
and ext(B) of extreme points of A and B, namely
ext(A + B) ⊆ ext(A) + ext(B) (Bertsimas and
Tsitsiklis, 1997, exercise 2.22). Analogously, the
set ext(P̂ ) of extreme points of the set P̂ is a
nonempty subset of the set {ĉ1, . . . , ĉm}.

In conclusion, the two sets of difference vectors
{c1, . . . , cm} and {ĉ1, . . . , ĉm} share the vectors
in the nonempty set Ω = ext(P ) = ext(P̂ ). With-
out loss of generality, we assume that these shared
vectors are those corresponding to the first h ≥ 1
losers, so that {c1, . . . , cm} = Ω∪{ch+1, . . . , cm}
and {ĉ1, . . . , ĉm} = Ω ∪ {ĉh+1, . . . , ĉm̂}.
Step 3. The terms on the left and the right hand
side of the ME probability identity (4) which cor-
respond to the shared difference vectors in Ω can-
cel out. The ME probability identity thus reduces
to

∑m
i=h+1 e

wTci =
∑m̂

j=h+1 e
wTĉj , where the

sums start at h + 1 rather than at 1. The claim

follows by iterating the reasoning above, starting
from the latter simplified ME probability identity.
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Abstract

This paper situates culminative unbounded

stress systems within the subregular hierar-

chy for functions. While Baek (2018) has ar-

gued that such systems can be uniformly un-

derstood as input tier-based strictly local con-

straints, we show here that default-to-opposite-

side and default-to-same-side stress systems

belong to distinct subregular classes when they

are viewed as functions that assign primary

stress to underlying forms. While the former

system can be captured by input tier-based

input strictly local functions, a subsequential

function class that we define here, the lat-

ter system is not subsequential, though it is

weakly deterministic according to McCollum

et al.’s (2018) non-interaction criterion. Our

results motivate the extension of recently pro-

posed subregular language classes to subregu-

lar functions and argue in favor of McCollum

et al.’s definition of weak determinism over

that of Heinz and Lai (2013).

1 Introduction

The treatment of unbounded stress (Baek, 2018),

Uyghur backness harmony (Mayer and Major,

2018), and Sanskrit n-retroflexion (Graf and

Mayer, 2018) in subregular phonology has given

rise to a rich collection of extensions of the tier-

based strictly local languages (TSL; Heinz et al.,

2011) as formal descriptions of the typology of

phonotactic dependencies. These language classes

formalize the notion of local dependencies de-

fined on tiers. While the TSL languages assume

that each segment is either projected to the tier or

not, the extensions allow for rich tier-projection

schemata that are sensitive to local context.

Meanwhile, the formal study of phonological

processes has shown that mappings from underly-

ing representations to surface representations of-

ten exhibit a form of locality analogous to the no-

tion captured by TSL languages. This insight is

formalized by the input strictly local (ISL; Chan-

dlee, 2014), output strictly local (OSL; Chan-

dlee et al., 2015), and input–output strictly local

(IOSL; Chandlee et al., In prep) functions, pro-

posed as functional counterparts of the TSL lan-

guages. Chandlee (2014) argues that most phono-

logical processes are captured by these classes of

functions, and of the ones that are not, Heinz and

Lai (2013) and McCollum et al. (2018) propose

two versions of the weakly deterministic functions

that describe non-deterministic harmony patterns.

This paper examines culminative unbounded

stress systems as string-to-string mappings. Baek

(2018) analyzes these systems as phonotactic con-

straints and shows that they are not TSL in gen-

eral. To capture them, Baek defines the tier-

based strictly local languages with structural fea-

tures (TSL-SF), an extension of TSL in which the

tier-projection mechanism is sensitive to the posi-

tion of segments within prosodic units. The TSL-

SF languages were later subsumed by Graf and

Mayer’s (2018) input–output tier-based strictly

local (IO-TSL) languages, in which the tier-

projection mechanism is implemented by an ar-

bitrary IOSL function. As mappings, we show

that default-to-opposite-side (DO) stress systems

can be captured using a similar approach. Exam-

ples of such systems include stressing the leftmost

long vowel and assigning rightmost stress in the

absence of long vowels. We propose the input

tier-based input strictly local (I-TISL) functions

as a functional analogue of the generalized tier-

projection mechanism of the IO-TSL languages.

Based on the stress system of Abkhaz, we advocate

for a tier projection that is slightly more general

than the restricted mechanism used in Baek. Next,

we show that default-to-same-side (DS) stress sys-

tems, such as that of Lhasa Tibetan, are not subse-

quential. Examples of DS systems include those

in which the leftmost long vowel is stressed, and
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the leftmost vowel is stressed when all vowels are

short. We argue that DS systems can be naturally

captured using McCollum et al.’s (2018) definition

of weak determinism but not using Heinz and Lai’s

(2013) definition, therefore arguing in favor of the

former definition.

This paper is structured as follows. Section 2

states basic notation and definitions used through-

out this paper. Section 3 defines the I-TISL func-

tions and shows that they can capture the DO stress

system of Abkhaz. Section 4 considers Lhasa Ti-

betan and its relation to the two definitions of weak

determinism. Section 5 presents a discussion of

these results and their connection with analyses of

stress based onmetrical grid theory. Section 6 con-

cludes.

2 Preliminaries

As usual, N denotes the set of nonnegative inte-

gers. Σ and Γ denote finite alphabets not including

the left and right word boundary symbols⋊ and⋉,

respectively. The length of a string x is denoted

by |x|, and λ denotes the empty string. Alphabet

symbols are identified with strings of length 1, and
individual strings are identified with singleton sets

of strings. For k ∈ N, αk denotes α concatenated

with itself k-many times, α∗ denotes
∪∞

i=0 αi, and

α+ denotes αα∗. The longest common prefix of a

set of strings A is the longest string lcp(A) such
that every string in A begins with lcp(A). The k-
suffix of a string x, denoted suffk(x), is the string
consisting of the last k-many symbols of ⋊kx.
The reverse of a string x = x1x2 . . . xn, denoted

xR, is the string xnxn−1 . . . x1. For any functions

f : A → B and g : B → C, the notation g ◦f rep-

resents the function given by (g◦f)(x) = g(f(x)).
A function f : Σ∗ → Γ∗ is same-length if for all

x ∈ Σ∗, |f(x)| = |x|.

2.1 Subsequential Functions

This subsection presents an algebraic definition

of the subsequential functions, analogous to the

Nerode–Myhill characterization of the regular lan-

guages. We use the translations of a function f to

describe the possible behaviors of a subsequential

finite-state transducer (SFST) for f , and we iden-

tify each translation of f with a state of theminimal

SFST for f .

Definition 1. Let f : Σ∗ → Γ∗. We define the

function f← : Σ∗ → Γ∗ by

f←(x) := lcp ({f(xy)|y ∈ Σ∗}) .

For any x, y ∈ Σ∗, f→x (y) denotes the string such
that f(xy) = f←(x)f→x (y). We refer to the func-

tion f→x as the translation of f by x and to f← as

f top.1

Intuitively, f←(x) refers to the output of the

minimal SFST for f after reading the input x, and
the translation f→x describes the behavior of the

minimal SFST upon reading further input symbols.

Definition 2 (Raney, 1958). A function f : Σ∗ →
Γ∗ is subsequential if the set {f→x |x ∈ Σ∗} is fi-

nite. We say that f is left-subsequential if it is

subsequential and right-subsequential if the func-

tion g : Σ∗ → Γ∗ defined by g(x) := f
(
xR)R

is subsequential. We say that f is sequential or

left-sequential if f is subsequential and f = f←.
We say that f is right-sequential if the function

g : Σ∗ → Γ∗ defined by g(x) := f
(
xR)R

is se-

quential.

The strictly local functions are defined by as-

suming that each translation corresponds to an i-
suffix of the input and a j-suffix of the output.

Definition 3 (Chandlee et al., In prep). For i, j ∈
N, a function f : Σ∗ → Γ∗ is i, j-input–output
strictly local (i, j-IOSL) if for every x, y ∈ Σ∗, if
suffi−1(x) = suffi−1(y) and suffj−1(f←(x)) =
suffj−1(f←(y)), then f→x = f→y . If the func-

tion g(x) := f
(
xR)R

is i, j-IOSL, then f is right

i, j-input–output strictly local (right i, j-IOSL). A
function is i-input strictly local (i-ISL) if it is i, 1-
IOSL and j-output strictly local (j-OSL) if it is
1, j-IOSL. A function is input–output strictly local

(IOSL), input strictly local (ISL), or output strictly

local (OSL) if if is i, j-IOSL, i-ISL, or j-OSL for

some i, j ∈ N, respectively. A function is homo-

morphic if it is sequential and 1, 1-IOSL.

Since there are only finitely many possible i-
suffixes and j-suffixes, it is clear that all IOSL

functions are subsequential.

3 DO Stress and Tier Projection

In culminative unbounded stress systems, primary

stress is assigned to either the first or last sylla-

ble that fulfills a particular criterion—e.g., having

a long vowel. In the absence of such syllables,

primary stress is assigned to either the first or last

syllable by default. DO stress systems are those

1This terminology follows Sakarovitch (2009, pp. 692–

693). In the transducer inference literature, Oncina et al.

(1993) refer to f→x as the tails of x in f , and Chandlee et al.

(2015) refer to f← as the prefix function associated to f .
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in which qualifying syllables closest to one word

edge receive stress, while the syllable closest to the

other edge receives stress by default. In DS stress

systems, qualifying syllables closest to one word

edge receive stress, and the syllable closest to the

same edge receives stress by default. For example,

in the typology of Hayes (1995), leftmost heavy

otherwise rightmost (LHOR) and rightmost heavy

otherwise leftmost systems (RHOL) are DO, while

leftmost heavy otherwise leftmost (LHOL) and

rightmost heavy otherwise rightmost (RHOR) sys-

tems are DS.

This section considers the DO stress system

of Abkhaz, which we describe in Subsection 3.1.

Subsection 3.2 defines the I-TSL functions and

shows how they can capture the Abkhaz stress sys-

tem.

3.1 Abkhaz Stress

Below we illustrate the stress system of the stan-

dard Abzhuy variety of Abkhaz ([abk], Northwest

Caucasian), as analyzed by Dybo (1977; refined

by Spruit, 1986 and Trigo, 1992). The Abkhaz

stress system depends on a set of phonologically-

contrastive accentual specifications. In the data

considered here, every syllable of everymorpheme

is lexically specified as either dominant (D) or re-

cessive (R; see Spruit, 1986 for accentual speci-

fications which do not align with syllable bound-

aries). The so-called Dybo’s Rule for stress states:

assign primary stress to the leftmost D not immedi-

ately followed by another D (Spruit, 1986, p. 38).

We mark dominant syllables by underlining, and

hyphens indicate morpheme boundaries. Evidence

for accentual specifications can be found in Spruit

(1986).

The Abkhaz stress pattern is illustrated in Ta-

bles 1–3. When a word contains only a single

dominant syllable, it receives the primary stress.

When there is a span of multiple dominant sylla-

bles which are all adjacent, the rightmost such syl-

lable is stressed. When there are multiple spans of

adjacent D syllables, the rightmost D of the left-

most span is stressed. In words with only D syl-

lables, as well as in words with only R syllables,

stress is final.

3.2 I-TISL Functions

Let us now define the I-TISL functions and show

how they can handle the Abkhaz stress system. To

do so, we extend the notion of tier projection used

in the TSL languages (Heinz et al., 2011; Baek,

Form Translation

a-ˈʈ͡ ʂʰa-ɡa ‘(the) hoe’

də-t͡ sʰa-la-ˈwa-ma ‘does (s)he usually go?’

də-t͡ sʰa-ˈnə ‘(s)he having gone’

Table 1: The rightmost consecutive dominant syllable

receives primary stress (Spruit, 1986, pp. 50, 53).

Form Translation

ˈa-va-t͡ sʼa-ra ‘to put next to’

də-ˈɡəla-ɡʷuʃa-ma ‘did (s)he go and stand,

alas?’

a-ˈʁʷakʼʲaməsa ‘(the) poniard’

Table 2: Only the leftmost span of Ds contains a pri-

mary stress (Spruit, 1986, pp. 44, 47, 73–74).

2018; Mayer and Major, 2018; Graf and Mayer,

2018) to the case of subregular functions. There,

tier projections are formalized as functions that

delete certain symbols of their inputs.

Definition 4. A tier-projection function on Σ is a

function π : Σ∗ → Σ∗ such that for any x =
x1x2 . . . xn ∈ Σ∗ we have π(x) = y1y2 . . . yn,

where for each i, either yi = xi or yi = λ.

TSL languages make use of tier projection by

only enforcing local dependencies based on sym-

bols projected to the tier, thereby bypassing sym-

bols not projected to the tier. To apply the tier pro-

jection system to strictly local functions, we only

consider symbols on the tier when enforcing strict

locality. Whereas i-ISL functions require that their

translations by a string x correspond to the last

(i − 1)-many symbols of x, tier-based i-ISL func-

tions associate translations with the last (i − 1)-
many symbols on the tier, which we identify with

suffi−1(π←(x)).

Definition 5. A function f : Σ∗ → Γ∗ is i-
input tier-based j-input strictly local (i-I-j-TISL)
if there exists an i-ISL tier projection function π on

Σ such that for all x, y ∈ Σ∗, if suffj−1(π←(x)) =
suffj−1(π←(y)), then f→x = f→y . We call π a

tier projection for f . A function is input tier-based

input strictly local (I-TISL) if it is i-I-j-TISL for

some i and j.

We formalize the Abkhaz stress system as fol-

lows. Alphabet symbols represent individual syl-

lables; dominant and recessive syllables are rep-

resented as D and R, respectively. Stressed syl-

lables are represented as D́ and Ŕ. Following the
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Form Translation

a-pʰa-ˈra ‘to pleat’

maa-ˈkʼə ‘one handle”

Table 3: Stress is final when all syllables have the same

accentual status (Spruit, 1986, pp. 45–46).

discussion from Subsection 3.1, the Abkhaz stress

function replaces the leftmost D not followed by

another D with D́. If the input does not contain

any Ds, then the final R is replaced with Ŕ.

Definition 6. The Abkhaz stress function α :
{D,R}∗ → {D,R, D́,Ŕ}∗ is defined as follows.

For i ≥ 0, j > 0, and y ∈ {λ} ∪ R{D,R}∗,
α(RiDjy) := RiDj−1D́y

α(Rj) := Rj−1Ŕ

α(λ) := λ.

Proposition 7. The Abkhaz stress function is 2-I-
3-TISL.

Proof. Let π : {D,R}∗ → {D,R}∗ be the tier-

projection function defined as follows.

• Any D not preceded by another D is pro-

jected.

• Any R preceded by a D is projected.

It is easy to see that π is 2-ISL. Observe that for
any x, π(x) ∈ (DR)∗{λ,D}.
We now show that α is 2-I-3-TISL with tier pro-

jection π. To that end, we need to show that each

translation α→x is determined by suff2(π←(x)).
Observe that there are four possible values for

suff2(π←(x)): ⋊⋊, ⋊D, DR, or RD. We consider

each of these cases one-by-one.

• Suppose suff2(π←(x)) = ⋊⋊. This means

that x = Ri for some i ≥ 0. Stress has not yet
been assigned, so α←(x) = Ri−1 if i > 0 and
α←(x) = λ otherwise. For any y ∈ {D, R}∗,

α→x (y) =

{
Rα(y), i > 0

α(y), i = 0.

• Suppose suff2(π←(x)) = ⋊D. This means

that x = RiDj , where j > 0 and i ≥ 0.
Stress has not yet been assigned, so α←(x) =
RiDj−1. For any input of the form DmRny,
where m,n ≥ 0 and y ∈ {D,R}∗,

α→x (DmRny) =

{
DmD́Rny, n > 0

DmyD́, Rny ∈ D∗.

• Suppose suff2(π←(x)) ∈ {DR,RD}. Now,

stress has already been assigned, so α←(x) =
α(x) and for all y, α→x (y) = y.

In all four cases, we have seen that α→x does

not depend on x, though it does depend on

suff2(π←(x)). Therefore, α is 2-I-3-TISL.

In the construction described above, the fact

that π is allowed to be 2-ISL enables π to only

project symbols marking the boundaries between

contiguous spans of Ds and Rs. In the original

tier-projection mechanism of Heinz et al. (2011),

for each symbol u ∈ Σ, either all tokens of u must

be projected to the tier, or no tokens of u may be

projected.

Definition 8. A function is tier-based j-input
strictly local (j-TISL) if it is 1-I-j-TISL and has

a homomorphic tier projection. A function is tier-

based input strictly local (TISL) if it is j-TISL for

some j.

To justify the use of a 2-ISL tier projection, we

show that the primitive tier-projection mechanism

does not suffice to capture Abkhaz stress.

Proposition 9. The Abkhaz stress function is not

TISL.

Proof. Let π : {D,R}∗ → {D,R}∗ be a homo-

morphic tier projection. We will show that for ev-

ery j > 0, there exist x, y, z ∈ {D,R}∗ such that

suffj−1(π←(x)) = suffj−1(π←(y)), butα→x (z) ≠
α→y (z).

Fix j > 0, and suppose π projects D. Then,

suffj−1(π←(Dj)) = suffj−1(π←(DRDj)) =
Dj−1, but α→

Dj (R) = D́R, while α→
DRDj (R) =

R. Next, suppose π projects R. Then,

suffj−1(π←(Rj)) = suffj−1(π←(DRj)) = Rj−1,

but α→
Rj (D) = RD́, while α→

DRj (D) = D. Fi-

nally, suppose π projects neither R nor D. Then,

suffj−1(π←(R)) = suffj−1(π←(DR)) = ⋊j−1,

but α→R (D) = RD́, while α→DR(D) = D. There-

fore, α is not j-TISL for any j and for any π.

In addition to exceeding the power of TISL

functions, our tier projection is also consider-

ably more sophisticated than the projection used

in Baek (2018). There, Baek formalizes LHOL,

LHOR, RHOL, and RHOR systems as phonotac-

tic constraints and projects heavy, stressed, word-

initial, and word-final syllables to the tier. She

achieves this by using the primitive tier-projection

mechanism with an augmented alphabet in which
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syllables are marked as being word-initial, word-

final, or word-medial. To avoid feature coding

(Rogers, 1997), Baek stipulates that syllables can-

not be marked in any other way. Since Dybo’s

Rule is sensitive to more nuanced structural infor-

mation, we argue that arbitrary ISL tier projections

are required for DO stress systems in general.

4 DS Stress and Weak Determinism

We have now shown that the DO stress system of

Abkhaz is I-TISL. This section turns to DS stress

systems. Subsection 4.1 introduces the DS stress

system of Lhasa Tibetan, and in Subsection 4.2

we show that this stress system is not subsequen-

tial. Subsection 4.3 considers two definitions of

the weakly deterministic functions, proposed by

Heinz and Lai (2013) and McCollum et al. (2018),

and argue that the latter definition more naturally

describes the Lhasa Tibetan stress system than the

former.

4.1 Lhasa Tibetan Stress

We describe here the stress system of Tibetan

([bod], Sino-Tibetan) using data from the Lhasa

variety, as described by Dawson (1980). The de-

scriptive generalization about Tibetan stress is as

follows: primary stress falls on the leftmost long

vowel, and if there are no long vowels, on the

leftmost vowel. Stress is indicated with the IPA

primary stress diacritic, and long vowels are un-

derlined. Below we illustrate the generalizations

about Tibetan stress. All of our data come from

Gordon (2007, p. 37), who in turn cites Dawson

(1980). The same data can also be found in Odden

(1979), who cites personal communication with N.

Nornang.

The Lhasa Tibetan stress pattern is illustrated in

Tables 4 and 5. When a word contains one or more

long vowels, the leftmost long vowel receives the

primary stress. When there are no long vowels, the

leftmost vowel has primary stress. Thus, this is an

example of a DS stress system.

Form Translation

ámˈtɔ̂ː ‘person from Amdo’

kʰáˈpáː ‘telephone’

ˈtýːtṹː ‘shirt’

Table 4: The leftmost long vowel receives primary

stress.

Form Translation

ˈlápʈá ‘school’

ˈɲúɡú ‘pen’

ˈwòmá ‘milk’

Table 5: Default stress is initial.

4.2 Non-Subsequentiality

Intuitively, the behavior of an SFST is to scan its

input from left to right, emitting output symbols

deterministically as it does so. This paradigm of

computation is problematic for DS stress systems

such as that of Lhasa Tibetan. In order to deter-

mine whether or not the first syllable of its input

should be stressed, an SFST implementing Lhasa

Tibetan stress must scan the entire input to check

for the presence of long vowels. However, once

the SFST has determined that an input does not

have any long vowels, it no longer has access to

the initial syllable, and therefore cannot mark it as

stressed. The following discussion makes this in-

tuition rigorous by showing that the Lhasa Tibetan

stress system is not subsequential.

We formalize the Lhasa Tibetan stress system

as follows. Syllables with long-vowel nuclei are

represented as H, while syllables with short-vowel

nuclei are represented as L. Stressed syllables are

represented as H́ and Ĺ, respectively. If an input

contains at least one H, then the first H receives

stress. Otherwise, the first syllable receives stress.

Definition 10. The Tibetan stress function τ :
{H,L}∗ → {H,L, H́,Ĺ}∗ is defined as follows.

For i ≥ 0, j > 0, and y ∈ {H,L}∗,

τ(LiHy) := LiH́y

τ(Lj) := ĹLj−1

τ(λ) := λ.

Proposition 11. The Tibetan stress function is not

subsequential.

Proof. We will show that τ has infinitely many

translations. Consider a string of the form Li,

where i > 0. Observe that τ(LiH) = LiH́ and

τ(Li) = ĹLi−1. Therefore,

lcp({τ(LiH), τ(Li)}) = λ,

so τ←(Li) = λ, hence τ→
Li (H) = LiH́. But this

means that if i ̸= j, then

LiH́ = τ→
Li (H) ̸= τ→

Lj (H) = LjH́.
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Thus, each possible value of i induces a distinct

translation τ→
Li , so we conclude that τ is not subse-

quential.

4.3 Weak Determinism

The current subregular approach to non-

subsequential processes is represented by the

weakly deterministic functions, a class proposed

by Heinz and Lai (2013) in order to distinguish

the unattested sour grapes harmony process from

attested harmony processes.2 Dominant/recessive

and stem-controlled vowel harmony (Heinz and

Lai, 2013; McCollum et al., 2018), Tutrugbu ATR

harmony (McCollum et al., 2018), and Copperbelt

Bemba tone spreading (McCollum et al., 2018;

Smith and O’Hara, 2019) have so far been shown

to be non-subsequential but weakly deterministic

in the sense of Heinz and Lai.

Definition 12 (Heinz and Lai, 2013). A function

f : Σ∗ → Γ∗ is markup-free weakly deterministic
if there exist functions g : Σ∗ → Σ∗ and h : Σ∗ →
Γ∗ such that

• f = h ◦ g;

• either g is left-subsequential and h is right-

subsequential or g is right-subsequential and

h is left-subsequential; and

• for all x ∈ Σ∗, |g(x)| ≤ |x|.

Elgot and Mezei (1965) show that every finite-

state function can be decomposed into a left-

subsequential function and a right-subsequential

function. In their construction, the first function in

the composition encodes state information into its

input, which allows the second function to deter-

minize its computation. The above definition at-

tempts to prohibit this kind of encoding by requir-

ing that g cannot introduce new alphabet symbols

or increase the length of its input. McCollum et al.

(2018) argue that a limited form of state encoding

is still possible under Heinz and Lai’s criterion, and

instead advocate for a more explicit notion of non-

interaction between the two functions.

Definition 13 (McCollum et al., 2018). Let f :
Σ∗ → Γ∗ be a same-length function.3 Fix x ∈ Σ∗,
and write x = x1x2 . . . xn and y = y1y2 . . . yn so

2However, it is currently unknown whether this class of

functions is distinct from the class of finite-state functions.
3McCollum et al. additionally require that f be sequential.

We relax this assumption here.

that for each i, xi ∈ Σ and yi ∈ Γ. The µ-factors
of x with respect to f are the set

µ(f, x) := {⟨i, xi, yi⟩|yi ̸= xi}.

The basic intuition behindMcCollum et al.’s cri-

terion is that the two functions in the decomposi-

tion cannot feed or bleed one another. They take

this to mean that neither function can cause the

other to change its behavior for some position of

the input.

Definition 14 (McCollum et al., 2018). A function

f : Σ∗ → Γ∗ is interaction-free weakly determin-
istic if there exist an alphabet∆ ⊇ Σ and functions

g : Σ∗ → ∆∗ and h : ∆∗ → Γ∗ such that

• f = h ◦ g;

• either g is left-subsequential and h is right-

subsequential or g is right-subsequential and

h is left-subsequential; and

• for all x ∈ Σ∗, µ(f, x) = µ(g, x) ∪ µ(h, x).4

This criterion naturally describes the Tibetan

stress function. We can decompose this func-

tion into a left-subsequential function that assigns

stress to the leftmost H and a right-subsequential

function that assigns initial stress in the absence of

an H. These two functions do not interact, since

each only assigns stress if the other does not.

Proposition 15. The Tibetan stress function is

interaction-free weakly deterministic.

Proof. Let us define g : {H,L}∗ → {H,L, H́}∗
and h : {H,L, H́}∗ → {H,L, H́,Ĺ}∗ as follows.
For i ≥ 0, y ∈ {H,L}∗, and z /∈ L+,

g(LiHy) := LiH́y

g(Li) := Li

h(z) := z

h(LLi) := ĹLi.

It is clear that τ = h ◦ g, g is left-sequential, and

h is right-subsequential. Observe that h(x) = x if

g(x) ̸= x and h(x) ̸= x if g(x) = x, so for all

x, either µ(h, x) = ∅ and µ(τ, x) = µ(g, x) or
µ(g, x) = ∅ and µ(τ, x) = µ(h, x). Therefore, τ
is interaction-free weakly deterministic.

4Note that this criterion implicitly requires that f , g, and
h all be same-length.
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On the other hand, it is difficult to see how

the Tibetan stress function can be made to satisfy

Heinz and Lai’s definition of weak determinism.

The decomposition presented above violates the

markup-free criterion because g introduces new al-

phabet symbols to its input. This is an inherent

property of stress assignment, since inputs must be

annotated with stress markers. In order to satisfy

the markup-free criterion, then, any stress assigned

by the first function must be encoded without us-

ing a designated stress marker. We conjecture that

no such decomposition exists.

5 Discussion

We have now given two separate subregular treat-

ments of DO and DS stress systems. Subsection

5.1 shows how our implementation of the Abkhaz

and the Tibetan stress functions mirrors existing

phonological analyses of stress systems according

to metrical grid theory. Subsection 5.2 discusses

the implications of our results for the hierarchy of

subregular functions.

5.1 Relation to Metrical Grid Theory

The use of tiers and tier projection functions to in-

vestigate phonological complexity is of course not

novel. One way of analyzing stress is in terms of

so-called metrical grids (Liberman, 1975; Hayes,

1995; Kager, 1995; and many others), which are

effectively tiers stacked on top of each other. The

tiers of metrical grids correspond closely with the

tiers used in this paper. In other words, our analy-

sis alignswell with previous analyses of stress. Be-

low we explain metrical grids, and highlight some

similarities with the present paper.

The metrical grid below represents the word

ˌæləˈbæmə ‘Alabama’ (Kager, 1995, p. 369). Tier

2 identifies the primary stress, tier 1 indicates all

stresses, whether primary or secondary, and tier 0

shows the division of the word into syllables.

Tier 2 ∗
Tier 1 ∗ ∗
Tier 0 ∗ ∗ ∗ ∗

æ lə bæ mə

Figure 1: The metrical grid for ˌæləˈbæmə ‘Alabama.’

Metrical grids can be used to understand the

stress systems of Abkhaz and Lhasa Tibetan. The

brief overview below follows Kager (1995), which

interested readers should consult for a detailed

analysis of both DO and DS systems. For Abk-

haz, we begin with a tier 0 where D syllables have

two asterisks, and R syllables one. In addition to

the final syllable, any ∗∗ on tier 0 not immediately

followed by another ∗∗ projects onto tier 1. Fi-

nally, the leftmost tier 1 asterisk projects onto tier

2. This gives grids like the one in Figure 2, for the

word a-ˈʁʷakʼʲaməsa ‘the poniard.’

Tier 2 ∗
Tier 1 ∗ ∗ ∗
Tier 0 ∗∗ ∗∗ ∗ ∗∗ ∗

a ʁʷa kʼʲa mə sa

Figure 2: The metrical grid for a-ˈʁʷakʼʲaməsa ‘the

poniard.’

Aswe saw for English, a tier 2 asterisk identifies

the primary stress. It is not clear whether tier 1

asterisks encode secondary stress in Abkhaz, but

there are segmental alternations between [ə] and
[∅] that are affected by tier 1 (see Spruit, 1986,

pp. 73–77).

For words with no dominant syllables, such as

maa-ˈkʼə ‘one handle,’ we simply project the right-

most syllable from tier 0 onto tier 1. Again, the

leftmost (and only) tier 1 asterisk projects onto tier

2.

Tier 2 ∗
Tier 1 ∗
Tier 0 ∗ ∗ ∗

ma a kʼə

Figure 3: The metrical grid for maa-ˈkʼə ‘one handle.’

For Lhasa Tibetan, we have no underlying ac-

centual specifications, but instead place either one

or two asterisks on tier 0 depending on whether the

vowel is short or long. The leftmost tier 0 ∗∗ is pro-
jected onto tier 1.5 The leftmost ∗ of tier 1 projects
onto tier 2, indicating primary stress. For ˈtýːtṹː
‘shirt,’ this gives the following.

Tier 2 ∗
Tier 1 ∗ ∗
Tier 0 ∗∗ ∗∗

týː tṹː

Figure 4: The metrical grid for ˈtýːtṹː ‘shirt.’

5We are not aware of data on secondary stress.
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In words without any long vowels, the same sys-

tem produces the desired result. The word in Fig-

ure 5 is ˈwòmá ‘milk.’ By convention, since tier 1

is empty, we project the leftmost ∗ of tier 0 instead
(Kager, 1995, pp. 384–385).

Tier 2 ∗
Tier 1

Tier 0 ∗ ∗
wò má

Figure 5: The metrical grid for ˈwòmá ‘milk.’

In the analysis of Abkhaz, the projection of tier

1 mirrors the tier projection used in Proposition 7:

both the asterisks and the projectedDs andRsmark

the location of Ds not followed by Rs, and both

projections are ISL. The projection of tier 2 is ISL

if tier 1 is taken to be the input, in the same way

that the Abkhaz stress function reflects a strictly

local dependency enforced over an ISL tier. In the

analysis of Tibetan, the decomposition of τ into g
and h is analogous to the convention that tier 2 is

projected from tier 0 if tier 1 is empty.

5.2 The Subregular Hierarchy

Our work makes two contributions to the study

of the subregular hierarchy. Firstly, our defini-

tion of the I-TISL functions naturally incorporates

the notion of tier projection developed by Graf and

Mayer (2018) into the family of strictly local func-

tions proposed by Chandlee (2014), Chandlee et al.

(2015), and Chandlee et al. (In prep). Secondly,

we have presented an argument based on stress

assignment that McCollum et al.’s (2018) defini-

tion of weak determinism is more natural for com-

putational phonology than that of Heinz and Lai

(2013).

Intuitively, the difference between DO and DS

stress systems is that the former has a consistent

directionality, while the latter does not. In our im-

plementation of the Akbhaz stress function, the in-

put is scanned from left to right, and when no ap-

propriate D syllable is found, default final stress is

assigned at the end of the computation. Thus, the

Abkhaz stress function may be viewed as a “left-

to-right” process. The contribution of weak deter-

minism to the Tibetan stress function is that the

right-subsequential component allows the process

to “change direction” when no H syllable is found.

If bidirectionality is the primary contribution of

weak determinism to subregular phonology, then

it may be desirable to impose additional structure

on the two components of a weakly deterministic

function. In Proposition 15, for example, g is 2-
TISL, while h is right 1, 1-IOSL.

6 Conclusion

This paper has considered unbounded stress sys-

tems in relation to the subregular hierarchy for

functions. We have shown that the functions for

assigning default-to-opposite (DO) and default-to-

same (DS) stress are not part of the same sub-

regular classes. The DO stress function in Abk-

haz is subsequential, and belongs to the input tier-

based input strictly local (I-TISL) class, which also

captures other DO stress systems. The tiers and

tier projection functions that we use are linguisti-

cally interpretable, sharing many properties with

the phonological representations used in metrical

analyses of stress. However, we have seen that

the DS stress function in Lhasa Tibetan is not sub-

sequential. DS stress can instead be captured us-

ing the class of weakly deterministic functions, and

therefore we favor McCollum et al.’s (2018) defi-

nition of weak determinism over that of Heinz and

Lai (2013).
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Abstract

In spontaneous speech, Mandarin tones that
belong to the same tone category may exhibit
many different contour shapes. We explore the
use of data mining and NLP techniques for un-
derstanding the variability of tones in a large
corpus of Mandarin newscast speech. First,
we adapt a graph-based approach to character-
ize the clusters (fuzzy types) of tone contour
shapes observed in each tone n-gram category.
Second, we show correlations between these
realized contour shape types and a bag of au-
tomatically extracted linguistic features. We
discuss the implications of the current study
within the context of phonological and infor-
mation theory.

1 Introduction

One of the central phenomena of interest in lex-
ical tone production is the deviation of their sur-
face realizations from canonical templates of tone
categories(Xu, 1997; Prom-on et al., 2009; Suren-
dran, 2007). In a tone language, different tone cat-
egories differing in pitch movements can distin-
guish different lexical meanings of a syllable (e.g.,
in Mandarin, the syllable “ma” in a high level pitch
contour means “mother”, whereas the same syl-
lable spoken in a falling pitch contour means “to
scold”). Even though each tone category is de-
fined with a general pitch contour profile (such as
level, rising, falling, etc.), they typically exhibit
great variability in spontaneous speech. As an ex-
ample, Figure 1 shows many different realizations
of Mandarin tone 1, observed during speech pro-
duction experiments in the lab.

Previous works in phonology, speech prosody,
and tone recognition have investigated this vari-
ability by asking questions such as: (1) What fac-
tors contribute to the variability in tone produc-
tion (Xu, 1997)?(2) How can we model the tone
contour trajectory in synthesized speech (Prom-on

et al., 2009)? (3) What features can we use to im-
prove the accuracy of automatic tone recognition
(Surendran, 2007)? Each of the works was driven
by a particular set of theoretical or practical moti-
vations and offered us a slice of understanding into
the problem.

In this work, we are interested in looking at the
tone variability problem from a data mining per-
spective: we explore the structure and distribution
of tone contour shapes within a large amount of
data. By taking a data mining approach, we con-
trast our work with those works that focus on tone
recognition or tone learning (either by machine or
by human): we seek to extract tone patterns of em-
pirical significance from a large data set of tones
from spontaneous speech.

Working with the MCPST corpus (see Section
3) of Mandarin newscast speech (about 100,000
tones), we ask two questions: (1) For each tone
category, what are the (coarse) types/classes of
tone contour shapes we observe in this corpus? (2)
For a particular tone category, what linguistic fac-
tors caused the same tone to be realized as these
different types of shapes?

Inspired by works in natural language process-
ing (NLP), we further extend these research ques-
tions in two directions. First, we extend our in-
vestigation of tone categories into a series of n
consecutive tones, or tone n-grams. N -grams is
a classic technique in NLP language modeling1,
whereas in the current context, we study tone n-
grams due to the importance of context in tone
variability (Xu, 1997): a tone category maybe re-
alized differently depending on their neighboring
tones. What can we learn from data mining tone
contour shapes for tone unigrams, bigrams, and
trigrams?

Second, to study prosody interface in MCPST
1Readers may refer to the classic NLP textbook chapter if

needed: https://web.stanford.edu/ jurafsky/slp3/3.pdf.
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data, we use automatic methods (NLP and other)
to extract linguistic features from the text, includ-
ing Named Entity Recognition (NER), Corefer-
ence resolution, Part-of-speech (POS) tagging, de-
pendency parsing, and other phonological, mor-
phological and contextual features. In order to find
out the importance of these linguistic factors in
shaping tone variability, we run the following ex-
periment: given a particular tone (or tone n-gram)
category, how well can we predict the type of tone
contour shape it will take in running speech, using
these linguistic features that exclude information
about the pitch contour f0 values?

Previous works showed that many linguistic
factors (such as focus, topic, etc.) affect tone pro-
duction or prosody (see Section 2) . In this work,
we extend this to a more comprehensive set of lin-
guistic features, motivated by the information the-
ory account of tone production. We hypothesize
that there exists an information content inequality
resulting from probability distribution of events in
various linguistic domains (phonological, seman-
tic, etc). These inequalities affect speakers’ speech
production, resulting in gradient variants of tone
contour shapes in a given tone category. We in-
vestigate the relative importance of these factors
in predicting the types of contour shapes any par-
ticular tone n-gram will take.

The rest of the paper is organized as follows.
Section 2 discusses relevant previous works. Next
we describe the data used in this paper in Sec-
tion 3. In order to characterize the types of con-
tour shapes a tone n-gram will take, we develop
a method to derive clusters of tone contour shape
types using network analysis (Section 4). In Sec-
tion 5, we discuss feature engineering and feature
extraction from various linguistic domains (syn-
tax, morphology, semantics, information structure,
etc.). Section 6 reports machine learning experi-
ments and results on predicting tone contour shape
types and the analysis on feature importance. Fi-
nally, in Section 7 we discuss the implications of
this work in the context of information theory and
phonological theory of speech and tone produc-
tion.

2 Related Work

There has been a long line of research on the vari-
ability of tone contour shapes as well as interfac-
ing between other linguistic factors and prosody
(Li, 2009; Buring, 2013). In linguistic research

Figure 1: Samples of Mandarin Tone1 by the same
speaker in lab speech. Data source: (Xu, 1997). The
canonical contours of Mandarin Tone 1,2,3,4 are: high
level, low rising, low dipping, high falling, where low
and high denote the pitch starting point of the tone.

of Mandarin tones, most works have focused on
the effect of local tonal context (e.g., neighbor-
ing tones and pitch range, such as (Gauthier et al.,
2007; Xu, 1997)) and broader context (e.g., focus,
topic, information structure, long term f0 varia-
tions, such as (Xu et al., 2004; Liu et al., 2006;
Wang and Xu, 2011)). The data in these works
usually consisted of a small number of tone obser-
vations obtained in speech production experiments
in the lab. They have informed later works on im-
proving the performance of supervised or unsu-
pervised tone recognition ((Levow, 2005; Suren-
dran, 2007) etc.). Other works such as (Surendran,
2007) and (Yu, 2011) have shown the importance
of signals in speech outside of f0 for tone recogni-
tion and learning.

In the PENTA (Xu, 1997, 2005) and qTA (quan-
titative target approximation) models (Prom-on
et al., 2009), the surface f0 contour is viewed as
the result of asymptotic approximation to an un-
derlying pitch target, which can be a static tar-
get (High or Low) or a dynamic target (Rise or
Fall). An important contribution of the qTA is that
it provides a mathematical model to account for
the process of generating of a particular realiza-
tion of a tone template, defined by a pitch target
(with slope and intercept parameters) and the ac-
celeration rate. As such, the specific shape of the
contour then would depend on the starting pitch,
ending pitch target, and how fast the pitch moves.

A fundamental theoretical question is how
should we view the underlying factors that ac-
count for the tone surface variability. Previous re-
search exhibits two opposing theories to this ques-
tion. The first approach (Cooper et al., 1985;
Cooper and Sorenson, 1981) postulates a direct
link between communicative functions and sur-
face acoustic forms by finding the acoustic corre-
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lates of certain communicative functions, such as
focus, stress, newness, questions, etc. Such ap-
proaches have met criticisms from phonologists
(Ladd, 1996; Liberman and Pierrehumbert, 1984),
who argue that prosodic meanings are not directly
mapped onto acoustic correlates. Instead, into-
national meanings should be first mapped onto
phonological structures, which is in turn linked
to surface acoustic forms through phonetic imple-
mentation rules. In this work, we attempt to show
a new middle ground between these two theories.

3 Data

All the data in this work comes from the Man-
darin Chinese Phonetic Segmentation and Tone
(MCPST) corpus 2, developed by the Linguistic
Data Consortium (LDC). It contains 7,849 Man-
darin Chinese newscast speech “utterances” and
their phonetic segmentation and tone labels. Ut-
terances are defined as the time-stamped between-
pause units in the transcribed news recordings. We
used the auto-correlation algorithm implemented
in Praat 3 for f0 (pitch) estimation from speech
audio signal. We obtained f0 pitch contour data
for 100,161 syllables. After pre-processing the
pitch tracks (e.g., speaker-dependent normaliza-
tion, f0 outlier detection and removal, pitch in-
terpolation, downsampling), we generate tone un-
igram, bigram and trigram f0 data sets, giving rise
to a total of 75 unigram (5), bigram (16), and tri-
gram data sets for the prediction task (54) 4. The
total number of tone n-grams in these data sets are
on the order of 250k. All tone unigram, bigram,
and trigram f0 vectors are downsampled to length
of 30, 100, and 200 samples respectively.

4 Deriving tone n-gram contour shape
types through network analysis

4.1 Problem formulation
We define a tone n-gram category as a consecutive
sequence of n tones ti, for i = 1, ..., n, where ti
∈ {0, 1, 2, 3, 4}, the five tone categories of Man-
darin. In this paper we restrict n to {1, 2, 3}.

2https://catalog.ldc.upenn.edu/LDC2015S05
3Boersma, Paul and Weenink, David (2019). Praat: doing

phonetics by computer [Computer program]. Version 6.0.48,
retrieved 17 February 2019 from http://www.praat.org/

4Mandarin Chinese has four regular tone categories plus
one neutral tone. Since neutral tones occurs infrequently, we
did not include them in the analysis of tone bigrams and tri-
grams due to data sparsity in the conditional distributions.
Similarly, we also excluded ngrams categories where the data
points are sparse.

Given the set S (represented as a network) that
contains all observations of f0 vectors that belong
to a particular tone n-gram category, an algorithm
A, defined in this section, partitions S into k clus-
ters, c1, c2, ..., ck, where all tone contours within ci
are highly similar to each other, and members of ci
maximally distinct from cj for i 6= j. For a partic-
ular tone n-gram category, we define the centroid
f0 vector of ci to be its tone contour shape type ti.

If we denoteC to be set of types {c1, c2, ..., ck},
our goal in this section is to describe the algorithm
A that learns a function g : S → C. We adapt an
algorithm first proposed by (Gulati et al., 2016),
which has been shown to be effective in identify-
ing clusters in time-series data such as pitch con-
tours. It also has several advantages over baseline
algorithms such as k-means clustering, including
outlier pruning and no need to determine the num-
ber of clusters before hand.

On a high level, this method represents all tone
contours in a data set as a fully connected network
G. It then filters G using heuristics based on the
pairwise similarity of tone contour shapes. Af-
ter the filtering step, only those nodes that have
a similarity score beyond a threshold will remain
connected. It then leverages network community
detection algorithms to optimize the community
structure, effectively deriving tone contour shape
types T = {t1, t2, ..., tk}.

4.2 Network construction

To construct the network as described above, we
first partition all data in MCPST corpus by their
tone n-gram category. For each category, we con-
struct a network where each node stores the f0
vector of an observation, and the edge between
two nodes holds the Euclidean distance between
the two f0 vectors as weights. We derive an undi-
rected, weighted and fully connected network G
of tone n-gram patterns for each n-gram category.

4.3 Network filtering

In this step, we take a fully connected network G
of a given tone n-gram category and use a princi-
pled method to remove edges from the network.
Our goal is to find an appropriate threshold so
that all edges whose weights (distance between
two tone n-gram f0 vectors) are greater than the
threshold will be cut. In the resulting network,
only those nodes representing similar enough tone
contour shapes will remain connected.
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Specifically, we decide the threshold value by
a six-step process: (1) We search for the ap-
propriate threshold in the set of values Φ ∈
{1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5} for bigrams
and trigrams, Φ ∈ {0.2, 0.4, 0.6, 0.8} for uni-
grams. These values are empirically chosen; (2)
we iterate over this set of values and each time
apply a threshold to the network; (3) after we ap-
plied the threshold we convert the network to a un-
weighted network G′ where only those nodes that
have a distance below the threshold will remain
connected; (4) we produce a randomized network
Gr by randomly swapping edges from G′ k times
while keeping the degree of the nodes constant,
where k is equal to the number of edges in G′.
This can be seen as producing a maximally ran-
dom network given the degree distribution of the
current network; (5) we compute the difference in
Clustering Coefficient (CC) of bothG′ andGr; (6)
after repeating this for all values in T , we pick the
threshold that has the largest difference of CCs. 5

4.4 Community detection

We use the Louvain algorithm (Blondel et al.,
2008) to perform community detection, in order to
partition the filtered network derived from last step
into communities (clusters) C1, C2, ..., Ck. We
pre-tuned the hyperparameters in the network fil-
tering step so that it will result in a small number
(n < 10) of tightly connected medium-sized com-
munities. Figure 2 shows a histogram of number
of shape classes for unigram, bigram, and trigram
data sets.

4.5 Outlier community filtering

We propose an extra step of outlier community
filtering before deriving our final contour profile
classes. In this step, we use a heuristic threshold
of t = 10 to filter out any communities (clusters)
with a size less than t.

4.6 Evaluation of tone contour profile classes

We have leveraged the intrinsic structure of the
tone data to derive the tone contour shape types for

5Clustering coefficient (CC) measures the extent to which
the nodes in a network tend to cluster together. Intuitively, it
expresses how saturated the network is — how many of the
possible connections are actually expressed. The CC for a
network of k nodes and n edges is computed as:

CC =
2n

k(k − 1)
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Figure 2: Histogram of number of shape classes in n-
gram data sets.

each tone n-gram category. Figure 3 shows exam-
ples of learned clusters of tone contour shape types
from two n-gram categories of tone unigram, bi-
gram, and trigram, respectively. Without declar-
ing any cognitive or phonological significance of
these clusters, these resulting clusters should re-
flect the similarities of tone contour shapes within
any given tone n-gram category: those that are
highly similar are grouped into the same clus-
ter. This is an intrinsic property derived from the
above method, and is a necessary property suffi-
cient for carrying out the subsequent experiment
on predicting the tone contour shape types from
linguistic factors.

Nonetheless, we propose two different ways to
evaluate the validity of these clusters. First, in the
following experiments, we show that we are able
to predict these learned tone contour shape types
significantly better than randomly assigned clus-
ters (Section 6.2, Figure 4). Second, we train a
decision tree classifier to predict the shape type of
a given tone n-gram using its f0 vector and ob-
tained a mean accuracy of 92% (following (Zhang,
2016)). This indicates how well these tone contour
shape types can be predicted with complete infor-
mation of its pitch trajectory, which will serve as
an upper bound to our next prediction task using
linguistic factors without information about pitch
movements f0 values.

5 Linguistic features

After we obtained tone contour shape types
emerged from each tone n-gram category in the
corpus, we now describe the linguistic features
used to predict which type of shape the tone n-
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Figure 3: Example contour shape type clusters found in randomly selected tone n-gram categories, with two
examples from each of tone unigram, bigram, and trigram. Each cluster is represented by a mean pitch vector with
error bars (as shown in the legend). Clusters are indexed by integers shown in legend. X-axis shows number of
samples (discrete time index) for the tone contour f0 vector. Y-axis shows the speaker-normalized pitch values.

gram will take. All syntactic and semantic features
are extracted using Stanford CoreNLP for Chinese
(Manning et al., 2014).

5.1 Syntactic features

Syntax and prosody has been the subject of in-
vestigation in (psycho)linguistic studies (Bard and
Aylett, 1999). We extract the part-of-speech (POS)
tags for all syllables in a tone n-gram. In addition,
we also extract the dependency function (Chen
and Manning, 2014) of all syllables in the tone n-
gram. Therefore there are 2 ∗N syntactic features
where N is the number of syllables included in the
tone n-gram data under consideration. The origi-
nal tag set used in CoreNLP comes from Penn Chi-
nese Treebank6 and is too fine grained. To avoid
data sparseness, we collapsed several categories.
For both POS tags and dependency edge function
categories, we compute their distributions using
the original tag set and we collapse any categories
that appear less than 5 times in the data. For POS
tags we mapped the original 33 tags onto 5 cat-
egories. For dependency functions, we collapsed
all tags with a subcategory separated by a colon
(e.g., “advmod:loc”, “advmod:rcomp”, mapped to

6https://catalog.ldc.upenn.edu/LDC2013T21

“advmod” etc.).

5.2 Semantic features

We extract two semantic features for a tone n-
gram data point: (1) whether the tone n-gram in-
cludes a named entity; (2) whether the tone n-
gram includes a singleton (as opposed to being
part of a coreference chain in the discourse). Se-
mantic features such as information structure have
been postulated to have an effect on the prosody
domain (Buring, 2013). In particular, given in-
formation may encode prosodic features different
from new information. This could also apply to
named entities vs. non-named entities. Named en-
tities points to definite, specific objects in the real
world. Whether the token is a singleton (i.e., does
not co-refer to an entity with another mention in
the text) or part of a coreference chain can be cor-
related with information structure (Recasens et al.,
2013). That is, a singleton may signify new infor-
mation in discourse, while a non-singleton is part
of a coreference chain with potential antecedent
or anaphor, pointing to potentially a different in-
formation structure. Both can have distinguishing
effects on the mental representations and the pro-
duction of speech prosody (indirectly related to re-
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dundancy in (Aylett and Turk, 2004)).

5.3 Morphological features

In Mandarin Chinese, each word usually consists
of one to four syllables. Building on the intu-
ition that the first syllable is usually spoken with
higher prominence (e.g., neutral tone, which does
not carry stress, only occurs on word-final posi-
tions), we extract morphological features for each
syllable in the given tone n-gram: whether they
cross word boundary or not. There are n features
in this category in total.

5.4 Phonological features

A basic representation of phonological features is
the identity of phonemes in each syllable of the
n-gram. However, due to the sparseness of this
feature representation, we have designed 7 binary
features to encode the phonological properties of
the syllables in the tone n-gram: (1) whether the
syllable includes a nasal; (2) whether the syllable
includes a dipthong; (3) whether the syllable in-
cludes a high vowel; (4) whether the syllable in-
cludes a low vowel; (5) whether the syllable in-
cludes a front vowel; (6) whether the syllable in-
cludes a back vowel; (7) whether the syllable in-
cludes a round vowel. In addition, we add two
contextual tone features: the tone identity of the
previous and following syllables of the tone n-
gram in question.

5.5 Other features

We add two pitch features to the feature set: the
beginning and ending pitch of the tone n-gram.
This is based on the notion in generative Mandarin
tone modeling (Parallel ENcoding and Target Ap-
proximation model, or PENTA) that in speech pro-
duction, the actual realized tone shape of a given
tone category highly depends on the starting point
of the pitch contour and its distance to the actual
pitch target of the current tone, which affects its
course of trajectory when it approximates the tar-
get (Prom-on et al., 2009). An additional feature
to be included is the position of the current tone n-
gram within the context of the current sentence as
a percentage. It is a known effect that pitch tends
to downdrift in speech production as sentence pro-
gresses (Wang and Xu, 2011). Therefore, we also
want to account for the effect of sentence position.

data(U)
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no_Ntone(U)

no_pitch
(U)

random(U)
MLE(U)

data(B)
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random(B)
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no_pitch
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random(T)
MLE(T)

0.2

0.4

0.6

0.8

Figure 4: Distribution of classification accuracies
for all 75 data sets in unigram(U), bigram(B), tri-
gram(T). For each n-gram the labels on the x-axis are:
data:full feature set; dfp:start/end pitch only baseline;
no syn:without syntactic features; no Ntone:without
prev/next tone features; no pitch:without start/end
pitch features; random:baseline with randomly as-
signed labels; MLE:MLE baseline.

5.6 Bag of features

In this task, we note that the unit of feature ex-
traction is not as straightforward as it would be
in classic NLP tasks. That is, instead of a typi-
cal syntactic constituent (word, phrase, sentences)
as the feature extraction unit, here, our target is
tone n-gram, a sequence of n syllables that may or
may not be a syntactic constituent. As described
above, in many features we have adopted a “Bag of
features” approach (similar to the speech corefer-
ence resolution work in Roesiger et al. (Röesiger
and Riester, 2015)) where each feature describes
whether the n-gram contains a certain target value
in any position. For some other features, we sim-
ply use a set of n features applied to each syllable
in the n-gram in question. These are precisely de-
scribed in Table 1.

6 Predicting tone contour profiles

6.1 Experimental setup

For each of the 5 unigram, 16 bigram, and 54 tri-
gram data sets, the extracted linguistic feature vec-
tor (f1, f2, ..., fm) forms the input space X . The
contour shape types T forms the output space Y .
Our goal is to learn a function h : X → Y min-
imizing expected loss. We use SVM with linear
kernel so that we can extract feature importance
in subsequent analyses. Each data set is randomly
split into 90/10 for train and test. Since the classes
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Table 1: Feature set overview. 1...N indicates this feature is computed for all syllables in theN -gram. Total number
is N*10+7 features, 37 for trigrams and 27 for bigrams, etc.

Syntactic Morphological Semantic Phonological Others
POS Tag1...N Tok Bound1...N is entity is nasal1...N sent position
Dep Func1...N is singleton is dipthong1...N start pitch

is round1...N end pitch
is front1...N prev tone
is back1...N next tone
is high1...N

is low1...N

are balanced in Y , we evaluate the classifier per-
formance directly with accuracy on the test sets.

6.2 Results

To visualize model performances on a large num-
ber of tone n-gram data sets (75), we choose the
boxplot because of its efficiency to convey statis-
tical information of the distribution of the results
across all data sets. Figure 4 gives an overview of
our proposed model classification accuracies for
all unigram(U), bigram(B), and trigram(T) data
sets, as compared to several baselines. In this
figure, data, dfp, no syn, no Ntone, and
no pitch denote results using different sets of
features: full set, start/end pitch only, no syn-
tactic features, no prev/next tone features, and
no start/end pitch features, respectively. The
random baseline uses the same set of linguistic
features as our proposed model but the target tone
contour shape type is randomly assigned (while
keeping the number of shape types constant). Fi-
nally, the Maximum Likelihood Estimation (MLE)
baseline reflects chance level performance if lin-
guistic factors are independent from the output
tone contour shape types, and is calculated as 1/d,
where d is the number of output classes in a data
set.

First, the proposed model significantly outper-
forms MLE baselines for unigrams, bigrams, and
trigrams. Second, the accuracy for predicting
learned tone contour shape types is significantly
higher than randomly assigned clusters. This
serves as a sanity check for the validity of these
learned tone contour shape types. Overall, this re-
sult supports the hypothesis that a variety of lin-
guistic and contextual features are strongly corre-
lated with the realization of a particular category
of tone n-grams. In particular, we observe that us-
ing the set of features excluding the syntactic fea-
tures (POS tags and dependency functions) allows
the model to achieve the best median accuracy in
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Figure 5: Feature weights for all unigram data sets.

all n-grams (no syn baseline). In Section 6.3, we
provide a more detailed analysis and discussion of
feature importance.

A significant trend to note in Figure 4 is that we
observe a negative correlation between the model
accuracy and the baseline (MLE, random) accu-
racy as the value of n becomes larger in n-grams.
This is striking because it indicates a decrease in
predictive power as n grows larger. Moreover, the
variance on model accuracy also increases as n be-
comes larger. From inspecting the tone contour
shape types we obtained (such as those showed in
Figure 3), we attribute this to three factors from
the data perspective: (1) the dimensionality of un-
igram, bigram, and trigram f0 vectors in our data
set are different (increase); (2) the number of data
sets also increases as n grew larger; (3) the com-
plexity of tone contour shapes tend to increase
from unigram to bigram to trigram. On a linguistic
level, we hypothesize that the longer the window
of n-grams, the stronger an effect of unaccounted
factors come into play (longer range prosodic fac-
tors such as focus and topic, as demonstrated in
(Xu et al., 2004)).
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Figure 6: Feature weights for all bigram data sets.

6.3 Feature importance

To analyze feature importance, we extracted
weight vectors (coefficients) associated with all
features in the linear SVM classifiers (following
(Guyon et al., 2002)) for all data sets in each of
the n-grams. We take the absolute values of fea-
ture weights and normalize them to be compara-
ble across data sets. We then aggregated feature
weights for all classes and across all data sets in a
given n-gram.

Figure 5, 6, 7 show the distribution of feature
weights (importance) for all features for unigram,
brigram, and trigram data. Since feature impor-
tance values tend to behave similarly according
to their linguistic domains, we group them to-
gether instead of analyzing the features individu-
ally. We observe three levels of feature importance
based on the weights, consistent among different
n-grams: (1) High: starting pitch, ending pitch,
and sentence position (especially when n > 1).
The importance of starting and ending pitch is
consistent with the qTA model of Mandarin tones
(Prom-on et al., 2009). The latter (sentence po-
sition) is consistent with the effect of downdrift
(Wang and Xu, 2011). (2) Medium: Phonological
features and morphological token boundary fea-
tures, as well as coreference (singleton) and entity,
which are information structure of the discourse
and semantics (givenness, newness of information
in speech). (3) Low: Syntactic (pos tag, depen-
dency functions) and contextual features (previous
and next tone). This is consistent with (Bard and
Aylett, 1999) and (Surendran, 2007)7.

7Specifically, (Bard and Aylett, 1999) showed the dis-
sociation of syntax with de-accent in spontaneous speech,
and (Surendran, 2007) showed that context did not help tone

To have a more detailed understanding of the
feature importance, Figure 4 shows how the model
performs with partially ablated feature sets across
different n-grams. First, to understand the role of
start/end pitch vs. non-pitch linguistic features, we
observe that the dfp baseline (using only start/end
pitch features) has lower results than other mod-
els with linguistic features. This is true for all
the markers on the boxplots (min, max, first quan-
tile, median, third quantile) when comparing dfp
to no syn. However, there is also considerable
overlap in these accuracy distributions to different
degrees as n varies, which indicates cases where
the dfp baseline outperforms the other models
with more linguistic features. To see this possi-
bility, we plotted the difference (delta) in accura-
cies values for all data sets for the pair of baselines
no syn - dfp in Figure 8. It shows that for 80%
of the data sets, the no syn baseline with linguis-
tic features outperforms the pitch-only baseline in
most data sets by a margin of less than 20% in ac-
curacy improvements.

Second, comparing across different n-grams,
the no pitch baseline (only linguistic features)
performs worse in unigram, and the best in tri-
grams. This shows that the pitch feature is less
important when n becomes larger in n-grams.
The same trend is observed in the weights of the
pitch features in feature importance. This ob-
servation is also consistent with (Prom-on et al.,
2009): the target approximation of tones only op-
erates on the syllable units. Therefore the ef-
fect of start/end pitch should diminish when n>1.
Third, even though feature weights are small for
previous/next tones, in these results we didn’t see
an improvement when we exclude these features
in the no Ntone baseline. Finally, we confirm
the importance of the non-pitch linguistic features
since the no pitch baseline significantly outper-
forms the random and the MLE baselines.

7 Discussion

In this work, we first described a method to mine
tone contour shape types from a large amount of
tone data. These shape types, as well as those
mined from tone n-grams with larger values of
n (n>3), can be further analyzed with linguistic
knowledge to better understand the behaviors of
tones in different tonal contexts in future works.
We also showed that using linguistic and contex-

recognition as much as expected.
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Figure 7: Feature weights for all trigram data sets.

tual factors, we can predict with reasonable accu-
racy the contour shape type that a tone n-gram will
take in the MCPST data. We analyzed the feature
importance to form a relative ranking of the lin-
guistic factors. These results should be interpreted
with caution because they are constrained by the
particular representations of the linguistic features
used in this study, as well as the accuracy of the
NLP softwares used to extract them. Nonethe-
less, we envision that by mining correlates be-
tween speech prosody and automatic analysis of
linguistic features extracted from the data, this line
of work could have potential applications in im-
proving the quality and naturalness of prosody in
speech synthesis such as Text-To-Speech (TTS)
technologies.

Previous works targeting information theory
and information structure in prosody domain have
largely looked at acoustic correlates directly, such
as accent and duration, all of which may in turn
have an impact on the shape of tone contours in
speech production. Therefore, looking at tone
contour shapes can be thought of as a differ-
ent level of manifestation of such phenomena, an
amalgamation of single dimension acoustic cor-
relates (e.g., duration and intensity). It is also a
level that is more difficult to quantify and mea-
sure in the traditional linguistic/phonetic investi-
gations on a smaller scale. One possible exten-
sion of this work in the future is to look at specific
ways tone contour shapes correlate with particular
features when they are perturbed in a certain direc-
tion. Moreover, it is also of interest to demonstrate
this change in a quantified manner using the infor-
mation theory formulation.

In Section 2 we raised a fundamental theo-
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Figure 8: Delta (differences in accuracies): no syn -
dfp baselines. A point above the y=0 line indicates the
model with linguistic features outperforms the model
with pitch only features.

retical question of whether there is a direct link
between communicative functions and surface
acoustic forms, a question that we found disagree-
ment in literature (as summarized in (Xu, 2005)
and in Section 2 of the current paper). In this pa-
per, we showed that by taking a data driven ap-
proach, we can predict the contour shape type of
a prosodic category (such as a tone n-gram) using
linguistic factors, even though we are not predict-
ing its exact shape. In doing so, we give an ap-
proximate solution for a middle ground between
the two theories.
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Abstract
We apply convolutional neural networks to the
task of shallow morpheme segmentation us-
ing low-resource datasets for 5 different lan-
guages. We show that both in fully supervised
and semi-supervised settings our model beats
previous state-of-the-art approaches. We argue
that convolutional neural networks reflect local
nature of morpheme segmentation better than
other neural approaches.

Morpheme segmentation consists in dividing
a given word to meaningful individual units,
morphs, which are surface realizations of under-
lying abstract morphemes. For example, a word
unexpectedly could be segmented as un-expect-ed-
ly, and the morpheme -ed may be also realized as
-t like in learn-t. The generated segmentation may
be used as input representation for machine trans-
lation (Mager et al., 2018) or morphological tag-
ging (Matteson et al., 2018) or for automatic anno-
tation of digital linguistic resources. Briefly, infor-
mation about internal morpheme structure makes
the data less sparse since an out-of-vocabulary
word may share its morphemes with other words
already present in the training set. This helps to re-
cover semantic and morphological properties of an
unknown word, which otherwise will be unacces-
sible. The task of morpheme segmentation is espe-
cially important for agglutinative languages, such
as Finnish or Turkish, where a word is formed by
attaching a sequence of affixes to its stem. This af-
fixes reflect both derivational and inflectional pro-
cesses. A common example from Turkish is ev-
lerinizden ‘from your houses’, which is decom-
posed as:

ev ler iniz den
house +PL your+PL +ABL

The task of morpheme segmentation is even
harder for polysynthetic languages: while in ag-
glutinative languages morphemes are usually in

one-to-one correspondence with morphological
features, for polysynthetic languages this match-
ing is more complex with no clear bound between
compound words and sentences. For example, in
Chuckchi language the whole phrase ‘The house
broke’ can be expressed as

Ga ra semat ìen
+PF house break +PF+3SG

Consequently, polysynthetic language demon-
strate extremely high morpheme-to-word ratio,
which leads to high type-token ratio, which makes
their automatic processing harder. Even further,
this processing is performed in low-resource set-
ting since most polysynthetic languages have only
few hundreds or thousands of speakers and con-
sequently tend to lack annotated digital resources.
Hence, the algorithms initially designed for less
complex languages with more data (mostly for
English) may change significantly their properties
when applied to low-resource polysynthetic data.
That is especially the case for neural methods,
which are (often erroneously1) believed to be more
data-hungry than earlier approaches.

However, in 2019 it is insufficient to just say
“neural networks” in case of NLP, since there
are various neural networks whose properties may
differ significantly. Leaving aside the immense
diversity of network architectures, they can be
separated in three main categories: the convo-
lutional ones (CNNs), where convolutional win-
dows capture local regularities; the recurrent ones,
where GRUs and LSTMs memorize potentially
unbounded context; and sequence-to-sequence
(seq2seq) models, which perform string transduc-
tions using encoder-decoder approach. Among the
three, convolutional neural networks are the least

1see (Zeman et al., 2018) and (Cotterell et al., 2017) that
show that both in morphological tagging and automatic word
inflection neural networks are clearly superior, though their
architecture should be adapted for the lack of data.
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explored, however, we argue that they are more ef-
fective for surface morpheme segmentation.

In our work we support two claims: 1) convo-
lutional networks improve seq2seq approaches for
neural morpheme segmentation 2) language model
trained on unlabeled data may be useful to further
improve their performance. We apply our mod-
els to 4 indigenous languages, spoken in Mexico:
Mexicanero, Nahuatl, Wixarika and Yorem Nokki,
since the scores for them are available in recent
studies Kann et al. (2018). We also test our ap-
proach on North Sámi data from Grönroos et al.
(2019).

1 Related work.

Automatic morpheme segmentation was exten-
sively studied in pre-neural years of modern NLP.
The investigations had two principal directions:
several researchers tried to implement the ap-
proach of Harris (1970) and Andreev (1965)
to find a quantitative counterpart of morpheme
boundaries in terms of letter statistics. These
methods were mainly unsupervised and include
the well-known Morfessor system: Creutz and
Lagus (2002) and its successors Creutz and La-
gus (2007) and (Virpioja et al., 2013) (the latter
uses semi-supervised learning). There was also
an extensive work in the field of adaptor gram-
mars.2(Johnson et al., 2007; Sirts and Goldwa-
ter, 2013; Eskander et al., 2018) However, both
these approaches are generative by their nature and
are based on a probabilistic model of word struc-
ture. The most successful pure machine learn-
ing method was CRF-based model designed in
Ruokolainen et al. (2013, 2014), which still re-
mains state-of-the-art on several morpheme seg-
mentation datasets.

There were several attempts to apply neural net-
works for morpheme segmentation and closely
related problem of word segmentation, which is
enevitable for Chinese, Japanese and other lan-
guages with similar graphics. The first one was
probably Wang et al. (2016), which used window
LSTMs, latter works include Kann et al. (2016)
and Ruzsics and Samardzic (2017) which applied
the sequence-to-sequence approach. Our study is
conducted on the material from Kann et al. (2018),
where the sequence-to-sequence model with atten-

2Roughly speaking, an adaptor grammar tries to learn
from data a probabilistic context-sensitive grammar for
morph sequences.

p r e t r a i n s
B M E B M M M E S

Figure 1: Morpheme segmentation of word pre-train-s
expressed with BMES scheme.

tion was applied to the material of 4 indigenous
North-American languages, both is supervised and
semi-supervised manner. All these studies solve
morpheme segmentation as sequence transduc-
tion. In contrast, Shao (2017) treated morpheme
and word segmentation as sequence labeling task
which can be solved with BiRNN-CRF network.

The main inspiration for our work is Sorokin
and Kravtsova (2018), who demonstrated, that at
least for Russian (a fusional language with lots
of data available) convolutional neural networks
significantly outperform all other approaches, also
being the less data-consuming (see also (Bol-
shakova and Sapin, 2019) for detailed compari-
son). The recent study of Grönroos et al. (2019)
modified the decoder in seq2seq architecture to
make its independent of the previous timesteps,
which makes their model essentially an LSTM-
based sequence tagger.

2 Model architecture.

Basing on the ideas from Sorokin and Kravtsova
(2018), we decide to refrain from seq2seq ap-
proaches and reduce the morpheme segmentation
task to sequence labeling problem. We solve
this problem using convolutional neural networks.
Each segmentation in the training set is encoded
using BMES-scheme as illustrated on Figure 1.
Here, S denotes single-letter morpheme; in case
the morph is at least two letters long B stands for
morpheme beginning, E for its end and M for all
interior letters. Thus, the task of the algorithm
is to predict the sequence of labels given the se-
quence of letters (probably, enriched with special
BEGIN and END symbols). Due to the local nature
of CNNs, the model cannot see any symbols ex-
cept those surrounding the current one. However,
the width of this local window may be up to 9 let-
ters,3 which makes the model powerful enough to
capture all relevant local context.

2.1 Basic model.
Our basic architecture closely follows the model
of Sorokin and Kravtsova (2018). The input of

3In case of two layers with convolution width 5.
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the algorithm is a sequence of 0/1-encodings,
which are transformed to symbol embeddings by
an embedding layer. These embeddings are passed
through several stacked convolutional layers of
different widths, as, for example, in Kim et al.
(2016), the final outputs of all layers are concate-
nated. For better convergence we insert batch nor-
malization and dropout layers between consecu-
tive convoluions. The obtained context encodings
are passed through a dense layer with softmax ac-
tivation which generates a probability distribution
over possible tags. Since not every sequence of
tags corresponds to a valid morpheme segmenta-
tion, we find the most probable segmentation us-
ing Viterbi algorithm.

2.2 Multitask training and one-side
convolutions.

Kann et al. (2018) demonstrates that pretraining
on auxiliary task of autoencoding, which is the
restoration of original input sequence, can be ben-
eficial for morpheme segmentation. Autoencod-
ing is an appealing complementary task since it
does not require additional labeled data. It is es-
pecially suitable for encoder-decoder architecture
since the memorization of input sequence is the
natural job of the encoder. However, this objec-
tive does not fit in our paradigm since we try to
avoid global architectures, such as recurrent ones
and especially seq2seq, in favor of the local ones.
Following modern trends in NLP, we select lan-
guage modelling as an auxiliary task, predicting
not only the morpheme boundary of the current
symbol but also the following symbol. However,
this approach fails with basic CNN architecture
since the convolutional window observes the next
symbol and can easily memorize it.

Therefore we slightly modify our model: in-
stead of using a symmetric window around cur-
rent symbol, we have two groups of convolutions:
the left and right ones. The left observes the cur-
rent symbols and also some symbols preceding it,
while the right does not see preceding symbols,
but only the current one and the ones following it.
We again use windows of different size and con-
catenate their outputs, thus obtaining for each po-
sition t two context embeddings ~ht (left) and

←−
h t

(right). They are used to obtain the required dis-
tribution pt over morphological labels as well as
two auxiliary distribution qt−1 and qt+1 over pre-
ceding and following symbols, respectively:

pt = softmaxmorph(U [~ht,
←−
h t]),

qt−1 = softmaxsymb(Vl
←−
h t),

qt+1 = softmaxsymb(Vr~ht).

Note that this architecture with “unidirectional”
convolutions can be used without auxiliary objec-
tive as well.

3 Data.

We evaluate our model on two datasets: the dataset
of 4 indigenous North American languages from
Kann et al. (2018) and the North Sami dataset
from Grönroos et al. (2019). In this section
we briefly characterize the languages, for more
complete description we refer the reader to the
cited papers or to linguistic resources such as
WALS(Haspelmath et al., 2005).

1. The 4 mexican languages: Mexicanero,
Nahuatl, Wixarika and Yorem Nokki all be-
long to Yuta-Aztecan family. They are mostly
agglutinative and have extremely complex
verb morphology. Some stems and even af-
fixes in case of Mexicanero are Spanish bor-
rowings.

2. North Sámi is a Finno-Ugric language spo-
ken in the North of Finland, Sweden, Norway
and Russia. It is morphologically complex,
featuring derivational, inflectional and com-
pounding processes. It also has regular but
complicated morphonological variation.

The quantitative characteristics of the datasets
used in our study are given in Table 1. For mexican
languages we used the same data as in Kann et al.
(2018). The number of unlabeled words used for
semi-supervised models differ because of different
preprocessing.4

4 Experiments

4.1 Model parameters.
We use symbol embeddings of size 32. The basic
model contains two parallel convolutional groups

4It is not an obstacle for fair comparison since the main
goal of our paper is to compare supervised versions of the
model.

5As in Kann et al. (2018), the same list of words is used
for Mexicanero and Yorem Nokki due to their close related-
ness.

6Actual word lists are larger but we restrict it to random
100000 words to speed up training.
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Language Train Dev Test Unlabeled
Mexicanero 427 106 355 9785

Nahuatl 540 134 449 36149
Wixarika 665 176 553 13092
Yorem Nokki 511 127 425 9785

North Sámi 1044 200 796 1000006

Table 1: Size of the datasets used for evaluation.

of width 5 and 7, each group having 2 layers and
96 neurons on each of the layers. The unidirec-
tional convolutional model has 64 filters for each
window width from 1 to 4 and 2 convolutional lay-
ers as well. Dropout rate was 0.2.

Neural networks are implemented using Keras
framework with TensorFlow backend. They are
trained with Adam optimizer for at most 50
epochs, training is stopped when the accuracy on
development set do not improve for 10 epochs. In
case of multitask training the language models are
trained for 5 epochs jointly with the main model,
batches for different tasks are sampled in random
order. The size of mini-batch is 32 for all the runs.

4.2 Results.

Our first evaluation scores the basic model on
datasets from Kann et al. (2018) and Grönroos
et al. (2019). We compare our with their seq2seq
model, the CRF model of Ruokolainen et al.
(2013) and the semi-supervised neural model (the
one of Kann et al. (2018) using autoencoding
and the one of Grönroos et al. (2019) trained
with Harris features). The supervised CRF model
is retrained by ourselves, while other scores ex-
cept our own are taken from the original papers.
We report two metrics, micro-averaged (per mor-
pheme boundary) boundary F17 and word accu-
racy, which is the fraction of correctly segmented
words. All our scores are averaged over 5 inde-
pendent runs with different random initialization,
the standard error is also reported.

Analyzing the results in Table 2, we see that
our basic model always outperforms sequence-
to-sequence model by a substantial margin, also
being ahead of conditional random fields on 4
datasets of 5. That answers our first question:
convolutional neural networks seem to work bet-

7The work of Kann et al. (2018) reports macro-averaged
one, therefore we do not present their boundary F1. We think
the micro-averaged version better reflects algorithm proper-
ties since the impact of words with larger number of mor-
phemes is higher.

ter than other approaches supervised morpheme
segmentation even in extremely low-resource set-
ting. In Table 3 we present the scores for our uni-
directional model both in its supervised version
and in the semi-supervised one, which is trained
using multitask learning. We observe that unidi-
rectional convolutions work better than the tradi-
tional ones and the multitask training imporves the
scores slightly more further.

We conclude that on the mentioned datasets our
model outperforms other tested approaches, set-
ting a new state-of-the-art score for them. We also
note that one-side CNNs are better than the basic
ones, though they have 4 times more parameters.
However, basic CNNs of comparable size do not
perform better than the smaller ones due to severe
overfitting. Gains from semi-supervised training
are the more substantial the more data we have,
thus the effect on Mexicanero and Yorem Nokki
with less than 1000 unlabeled words is the most
modest.

5 Conclusion and future work.

We demonstrate that convolutional neural net-
works outperform other segmentation models in
low-resource setting. We argue that this is due to
their ability to capture local dependencies, while
morpheme segmentation is essentially local by its
nature. A similar observation on sentence-level
tasks was made in Yin et al. (2017) which demon-
strated that CNNs perform better in tasks like an-
swer selection that do not envolve long-distance
relations. However, the claims made on 6 lan-
guages (5 of the present article and Russian in
Sorokin and Kravtsova (2018) and Bolshakova
and Sapin (2019)), 4 of which belong to the same
family certainly need further proof on other lan-
guages and datasets. However, we note that CNNs
are (arguably) more effective not only in terms of
performance quality, but also in terms of training
complexity.

Nonetheless promising, our results still leave a
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Word accuracy Boundary F1
Language CNN(our) seq2seq CRF semi-sup CNN(our) seq2seq CRF semi-sup
Mexicanero 79,4 (0,4) 75,0 78,3 80,5 89,7(0,3) NA 89,2 NA
Nahuatl 59,9 (1,0) 55,9 64,4 60,3 77,4(1,0) NA 80,4 NA
Wixarika 61,4 (0,6) 57,5 58,6 61,9 88,2(0,5) NA 87,8 NA
Yorem Nokki 69,2(0,7) 65,7 65,9 71,0 82,6(0,7) NA 80,3 NA
North Sámi 71,6(0,8) 69,1 70,9 71,1 80,8(0,9) NA 80,0 NA

Table 2: Results of our basic CNN segmentation model in comparison with sequence-to-sequence model (seq2seq),
conditional random fields (CRF) and semi-supervised extension of seq2seq (semi-sup). Seq2seq and semi-
supervised results for Yuto-Aztecan languages are from Kann et al. (2018), for North Sámi from Grönroos et al.
(2019).

Convolutional (our) Other
Language basic one-side one-side+LM best semi-sup best
Mexicanero 79,4(0,4) 80,6(1,3) 80,1(1,6) 80,5 80,5
Nahuatl 59,9(1,0) 62,8(0,6) 64,4(1,1) 60,3 64,4
Wixarika 61,4(0,6) 62,9(1,5) 64,8(1,1) 61,9 61,0
Yorem Nokki 69,2(0,7) 70,5(0,9) 71,7(0,9) 71,0 71,0
North Sámi 71,6(0,8) 72,0(0,5) 72,5(0,3) 71,1 71,1

Table 3: Results of our extended CNN models in comparison with the basic one and state-of-the-art. Results for
Yuto-Aztecan languages are from Kann et al. (2018), for North Sámi from Grönroos et al. (2019).

huge room for improvement. First of all, the ab-
solute numbers are quite low, only less than two
thirds of the words are segmented correctly. The
first thing to study is the learning curve of neu-
ral segmentation algorithm: it is not so important
that a model achieves 60% accuracy on 1000 an-
notated words, more important is whether it may
reach 80% given another thousand of training ex-
amples. Another open direction is the incorpo-
ration of linguistic features, such as Harris-like
distributional measures used in Ruokolainen et al.
(2014) or intra-segment interactions regulated by
adaptor grammars.

Sometimes morpheme segmentation also re-
quires normalization of morphemes (e.g studied
7→ study + ed). This task is not that straightfor-
ward to address with CNNs since the problem is
no more reduced to sequence labeling. This is ex-
actly the case for Semitic languages, where mor-
pheme segmentation often depends not only from
the word itself, but from wider context (Zeldes,
2018). Since neural networks can work with input
vectors of any origin, CNN models have the po-
tential for these tasks also and we hope to address
some of these questions in future research.
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Abstract

Recent work has looked at evaluation of phone
embeddings using sound analogies and corre-
lations between distinctive feature space and
embedding space. It has not been clear what
aspects of natural language phonology are
learnt by neural network inspired distributed
representational models such as word2vec.
To study the kinds of phonological relation-
ships learnt by phone embeddings, we present
artificial phonology experiments that show
that phone embeddings learn paradigmatic re-
lationships such as phonemic and allophonic
distribution quite well. They are also able
to capture co-occurrence restrictions among
vowels such as those observed in languages
with vowel harmony. However, they are un-
able to learn co-occurrence restrictions among
the class of consonants.

1 Introduction

Over the last few years, distributed represen-
tation models based on neural networks such
as word2vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) have been of
much importance in speech and natural language
processing (NLP). The word2vec technique is
a shallow neural network that takes a text corpus
as input and outputs a vector space containing all
unique words in the text. The dense vector rep-
resentations of words induced using word2vec
have been shown to capture multiple degrees
of similarities between words. Mikolov et al.
(2013a,b) show that word embeddings can solve
word analogy questions and sentence completion
tasks. Mikolov et al. (2013b) show that word
embeddings represent words in continuous space,
making it possible to perform algebraic opera-
tions, such as vector(King) − vector(Man) + vec-
tor(Woman) = vector(Queen). Considerable atten-
tion has been paid to evaluating these vector rep-

resentations using human judgement datasets (Ba-
roni et al., 2014; Levy et al., 2015). Asr and Jones
(2017) use artificial language experiments to study
the difference between similarity and relatedness
in evaluating distributed semantic models. Phone
embeddings induced from phonetic corpora have
been used in tasks such as word inflection (Sil-
fverberg et al., 2018) and sound sequence align-
ment (Sofroniev and Çöltekin, 2018). Silfverberg
et al. (2018) show that dense vector representa-
tions of phones learnt using various techniques are
able to solve analogies such as p is to b as t is to
X, where X = d. They also show that there is a
significant correlation between distinctive feature
space and the phone embedding space.

Our goal in this paper is to understand better the
evaluation of phone embeddings. We argue that
significant correlation between distinctive feature
space and phone embedding space cannot be auto-
matically interpreted as the model’s ability to cap-
ture facts about the phonology of natural language.
Since many distinctive features tend to be pho-
netically based, natural classes denoted by these
features capture phonetic facts as well as phono-
logical facts. For example, the feature [±long]
denotes the distinction between long and short
vowels, which is a language-independent phonetic
fact. But, whether this distinction is a phonolog-
ical fact varies from language to language. It is
important to make this distinction between pho-
netic facts and phonological facts when evaluating
phone embeddings for their learning of phonology.
In this paper, we propose an alternative method-
ology to evaluate word2vec’s ability to learn
phonological facts. We define artificial languages
with different kinds of phoneme-allophone dis-
tinctions and co-occurrence restrictions and study
how well phone embeddings capture these rela-
tionships. Several interesting insights regarding
the relationship between phonetics and phonol-
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ogy, the role of distinctive features and the task of
distinctive feature/phoneme induction accrue from
our experiments.

2 Background and Related work

One major difference between words and phones
is that while words are meaningful units in lan-
guage, phones have no meaning in themselves.
However, as with words, there are clear patterns of
organization of individual phones in a language.
One well-known pattern in phonology is the dis-
tinction between contrastive and complementary
distribution. Two phones are said to be in con-
trastive distribution if they occur in the same con-
text and create a meaning contrast. For example,
b and k occur in word-initial position and create
a contrast in meaning, such as in bæt versus kæt.
This is why they are considered distinct phonemes
in the language. On the other hand, ph and p never
occur in the same context, which is referred to as
being in complementary distribution. Since they
are phonetically related, they are considered allo-
phones, variants of the same underlying phoneme.
The notions of contrastive and complementary dis-
tribution are purely based on context. They can
be considered instances of paradigmatic similar-
ity discussed in the distributed semantic literature.
Allophony also involves the notion of phonetic
similarity. Another pattern in natural language
phonology is that of co-occurrence restrictions.
A well-known example is homorganic consonant
clusters. For example, in nasal plus stop clusters,
the nasal must have identical place of articulation
to the following stop. Yet another example of
co-occurrence restriction in phonology is the phe-
nomenon of vowel harmony. In some languages,
a word can only have vowels which agree with re-
spect to certain features, such as backness, round-
ing or height. Co-occurrence restrictions can be
considered to be instances of syntagmatic similar-
ity whereby words that frequently occur together
form a syntagm (phrase). Again, most types of co-
occurrence restrictions involve phonetic similarity.

The traditional method to describe phones
in phonology is in terms of distinctive fea-
tures (Jakobson et al., 1951). Distinctive features
allow phones to be grouped into natural classes,
which are established on the basis of participa-
tion in common phonological processes. They
allow for generalizations about phonotactic con-
texts to be captured in an economical way. In ad-

dition to distinctive features in phonology, there
are also phonetic features that describe the artic-
ulatory and acoustic properties of phones (Lade-
foged and Johnson, 2010). However, in practice,
there is considerable overlap between phonologi-
cal distinctive features and phonetic features. This
already poses an interesting question about the
nature of the relationship between phonetics and
phonology, which as we will see, is relevant to the
evaluation of phone embeddings.

Next, let us examine the notion of correlation
between distinctive feature space and phone em-
bedding space to evaluate phone embeddings as
proposed by Silfverberg et al. (2018). Pair-wise
featural similarity is estimated using a metric such
as Hamming distance or Jaccard index applied to
feature representations of phones. Pair-wise con-
textual similarity is estimated as cosine similar-
ity between phone embeddings induced using a
technique like word2vec. The correlation be-
tween pairwise featural similarity and pairwise
contextual similarity is estimated using Pearson’s
r or Spearman’s ρ. The value of this correla-
tion is shown for a number of languages in ta-
ble 1. Data for Shona and Wargamay are taken
from Hayes and Wilson (2008)1. Similar datasets
were constructed for Telugu and the Vedic va-
riety of Sanskrit2. For English, the CMU pho-
netic dictionary was used with a feature represen-
tation based on Parrish (2017) with some minor
extensions. The word2vec implementation in
the Gensim toolkit (Řehůřek and Sojka, 2010) was
used to induce phone embeddings using the fol-
lowing parameters- CBOW, dimensionality of 30,
window size of 4, negative sampling of 3, mini-
mum count of 5, learning rate of 0.05. We use
CBOW which predicts the most likely phone given
a context of 4 phones in either direction as this is
intuitively similar to the task of a phonologist. It
would be interesting to compare CBOW and Skip-
gram architectures and also, study the effect of dif-
ferent parameters on this correlation between dis-
tinctive feature space and phone embedding space.
However, this is not the goal of our study. In this
paper, we restrict our attention to the linguistic sig-
nificance of this correlation.

All languages in Table 1 show a significant pos-
itive correlation between distinctive feature space

1https://linguistics.ucla.edu/people/
hayes/Phonotactics/index.htm#simulations

2Datasets and code available at https://github.
com/skolachi/sigmorphoncode
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Language Size Pearson Spearman
English 135091 0.589 0.612
Shona 4395 0.431 0.575
Telugu 19627 0.349 0.350
Wargamay 5910 0.411 0.428
Vedic 45334 0.351 0.285

English 4000 0.129 0.161
Shona 4000 0.507 0.533
Telugu 4000 0.202 0.206
Wargamay 4000 0.219 0.387
Vedic 4000 0.146 0.159

Table 1: Correlation between distinctive feature space
and embedding space, all values significant (p < 0.01)

and embedding space. What is the physical inter-
pretation of this correlation? Firstly, it is impor-
tant to note the use of this correlation to evaluate
phone embeddings presupposes that these hand-
crafted distinctive features are the gold standard
descriptions of the phonology of these languages.
Even if this were the case, the kind of distinc-
tive features used to describe phones plays an im-
portant role in the interpretation of this correla-
tion. If feature specifications of phones are based
mostly on their phonetic properties, a positive cor-
relation between featural space and embedding
space indicates that phonetically similar phones
tend to occur in similar contexts. In other words,
the natural classes of phonology are tightly con-
strained by phonetics. To illustrate this point, we
take the example of Wargamay natural classes de-
rived from the distinctive features of Hayes and
Wilson (2008) shown in Table 2. Examining
the pairwise cosine similarities of phones based
on embeddings induced by word2vec in the
agglomerative clustering (WPGMA) dendrogram
heatmap shown in Figure 1, word2vec CBOW
embeddings identify the following natural classes-
ii1, uu1, aa1 ([+long,+main,+stress]), i1,
u1, a1 ([−long,+main,+stress]), i2, u2,
a2 ([−long,−main,+stress]), i0, u0, a0
([−long,−stress]) and [−syllabic] which de-
notes the set of all consonants. Among the set of
consonants, the velar consonants N, g ([+dorsal])
show up in the same cluster, as do the bilabials b
and m. Sonorant consonants like R, l, n, w form
one cluster and [+approximant] r, y form another
cluster. Notice that all these classes are based on
place and manner of articulation. Therefore, it is
not clear if the observed clustering is to interpreted
as the model’s learning of phonology or the fact
phonetic features strictly constrain the contexts in
which phones occur. Furthermore, as with word

meaning, when embeddings of two phones show
high similarity, it is not clear if it is an instance of
paradigmatic similarity (phonemic relationship) or
syntagmatic similarity (co-occurrence restriction).

Feature Class
-high a0,a1,a2,aa1
+high i0,i1,i2,ii1,u0,u1,u2,uu1,w,y
+long aa1,ii1,uu1
-long a0,a1,a2,i0,i1,i2,u0,u1,u2
+back a0,a1,a2,aa1,u0,u1,u2,uu1,w
-back i0,i1,i2,ii1,y
-approximant N,b,d,g,j,m,n,nj
+approximant R,a0,a1,a2,aa1,i0,i1,i2,ii1,l,r,u0,u1,u2,uu1,w,y
-sonorant b,d,g,j
+sonorant N,R,a0,a1,a2,aa1,i0,i1,i2,ii1,l,m,n,nj,r,u0,u1,u2,uu1,w,y
+syllabic a0,a1,a2,aa1,i0,i1,i2,ii1,u0,u1,u2,uu1
-syllabic N,R,b,d,g,j,l,m,n,nj,r,w,y
+main a1,aa1,i1,ii1,u1,uu1
-main a0,a2,i0,i2,u0,u2
+stress a1,a2,aa1,i1,i2,ii1,u1,u2,uu1
-stress a0,i0,u0
-consonantal a0,a1,a2,aa1,i0,i1,i2,ii1,u0,u1,u2,uu1,w,y
+consonantal N,R,b,d,g,j,l,m,n,nj,r
+anterior d,l,n,r
-anterior R,j,nj,y
+lateral l
-lateral R,r
+coronal R,d,j,l,n,nj,r,y
+dorsal N,g
+labial b,m

Table 2: Natural classes derived from distinctive fea-
tures

u1 a1 i1 ii1 aa
1
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1 u2 a2 i2 i0 # a0 u0 nj d N g R l n w r y b j m
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Figure 1: Phone clusters of Wargamay

Asr and Jones (2017) use an artificial language
experiment to study the difference in performance
of word embeddings between paradigmatic and
syntagmatic tasks. In section 3, we propose a simi-
lar approach to study word2vec’s ability to learn
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different kinds of phonological patterns. While
natural language phonology can be complex with
many interleaved phenomena, artificial language
phonology makes it possible to test learning of
each pattern independently. In addition, previous
work on phonological learning such as Hayes and
Wilson (2008) assumes that distinctive features
exist a priori. In our experiments with artificial
languages, we explore the possibility of deriving
distinctive features from phone embeddings which
capture contextual distributions of phones.

3 Learning artificial phonology with
word2vec

In this section, we present experiments with
word2vec on learning artificial languages with
different kinds of phonological relationships. The
languages studied in this experiment are described
below. The minimal word is bimoraic CVC. The
maximum word length is set at three syllables.
Word boundary is indicated using #.

1. Language 1 contains only open (CV) syl-
lables in polysyllabic words. Monosyllabic
words are all CVC. The set of possible con-
sonants is p t k and the set of possible vowels
is a e i o u.

2. Language 2 is the same as Language 1 with
the difference that intervocalic consonants
are voiced- b d g instead of p t k. In other
words, there is allophonic variation within
the class of consonants.

3. Language 3 is the same as Language 2 with
the following differences: Final syllables in
polysyllabic words are optionally closed, that
is, codas are allowed. Word-initial conso-
nants are aspirated, P T K. Word-final con-
sonants are voiceless p t k. Thus, an addi-
tional degree of allophony for consonants is
introduced.

4. Language 4 is the same as Language 3 with
the addition of nasal codas: m n N (N) in all
syllables. In the final syllable, the nasal and
the voiceless stop form a coda cluster.

5. Language 5 is the same as Language 4 with
the difference that nasal codas are optional.
This language is the union of Languages 3
and 4.

6. Language 6 is the same as Language 5 with
a restriction on nasal coda based on the place
of articulation of the following voiced conso-
nant. In other words, only mb nd Ng combi-
nations are allowed.

7. Language 7 is the same as Language 6 with
the addition that r is optionally allowed fol-
lowing a voiced consonant. In other words,
onset clusters br dr gr are permitted in me-
dial syllables.

8. Language 8 is the same as Language 7
with the addition that a sibilant s is option-
ally allowed in the coda position of the fi-
nal syllable. This language allows a vari-
ety of contexts in the final syllable- voiceless
stops, nasals and nasal+stop clusters, sibi-
lant s, sibilant+stop clusters sp st sk and also
nasal+sibilant+stop clusters.

9. Language 9 is the same as Language 8 with
the restriction that the nasal + sibilant +
voiceless stop cluster in coda position must
be homorganic- only nst is allowed.

10. Language 10 is the same as Language 9 with
the restriction that only high vowels i u can
occur in initial syllables.

11. Language 11 is the same as Language 10
with the difference that it has vowel harmony
with respect to backness. Thus, words can
only have either [−back] (front) vowels i e or
[+back] vowels u o.

12. Language 12 is the same as Language 11
with the difference that the transparent vowel
a is permitted in non-initial syllables of poly-
syllabic words.

Phone embeddings were induced using the
same parameters as in the previous section-
CBOW, dimensionality 30, context window 4,
negative sampling 3, minimum count 5 and learn-
ing rate 0.05. The number of words in each lan-
guage is shown in table 3, alongside the correla-
tions between distinctive feature space and embed-
ding space. A set of distinctive features similar to
those of Hayes and Wilson (2008) are used to es-
timate these correlations. Since the value of co-
sine similarity is bounded on [−1, 1], we also use
Euclidean distance to estimate correlation between
contextual similarity based on phone embeddings
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and featural similarity. We will return to the issue
of the significance of these correlations shortly.

Language size Pearson’s r
Cosine Euclidean

Language 1 3645 0.873 0.882
Language 2 3645 0.632 0.408
Language 3 14445 0.573 0.396
Language 4 372780 0.477 0.362
Language 5 878625 0.470 0.354
Language 6 139635 0.503 0.343
Language 7 549135 0.500 0.305
Language 8 988455 0.394 0.263
Language 9 878625 0.421 0.254
Language 10 351450 0.481 0.286
Language 11 57690 0.476 0.277
Language 12 127962 0.430 0.209

Table 3: Correlation between embedding and distinc-
tive feature space, all values significant at p < 0.01

As can be noticed from the descriptions, each
language defines different sets of equivalence re-
lations among phones based on the contexts in
which they occur. For example, in Language 3,
aspirated stops occur word-initially, voiced stops
occur inter-vocalically and voiceless stops occur
word-finally. The task of phonology is to capture
generalizations about these natural classes. No-
tice that although these natural classes are based
on phonetic features such as aspiration and voic-
ing, word2vec has no access to these features.
The goal of our experiments is to investigate the
extent to which these natural classes can be in-
ferred solely based on phone embeddings. The
embedding space for each language is visualized
using T-distributed Stochastic Neighbor Embed-
ding (t-SNE) plots. Multiple plots were gener-
ated for different values of perplexity and learn-
ing rate using the implementation in scikit-learn
toolkit (Buitinck et al., 2013). The plots shown in
Figure 2 correspond to perplexity 3 and learning
rate 100. In addition, phone clusters derived us-
ing agglomerative clustering of cosine similarities
between phone embeddings are also shown. Eu-
clidean distance was used to plot the dendrogram
heatmaps3.

From the plots, we observe that phone embed-
dings capture the different context classes with
varying degrees of success. Languages 1-3 were
designed with unique contexts for each class of
phones and the embeddings show clear separa-
tion between these classes. In Language 4-5,

3The interpretation of these distance-based heatmaps dif-
fers from the cosine similarity-based heatmap of Wargamay
presented in the previous section.

where nasal codas are allowed, the t-SNE plot
shows less separation between nasal codas and
word-initial aspirated voiceless stops. This is due
to the fact that in monosyllabic words, aspirated
stops and nasals co-occur within the same con-
text (bimoraic) window. This is an unintended
co-occurrence restriction learnt by word2vec.
However, this pattern in monosyllabic words has
no effect on the phone clusters in the dendro-
gram. Nasals and aspirated stops form separate
clusters in the dendrogram. In Language 6, a co-
occurrence constraint that nasal obstruent clusters
be homorganic was introduced. Interestingly, the
t-SNE plot for this language has nasals showing
up with vowels. The syntagmatic relationship (co-
occurrence restriction) between nasals and homo-
organic voiced obstruents introduced in this lan-
guage is not seen in the t-SNE plot of the em-
bedding space. But, the dendrogram heatmap
for this language shows nasals and voiced obstru-
ents forming a high-level cluster. It is plausible
that with hyperparameter tuning, co-occurrence
restrictions such as nasal-voiced obstruent clusters
are captured even in the t-SNE plots of embedding
space. Co-occurrence restrictions in phonology
are much more rigid than word relatedness since
the size of the phone inventory in a language is
many degrees smaller than the size of the vocabu-
lary.

A similar pattern is observed with languages 7,
8 and 9, where other kinds of co-occurrence re-
lations between consonants are introduced. The
t-SNE plot for Language 7 fails to capture the on-
set clusters br dr gr introduced in this language.
The lateral r shows up with the word boundary.
The dendrogram for this language fails to recover
word-initial aspirated stops as a separate class. In
Language 8, the introduction of the optional sibi-
lant in the coda position of the final syllable has a
same effect on the embedding space as visualized
by the t-SNE plot. Nasals, aspirated stops, lat-
eral, sibilant and word boundary are less separated
in the t-SNE plot. In the dendrogram plot, the
sibilant forms a cluster with the nasals and word
boundary. Both the t-SNE and dendrogram plots
for Language 9 are almost identical to those Lan-
guage 8 indicating that the homorganic restriction
on nasal sibilant voiceless stop clusters in the fi-
nal syllable has no effect on the embedding space.
In other words, phone embeddings are unable to
learn these co-occurrence restrictions. Languages
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Figure 2: Embedding space of artificial languages
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10-12 introduce contextual restrictions on vowels.
In Language 10, only high vowels occur in the
word-initial position and phone embeddings cap-
ture this distinct class of vowels as shown by the
dendrogram heatmap. Languages 11 and 12 show
a similar pattern with respect to a different fea-
ture, backness. Both of them are harmony lan-
guages, which still obey the constraint that vow-
els in initial syllables must be [+high]. Inter-
estingly, vowels cluster with respect to [±back]
rather than [±high] as can be seen from the plots.
Evidence for agreement between vowels with re-
spect to backness is three times more frequent than
the evidence with respect to agreement between
vowels in initial syllable with respect to height.
Although vowel harmony is also an instance of co-
occurrence restriction (syntagmatic relationship),
word2vec infers these classes accurately. The
number of vowels in a language tends to be much
lower than the number of consonants. And there-
fore, it seems that a co-occurrence restriction be-
tween vowels is a relatively larger sample of the
set of all possible vowel sequences (5∗5∗5 = 125
in this language) compared to a co-occurrence re-
striction between two or more consonants. The
transparent vowel a has no effect on the distances
between the other vowels in Language 12.

The ability of phone embeddings to learn
phonology in our artificial language experiments
can be summarized as follows-

1. Phone embeddings are able to capture
paradigmatic relationships among phones
very well. For example, word-initial aspi-
rated stops, intervocalic voiced stops, word-
final voiceless stops and vowels are recovered
as separate classes in most languages.

2. Phone embeddings are also able to cap-
ture positional restrictions as well as co-
occurrence restrictions on vowels as shown
by Languages 10-12.

3. Phone embeddings are not able to cap-
ture co-occurrence restrictions among conso-
nants such as homorganic nasal-voiced ob-
struent clusters, voiced obstruent-lateral clus-
ter and homorganic nasal-sibilant-voiceless
stop clusters. This observation is similar to
one reported in the distributed semantic liter-
ature that word embeddings capture similar-
ity better than relatedness (Asr et al., 2018).
Based on insights from the word embedding

literature, context embeddings denoted by the
hidden to output layer weight matrix, are
supposed to be able to capture better syn-
tagmatic relationships like co-occurrence re-
strictions. In addition, it is plausible that
these co-occurrence restrictions among con-
sonants can be learnt using autosegmental
tier-based representations. We leave this in-
vestigation to future work.

4 Distinctive Features and Phoneme
Induction

The main argument of this paper is that phone
embeddings should be evaluated in terms of their
ability to capture phonological relationships. Ap-
plying this bottom-up approach to natural lan-
guage phonology is not straightforward since the
full set of phonological relationships is not known
beforehand. Even the method of evaluating phone
embeddings using the correlation between distinc-
tive feature space and phone embedding space, as
mentioned earlier, presupposes that the gold stan-
dard specification of distinctive features for that
particular language is known. However, this is sel-
dom the case. Natural languages are highly com-
plex with processes such as borrowing, loanword
adaptation and language changes such as drift.
This is why experimenting with artificial phonol-
ogy can be informative.

The artificial languages in our experiment had
increasing levels of complexity, since the goal was
to tease apart learnability of different phenomena.
Recall that a fixed set of distinctive features along
the lines of Hayes and Wilson (2008) was used
to estimate the correlation between distinctive fea-
ture space and phone embedding space. Notice in
table 3 that the value of this correlation goes down
as we move from Language 1 to Language 12 re-
gardless of the distance metric used to estimate
distance between embeddings. Unlike the cross-
linguistic comparison in section 2, the distinctive
features are the same across languages. We ob-
serve that as the size of the phone inventory and
the number of distinct context classes increase,
the degree of correlation between feature space
and embedding space decreases. How can this
trend be accounted for? Examining the distances
in the clustermaps, we observe that as the num-
ber of context classes goes up, intra-phone dis-
tances, especially among the class of consonants
tend to increase. This can be noticed by comparing
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the clusters corresponding to voiceless consonants
and vowels between Language 1 and Language 12.
Given the continuous space nature of phone em-
beddings and the dimensionality reduction prop-
erty of word2vec, this is expected. When the
weights of the neural network corresponding to a
particular phone or phone-sequence are adjusted,
the changes affect similar items (Mikolov et al.,
2013b). This inverse “dispersion” effect is also
relevant to the correlation between distinctive fea-
ture space and embedding space- the value of fea-
tural distance between phones is constant across
languages when estimated using a fixed distinctive
feature representation. But, as the number of con-
text classes increases, distances between phone
embeddings increase and the cumulative effect on
the correlation between phonetic space and em-
bedding space is downward. Thus, this correla-
tion value clearly cannot be used as an evalua-
tion metric for cross-linguistic comparison. Even
within a language, a higher correlation value does
not necessarily indicate better learning of phonol-
ogy/phonetics. Rather it indicates a low inverse
dispersion effect. One way to interpret the results
of Silfverberg et al. (2018, pp.140) is that phone
classes based on context are much less spread out
in embedding space when learnt using supervised
RNN compared to word2vec. At best, this can
be interpreted as a difference in the dimensionality
reduction properties of the two techniques.

This also raises an interesting question about
the degree of specification of phones. Phonolo-
gists assume a language independent feature spec-
ification of phones. The results of our experiments
suggest the following possibility- could the granu-
larity of feature specification be dependent on how
separable the different classes of phones are in em-
bedding space? In other words, do learners infer
distinctive features of phones based on the con-
texts in which they occur? If certain phone classes
can be inferred purely based on context, phonetic
features that distinguish these classes can be un-
derspecified. For example, in Language 10, the
difference between high and non-high vowels in a
language could be inferred based on context. For
such a language, is it necessary to include height
([±high]) as a distinctive feature? Intuitively, the
task of distinctive feature induction is related to
phoneme induction.

A quantitative approach to phoneme induction
based on phone embeddings and phonetic features
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Figure 3: Contextual distance versus Phonetic distance

can be outlined as follows. If embeddings of two
phones show low similarity (or high distance),
their contexts are very different. If the phones
show a high degree of phonetic similarity, then this
is very likely to be a case of allophony. If embed-
dings of two phones show high degree of similar-
ity (or low distance), then their contexts are very
similar. If the phones show low degree of phonetic
similarity, these are clearly two distinct phonemes
in the language. If the phones also show a high
degree of phonetic similarity, then this could be
either an instance of a phonemic relationship or a
co-occurrence restriction. The feature specifica-
tions of such phones can be compared to discover
distinctive features of phonology. If no such fea-
ture is found, it means the default phonetic fea-
ture specification is too coarse-grained. If more
than one distinctive feature is found, the feature
specification is too fine-grained. The exact feature
corresponding to the contrast between two phones
can be discovered by iterating over the full set of
features of the two phones and checking if leaving
out a particular feature leads to a drop in the over-
all correlation between distinctive feature space
and embedding space. These ideas are illustrated
by the plots in Figures 3 and 4. Figure 3 shows
a scatter plot of phone pairs along the phonetic
distance-contextual distance axes for Language 3
in the artificial language experiment. Allophonic
phone pairs such as P-p, p-b, T-t, t-d, K-k, k-g,
etc. show up at the top left corner of the scatter
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Figure 4: Allophonic index derived from embeddings

plot. The phonetic feature specifications of these
pairs can be compared to discover that voicing and
aspiration are not phonemic in this language. Sim-
ilarly, phone pairs that show up at the bottom left
corner of this plot such as the 10 pairs of vow-
els and P-T, P-K, K-T, p-t, t-k, p-k, b-d, d-g
and g-b are all phonemic contrasts. The phonetic
specifications of these phone pairs can be com-
pared to discover that both height and backness are
contrastive for vowels and place of articulation is
contrastive for consonants. The remaining phone
pairs in the top right corner of the scatter plot are
all phonemic contrasts. However, they might not
yield any new distinctive features. The bar plot
in Figure 4 is another way of visualizing the use-
fulness of distances between phone embeddings to
identify phonemic versus allophonic relationships.
We define allophonic index as the ratio of contex-
tual distance estimated using phone embeddings
to phonetic distance. The higher the value of this
index for a phone pair, the more likely the pair
is to be allophonic. The sorted bar plot in Fig-
ure 4 corresponding to artificial Language 3 shows
allophonic pairs at the right edge and phonemic
pairs at the left edge. A precise formulation of
a phoneme/distinctive feature induction algorithm
based on these metrics is reserved for future work.

5 Conclusions and Future work

This paper presents a discussion of evaluation of
phone embeddings. Artificial language experi-

ments are used to study word2vec’s ability to
learn different kinds of phonological relationships.
The results show that phone embeddings are able
to capture phonemic and allophonic relationships
quite well. Phone embeddings are also able to
capture co-occurrence restrictions among vowels
found in harmony languages. Phone embeddings
do not perform well on capturing co-occurrence
restrictions among consonants. The experimen-
tal results also show an interesting correlation be-
tween size and complexity of phone inventory
and magnitude of inter-phone distances based on
phone embeddings. An analysis of the limitation
of correlation between embedding space and dis-
tinctive feature space to evaluate phone embed-
dings for their learning of phonology is also pro-
vided. The analytical framework presented here
and the proposal for distinctive feature induction
will be developed in future work and can be ap-
plied to diverse problems ranging from bootstrap-
ping pronunciations of OOV words in ASR to
modeling historical phonology. A similar analysis
of sound analogies is required to better understand
their significance to phonology.
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Abstract

Previous “wug” tests (Berko, 1958) on
Japanese verbal inflection have demonstrated
that Japanese speakers, both adults and chil-
dren, cannot inflect novel present tense forms
to “correct” past tense forms predicted by
rules of existent verbs (de Chene, 1982; Vance,
1987, 1991; Klafehn, 2003, 2013), indicating
that Japanese verbs are merely stored in the
mental lexicon. However, the implicit assump-
tion that present tense forms are bases for ver-
bal inflection should not be blindly extended to
morphologically rich languages like Japanese
in which both present and past tense forms are
morphologically complex without inherent di-
rection (Albright, 2002). Interestingly, there
are also independent observations in the acqui-
sition literature to suggest that past tense forms
may be bases for verbal inflection in Japanese
(Klafehn, 2003; Murasugi et al., 2010; Hirose,
2017; Tatsumi et al., 2018). In this paper,
we computationally simulate two directions
of verbal inflection in Japanese, Present 7→
Past and Past 7→ Present, with the rule-based
computational model called Minimal Gener-
alization Learner (MGL; Albright and Hayes,
2003) and experimentally evaluate the model
with the bidirectional “wug” test where hu-
mans inflect novel verbs in two opposite direc-
tions. We conclude that Japanese verbs can be
computed online via some generalizations and
those generalizations do depend on the direc-
tion of morphological inflection.

1 Introduction

In her seminal “wug” test, Berko (1958) demon-
strated that English speakers, both adults and chil-
dren, can inflect novel nouns (e.g. wug) and novel
verbs (e.g. rick) to “correct” plural forms (e.g.
wugs) and “correct” past tense forms (e.g. ricked),

respectively. This demonstration strongly sug-
gests that, since the novel words cannot be ex-
perienced before by the experimental participants
and thus accessed from the mental lexicon, the in-
flected forms must have been produced online via
some productive generalizations, whose nature has
been actively debated in the literature (O’Donnell,
2015; Yang, 2016).

Nevertheless, “wug” tests might be too easy to
“pass” in morphologically sparse languages like
English in which present tense forms are unsuf-
fixed and homonymous (except 3rd person singu-
lar) with infinitival forms, and past tense forms
are generated via simple affixation. In fact, previ-
ous “wug” tests on Japanese verbal inflection have
demonstrated that Japanese speakers, both adults
and children, cannot inflect novel present tense
forms to “correct” past tense forms predicted by
rules of existent verbs (de Chene, 1982; Vance,
1987, 1991; Klafehn, 2003, 2013). The results of
these previous “wug” tests have been taken to in-
dicate that Japanese verbs are merely stored in the
mental lexicon, not produced online via produc-
tive generalizations.

However, the implicit assumption that present
tense forms are bases for verbal inflection should
not be blindly extended to morphologically rich
languages like Japanese. As pointed out by Al-
bright (2002), various factors conspire to deter-
mine which cell of the paradigm should be iden-
tified as the base and, consequently, in which
direction morphological inflection should be im-
plemented. In particular, unlike English whose
present and past tense forms are asymmetrically
complex, both present and past tense forms are
suffixed in Japanese and thus morphologically
complex without inherent direction, as in Table 1:
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Final segment Meaning Root Present Past

V-final /e/ ‘eat’
√

tabe tabe-ru tabe-ta
/i/ ‘wear’

√
ki ki-ru ki-ta

C-final

/r/ ‘mow’
√

kar kar-u kat-ta
/t/ ‘win’

√
kat kat-u kat-ta

/w/ ‘buy’
√

kaw ka-u kat-ta
/m/ ‘read’

√
yom yom-u yon-da

/b/ ‘call’
√

yob yob-u yon-da
/n/ ‘die’

√
sin sin-u sin-da

/k/ ‘draw’
√

kak kak-u ka-ita
/s/ ‘lend’

√
tas kas-u kas-ita

/g/ ‘sniff’
√

kag kag-u ka-ida

Table 1: Japanese verbal inflection (McCawley, 1968)

Interestingly, there are independent observa-
tions in the acquisition literature to suggest that
past tense forms may be bases for verbal inflec-
tion in Japanese. First, Japanese children acquire
past tense forms around age 2 before present tense
forms (Clancy, 1985; Klafehn, 2003), unlike En-
glish children who acquire present tense or infini-
tival forms first (Brown, 1973). Second, Japanese
children exclusively produce past tense forms as
Root Infinitive analogues before age 2 (Murasugi
et al., 2010), unlike bona fide Root Infinitives in
English (Wexler, 1994). Third, Japanese chil-
dren overregularize present tense forms (e.g. sim-
u ‘die’; Hirose, 2017), but not past tense forms
like English (e.g. go-ed; Klafehn, 2003). Finally,
Japanese children seem to have an inductive bias
to prefer past tense forms to present tense forms
(Tatsumi et al., 2018). Those observations con-
verge on the hitherto unexplored hypothesis that
past tense forms are bases in Japanese.

In this paper, inspired by the acquisition liter-
ature (Klafehn, 2003; Murasugi et al., 2010; Hi-
rose, 2017; Tatsumi et al., 2018), we computation-
ally simulate two directions of verbal inflection
in Japanese, Present 7→ Past and Past 7→ Present,
with the rule-based computational model called
Minimal Generalization Learner (MGL; Albright
and Hayes, 2003) and experimentally evaluate the
model with the bidirectional “wug” test where hu-
mans inflect novel verbs in two opposite direc-
tions. The following questions will be addressed:

1. Which direction is computationally less com-
plex for the model?

2. Which direction is experimentally more ac-
curate for humans?

3. In which direction do the model and humans
correlate more strongly?

Model complexity will be measured via three
evaluation metrics derived from the confidence
scores of rules induced based on the lexicon of
existent verb pairs (Albright, 2002). In addi-
tion, human accuracy and the correlation between
the model and humans are explicitly evaluated
against the model, avoiding impressionistic inter-
pretations as in previous “wug” tests, where “the
meaning of the word ‘pass’ is a 60% or better
score” (Klafehn, 2013, p.182).

The organization of this paper is as follows.
Section 2 describes the methodological details of
the Minimal Generalization Learner, the bidirec-
tional “wug” test, and the statistical analyses to
compare the two. Section 3 presents the results of
model complexity, human accuracy, and the cor-
relation between the model and humans, corre-
sponding to the three questions above. Section 4
summarizes the results and discuss theoretical im-
plications. Section 5 concludes the paper.

2 Methods

2.1 Minimal Generalization Learner
Training: The rule-based computational model
called Minimal Generalization Learner (MGL;
Albright and Hayes, 2002, 2003) was employed
from the literature. The MGL was trained on the
lexicon of 1269 existent verb pairs (Suski, 1942)
in two directions (Present 7→ Past and Past 7→
Present), with V-V compounds and light verb con-
structions removed in order to avoid inflation of
the number of particular inflections. Then, rules
were induced through minimal generalization for
each direction. See Albright and Hayes (2002,
2003) for the rule induction algorithm.
Testing: Novel verbs were then fed into the
trained MGL as input and the inflected forms of
those verbs were produced as output with the reli-
ability and confidence scores defined below.
Reliability score: The reliability score of a rule,
p̂, is defined as Equation 1:

p̂ =
# forms correctly derived (= hits)

# forms potentially derived (= scope)
(1)

Confidence score: Since weak rules supported by
smaller data should be penalized (Mikheev, 1997),
the reliability score of a rule is transformed into
the confidence score, π, defined as Equation 2:

π = p̂∗ − z(1− α)/2×
√
p̂∗ × (1− p̂∗)

n
(2)
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where p̂∗ is the smoothed reliability p̂∗ = hits+0.5
scope+1 ,√

p̂∗×(1−p̂∗)
n is the estimated variance, and α is the

free parameter called confidence value (the higher
α, the greater penalty for weak rules) assumed
here as α = .75.
Mean confidence: Three evaluation metrics can
be derived from the confidence score (cf. Albright,
2002). First, the mean confidence score of win-
ning outputs is defined as Equation 3:

π̄ =
1

n

n∑

i∈I
max
o∈Oi

πo (3)

where I is the the set of all inputs, Oi is the set of
all outputs derived from the input i, and πo is the
confidence score of the output o. The higher mean
confidence, the more efficient grammar.
Mean margin: Second, the mean confidence mar-
gin of winning outputs is defined as Equation 4:

∆̄ =
1

n

n∑

i∈I
[max
o∈Oi

πo −max
s∈Si

(πs, 0)] (4)

where S is the subset of all outputs derived from
the input i without winning outputs. The higher
mean margin, the more efficient grammar.
Mean entropy: Finally, the mean confidence en-
tropy of possible outputs is defined as Equation 5:

H̄ =
1

n

n∑

i∈I

|Oi|∑

o∈Oi

πo log2 πo (5)

where the confidence scores of all outputs derived
from the input, O, are normalized, such that the
scores sum up to 1. Unlike the metrics above, the
lower mean entropy, the more efficient grammar.

2.2 Bidirectional “Wug” Test

Participants: The bidirectional “wug” test was
conducted with the within-participants design.
The experimental participants were 45 undergrad-
uate students at Waseda University in Japan. They
were given a U500 book coupon for their partic-
ipation. The 6 participants who were non-native
speakers of Japanese or misinterpreted the instruc-
tions were excluded from statistical analyses, re-
sulting in 39 participants in total.
Stimuli: Bisyllabic novel roots (“wug” roots)
were created by randomly combining two open
syllables (CV). The open syllables were extracted
from the lexicon of 1269 existent verb stems
(Suski, 1942), with V-V compounds and light verb
constructions removed, and only those with token

frequency ≥ 20 were included. The “wug” roots
that resemble actual Japanese words or contain
repetitions of the same segments were excluded.
Since the native Japanese words cannot generally
start with voiced obstruents (Tanaka and Yashima,
2013) or /r/ (Labrune, 2014), the “wug” roots start-
ing with those segments were also excluded. Then,
32 past tense forms of the “wug” roots were cre-
ated as target stimuli in the Past 7→ Present direc-
tion, by attaching (i) the V-final past tense endings
/ta/ to 16 “wug” roots (i.e. 8 ending with /e/ and
8 ending with /i/) and (ii) the 4 C-final past tense
endings (i.e. /tta/, /nda/, /ita/, and /ida/) to 4 “wug”
roots each, hence 16 V-final and 16 C-final past
tense forms. In the same vein, 32 present tense
forms of the “wug” roots were created as target
stimuli in the Present 7→ Past direction, by attach-
ing (i) the V-final present tense ending /ru/ to 16
“wug” roots (i.e. 8 ending with /e/ and 8 ending
with /i/) and (ii) the 8 C-final present tense end-
ings (i.e. /tu/, /u/, /mu/, /bu/, /nu/, /ku/, /su/, and
/gu/) to 2 “wug” roots each, hence 16 V-final and
16 C-final present tense forms. Note that the 4 V-
final past tense forms whose roots end with /hi/
and 2 C-final present tense forms ending with /nu/
turned out to be not attested in the training data
and thus excluded from the statistical analyses.

The 4 frames were also created in which the tar-
get stimuli are presented. Each frame consisted of
two sentences A and B. In the Present 7→ Past di-
rection, A sentences include present tense forms,
while B sentences contain a blank and elicit past
tense forms. In the Past 7→ Present direction, A
sentences include past tense forms, while B sen-
tences contain a blank and elicit present tense
forms. In order to make sure that the participants
produce target forms in B sentences, temporal ad-
verbs are placed at the sentence initial position to
maximally contrast sentences A and B. Specifi-
cally, A sentences constitute “Temporal Adverb
+ Proper Noun + Verb + Evidential”, whereas
B sentences “Temporal Adverb + Proper Noun +

+ Sentence Final Particle”, where the par-
ticipants are asked to inflect the Verb.

Procedure: The task was written production
“wug” test in the form of the questionnaire. At
the top of the questionnaire were some biograph-
ical questions such as (i) birthplaces of partici-
pants and their parents, (ii) whether participants
were born and grew up in Japan, and (iii) whether
parents spoke Japanese to participants at home.
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The English translation of the original Japanese
instructions is reproduced below:

“This experiment examines your intu-
ition about Japanese. There are 2 blocks
and 48 questions in each block, where
both actual and novel verbs in Japanese
appear. For each question, please
change bold and underlined verbs of A
sentences to appropriate forms and com-
plete the underlined portion of B sen-
tences. Since there are no correct or in-
correct answers, please answer the ques-
tions based on your intuition without too
much reflection.”

The experiment was divided into two blocks,
corresponding to Present 7→ Past and Past 7→
Present directions, and the order of the two di-
rections was counterbalanced across participants.
At the beginning of each block were two example
questions with answers in B sentences completed,
one example with an actual verb and another with
a novel verb. The order of stimulus presentation
was randomized across participants by creating 2
random orders for each direction, hence 4 different
versions of randomization. The 16 actual verbs, 8
V-final and 8 C-final, were interspersed as fillers
in each block, on the condition that no more than
3 target stimuli were presented in sequence.

2.3 Statistical Analyses

Human accuracy: In contrast with the previous
“wug” tests, the human accuracies were explic-
itly evaluated against the MGL. The winning out-
puts with highest confidence scores were defined
as “correct” among possible outputs derived from
each input by the MGL. For example, suppose that
the MGL produced three possible outputs X, Y,
and Z for an input, among which X was the win-
ning output with the highest confidence score. If
the output X was produced by 30 participants, the
human accuracy would be 30/39 = .769.
Correlation between model and humans: The
correlation between model confidence scores and
human production probabilities were also ana-
lyzed (Albright and Hayes, 2003). The human
production probabilities can be simply computed
by dividing the frequencies of produced outputs by
the number of participants. Given the distribution
of human production probabilities being bimodal,
nonparametric Kendall’s rank correlation analyses

were performed in R between model confidence
scores and human production probabilities. The
outputs not produced by both model and humans
were not included in the correlation analyses.

3 Results

3.1 Model Complexity

The result of model complexity is summarized in
Table 2, where three model complexity metrics,
mean confidence score (π̄), mean confidence mar-
gin (∆̄), and mean confidence entropy (H̄), are
shown for each direction of verbal inflection:

Present 7→ Past Past 7→ Present
Mean confidence (π̄) .904 .959
Mean margin (∆̄) .724 .849
Mean entropy (H̄) .387 .294

Table 2: Result of model complexity

The three evaluation metrics all converge on the
conclusion that the Past 7→ Present direction is
computationally less complex than the Present 7→
Past direction: the mean confidence and margin
were higher, while the mean entropy was lower.
On closer inspection, the confidence scores of
possible outputs for /ru/-final present tense forms
were almost a tie in the Present 7→ Past direction,
which increased the mean entropy.

3.2 Human Accuracy

The result of human accuracy is summarized in
Table 3, where the accuracies of the current ex-
periment are shown for each direction of ver-
bal inflection and compared with six previous
“wug” tests (de Chene, 1982; Vance, 1987, 1991;
Klafehn, 2003, 2013):

Reference Modality Task Accuracy
de Chene (1982) oral production 46%
Vance (1987) written choice 51%
Vance (1991) written choice 63%
Klafehn (2003) written choice 53%
Klafehn (2013) oral production 32%
Present 7→ Past written production 48%
Past 7→ Present written production 72%

Table 3: Result of human accuracy

First, the accuracy of the Present 7→ Past direc-
tion (48%) is generally comparable to the litera-
ture, especially the oral production experiment by
(46%; de Chene, 1982), despite different partici-
pants and stimuli between the experiments. Sec-
ond, and more importantly, the accuracy of the
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Past 7→ Present direction (72%) was significantly
higher than the literature, even the forced choice
experiments (Vance, 1987, 1991; Klafehn, 2003),
which would be regarded as “pass” on the assump-
tion that “the meaning of the word ‘pass’ is a 60%
or better score” (Klafehn, 2013).

3.3 Correlation Between Model and Humans

The result of correlation between the model and
humans is shown in Figure 1, where the x-axis is
the model confidence score computed by the MGL
(“Model confidence score”), whereas the y-axis
is the human production probability of the forms
produced by the experimental participants (“Hu-
man production probability”). Color represents
the Past 7→ Present (red) and Present 7→ Past (blue)
directions. Shape of the data points represents C-
final (circle; •) and V-final (triangle; N) roots. The
lines are the fitted linear models.

There were 1248 forms in total produced for
each direction (39 participants * 32 stimuli = 1248
forms). In the Past 7→ Present direction, 1225
forms were present tense forms, while 23 forms
were errors (i.e. non-present tense forms). Out of
the 1225 present tense forms, 956 forms were also
produced by the MGL. In the Present 7→ Past di-
rection, 1225 forms were past tense forms, while
23 forms were errors (i.e. non-past tense forms).
Out of the 1225 past tense forms, 821 forms were
also produced by the MGL. Kendall’s rank corre-
lation analyses revealed that the model confidence
scores and human production probabilities were
strongly correlated in the Past 7→ Present direc-
tion (z = 5.0618, τ = 0.534, p < 0.001***), but
only weakly in the Present 7→ Past direction (z =
2.3058, τ = 0.2448, p < 0.05*).

4 Discussion

In summary, the results demonstrated that (i) the
Past 7→ Present direction was computationally less
complex than the Present 7→ Past direction, (ii)
the Past 7→ Present direction was experimentally
more accurate than the Present 7→ Past direc-
tion, and (iii) the model and humans were cor-
related strongly in the Past 7→ Present direction,
but only weakly in the Present 7→ Past direc-
tion. The present work should be regarded as the
computational psycholinguistic approach to the
Paradigm Cell Filling Problem (Ackerman et al.,
2009) and, importantly, the result of model com-
plexity harmonizes well with the Low Entropy

Conjecture (Ackerman and Malouf, 2013), which
may in turn provides an insight into SIGMOR-
PHON Shared Task on morphological reinflection
(Cotterell et al., 2018). In the following, two the-
oretical implications will be discussed: the past
tense debate and language learning.

4.1 The Past Tense Debate

In the context of the past tense debate on rule
vs. analogy (Pinker and Ullman, 2002), three
logically possible models have been proposed in
the literature: the single route rule-based model
(Yang, 2002), the single route analogy-based
model (Rumelhart and McClelland, 1986), and the
dual route model (Pinker and Prince, 1988). The
results above at least indicate that Japanese verbs
can be computed online via some generalizations
and those generalizations do depend on the direc-
tion of morphological inflection, contrary to the
conclusion of previous “wug” tests that Japanese
verbs are merely stored in the mental lexicon
(de Chene, 1982; Vance, 1987, 1991; Klafehn,
2003, 2013). However, although the MGL is
“rule-based”, the nature of those generalizations is
still an open question to be addressed via the sys-
tematic comparison with contemporary analogy-
based models such as Recurrent Neural Networks
(RNN: Kirov and Cotterell, 2018) and Naive Dis-
criminative Learning (NDL: Baayen et al., 2011)
couched in Word and Paradigm models of mor-
phology (Stump, 2001; Blevins, 2006).

In addition, given the different strength of cor-
relation with the rule-based computational model
in two opposite directions, we can hypothesize
that the Past 7→ Present direction is rule-based,
while other directions including the Present 7→
Past direction is analogy-based. Then, follow-
ing the electroencephalography (EEG) experiment
by Kobayashi et al. (2012) who demonstrated that
rule and analogy are indexed by event-related po-
tential (ERP) components called LAN and N400,
respectively, we predict that the Past 7→ Present
direction is reflected by LAN, whereas the Present
7→ Past direction by N400. This prediction is sum-
marized in Table 4 and left for future research.

Direction Wug Model Route ERP
Past 7→ Present “pass” Symbolic Rule LAN
Present 7→ Past “fail” Neural Analogy N400

Table 4: Prediction of ERP components
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Figure 1: Result of correlation between the model and humans

4.2 Human and Machine Language Learning

The results above further suggest that human
language learning can provide insights into ma-
chine language learning. Interestingly, the Past
7→ Present direction was motivated by not only
the language acquisition literature (Klafehn, 2003;
Murasugi et al., 2010; Hirose, 2017; Tatsumi et al.,
2018) but also artificial language learning by Yin
and White (2018) who show that humans have
an inductive bias against neutralization and ho-
mophony. In other words, the Past 7→ Present di-
rection is preferred to the Present 7→ Past direction
because the present tense forms of /r/, /t/, /w/-final
“wug” roots and /m/, /b/, /n/-final “wug” roots are
neutralized into the homonymous past tense forms
ending with /tta/ and /nda/, respectively.

Nevertheless, there were several limitations
with the current experiment. First, the assump-
tion that the training data is fed to the model in
pairs organized as paradigms is unrealistic due to
Zipf’s law (Zipf, 1949), where paradigms are al-
most always incomplete in human language learn-
ing (Yang, 2017; Blevins et al., 2017). In or-
der to simulate realistic language learning, child-
directed speech (CDS) should be employed as the
training data, especially given that relative fre-
quencies of present and past tense forms seem

to be diverse (Tatsumi et al., 2018). Second,
the MGL is “rule-based” but learns only product-
oriented generalizations (Becker and Gouskova,
2016) in that present and past tense forms are
mapped to each other without underlying roots.
In order to test source-oriented generalizations
over underlying roots, morphological decompo-
sition must be implemented to retrieve the roots
from which present and past tense forms are de-
rived (Taft, 1979, 2004). Finally, different “wug”
roots were employed in two directions of verbal
inflection (though created similarly) so that differ-
ent results might be attributed to different roots,
which remains to be controlled in future.

5 Conclusion

In this paper, inspired by the acquisition litera-
ture (Klafehn, 2003; Murasugi et al., 2010; Hi-
rose, 2017; Tatsumi et al., 2018), we computa-
tionally simulated two directions of verbal inflec-
tion, Present 7→ Past and Past 7→ Present, with
the rule-based computational model called Mini-
mal Generalization Learner (MGL; Albright and
Hayes, 2003) and experimentally evaluated the
model with the bidirectional “wug” test where hu-
mans inflected novel verbs in two opposite direc-
tions, addressing the following questions:
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1. Which direction is computationally less com-
plex for the model?

2. Which direction is experimentally more ac-
curate for humans?

3. In which direction do the model and humans
correlate more strongly?

The results revealed that (i) the Past 7→ Present
direction was computationally less complex than
the Present 7→ Past direction, (ii) the Past 7→
Present direction was experimentally more accu-
rate than the Present 7→ Past direction, and (iii)
the model and humans were correlated strongly in
the Past 7→ Present direction, but only weakly in
the Present 7→ Past direction. We conclude that
Japanese verbs can be computed online via some
generalizations (pace de Chene, 1982; Vance,
1987, 1991; Klafehn, 2003, 2013) and those gen-
eralizations do depend of the direction of morpho-
logical inflection.
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Abstract

This paper deals with the automatic en-
hancement of a new German morphological
database. While there are some databases for
flat word segmentation, this is the first avail-
able resource which can be directly used for
deep parsing of German words. We combine
the entries of this morphological database with
the morphological tools SMOR and More-
morph and a context-based evaluation method
which builds on a large Wikipedia corpus. We
describe the state of the art and the essential
characteristics of the database and the context
method. The approach is tested on an inflight
magazine of Lufthansa. We derive over 5,000
new instances of complex words. The cover-
age for the lemma types reaches up to over 99
percent. The precision of new found complex
splits and monomorphemes is between 0.93
and 0.99.

1 Introduction

German is a language with complex processes of
word formation, of which the most common are
compounding and derivation. Segmentation and
analysis of the resulting word forms are challeng-
ing as spelling conventions do not permit spaces
as indicators for boundaries of constituents as in
(1).

(1) Verkehrsamt ‘tourist office’

For long orthographical word forms, many combi-
natorially possible analyses exist, though usually
only one of them has a conventionalized meaning
(see Figure 1). For instance, for Verkehrsamt ‘traf-
fic office, tourist office’, word segmentation tools
can yield the wrong split containing one with the
smaller number of word tokens Verkehr ‘traffic’
and Samt ‘velvet’.

In this case, there is a linking element within
the word form which could be wrongly interpre-

Verkehrsamt

N

Verkehr
‘traffic’

x

s
‘filler letters’

N

Amt
‘office’

]Verkehrsamt

N

Verkehr
‘traffic’

N

Samt
‘velvet’ .

Figure 1: Ambiguous analysis of Verkehrsamt ‘tourist
office’

tated as part of a morph. Such elements function
as morphophonological structure markers.1

German compounds can consist of derivatives,
or compounds can be subject to further derivation.
In (1), Verkehr is the result of a conversion pro-
cess from verkehren ‘to run, to fly’, which again
consists of a prefix and a verb stem (see Figure 2).
On each level of morphological segmentation, the
number of possible analyses is 2n. This number
can be reduced by excluding implausible construc-
tions such as suffixes at the beginning of a con-
struct. On the other hand, it has to be multiplied
by the number of homonyms for the segmented
forms. Therefore, automatic segmentations with
more than ten possible analyses for one word are
no rare case.

However, finding the correct segmentations
and morphological structures is essential for
terminologies and translation (memory) tools,
information retrieval, and as input for tex-

1By some approaches, such linking elements are consid-
ered as a special kind of morphemes and called Fugenmor-
pheme. We like to avoid such classifications and use the la-
bels filler letters or interfix.
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Verkehrsamt

N

Verkehr
‘traffic’

V

verkehren
‘to run/to fly’

x

ver
‘prefix’

V

kehren
‘to turn’

x

s
‘filler letters’

N

Amt
‘office’

Figure 2: Complex analysis of Verkehrsamt ‘tourist of-
fice’

tual analyses. Deep parsing of complex mor-
phological structures produces disambiguation
such as (Fremde|n|verkehr)|s|amt ‘tourism of-
fice’ instead of the tautological interpretation
]Fremde|n|(Verkehr|s|amt) ‘foreigner tourist of-
fice’.2 Such analyses can help improving the qual-
ity of translation and retrieval tasks.

Moreover, counts of morphs, and morphologi-
cal structures are useful for inducing hypotheses
about statistical tendencies and quantitative laws,
e.g. Menzerath’s law (Cramer, 2005) or the Prin-
ciple of Early Immediate Constituents (Hoffmann,
1999), which has not yet been corroborated for the
word level by statistical tests.

In this paper, we will apply a hybrid approach
for finding the correct splits of words and aug-
menting a morphological database. In Section 2,
we provide a concise overview of previous work
in word segmentation and word parsing for Ger-
man. In Section 3, we introduce two linguistic
tools we will be using later. SMOR is a well-
known morphological tool. We describe how we
modified its lexicon and exploited and changed
its internal results by the add-on module More-
morph. Section 4 introduces our morphological
database which was built on the basis of the lin-
guistic databases CELEX and GermaNet. Sec-
tion 5 describes the data-intense procedures for the
morphological analyses and supervised database

2The complete structure of Fremdenverkehrsamt ‘tourism
traffic office, tourist office’ is represented in Figure 4.

enhancements. In Section 6, we test our method
on a corpus of an inflight journal. Finally, we dis-
cuss our results and give an outlook for future de-
velopments.

2 Related Work

The first developments in morphological seg-
mentation tools for German date back to the
Nineties. Most of them are based on finite state
machines. Gertwol (Haapalainen and Majorin,
1995), MORPH (Hanrieder, 1996), Morphy (Lez-
ius, 1996; Lezius et al., 1998) and later SMOR
(Schmid et al., 2004) and TAGH (Geyken and
Hanneforth, 2006) generate morphological analy-
ses for complex German words, yielding results
for derivatives and compounds. All these analyses
are flat word splittings and often include dozens of
segmentation versions.

There are different ways to tackle such kind of
ambiguity, most of which are applied merely to
compounds and yield flat segmentations of the im-
mediate constituent level.

Cap (2014) and Koehn and Knight (2003) use
ranking scores, such as the geometric mean, for
the different morphological analyses and then
choose the segmentation with the highest ranking.

Another approach consists in exploitation the
sequence of letters, e.g. by pattern matching with
tokens (Henrich and Hinrichs, 2011, 422) or lem-
mas (Weller-Di Marco, 2017). Ziering and van
der Plas (2016) use normalization methods which
are combined with ranking by the geometric mean.
Ma et al. (2016) apply Conditional Random Fields
modeling for letter sequences. Daiber et al. (2015)
extract candidates of compound splits by string
comparisons with corpus data.

Recent approaches exploit semantic informa-
tion for the ranking of compound splittings. Riedl
and Biemann (2016) utilize look-ups of similar
terms inside a distributional thesaurus. Their rank-
ing score is a modification of the geometric mean.

Ziering et al. (2016) use the cosine as a mea-
sure for semantic similarity between compounds
and their hypothetical constituents and combine
these similarity values by computing the geomet-
ric means and other scores for each produced split.
The scores are then used as factors to be multiplied
by the scores of former splits.

One of the few approaches tackling deep mor-
phological analyses is Ziering et al. (2016). Their
investigation considers left-branching compounds
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consisting of three lexemes. Their distributional
semantic modelling often fails to find the correct
binary split if the head is too ambiguous to corre-
late strongly with the first part. But in general,
using the semantic context is a sensitive disam-
biguation method. Ziering and van der Plas (2016)
develop a splitter which makes use of normaliza-
tion methods and can be used recursively by re-
analyzing the results of splits. Their evaluation
is based on the binary compounds of GermaNet
(Hamp and Feldweg, 1997; Henrich and Hinrichs,
2011).

Würzner and Hanneforth (2013) use a proba-
bilistic context free grammar for full morpholog-
ical parsing, but restrict their approach to deriva-
tional adjectives.

Most these approaches build upon corpus data.
Only Henrich and Hinrichs (2011) enrich the out-
put of morphological segmentation with informa-
tion from the annotated compounds of GermaNet
to disambiguate such structures. This can in a fur-
ther step yield hierarchical structures but presup-
poses that the entries for the components exist in-
side the database. Steiner and Ruppenhofer (2018)
build on this idea to derive more complex morpho-
logical structures from lexical resources. In 5, we
come back to this and will exploit their resource.

3 SMOR: A Morphological Tool for
German and its Add-On Moremorph

3.1 SMOR

SMOR is a widely used morphological segmenta-
tion tool (e.g. Cap (2014), Henrich and Hinrichs
(2011), Steiner and Ruppenhofer (2015), Ziering
et al. (2016)). It is based on two-level morphol-
ogy (Koskenniemi, 1984) and implemented as a
set of finite-state transducers. For German, a large
set of lexicons is available. These lexicons con-
tain information about inflection, parts of speech
and classes of word formation, e.g. abbreviations
and truncations. The tag set used is compatible
with the STTS (Stuttgart Tübingen tag set, Schiller
et al. (1995)).

SMOR produces different levels of granular-
ity and different representation formats with dif-
ferent transducers and options. Example (2) and
(3) show two simplified outputs of fine-grained
analyses for Verkehrsamt ‘traffic office, tourist of-
fice’ and Fremdenverkehrsamt ‘foreign-traffic of-
fice, tourist office’. For the sake of simplicity, we
removed case and number.

(2) Verkehr<NN>Samt<+NN>
Verkehr<NN>Amt<+NN>
ver<VPREF>kehren<V>Samt<+NN>

(3) Fremdenverkehr<NN>Samt<+NN>
Fremdenverkehr<NN>Amt<+NN>
Fremd<Adj>verkehr<NN>Samt<+NN>
Fremd<Adj>verkehr<NN>Amt<+NN>
Fremd<Adj>ver<VPREF>kehren<V>
Samt<+NN>

In (2), the word form Verkehrsamt ‘tourist of-
fice’ is analyzed in three different ways, of which
two show the erroneous interpretation of the string
samt ‘velvet’ as a noun. (3) shows the same er-
ror in three of its five segmentations. The cate-
gories consist of parts of speech (<NN>, <V>)
for free morphs and the position of bound mor-
phemes (e.g. <VPREF> for ‘verbal prefix’).

3.2 Moremorph
While SMOR is a reliable foundation for the anal-
ysis of word forms which have not been found be-
fore, it comes with some small drawbacks. More-
morph aims at improving and adjusting the output
of SMOR.

As can be seen from the second line of (2), the
SMOR output does not indicate if there are filler
letters (or interfixes) inside a word.

However, the information exists inherently in
intermediate SMOR output which can be reana-
lyzed by Moremorph. Therefore, filler letters (FL)
can be marked as in (4):

(4) Verkehr s Amt NN FL NN <NN>

This annotation shows the morphs on the lexical
level, their classes with filler letters, and finally the
part of speech of the word form in angle brackets.
(5) presents the Moremorph representation of (3).
In the last three analyses, there is one tag more
than the number of splits due to the noun conver-
sion of fremd ‘foreign’ to Fremde ‘foreigner’.

(5) a. Fremdenverkehrsamt
Fremdenverkehr Samt
NN NN <NN>

b. Fremdenverkehrsamt
Fremdenverkehr s Amt
NN FL NN <NN>
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c. Fremdenverkehrsamt
fremd en Verkehr Samt
ADJ NNSUFF FL NN NN <NN>

d. Fremdenverkehrsamt
fremd en Verkehr s amt
ADJ NNSUFF FL NN FL NN<NN>

e. Fremdenverkehrsamt
fremd en ver kehr Samt
ADJ NNSUFF FL VPREF V NN
<NN>

Moremorphs uses SMOR lexicons which we
adapted to the current task. The original version
of the names lexicon comprised 14,998 entries, the
final extended version 16,718 entries. During the
project, the lexicon was constantly extended and
cleaned and its entries were revised. The final ver-
sion used for the current work comprises 42,205
entries. Many changes of the rule sets were made
in cooperation with Helmut Schmid according to
our suggestions. For example, we changed the sets
of characters or added adverbs as possible tag class
for numbers. Other changes include the derivation
of adjectives from names of location. Some of the
finite-state transducers had to be changed for this.

We also standardized inconsistent analyses for
orthographical variants with and without hyphen-
ations and added some more special characters to
the inventory of word structuring means.

This leads to consistent analyses for ortho-
graphical variants such as in (6). Also word forms
with some other special characters not covered by
SMOR can be processed now, as in (7).

(6) a. Flughafen Köln-Bonn ‘Airport
Cologne-Bonn’

b. Flughafen Köln/Bonn ‘Airport
Cologne/Bonn’.

(7) ”Team Lufthansa”-Partner

(8) shows the output for (6-b) with the structuring
character tagged as HYPHEN.

(8) Köln/Bonn Köln / Bonn
NPROP HYPHEN NPROP <NPROP>

4 A Lexical Database with Deep-Level
Morphological Information

While most morphological analyzers build on the
results of word splitters, we decided to take up a
hybrid approach which combines the reliable en-
tries of a morphological database with the aug-
mented and further processed analyses of SMOR
and Moremorph. Here, also another morphologi-
cal tool could be chosen.

The German morphological tree database ex-
tracts its entries from a. the refurbished CELEX
database (Baayen et al., 1995; Steiner, 2016)
for German morphology (Burnage, 1995; Gulik-
ers et al., 1995) and b. the compound analyses
from the GermaNet database (Hamp and Feldweg,
1997; Henrich and Hinrichs, 2011; Steiner, 2017).
For both preprocessed datasets, the derivation of
complex structures was performed recursively, by
combining the GermaNet analyses with the analy-
ses from CELEX.

The tree building tool provides different pa-
rameters for the analysis. We chose to enrich
the data with information on diachronic derivation
and permitted a depth of six levels for the mor-
phological analyses. (9) shows the morpholog-
ical structures for (9-a) Verkehrsamt ‘tourist of-
fice’, (9-b) Verkehrsanlage ‘traffic facility’, and
(9-c) Verkehrsbehinderung ‘traffic obstruction’.
(9-b) comprises diachronic derivational informa-
tion, showing the noun Anlage ‘facility/lay out’ as
derived from the verb anlegen ‘lay out’.

(9) a. Verkehrsamt
(*Verkehr*

(*verkehren*
ver|
kehren))|

s|
Amt

b. Verkehrsanlage
(*Verkehr*
(*verkehren*

ver|
kehren))|

s|
(*Anlage*

(*anlegen*
an|
legen))
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c. Verkehrsbehinderung
(*Verkehr*

(*verkehren*
ver|
kehren))|

s|
(*Behinderung*

(*behindern*
be|
hindern)|

ung)

The number of entries for this databases of the
morphological trees amounts to 101,588. In addi-
tion, we extracted 6,339 types of monomorphemes
from the refurbished German CELEX database.

5 Combining Morphological Databases
with a Segmenter

In the following, we combine the morphologi-
cal database with a morphological segmenter and
a contextual evaluation process. If the database
look-up fails, the time-consuming word splitting
and evaluation is started. Then the output of More-
morph is analyzed by a contextual method by ex-
ploiting a very large corpus. If this fails, frequen-
cies counts of a very large corpus is the back-off
strategy. The new analyses are added to a set of
new splits.

At the end of each word analysis, all subparts of
the word are being searched within the database
and the newsplit set. This leads to incrementally
more fine-grained entries.

Figure 3 presents an overview. It shows two
databases of morphological trees: the German
morphological tree database and a incremental
database for all newly found morphological analy-
ses. Furthermore, it comprises a set of monomor-
phemes.

5.1 Basic Look-Up

As shown in Figure 3, a look-up finds the respec-
tive tree or the simplex form for the word within
the lexicons. Before this is added to the results,
all of its subparts are being looked up within the
databases and the new splits. These subanalyses
are being integrated to its new analysis. Old en-
tries within the lexical databases are being substi-
tuted for the new ones.

5.2 Finding Splits

If neither an entry inside the tree lexicons nor
in the list of monomorphemes can be found, the
Moremorph analyses are taken as the start for the
further analysis. For each analysis, e.g. the five
different ones of example (5), every possible com-
bination of subtrees has to build. Some of them
can be filtered out, because they are linguistically
implausible, e.g. when a hypothetical subpart fin-
ishes with a prefix.

All plausible combinations of strings and tags
undergo a contextual analysis, if occurrences for
all subparts can be found within at least one text of
the large corpus. Otherwise, a procedure of using
the overall document frequencies together with a
back-off strategy will be invoked.

5.2.1 Morphological Segmentation based on
Contextual Information

For (unknown) compounds, we presuppose that
each component can be found within the same
close environments. Therefore, the frequencies of
components in texts should be much lower for er-
roneous splits than the frequencies for correct seg-
mentations.

We chose a large set of texts for the retrieval: the
freely available and annotated German Wikipedia
Korpus of 2015 (Margaretha and Lüngen, 2014).3

We restricted ourselves to the 1.8 million texts
subcorpus of the articles. The corpus was to-
kenized by a modified version of the tool from
Dipper (2016) and lemmatized by the TreeTagger
(Schmid, 1999). Text indices were built both for
tokenized and lemmatized forms. For each text,
all frequencies of lemmas and tokens were stored.

For each morphological split of a word form wf
(spwf,n), the intersection of all texts comprising
the word form wf and their hypothetical compo-
nents cwf,sp,1..n is retrieved from the text indices.
For every text t which includes all components for
the word form wf (cwf,sp,1...cwf,sp,n) of a mor-
phological split, the document frequencies (df ) of
the components are being retrieved and added to
the sum of text frequencies score (Stf ). For every
hypothetical analysis, the highest value is chosen
and the morphological analysis with this score is
stored (Equation 1).

3see http://www1.ids-mannheim.de/kl/projekte/korpora/
verfuegbarkeit.html
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Wordlists:
Fremdenverkehrsamt

Hybrid Word
Splitter

Morphological
Trees DB

(*Verkehr*
(*verkehren*
ver|kehren))
|s|Amt

New splits

Monomorphemes

Found in
databases?

Check for
subanalyses

yes

SMOR/Moremorph

Fremdenverkehrsamt
f:Fremd en V:verkehr s A:amt
ADJ NNSUFF FL NN FL NN

no

Build all
combinations

Filter out
implausibles

Contextual search
in Wikipedia

corpus

Frequencies in
Wikipedia corpus

Analyz-
able

?

no

yes

Results:
Fremdenverkehrsamt

(*Fremdenverkehr* (*Fremde*
fremd|e)|n|(*Verkehr*

(*verkehren*
ver|kehren)))|s|Amt

Figure 3: Hybrid word analysis: Morphological trees database, word segmenter, and two different evaluation
procedures as alternative methods for word splitting
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Best− Stfwf,sp,t = max
1,t

cwf,sp,n∑

cwf,sp,1

df1,n (1)

Finally, for every hypothetical analysis, the high-
est value is chosen and the morphological analysis
with this score is processed and stored.

5.2.2 Morphological Segmentation based on
Document Frequencies

In case that no text can be found which includes
the word form wf and the components of any
of the hypothetical analyses, the corpus itself is
considered as a textual enviroment in the widest
sense. For each split, the sum of frequencies are
being calculated. The hypothetical analysis with
the highest value is chosen and the morphological
analysis with this score is processed for the stor-
age. In all other cases, the analysis will yield the
hypothetical analysis of a monomorpheme.

5.3 Substitution of Analyses

Whenever an analysis by the Best− Stf score or
another look-up has been found, the analyses for
its immediate constituents are being searched in
the databases. By this, the lexicons can be incre-
mentally enlarged and enriched. Figure 4 shows
an example from our test corpus, which we used
for the evaluation in Section 6.

The results are added to a database of new splits
and can be added to the previous database after an
evaluation.

6 Evaluation

6.1 Data

For testing the performance, we use Korpus
Magazin Lufthansa Bordbuch (MLD) which is
part of the DeReKo-2016-I (Institut für Deutsche
Sprache, 2016) corpus4. It is an in-flight maga-
zine with articles on traveling, consumption and
aviation. For the tokenization, we enlarged and
costumized the tokenizer by Dipper (2016) for
our purposes. Multi-word units were automati-
cally identified based on the multi-word dataset
which we had augmented before. The resulting
data comprises 276 texts with 5,202 paragraphs,

4See Kupietz et al. (2010) and http://www1.ids-
mannheim.de/kl/projekte/korpora/archiv/mld.html for further
information.

16,046 sentences and 260,114 tokens. The num-
ber of word-form types is 38,337. We are analyz-
ing the lemmatized version of this corpus which
was produced by the TreeTagger (Schmid, 1999),
it comprises 27,902 lemma types.

6.2 Results

6.2.1 Coverage
15,622 lemma types can be found within the
database. 12,280 lemma types are not covered
by the databases, so they were re-analyzed by
SMOR/Moremorph. We manually checked the re-
sults for the first 1,000 lemma types which could
not be found in the database. Very often, these are
derivatives, rare or nounce words, proper names or
words containing proper names as in (10).

(10) a. ordnend ‘ordering, regulatory’
b. Paris-Erfahrung ‘Paris experience’
c. Winterspaß ‘winter fun’

The details of the check against the German tree
database are included in Table 1, with a coverage
of 55.99% for the lemma types. This direct lookup
saves a lot of computational effort. According to
the quality of the database which is based on Ger-
maNet and CELEX, the recall is extremely close
to these numbers.

The remaining 44.01% of all lemma types were
evaluated in the following way: We checked ev-
ery split of the first thousand analyzed words. For
ambiguous analyses, we accepted those which in-
cluded a monomorphemic and a correct deriva-
tional analysis, as in (11), with (11-a) showing the
segmentation of verb stem and derivational suffix.

(11) a. ordnend ordn end V PPres ADJ-
SUFF <ADJ>

b. ordnend ordnend V <V>

If one or more splits were erroneous, as in (12-a),
the analysis was rejected.

(12) a. Winterspaß Winter spaß NN NN
<NN> ‘winter fun’

b. ]Winterspaß Winter s paß NN FL
NN <NN> ‘winter|s, filler letter|
pass/passport’

We found 26 wrongly segmented words in-
side the sample of a thousand words from the
SMOR/Moremorph output. This shows a good
quality of the analysis. However, unknown
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Fremdenverkehrsamt

Fremdenverkehr
‘tourism’

Fremde
‘foreigner’

fremd
‘foreign’

e
‘suffix’

n
‘interfix’

Verkehr
‘traffic’

verkehren
‘to run/to fly’

ver
‘prefix’

kehren
‘to turn’

s
‘interfix’

Amt
‘office’

SMOR/Moremorph

German trees analysis

Figure 4: Database look-up and SMOR/Moremorph: Morphological analysis of Fremdenverkehrsamt ‘tourist of-
fice’

types were re-analysed as hypothetical monomor-
phemes during the further analysis. Often, these
were names of airplane types or similar expres-
sions. Therefore, the number of analyzed lemma
types (27,902) corresponds to a full coverage.
SMOR/Moremorph on its own was able to pro-
cess 13,461 lemmas, the rest was classified as un-
known. This good coverage is a direct result of the
adjustment of the lexicons, which we described in
3.2, especially concerning the names lexicons.

lemma
types

corpus
size

MLD corpus 27,902 260,114

lemma
types

coverage

Tree DB +
monomorphs

15,622 55.99%

+ SMOR &
Moremorphs

27,902 100%

Table 1: Coverage of DBs and SMOR analyses

6.2.2 Precision
The complete analyses of the hybrid morpho-
logical parsing yield 5,307 entries in the news-
plit database and 5,973 new entries inside the
monomorphemes. We analyzed the first 1,000 en-
tries of the newly found splits and the first 2,000
entries within the monomorpheme set. Of the first
set, we found 65 wrongly or imperfectly analyzed
word forms. Most of them are three-part com-
pounds such as (13) whose correct components
were not found within a text. The morphemes
were identified, but the ambiguity could not be re-
solved.

(13) (Berg|Regen|Wald) ‘mountain rain for-
est’

Another error are wrong analyses of derivative
nouns which starts with a verb particle such as
(14-a) , which is a derivative form of anfahren ‘to
approach’ (14-b) and not a compound of an ‘at,
to’ and Fahrt ‘ride’. There is a systematic mistake
here which is caused by the high frequency of the
first part which is usually a homograph of a prepo-
sition.

(14) a. ]An|(*Fahrt* fahren|t) ‘approach’
b. (*anfahren* an|fahren)|t ‘approach’
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The set of monomorphs comprise many new com-
plex numbers and proper names. All of them
were correctly included. Only three assignments
are questionable. However, as these are proper
names such as Anneliese which consists of two
proper names Anna and Liese, and/or the analy-
sis in CELEX was monomorphemous too (as for
Allerheiligen ‘All Saints’), the quality is very high.
Therefore, the precision can be considered as high
for this test corpus: 0.935 for new splits and 0.998
for newly found monomorphs.

6.3 Discussion

The results for the first hybrid deep-level morphol-
ogy analyzer are promising. However, the errors
concerning verb particles are systematic. They
can be explained by the high frequency of verb
particles in texts, which are often homographs of
a preposition. For future research, we plan an
adjustment by a factor which takes into account
the relationship between word length in characters
and word frequency as observed by Zipf and oth-
ers (Prün, 2005). Köhler (1986) derives this rela-
tionship by a synergetic model. He corroborates
the functional connection between the frequency
classes of words and their average length. A mea-
sure directly derived from this function would pe-
nalize word segmentations with small morphemes
and assign more weight to longer (and rare) com-
ponents.

7 Conclusion and Outlook

This paper demonstrates how updating and ex-
ploiting linguistic databases for morphological
analyses can be performed. By simple look-up,
we reached a coverage of 56% of lemma types.
As both underlying databases, CELEX and Ger-
maNet, were manually revised, we can speak of
very reliable analyses. The remaining unanalyzed
words can be mostly covered by a conventional
word segmenter after adjusting its lexicons. These
analyses have a flat structure and undergo a proce-
dure of constructing all combinations of possible
analyses and a context-based search for the hypo-
thetical constituents in a large corpus. The results
for the lemma types are very promising: Over 99%
of all words were covered by the combined mor-
phological analyses.

New morphological analyses from the tree-
building process can be added to the German tree
database after a process of careful evaluation and

selection.
The direction of the future research is therefore

straightforward: it will lead towards creating com-
plex analyses out of existing ones and augmenting
the lexical databases.
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Abstract

Polysynthetic languages pose a challenge
for morphological analysis due to the root-
morpheme complexity and to the word class
“squish”. In addition, many of these polysyn-
thetic languages are low-resource. We pro-
pose unsupervised approaches for morpholog-
ical segmentation of low-resource polysyn-
thetic languages based on Adaptor Grammars
(AG) (Eskander et al., 2016). We experiment
with four languages from the Uto-Aztecan
family. Our AG-based approaches outper-
form other unsupervised approaches and show
promise when compared to supervised meth-
ods, outperforming them on two of the four
languages.

1 Introduction

Computational morphology of polysynthetic lan-
guages is an emerging field of research. Polysyn-
thetic languages pose unique challenges for com-
putational approaches, including machine transla-
tion and morphological analysis, due to the root-
morpheme complexity and to word class gra-
dations (Homola, 2011; Mager et al., 2018d;
Klavans, 2018a). Previous approaches include
rule-based methods based on finite state trans-
ducers (Farley, 2009; Littell, 2018; Kazeminejad
et al., 2017), hybrid models (Mager et al., 2018b;
Moeller et al., 2018), and supervised machine
learning, particularly deep learning approaches
(Micher, 2017; Kann et al., 2018). While each
rule-based method is developed for a specific lan-
guage (Inuktitut (Farley, 2009), or Arapaho (Lit-
tell, 2018; Moeller et al., 2018)), machine learn-
ing, including deep learning approaches, might
be more rapidly scalable to many additional lan-
guages.

We propose an unsupervised approach for mor-
phological segmentation of polysynthetic lan-
guages based on Adaptor Grammars (Johnson

et al., 2007). We experiment with four Uto-
Aztecan languages: Mexicanero (MX), Nahuatl
(NH), Wixarika (WX) and Yorem Nokki (YN)
(Kann et al., 2018). Adaptor Grammars (AGs)
are nonparametric Bayesian models that general-
ize probabilistic context free grammars (PCFG),
and have proven to be successful for unsupervised
morphological segmentation, where a PCFG is a
morphological grammar that specifies word struc-
ture (Johnson, 2008; Sirts and Goldwater, 2013;
Eskander et al., 2016, 2018). Our main goal is to
examine the success of Adaptor Grammars for un-
supervised morphological segmentation when ap-
plied to polysynthetic languages, where the mor-
phology is synthetically complex (not simply ag-
glutinative), and where resources are minimal. We
use the datasets introduced by Kann et al. (2018)
in an unsupervised fashion (unsegmented words).
We design several AG learning setups: 1) use the
best-on-average AG setup from Eskander et al.
(2016); 2) optimize for language using just the
small training vocabulary (unsegmented) and dev
vocabulary (segmented) from Kann et al. (2018);
3) approximate the effect of having some linguis-
tic knowledge; 4) learn from all languages at once
and 5) add additional unsupervised data for NH
and WX (Section 3). We show that the AG-based
approaches outperform other unsupervised meth-
ods — Morfessor (Creutz and Lagus, 2007) and
MorphoChain (Narasimhan et al., 2015)) —,
and that for two of the languages (NH and YN),
the best AG-based approaches outperform the best
supervised methods (Section 4).

2 Languages and Datasets

Typically, polysynthetic languages demonstrate
holophrasis, i.e. the ability of an entire sentence
to be expressed as what is considered by native
speakers to be just one word. To illustrate, con-
sider the following example from Inuktitut (Kla-

189



vans, 2018b), where the morpheme -tusaa- is the
root and all the other morphemes are synthetically
combined with it in one unit:

tusaa-tsia-runna-nngit-tu-alu-u-jung
hear-well-be.able-NEG-DOE-very-BE-PT.1S
I can’t hear very well.

Another example from WX, one of the lan-
guages in the dataset for this paper (from (Mager
et al., 2018c)) shows this complexity:

yu-huta-me ne-p+-we-iwa
an-two-ns 1sg:s-asi-2pl:o-brother
I have two brothers.

In linguistic typology, the broader gradient is:
isolating/analytic to synthetic to polysynthetic.
Agglutinating refers to the clarity of boundaries
between morphemes. This more specific gradation
is: agglutinating to mildly fusional to fusional.
Thus a language might be characterized overall as
polysynthetic and agglutinating, i.e. generally a
high number of morphemes per word, with clear
boundaries between morphemes and thus easily
segmentable. Another language might be char-
acterized as polysynthetic and fusional, so again,
many morphemes per word, but many phonologi-
cal and other processes so it is difficult to segment
morphemes.

Thus, morphological analysis of polysyn-
thetic languages is challenging due to the root-
morpheme complexity and to word class grada-
tions. Linguists recognize a gradience in word
classes, known as “squishiness”, a term first dis-
cussed in Ross (1972) who argued that, instead of
a fixed, distinct inventory of syntactic categories,
a quasi-continuum from verb, adjective and noun
best reflects most lexical distinctions. The root-
morpheme complexity and the word class “squish”
makes developing segmented training data with
reliability across annotators difficult to achieve.
Kann et al. (2018) have made a first step by re-
leasing a small set of morphologically segmented
datasets although even in these carefully curated
datasets, the distinction between affix and clitic
is not always indicated. We use these datasets in
an unsupervised fashion (i.e., we use the unseg-
mented words). These datasets were taken from
detailed descriptions in the Archive of Indigenous
Languages collection for MX (Canger, 2001), NH
(de Suárez, 1980), WX (Gómez and López, 1999),
and YN (Freeze, 1989). They were constructed
so they include both segmentable as well as non-

Mexicanero Nahuatl Wixarika Yorem N.
train 427 540 665 511

trainBible - 14.7K 16.6K -
dev 106 134 176 127
test 355 449 553 425

Table 1: Number of words in train, dev, test splits from
Kann et al. (2018) + additional Bible data

segmentable words to ensure that methods can
correctly decide against splitting up single mor-
phemes. However, as noted above, there is a
gradation of polysynthesis, so the delineation of
language types is not clear-cut. For these four
languages, the more agglutinative is WX; Leza
(2004) has observed 20 morphemes per word for
this language.

Each training, development and test example
consists of one word. Table 1 contains the count
of words in the training, development and test.
Unlike Kann et al. (2018), for training we do
not use the segmented version of the data (our
approach is unsupervised). In addition to the
datasets, for NH and WX we also have avail-
able the Bible (Christodouloupoulos and Steed-
man, 2015; Mager et al., 2018a), which we con-
sider for one of our experimental setups as ad-
ditional training data. In the dataset from (Kann
et al., 2018), the maximum number of morphemes
per word for MX is seven with an average of 2.13;
for NH, six with an average of 2.2; for WX, max-
imum of ten with an average of 3.3; and for YN,
the maximum is ten, with an average of 2.13.

3 Using Adaptor Grammars for
Polysynthetic Languages

An Adaptor Grammar is typically composed of
a PCFG and an adaptor that adapts the probabil-
ities of individual subtrees. For morphological
segmentation, a PCFG is a morphological gram-
mar that specifies word structure, where AGs learn
latent tree structures given a list of words. In
this paper, we experiment with the grammars and
the learning setups proposed by Eskander et al.
(2016), which we outline briefly below.

Grammars. We use the nine grammars from
Eskander et al. (2016, 2018) that were designed
based on three dimensions: 1) how the grammar
models word structure (e.g., prefix-stem-suffix vs.
morphemes), 2) the level of abstraction in non-
terminals (e.g., compounds, morphemes and sub-
morphemes) and 3) how the output boundaries are
specified (see Table 2 for a sample grammars).
For example, the PrStSu+SM grammar models the
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Grammar Main Representation Compound Morph SubMorph Segmentation Level
Morph+SM Morph+ No Yes Yes Morph
PrStSu+SM Prefix+Stem+Suffix No Yes Yes Prefix-Stem-Suffix

PrStSu+Co+SM Prefix+Stem+Suffix Yes Yes Yes Prefix-Stem-Suffix

Table 2: Sample grammar setups used by Eskander et al. (2018, 2016). Compound = Upper level representation
of the word as a sequence of compounds; Morph = affix/morpheme representation as a sequence of morphemes.
SubMorph (SM) = Lower level representation of characters as a sequence of sub-morphemes. “+” denotes one or
more.

word as a complex prefix, a stem and a com-
plex suffix, where the complex prefix and suffix
are composed of zero or more morphemes, and a
morpheme is a sequence of sub-morphemes. The
boundaries in the output are based on the prefix,
stem and suffix levels.

Learning Settings. The input to the learner
is a grammar and a vocabulary of unsegmented
words. We consider the three learning settings
in (Eskander et al., 2016): Standard, Scholar-
seeded Knowledge and Cascaded. The Standard
setting is language-independent and fully unsu-
pervised, while in the Scholar-seeded-Knowledge
setting, some linguistic knowledge (in the form
of affixes taken from grammar books) is seeded
into the grammar trees before learning takes place.
The Cascaded setting simulates the effect of seed-
ing scholar knowledge in a language-independent
manner by first running an AG of high precision
to derive a set of affixes, and then seeding those
affixes into the grammars.

3.1 AG Setups for Polysynthetic Languages
We experimented with several setups using AGs
for unsupervised segmentation.

Language-Independent Morphological Seg-
menter. LIMS is the best-on-average AG setup
obtained by Eskander et al. (2016) when trained
on six languages (English, German, Finnish, Es-
tonian, Turkish and Zulu), which is the Cascaded
PrStSu+SM configuration. We use this AG setup
for each of the four languages. We refer to this
system as AGLIMS .

Best AG Configuration per Language. In this
experimental setup, we consider all nine grammars
from Eskander et al. (2016) using both the Stan-
dard and the Cascaded approaches and choosing
the one that is best for each polysynthetic language
by training on the training set and evaluating on
the development set. We denote this system as
AGBestL.

Using Seeded Knowledge. To approximate
the effect of Scholar-seeded-Knowledge in Eskan-
der et al. (2016), we used the training set to de-

rive affixes and use them as scholar-seeded knowl-
edge added to the grammars (before the learning
happens). However, since affixes and stems are
not distinguished in the training annotations from
Kann et al. (2018), we only consider the first and
last morphemes that appear at least five times. We
call this setup AGScholar

BestL .
Multilingual Training. Since the vocabulary in

Kann et al. (2018) for each language is small, and
the languages are from the same language family,
one data augmentation approach is to train on all
languages and test then on each language individ-
ually. We call this setup AGMulti.

Data Augmentation. In this setup, we examine
the performance of the best AG configuration per
language (AGBestL) when more data is available.
We merge the training corpus with unique words
in the New Testament of the Bible (trainBible). We
run this only on NH and WX since the Bible text is
only available for these two languages. We denote
this setup as AGAug.

4 Evaluation and Discussion

We evaluate the different AG setups on the blind
test set from Kann et al. (2018) and compare our
AG approaches to state-of-the-art unsupervised
systems as well as supervised models including
the best supervised deep learning models from
Kann et al. (2018). As the metric, we use the
segmentation-boundary F1-score, which is stan-
dard for this task (Virpioja et al., 2011).

Evaluating different AG setups. Table 3
shows the performance of our AG setups on
the four languages. The best AG setup learned
for each of the four polysynthetic languages
(AGBestL) is the PrStSu+SM grammar using the
Cascaded learning setup. This is an interesting
finding as the Cascaded PrSTSu+SM setup is in
fact AGLIMS — the best-on-average AG setup
obtained by Eskander et al. (2016) when trained
on six languages (English, German, Finnish, Esto-
nian, Turkish and Zulu). This achieves F1-scores
of 0.775, 0.744, 0.768 and 0.820 on MX, NH,
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Language AGLIMS AGBestL AGMulti AGScholar
BestL AGAug Morfessor Morphochain

Mexicanero 0.775 0.775 0.770 0.798 - 0.528 0.283
Nahuatl 0.744 0.744 0.723 0.742 0.759 0.505 0.259

Wixarika 0.768 0.768 0.746 0.787 0.783 0.709 0.283
Yorem Nokki 0.820 0.820 0.775 0.804 – 0.549 0.351

Table 3: AG systems compared to unsupervised baselines. Bold indicates best scores

Language BestAG S2S CRF BestMTT BestDA
Mexicanero 0.798 0.862 0.864 0.879 0.868

Nahuatl 0.759 0.727 0.749 0.739 0.732
Wixarika 0.787 0.796 0.793 0.802 0.816

Yorem Nokki 0.820 0.773 0.774 0.808 0.792

Table 4: Best AG results compared to supervised approaches from Kann et al. (2018). Bold indicates best scores.

WX and YN, respectively. Seeding affixes into the
grammar trees (AGScholar

BestL ) improves the perfor-
mance of the Cascaded PrStSu+SM setup only
for MX and WX (additional absolute F1-scores of
0.023 and 0.019, respectively). However, it does
not help for NH, while it even decreases the per-
formance on YN. This occurs because AGs are
able to recognize the main affixes in the Cascaded
setup, while the seeded affixes were either abun-
dant or conflicting with the automatically discov-
ered ones. The multilingual setup (AGMulti) does
not improve the performance on any of the lan-
guages. This could be because the datasets are too
small to generalize common patterns across lan-
guages. Finally, augmenting with Bible text in the
cases of NH and WX leads to an absolute F1-score
increase of 0.015 for both languages when com-
pared to AGBestL. There are two possible expla-
nations for why we only see a slight increase when
adding more data: 1) AGs are able to generalize
from small data and 2) the added Bible data repre-
sents a domain that is different from those of the
datasets we are experimenting with as only 4.8%
and 9% of the words in the training sets from Kann
et al. (2018) appear in the augmented data of NH
and WX, respectively. Overall, AGBestL is the
best setup for YN, AGScholar

BestL is the best setup for
MX and WX, while AGAug is the best for NH.

Comparison with unsupervised baselines.
We consider Morfessor (Creutz and Lagus,
2007), a commonly-used toolkit for unsupervised
morphological segmentation, and MorphoChain
(Narasimhan et al., 2015), another unsuper-
vised morphological system based on construct-
ing morphological chains. Our AG approaches
significantly outperform both Morfessor and
MorphoChain on all four languages, as shown
in Table 3.

Comparison with supervised baselines. To
obtain an upper bound, we compare the best
AG setup to the best supervised neural meth-
ods presented in Kann et al. (2018) for each lan-
guage. We consider their best multi-task approach
(BestMTT) and the best data-augmentation ap-
proach (BestDA), using F1 scores from their Ta-
ble 4 for each language. In addition, we report
the results on their other supervised baselines: a
supervised seq-to-seq model (S2S) and a super-
vised CRF approach. As can be seen in Table
4, our unsupervised AG-based approaches outper-
form the best supervised approaches for NH and
YN with absolute F1-scores of 0.010 and 0.012,
respectively. An interesting observation is that for
YN we only used the words in the training set
of Kann et al. (2018) (unsegmented), without any
data augmentation. For MX and WX, the neural
models from Kann et al. (2018) (BestMTT and
BestDA), outperform our unsupervised AG-based
approaches.

Error Analysis. For the purpose of error anal-
ysis, we train our unsupervised segmentation on
the training sets and perform the analysis of re-
sults on the output of the development sets based
on our best unsupervised models AGBestL. Since
there is no distinction between stems and affixes in
the labeled data, we only consider the morphemes
that appear at least three times in order to elimi-
nate open-class morphemes in our statistics.

We first define the degree of ambiguity of a
morpheme to be the percentage of times its se-
quence of characters does not form a segmentable
morpheme when they appear in the training set.
We also define the degree of ambiguity of a lan-
guage as the average degree of ambiguity of the
morphemes in that language. Table 5 shows the
number of morphemes, average length of a mor-
pheme (in characters) and the degree of morpheme
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Mexicanero Nahuatl Wixarika Yorem Nokki
Number of Morphemes 343 479 434 424
Average Length of a Morpheme 3.17 3.16 3.19 3.40
Degree of Ambiguity 69.81% 73.97% 74.49% 58.67%

Table 5: Morpheme-based Statistics

Language word Gold Segmentation AGBestL segmentation
Mexicanero tawanitika tawani+ti+ka tawani+tika

unipodero u+ni+podero u+ni+pode+ro
tikipiyal ti+ki+piya+l ti+ki+piya+l

Nahuatl nannechtlatlaniliaḱe nan+nech+tla+tlanilia+’ke nan+nech+tlatla+nilia+’ke
omokokowaya o+mo+kokowa+ya o+mo+kokowa+ya

Wixarika nep@tiwarutiwawiriwa ne+p@+ti+wa+r+u+ti+wawi+ri+wa ne+p@+ti+waru+ti+wawiriwa
pep@netsiuta pe+p@+ne+tsi+u+ta pe+p@+ne+tsi+u+ta

Yorem Nokki ßohoßareka ßoho + ßa+ re+ ka ßoho + ßare+ ka
haikimsu’e haiki+m+su+’e haiki+m+su+’e

Table 6: Examples of correct and incorrect segmentation

ambiguity in each language. Looking at the two
languages where our models perform worse than
the supervised models, we notice that MX has the
least number of morphemes, and our unsupervised
methods tend to oversegment; WX has the high-
est degree of ambiguity with a large number of
one-letter morphemes, which makes the task more
challenging for unsupervised segmentation as op-
posed to the case of a supervised setup. Analyz-
ing all the errors that our AG-based models made
across all languages, we noticed one, or a com-
bination, of the following factors: a high degree
of morpheme ambiguity, short morpheme length
and/or low frequency of a morpheme.

Examples. Table 6 shows some examples of
correctly and incorrectly segmented words by our
models (blue indicates correct morphemes while
red are wrong ones). For MX, our models fail
to recognize ka as a correct affix 100% of the
time due to its high degree of ambiguity (71.79%),
while we often wrongly detect ro as an affix, most
likely since ro tends to appear at the end of a word;
our approaches tend to oversegment in such cases.
On the other hand, our method correctly identify
ki as a correct affix 100% of the time since it ap-
pears frequently in the training data. For NH, the
morpheme tla has a high degree of ambiguity at
79.12%, which lead the model to fail in recog-
nizing it as an affix (see an example in Table 6).
On the other hand, NH has a higher percentage of
correctly recognized morphemes, due to their less
ambiguous nature and higher frequency (such as
ke, tl or mo). For WX, a large portion of errors
stem from one-letter morphemes that are highly
ambiguous (e.g., u, a, e, m, n, p and r), in addition
to having morphemes in the training set which are

not frequent enough to learn from, such as ki,nua
and wawi (see Table 6). Examples of correct seg-
mentation involve morphemes that are more fre-
quent and less ambiguous (pe, p@ and ne). For
YN, ambiguity is the main source of segmentation
errors (e.g., wa, wi and ßa).slight

5 Conclusions

Unsupervised approaches based on Adaptor
Grammars show promise for morphological seg-
mentation of low-resource polysynthetic lan-
guages. We worked with the AG grammars de-
veloped by Eskander et al. (2016, 2018) for lan-
guages that are not polysynthetic. We showed that
even when using these approaches and very little
data, we can obtain encouraging results, and that
using additional unsupervised data is a promising
path.
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José Luis Leza. 2004. Lenguas y literaturas indı́genas de
Jalisco. Secretarı́a de Cultura, Gobierno Estatal de Jalisco.
Colección: Las culturas populares de Jalisco, Guadalajara,
Mexico.

Patrick Littell. 2018. Finite-state morphology for kwak’wala:
A phonological approach. In Proceedings of the Workshop
on Computational Modeling of Polysynthetic Languages
(COLING 2018), pages 21–30. Association for Computa-
tional Linguistics.

Manuel Mager, Diónico Carrillo, and Ivan Meza. 2018a.
Probabilistic finite-state morphological segmenter for
wixarika (huichol) language. Journal of Intelligent &
Fuzzy Systems, 34(5):3081–3087.

Manuel Mager, Diónico Carrillo, and Iván V. Meza-Ruı́z.
2018b. Probabilistic finite-state morphological segmenter
for wixarika (huichol) language. Journal of Intelligent and
Fuzzy Systems, 34(5):3081–3087.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo Sierra,
and Ivan Meza-Ruiz. 2018c. Challenges of language tech-
nologies for the indigenous languages of the americas.
In Proceedings of the 27th International Conference on
Computational Linguistics, pages 55–69.

Manuel Mager, Elisabeth Mager, Alfonso Medina-Urrea,
Ivan Vladimir Meza Ruiz, and Katharina Kann. 2018d.
Lost in translation: Analysis of information loss during
machine translation between polysynthetic and fusional
languages. In Proceedings of the Workshop on Compu-
tational Modeling of Polysynthetic Languages (COLING
2018), pages 73–83.

Jeffrey Micher. 2017. Improving coverage of an inuktitut
morphological analyzer using a segmental recurrent neu-
ral network. In Proceedings of the 2nd Workshop on the
Use of Computational Methods in the Study of Endan-
gered Languages, pages 101–106. Association for Com-
putational Linguistics.

Sarah Moeller, Ghazaleh Kazeminejad, Andrew Cowell, and
Mans Hulden. 2018. A neural morphological analyzer for
arapaho verbs learned from a finite state transducer. In
Proceedings of the Workshop on Computational Modeling
of Polysynthetic Languages (COLING 2018), pages 12–
20. Association for Computational Linguistics.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola.
2015. An unsupervised method for uncovering morpho-
logical chains. In Twelfth AAAI Conference on Artificial
Intelligence.

John R. Ross. 1972. Endstation hauptword: The category
squish. Chicago Linguistic Society, 8:316–328.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adaptor
grammars. Transactions of the Association for Compu-
tational Linguistics, 1(May):231–242.

194
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Abstract

Whether phonological transformations in
general are subregular is an open question.
This is the case for most transformations,
which have been shown to be subsequen-
tial, but it is not known whether weakly
deterministic mappings form a proper sub-
set of the regular functions. This paper
demonstrates that there are regular func-
tions that are not weakly deterministic,
and, because all attested processes so far
studied are weakly deterministic, supports
the subregular hypothesis.

1 Introduction

Phonological transformations, i.e., mappings from
underlying representations onto surface repre-
sentations, are computationally regular (Johnson,
1972; Kaplan and Kay, 1994). Most phonological
transformations have further been shown to belong
to the subsequential classes, which form a proper
subset of the regular relations (Oncina et al., 1993;
Mohri, 1997). These include strictly local trans-
formations (Chandlee, 2014; Chandlee and Heinz,
2018), and long-distance transformations where
target segments may depend on information ar-
bitrarily far away in one direction (Chandlee and
Heinz, 2012; Chandlee et al., 2012; Gainor et al.,
2012; Heinz and Lai, 2013; Payne, 2014, 2017;
Luo, 2017).

Two classes of phonological transformations
have been shown not to be subsequential. The first,
weakly deterministic transformations (Heinz and
Lai, 2013), comprise mostly long-distance bidi-
rectional processes such as root-controlled vowel
harmony. For such transformations, some targets
depend on information arbitrarily far to their left,
such as suffix vowels assimilating to root vow-
els, and others depend on information arbitrar-

ily far to their right, such as prefix vowels as-
similating to root vowels. These transformations
have phonologically intuitive decompositions into
a left-subsequential transformation and a related
right-subsequential transformation, such as treat-
ing regressive and progressive harmony from the
root as distinct processes.

Here, we make use of the original definition of
weakly deterministic transformations as proposed
by Heinz and Lai (2013). Note that this defini-
tion differs crucially from the revised definition
proposed by McCollum et al. (2018), which prop-
erly captures the bidirectional harmony cases dis-
cussed above, without capturing any of the second
class of mappings.

The second class of non-subsequential transfor-
mations are the unbounded circumambient trans-
formations (Jardine, 2016a; McCollum et al.,
2018), which are characterized by target segments
depending on information both arbitrarily far to
their left and arbitrarily far to their right. Unlike
bidirectional harmonies, these processes do not
decompose into phonologically intuitive transfor-
mations, and are conjectured not to be weakly de-
terministic (Heinz and Lai, 2013; Jardine, 2016a).
However, every unbounded circumambient pro-
cess studied so far has been shown to be weakly
deterministic either by taking advantage of the al-
phabet (Graf, 2016) or by using predictable sub-
strings as markup (McCollum et al., 2018; O’Hara
and Smith, 2018, 2019; Lamont, 2019; Smith and
O’Hara, 2019).

To make this concrete, we illustrate the latter
strategy for unbounded tonal plateauing (UTP). In
UTP, all tone-bearing units must surface with high
tone if there is a high tone somewhere to their left
and a high tone somewhere to their right. For ex-
ample, in Luganda, the input /mu-tém-a-bi-siḱı/
maps onto [mùtémáb́ıśıḱı] ‘log-chopper’ (Hyman
and Katamba, 2010; Jardine, 2016a), with all vow-
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a. Left-subsequential FST A

q0 : λ q1 : λ q2 : L

q3 : LL

L:L

H:H

H:H

L:λ

H:HH

L:λ

H:HLH

L:L

b. Right-subsequential FST B

q0 : λq1 : Hq2 : LH

q4 : λ q3 : λ

L:L

H:λ

H:H

L:λ

L:LLH H:HHH

L:L L:H

H:λ

Figure 1: Weakly deterministic UTP: B(A(i)) = UTP (i).

els between the high tones of /-tém-/ ‘to chop’ and
/-siḱı-/ ‘log’ surfacing with high tones.

Because there is no bound on how far the left
or right triggering high tones can be from a given
target, UTP cannot be modeled by a subsequential
finite state transducer (FST) (Karttunen (2003);1

see Jardine (2016b) for a formal proof). While
no subsequential FST can identify which tone-
bearing units are targets, one can identify which
high tones are triggers. Marking triggering high
tones makes it possible for a second subsequential
FST to read the string in the opposite direction and
correctly identify the targets.

This markup strategy is implemented by the
FSTs in Figure 1. The left-subsequential FST A
(1a) marks which high tones are triggers, and the
right-subsequential FST B (1b) uses this infor-
mation to complete the transformation. Because
the structural description for UTP is symmetrical,
it is arbitrary that the first machine reads left-to-
right. A machine reading right-to-left would do
equally well to markup inputs. Figure 2 illustrates
a derivation mapping an input i /HLHHLLLLH/
onto an output with all high tones; the symbols o
and n are used to explicitly mark the left and right

1We are grateful to an anonymous reviewer for drawing
our attention to this paper.

i o H L H H L L L L H n
↓ ↓

A(i) o H H H H L L H L H n
↓ ↓ ↓

B(A(i)) o H H H H H H H H H n

(a) (b)

(c)

Figure 2: Example of weakly deterministic UTP.

word boundaries, respectively.

A makes the first pass through i, removing and
inserting the substring HLH. It maps HLH onto
HHH (2a), modeling UTP in a local context. Fol-
lowing the first high tone, A prefixes every high
tone span with HLH: H. . . LLH→ H. . . HLH (2b).
Because all HLH substrings that were present in
the input have been removed, HLH substrings now
only appear in contexts where another high tone is
arbitrarily far to their left. This unambiguously en-
codes the unbounded context for UTP: H. . . H.

B makes the second pass through i, interpret-
ing the markup left by A: HLH is an instruction
to start or continue spreading high tone, and LLH
is an instruction to stop. B maps HLH onto HHH,
and spreads the high tone leftwards until another
high tone: HLnHLH → HHnHHH (2c). This re-
peats until B reaches the left end of the string.

We present this analysis only to demonstrate
that UTP is weakly deterministic according to the
definition given by Heinz and Lai (2013): UTP
is a regular function that can be decomposed into
a left-subsequential transformation and a right-
subsequential transformation, where the first map-
ping is both length- and alphabet-preserving. En-
coding instructions in intermediate representations
is strikingly unphonological and is not intended as
a plausible interpretation of the process.

Similar analyses have shown that all unbounded
circumambient processes studied so far are in fact
weakly deterministic: high tone spreading in Cop-
perbelt Bemba (McCollum et al., 2018; O’Hara
and Smith, 2018, 2019; Smith and O’Hara, 2019),
vowel harmony in Tutrugbu (McCollum et al.,
2018), and Sour Grapes spreading (Lamont,
2019). At present, then, there are no exceptions to
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the hypothesis that phonological transformations
are weakly deterministic (Heinz and Lai, 2013).
However, it is not known whether the weakly de-
terministic class is a proper subset of the regu-
lar functions. If it is, then there are no excep-
tions to the hypothesis that phonological transfor-
mations are subregular (Heinz, 2018). If it is not,
then some weaker hypothesis, such as phonologi-
cal transformations being regular, holds.

In this paper, we show that there are regu-
lar functions that are not weakly deterministic,
supporting the subregular hypothesis. Section 2
presents two such mappings, variations of attested
transformations. Section 3 generalizes the class
of weakly deterministic unbounded circumambi-
ent transformations. Section 4 concludes.

2 Non-weakly deterministic regular
functions

This section presents two regular functions that
are not weakly deterministic: first-last UTP and
double-edged spread. Both are variations on at-
tested phonological transformations analyzed by
Jardine (2016a), and both are defined over a bi-
nary alphabet of high tones H and low tones L. If
the hypothesis that phonological transformations
are weakly deterministic is correct, then neither
should exist in natural language phonology.

2.1 First-last UTP

First-last UTP is a variation on UTP where
plateauing only occurs if the two high tone trig-
gers are at the word edges.2 That is, inputs that
begin and end with high tones surface with all high
tones, e.g., /HLLLH/ → [HHHHH], and inputs
that begin or end with low tones surface faithfully,
e.g., /HLLHL/→ [HLLHL].

First-last UTP is a regular function, which is
modeled by the non-deterministic FST in Figure
3. From the start state q0, if the first symbol read
is a low tone, then the FST transitions to q1, and
writes out the rest of the input faithfully. If the
first symbol read is a high tone, then the machine
transitions to q2, where it must decide what to do
with following low tones. It can either take the up-
per path to q4, where low tones are replaced with
high tones, or take the lower path to q3, where low
tones are written faithfully. If the upper path is
taken, the input must end with a high tone for the

2As an anonymous reviewer points out, Schützenberger
(1961) discusses a similar mapping.

q0

q1

q2

q4

q3

q6

q5

H:H

L:L

H:H

L:H

L:L

H:H L:L

L:H

H:H

L:L

H:H

L:H

H:H

L:L

H:H

Figure 3: FST for first-last UTP.

FST to accept the mapping, and if the lower path
is taken, the input must end with a low tone.

First-last UTP is not subsequential. In strings
with initial and final high tones, the triggers cir-
cumscribe an unbounded number of targets, which
no subsequential FST can identify. We showed in
the previous section that a subsequential FST can
not only identify the context for spreading in UTP,
but one can also unambiguously mark it. This is
not the case for first-last UTP: while a subsequen-
tial FST can identify the context for spreading, i.e.,
oH. . . Hn, marking it up is impossible.

The markup strategy for UTP exploits the fact
that the string HLH never surfaces; it is always
mapped onto HHH. Because the first FST removes
all instances of HLH that were present in the input,
the second FST knows that any remaining HLH
strings encode the context for spreading. Further-
more, because the markup string overwrites seg-
ments that will be neutralized, there is no harm
in changing them to HLH. In first-last UTP, ev-
ery string surfaces faithfully in some context, such
as oL{H, L}∗Ln. There is no string that always
neutralizes, and there is no guarantee that changes
introduced by the first FST can be undone by the
second FST. Thus, some strings that should sur-
face faithfully will instead surface with markup.

This boils down to a pigeonhole argument. Be-
cause subsequential FSTs can only model func-
tions that are unbounded on one side, the context
for spreading must be identified within k segments
from one of the word edges: oH. . .{H, L}k−1Hn
reading left-to-right, or oH{H, L}k−1. . . Hn read-
ing right-to-left. This leaves k segments for
markup, and, over the binary alphabet Σ = {H,
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L}, a total of 2k possible strings. There are not
enough strings to unambiguously encode inputs
that should surface faithfully. Setting aside one
string to encode spreading leaves 2k − 1 strings
for non-spreading contexts. Assuming the first
FST is left-subsequential, it has to encode 2k suf-
fixes from faithful inputs with initial low tones
oL. . .{H, L}kn and 2k−1 suffixes from those
with initial high tones oH. . .{H, L}k−1Ln. Some
faithful input that ends with the designated markup
string will have to be changed so that the sec-
ond FST does not overwrite it with all high tones.
However, it is impossible for the second FST to
know that it was changed. Thus, at least two inputs
that should surface unchanged will be incorrectly
mapped onto the same output. The markup strat-
egy is impossible, and first-last UTP is not weakly
deterministic.

2.2 Double-edged spread

In Copperbelt Bemba, the rightmost high tone
spreads unboundedly far to the right edge of the
word, and other high tones undergo local spread-
ing (Bickmore and Kula, 2013; Kula and Bick-
more, 2015; Jardine, 2016a). For example, the
high tone of the subject marker /bá-/ spreads to
the end of a word when no high tone follows, as
in /bá-ka-mu-londolol-a/ → [bákámúlóóndólólá]
‘they will introduce him/her’. When the loca-
tive enclitic /=kó/ is added, its high tone blocks
unbounded spreading, and other high tones only
spread locally, as in /bá-ka-londolol-a=kó/ →
[bákálóòndòlòlàkó] ‘they will introduce’. Inputs
without high tones surface with all low tones, such
as /u-ku-tul-a/→ [ùkùtùlà] ‘to pierce’.

As mentioned in Section 1, this mapping is
weakly deterministic (McCollum et al., 2018;
O’Hara and Smith, 2018, 2019; Smith and
O’Hara, 2019), and follows along the same lines
as UTP. When the context for unbounded spread-
ing is met, the first FST marks up one of the trig-
gers, either the rightmost high tone or the right
edge of the input, or, when the triggers are within
a bounded window, performs the entire mapping.
For example, if a left-subsequential FST makes the
first pass, it markups the right edge because it can-
not identify the rightmost high tone. In bounded
spreading contexts, where only one segment is tar-
geted, the FST completes the mapping: HLn →
HHn. In unbounded spreading contexts, it leaves
the string HL as markup: H. . . LLn→ H. . . HLn.

The right-subsequential FST that makes the sec-
ond pass interprets a final high tone as an instruc-
tion to do nothing, and a final low tone as an in-
struction to replace low tones until it reaches an-
other high tone: HLnHLn→ HHnHHn.

As with the string HLH in UTP, HL never sur-
faces word-finally in Copperbelt Bemba, and is
an effective markup string. Similarly, because lo-
cal spreading guarantees that HL does not sur-
face word-internally, it can be used to markup the
triggering high tone when the first FST is right-
subsequential, provided it also removes all in-
stances of HL from the input.

Intuitively, the reverse mapping, where the left-
most high tone spreads unboundedly to the left
edge of the word and other high tones spread lo-
cally, is also weakly deterministic. We are not
aware of an attested example in tonal phonology,
but Tutrugbu vowel harmony presents a case of un-
bounded leftward spread (McCollum and Esseg-
bey, 2018; McCollum et al., 2018).

Double-edged spread is a variation on the Cop-
perbelt Bemba mapping where the leftmost high
tone spreads unboundedly to the left edge of
the word, the rightmost high tone spreads un-
boundedly to the right edge of the word, and
no other tone spreads, e.g., /LLLHLLHLLHLLL/
→ [HHHHLLHLLHHHH]. Inputs without high
tones surface faithfully, e.g., /LLLL/→ [LLLL].

Double-edged spread is a regular function,
which is modeled by the non-deterministic FST
in Figure 4. From the start state q0, if the first
symbol read is a low tone, then the FST must de-
cide what to do. It can either transition to state
q1 to anticipate an all low-toned input, or it can
transition to q2 to begin spreading an anticipated

q0

q1

q2

q3

q4 A

q5 q6

L:L

L:H

H:H

L:L
H:H

L:H

H:H

H:H

L:H

L:L
L:H

H:H

H:H L:L

H:H

L:H

H:H

Figure 4: FST for double-edged spread.
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high tone. If the FST encounters any high tones in
q1, it transitions into the sink state indicated with
the skull and crossbones A, and the mapping is
not accepted. From q2, the FST transitions to q3
once it has identified the leftmost high tone. If
the leftmost high tone is word-initial, then the FST
transitions directly to q3 from the start state. Hav-
ing identified the leftmost high tone, the FST must
now identify the rightmost high tone. From q3, it
can either transition to q4, expecting the string to
contain only one high tone span, or transition to q5
to anticipate a later high tone. From q5, the FST
must eventually transition to q6 to accept the map-
ping. Encountering an unexpected high tone in q4
or q5 leads to the sink state.

Double-edged spread is not weakly determinis-
tic, but the argument is different than the one for
first-last UTP. In double-edged spread, only the
leftmost and rightmost high tones spread. Thus,
as in first-last UTP, every string surfaces faith-
fully in some context, such as oLH{H, L}∗HLn.
This means that there is no unambiguous way to
markup the high tone triggers; only the word edges
can be marked up. Because the high tone trig-
gers may be arbitrarily far away, each word edge
must be marked up by a subsequential FST that
starts at the opposite end of the string: a right-
subsequential FST is required to mark the left edge
of the string, and a left-subsequential FST is re-
quired to mark the right edge of the string. After
an edge is marked as the context for spreading, a
subsequential FST reading in the opposite direc-
tion can complete the mapping. Thus, to spread
the leftmost high tone, a right-subsequential FST
must make the first pass, marking up the left
edge of the string as an instruction to the left-
subsequential FST that makes the second pass.
Spreading the rightmost high tone requires a left-
subsequential FST to make the first pass, and a
right-subsequential FST to make the second pass.
For both high tones to spread, the two FSTs are
paradoxically ordered, and a weakly determinis-
tic analysis is impossible. Modeling double-edged
spread with markup requires a third pass by a sub-
sequential FST.

We conjecture that the weakly deterministic
class forms a hierarchy as in Figure 5. We call
functions where it does not matter whether the first
pass is made a left-subsequential FST or a right-
subsequential FST bi-weakly deterministic. To our
knowledge, all attested phonological transforma-

Regular relations

Non-deterministic regular functions

Left-weakly deter-
ministic functions

Right-weakly deter-
ministic functions

Bi-weakly deterministic functions

Subsequential functions

Figure 5: Subregular hierarchy of functions.

tions belong to this class. For other mappings, the
order is crucial. For example, to model a hypo-
thetical variant of Copperbelt Bemba without local
spreading, markup must be placed at the right edge
of the word, and so the first pass must be made by
a left-subsequential FST. We call such functions
left-weakly deterministic. The reverse, where the
first pass must be made by a right-subsequential
FST, we call right-weakly deterministic.

3 Weakly deterministic unbounded
circumambient mappings

The previous section demonstrated that there are
regular functions that are not weakly determinis-
tic. Like the attested transformations analyzed by
Jardine (2016a), first-last UTP and double-edged
spread are both unbounded circumambient map-
pings. Alternative definitions of weak determin-
ism have been proposed which properly exclude
all unbounded circumambient mappings (Graf,
2016; McCollum et al., 2018), but it is also im-
portant to characterize exactly which unbounded
circumambient mappings are weakly determinis-
tic because this makes falsifiable predictions. In
this section, we present an initial characterization.

Jardine (2016a, 249) defines unbounded cir-
cumambient mappings as in Definition 3.1.

Definition 3.1. An UNBOUNDED CIRCUMAMBI-
ENT MAPPING is a mapping for which:

1. Its application is dependent on information
(i.e., the presence of a trigger or blocker) on
both sides of the target, and

2. On both sides, there is no bound on how far
this information may be from the target.

Unbounded circumambient mappings can be
represented with rewrite rules such as (1). Some

200



targetX is mapped onto Y when circumscribed by
triggers L and R. An unbounded number of non-
blocking segments N may intervene between the
target and the triggers; this set includes targets and
transparent segments, and may include other trig-
gers. We assume L and R are not empty strings
and are bounded; that is, there exists a k such that
k is larger than |L|+ |R|.

X → Y/L N∗ N∗ R (1)

For example, UTP can be represented as in (2).
The left and right triggers are both high tones, and
the set of non-blocking segments N includes high
tones and low tones.

L→ H / H{H, L}∗ {H, L}∗H
Σ = {H, L}, N = {H, L} (2)

Mappings that involve blocking, such as un-
bounded spreading in Copperbelt Bemba, can also
be represented this way as in (3). The left trigger is
a high tone and the right trigger is the right edge of
the word. High tones block unbounded spreading,
so the set N only contains low tones.

L→ H / HL∗ L∗n
Σ = {H,L}, N = {L} (3)

Mappings of this type are weakly deterministic
if they meet the criteria in Theorem 3.1.

Theorem 3.1. An unbounded circumambient
mapping with bounded triggers is weakly deter-
ministic if and only if:

1. There exists at least one bounded substring
LXR that is banned from all licit output
strings, that is made up of only symbols in
the alphabet (no word-boundaries), or

2. There exists at least one bounded substring
oLXR (or LXRn) that is banned from all
licit output strings, that contains just one
word-boundary, and the triggering substring
R (or L) is a blocker, i.e., R 6∈ N (or L 6∈ N )

The first criterion is exemplified by UTP, where
the substring HLH is banned from ever surfacing.
The second criterion is exemplified by unbounded
spreading in Copperbelt Bemba. The substring
HLn is banned from ever surfacing, and the left

trigger H blocks preceding high tones from under-
going unbounded spreading.

As an aside, we note an intriguing connec-
tion between banned substrings and infinite rule
schemata proposed by Chomsky and Halle (1968),
where rules with unbounded structural descrip-
tions are understood as infinitely many rules with
finite contexts. Under that approach, the represen-
tation of UTP in (2) would be broken down into
the list of rules in (4). The first rule ensures that
HLH does not surface, guaranteeing that there is a
banned bounded substring.

L→ H / H H

L→ H / HL H

L→ H / H LH

L→ H / HLL H

. . . (4)

The rest of this section proves Theorem 3.1.
Section 3.1 identifies the contexts where a sub-
sequential FST requires more information than it
has access to. Section 3.2 discusses the conditions
under which those contexts can be disambiguated
by another subsequential FST. Sections 3.2.1 and
3.2.2 demonstrate that when the conditions in The-
orem 3.1 are met, it is possible for the first FST to
smuggle disambiguating information to the second
FST. Section 3.2.3 sketches the inverse, that map-
pings that do not meet the criteria in Theorem 3.1
are not weakly deterministic.

For simplicity, we assume throughout this sec-
tion that the first pass is made by a right-
subsequential FST, and the mapping is completed
by a left-subsequential FST. A similar argument
can be made by symmetry for the opposite order.

3.1 Identifying ambiguous contexts

Subsequential FSTs cannot model unbounded cir-
cumambient mappings (Karttunen, 2003; Heinz
and Lai, 2013; Jardine, 2016a). Following the
proofs given by Heinz and Lai (2013) and Jar-
dine (2016b), in a left-subsequential mapping, the
realization of any target X in the input is pre-
dictable from material that may be unboundedly
far to its left or at most k segments to its right. In
an unbounded circumambient mapping, contexts
as simple as LXNk+1, where X maps to Y if
an R follows and maps to X otherwise, cannot
be identified by a left-subsequential FST. We refer

201



to these contexts as ambiguous because a subse-
quential FST does not have enough information to
correctly determine the output for X .

LXNk. . .

LY NkR

LXNk+1

?

Figure 6: Ambiguous context for the mapping
X → Y / LN∗ N∗R.

There are two types of contexts that may ap-
pear in an input, which are defined by the behav-
ior of a target X . We refer to contexts where X
is mapped onto itself as faithful contexts, and con-
texts whereX is mapped onto some other segment
Y as unfaithful contexts. In subsequential map-
pings, every position in the string is unambigu-
ously a faithful or unfaithful context, and changes
between contexts depend only on material bound-
edly far ahead of where the FST is currently print-
ing. For example, in a left-subsequential mapping
represented by the rewrite rule X → Y / LN∗ ,
any X that follows an L is mapped onto Y . Thus,
the beginning of the input is a faithful context, and
everything following an L is an unfaithful context.
The first L in the input unambiguously signals the
change from a faithful to an unfaithful context.
Blocking segments B unambiguously signal the
change back to a faithful context.

Faithful︷ ︸︸ ︷
{X,N,B}∗ L

Unfaithful︷ ︸︸ ︷
{X,N}∗B

Faithful︷ ︸︸ ︷
{X,N}∗

Trigger changes context
Blocker changes context

Figure 7: Faithful and unfaithful contexts for the
mapping X → Y / LN∗ , where B 6∈ N .

Unbounded circumambient mappings are not
subsequential because contexts may not be unam-
biguously faithful or unfaithful. On its own, a trig-
ger L does not unambiguously signal the change
from a faithful context to an unfaithful context;
it only does so when there is an R somewhere to
its right. For a subsequential FST to process such
contexts, they must first be disambiguated. Thus,
for an unbounded circumambient mapping to be
weakly deterministic, all ambiguous contexts must

be marked up by a subsequential FST that makes
the first pass through the input.

We define ambiguous contexts in Lemma (3.2).

Lemma 3.2. In an unbounded circumambient
mapping, ambiguous contexts occur:

1. After any left trigger (L): L. . . , and

2. After any right trigger (R) that follows a left
trigger without an intervening blocker (unless
R itself is a blocker): L. . .R. . . .

Proof. First, we show that ambiguous contexts ap-
pear after Ls. The behavior of X in the context
LN∗XN∗, depends on following segments. If an
R follows, the context is unfaithful: LN∗XN∗R
is precisely the structural description of the rule.
Otherwise, the context is faithful: LN∗XN∗.
Clearly, if R = L, R creates ambiguous contexts
in the same way.

Next, we show that if R 6= L, R creates am-
biguous contexts following L if and only if R is
not a blocker. The context following an R that is
not preceded by an L is unambiguously faithful. If
R is a blocker, the context following an R that is
preceded by an L is also unambiguously faithful.
Because R is a blocker, it is not in N , and there-
fore, LN∗R cannot meet the structural description
of the rewrite rule in (1) regardless of the follow-
ing context. If R is not a blocker, it is a part of N .
Thus, the string LN∗RN∗ can be rewritten as
the prefix of the structural description LN∗ and
segments unboundedly far to the right determine
the context.

3.2 Markup strategies

For an unbounded circumambient mapping to be
weakly deterministic, the right-subsequential FST
that makes the first pass must disambiguate all po-
tentially ambiguous contexts. Reading right-to-
left, this FST is able to use information arbitrarily
far to the right, and so it can identify the ambigu-
ous contexts.

Regardless of whether an ambiguous context
comes from an L or R, the right-subsequential
FST knows the context is an unfaithful context if it
consists of a string of non-blocking segments fol-
lowed by an R, i.e., LN∗R. To provide this infor-
mation to the left-subsequential FST, Ls must be
somehow marked up in these contexts (as mustRs
if Rs are not blockers). In order for the marked up
information to be useful to the left-subsequential
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FST it must either be within k segments of the trig-
ger or arbitrarily far to its left.

There are two crucial cases: either L contains a
word-boundary and is therefore unique, or L does
not contain a word-boundary, and there may be ar-
bitrarily many of them in the input. We show first
that if L does not contain a word-boundary, then
there is a substring that can act as a markup. If L
does contain a word-boundary, we show that there
is a markup substring only if R is a blocker.

3.2.1 L does not contain word-boundaries
Lemma 3.3. If there exists an L and an R that do
not contain word-boundaries, the unbounded cir-
cumambient mapping is weakly deterministic.

Proof. First, we show that such a mapping can
contain a potentially unbounded number of am-
biguous contexts, requiring an unbounded number
of potential markup locations. If L and R do not
contain word-boundaries, for any k, and any m,
a word exists containing a substring of the form
(LT kXT kRB)m, where B is some blocker, and
where T is the set of “Transparent segments and
Targets”—segments that are not left triggers, right
triggers, or blockers. The behavior of the Xs in
such a word cannot be predicted by a subsequen-
tial FST regardless of its direction. The presence
of the blockerB means that even if the triggers are
non-blockers, the behavior of each X is indepen-
dently based on the most localL andR.3 Each am-
biguous context requires 1 bit of information indi-
cating whether it is a faithful or unfaithful context.
Thus, for the subsequential FST making the first
pass to disambiguate ambiguous contexts, at least
m bits of markup are required. Because m can
grow to become unboundedly large, the amount of
markup must also grow as m becomes larger.

As illustrated in Section 1, the right-
subsequential FST that makes the first pass
must do two things. First, it must map all sub-
strings up to length k of the form LT ∗XT ∗R to
LT ∗Y T ∗R (as well as if L is non-blocking, any
substrings up to length k of the form LT ∗XT ∗L
that are followed by R). Given this first action,
any substring underlyingly containing LXR will
be changed, and, as a result, LXR can be used as
markup. In order to transmit the needed m bits of
information, markup must be placed after any L

3If the process in question lacks blocking segments, the
amount of markup necessary can only decrease, simplifying
the proof of weak determinism.

that is in an unfaithful context (that is, followed
by a string of non-blockers and then an R), and
(if R is a non-blocker) any R unambiguously
followed by a faithful context: that is, any R
that is not followed by another R. However, if a
blocker or other trigger appears within k segments
of such a trigger, no markup is needed because
the presence of a blocker is sufficient to show
that there is a faithful context, and any unfaithful
context between two triggers within k segments is
handled by the first part of this function.

This leaves L or R followed by an unbounded
number of segments that are either targets or trans-
parent segments. We define a k-SUBSTRING OF

UNCERTAINTY as any substring in this context, of
the shape (L,R)T k. Following an L, the number
of possible k-substrings of uncertainty depends on
the number of segments in T (specifically, |T |k).
A successful markup strategy would replace some
of these k segments, but must still contain enough
information to reconstruct the string. Any under-
lying substring of length k that starts with LXR,
has been changed already, allowing any substring
of that sort to be used as an intermediate markup.
LXR is some finite length j ≤ k. Thus, there
are a number of potential markup substrings of the
form LXRΣk−j , equal to the number of symbols
in the alphabet to the k − j power.

For the markup strategy to be successful there
need to be at least |T |k possible markup strings, so
that all contrastive k-substrings of uncertainty can
be reconstructed, therefore if |Σ|k−j ≥ |T |k the
process is weakly deterministic. Since the triggers
L and R and any blockers B are not in the set T ,
the non-blocker segments must be less than the full
alphabet Σ.4 If T is a proper subset of Σ, since
|Σ| > |T |,

|Σ|
|T | > 1 (5)

|Σ|j is bounded by definition, and αx grows un-
boundedly if α > 1, so there exists a k such that:

(
|Σ|
|T |)

k ≥ |Σ|j (6)

|Σ|k−j ≥ |T |k (7)

Therefore, for some k, there are more banned sub-
strings of length k that begin with LXR (|Σ|k−j),
than there are contrastive k-substrings of uncer-
tainty that must be reconstructed (|T |k).

4If all triggers and blockers are longer than one segment,
the same logic holds using substrings rather than segments.
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3.2.2 L contains word-boundaries
If a word-boundary is included in all potential
markup substrings, only processes where there is
at most one ambiguous context can be weakly de-
terministic.

Lemma 3.4. If all left (or right) triggers include
a word-boundary, but there exists a right (or left)
trigger from the other side that does not include
a word-boundary, and it blocks application of the
process, the process is weakly deterministic.

Proof. If all left triggers L include the left bound-
ary of the word o, the substring LXR cannot be
used freely as a markup. However, this can greatly
decrease the number of potential k-substrings of
uncertainty in the word, as there can only be one
L per word. If right triggers block, then there is
no k-substring of uncertainty local to any R in the
word. Thus the markup strategy must only encode
one additional bit of information not present in the
original string, so we can make use of the one po-
tential markup location, the k-substring of uncer-
tainty local to the left edge of the word. In this
case, LXR substrings could be used to markup
the beginning of the word, as long as an R exists
that does not include the end of the word n. This
is simply a reversed case of the Copperbelt Be-
mba markup used by McCollum et al. (2018) and
demonstrated in Section 2.2, as only the first R in
the word would spread all the way to the beginning
of the word.

Like the Copperbelt Bemba case, if the reverse
is true – that is, if all right triggers R include the
right edge of the word – it is impossible for a
right-subsequential FST to markup any informa-
tion in the string, because the only markup loca-
tion is at the right edge of the word, before the
FST is aware of any left triggers in the word; but
as above, if there exists an L that does not include
a word-boundary, and L are blockers, the process
is weakly deterministic using a left-subsequential
FST to markup information on the right side of the
word first.

3.2.3 Summary
In both of the weakly deterministic cases, the num-
ber of potential locations for markup strings is at
least as many as the number of k-substrings of un-
certainty in a word. The cases of non-weakly de-
terministic unbounded circumambient mappings
have a limited number of possible markup loca-
tions because all banned substrings include at least

one word boundary.
In the first-last UTP case in Section 2.1, there is

at most one k-substring of uncertainty possible in
a word (oH Lk), but no banned substring that can
be placed as markup in that position because all
banned substrings include both word-boundaries.

The other types of non-weakly deterministic
unbounded mappings can be seen in the double-
edged spreading in Section 2.2, or the true sour
grapes mapping described in O’Hara and Smith
(2019). In each of these mappings, there are po-
tentially unbounded numbers of k-substrings of
uncertainty (for double-edged spreading both oLk

and any HLk), but all banned substrings include a
word boundary, restricting the number of possible
markup locations to one.

4 Conclusion

This paper demonstrated that the class of weakly
deterministic mappings as defined by Heinz and
Lai (2013) forms a proper subset of the class
of regular functions. This was shown by exam-
ining two hypothetical mappings, first-last UTP
and double-edged spread, that are regular but not
weakly deterministic. The lack of non-weakly de-
terministic phonological transformations may be
demonstrative of an upper bound on the complex-
ity of phonological mappings.

We have also characterized the necessary and
sufficient conditions by which an unbounded cir-
cumambient mapping is weakly deterministic.
This characterization reveals that the set of non-
weakly deterministic unbounded circumambient
mappings are those that make crucial reference to
both edges of the word.

Acknowledgments

This work has greatly benefited from discussions
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Abstract
We use sequence-to-sequence networks
trained on sequential phonetic encoding tasks
to construct compositional phonological
representations of words. We show that the
output of an encoder network can predict
the phonetic durations of American English
words better than a number of alternative
forms. We also show that the model’s learned
representations map onto existing measures
of words’ phonological structure (phonolog-
ical neighborhood density and phonotactic
probability).

1 Introduction

The representation of linguistic categories is a fun-
damental problem in (psycho)linguistics and nat-
ural language processing. The formation of com-
plex representations from more basic components
is relevant at all levels of linguistic representa-
tion, semantic, syntactic, and phonological. Find-
ing good representations for words’ phonological1

structure is critical in psycholinguistics, where we
wish to understand the phonological structure of
the lexicon, which has been shown to be relevant
for language comprehension and production.

The distributional hypothesis defines a word by
the context in which it occurs (Harris, 1954; Firth,
1957). This approach has been extended more re-
cently to other types of compositional structures,
for example in characterizing the meanings and
forms of sentences (Cer et al., 2018; Joulin et al.,
2017; Conneau et al., 2017; Devlin et al., 2018).
In this paper we explore whether distributional ap-
proaches can capture important phonological de-
pendencies.

1There are disagreements in the literature about the lo-
cation (Hale and Reiss, 2008) and even existence (Ohala,
1990b) of the boundary/interface between phonetics and
phonology, so we remain as theory-agnostic as pos-
sible, freely using “phonological”/“phonetic” and “seg-
ment”/“phone” interchangeably.

Specifically, we test the extent to which recur-
rent encoder-decoder models (Cho et al., 2014;
Sutskever et al., 2014) can learn representations
that characterize the phonological structure of the
lexicon while also having linguistic and psycho-
logical validity (Sibley et al., 2008). We pro-
pose that this approach can be used to learn viable
lexical-level phonological representations. The
output of the encoder component of our model
yields promising results in the prediction of pho-
netic duration, outperforming a number of alter-
nate phonological representations of words.

2 Quantifying a word’s phonology

Given a set of discrete phonetic symbols i.e.
graphemes with conventionalized pronunciations
such as the International Phonetic Alphabet, it is
trivial to represent any word’s pronunciation as a
sequence of such symbols. Conversely, relating
sequences of such symbols (viz. words) to each
other, as well as to the entire lexicon is less obvi-
ous. This challenge has led to a proliferation of
measurements that characterize a word’s phonetic
or phonological relationship with all other words
in the lexicon. We summarize some salient exam-
ples below, and briefly discuss some of their short-
comings.

2.1 Metrics insensitive to serial order
Phonological neighborhood density (PND).
This measure is defined as the number of words
having a Levenshtein edit distance of one from
a given word (in terms of phonetic or phonologi-
cal symbols) (Luce and Pisoni, 1998; Levenshtein,
1966). Under this definition, a word like “cat”
has many neighbors, while a word like “molt” has
fewer. This measure is simple to calculate and a
wide variety of resources exist for obtaining these
measures across many languages (Marian et al.,
2012; Baayen et al., 1993; Luce and Pisoni, 1998).
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While conceptually simple, PND is insensitive
to the position of a segment within a word (e.g.
word-initial versus word-final substitutions), and
so “sat” and “cab” are treated as equally similar to
“cat”. Additionally, identifying a word’s phono-
logical neighbors using the Levenshtein distance
metric requires specifying how many sounds can
be added, deleted, or substituted, and potentially
the allowable edit distance2, increasing the num-
ber of choice points in determining what a “neigh-
borhood” is.

Frequency-weighted phonological neighbor-
hood density. An augmented version of PND,
which weights phonological neighbors in pro-
portion to their lexical frequencies (standardly
estimated from large corpora; Marian et al.,
2012). So, a more common word like “hat”
would contribute more to the neighborhood den-
sity of “cat” than a less common word like “cap”,
even though they are at equal string edit dis-
tance. Whether and to what extent density mea-
sures should be frequency-weighted is an empiri-
cal question, though these measures seem to better
reflect psycholinguistic processes than frequency-
insensitive measures.

Feature-wise similarity. In the phonologi-
cal literature it is standard to represent segments
as collections of articulatory or acoustic features,
e.g. [+voice], [-obstruent] (Chomsky (1968) is the
canonical reference). Some linguists (e.g. Frisch
(1996), inter alia) have posited that words like
“cat” and “cap”, which differ only in the place of
articulation of their final segments (alveolar ver-
sus labial), should be considered more similar than
e.g. “cat” and “can”, which differ in both voicing
and manner of articulation. This measure of simi-
larity is potentially controversial, as there are the-
oretical and empirical questions as to which fea-
tures to include, or even whether phonetic fea-
tures exist at all (Stevens and Blumstein, 1981;
Marslen-Wilson and Warren, 1994).

2.2 Metrics incorporating serial order
All of the previously described measures effec-
tively characterize words as unordered collections
of segments. These characterizations are incom-
plete because they fail to capture the fact that
words unfold over time in usage. Representing the
positions of phones within a word is critical for ex-

2See e.g. Suárez et al., 2011 who allow edit distance
greater than one, and track the mean distance to a fixed num-
ber of neighbors

plaining a number of aspects of language process-
ing. For example, the beginnings of words con-
tribute more strongly than their ends to psycholin-
guistic effects that are attributed to their phono-
logical representations (Levelt et al., 1999; Sevald
and Dell, 1994, inter alia), and a word’s phono-
logical similarity to the rest of the words in the
lexicon has important consequences for speech
comprehension (Buz and Jaeger, 2016; Metsala,
1997). Some computational models encode seg-
ments as a function of their linear position within
a syllable, e.g. in a onset-vowel-coda format (e.g.
Dell, 1986; Sevald and Dell, 1994). Other ap-
proaches include segment n-grams to encode local
aspects of serial order (e.g. Seidenberg and Mc-
Clelland, 1989; Davis, 2010) and the oft-lamented
Wickelphone (Houghton and Hartley, 1996). Most
closely related to the present approach, some work
has demonstrated the viability of sequence en-
coder models for representing sequences of char-
acters or phonetic segments (Sibley et al., 2008).

2.3 Incorporating variability into
representations

Psycholinguistic measures that quantify words’
phonological properties in the lexicon generally
ignore their variability in pronunciation. In usage,
segmental context, or lexical factors such as word
frequency, can significantly influence the phonetic
realization of a given phone, ranging from assimi-
latory processes (Ohala, 1990a) to massive reduc-
tion and even complete omission (Pitt et al., 2005;
Johnson, 2004, inter alia). For example, there are
over 200 distinct transcriptions of the word “and”
in the Buckeye corpus (Pitt et al., 2005), and its
normative, dictionary pronunciation (i.e. [ænd])
only accounts for 3% of its realizations.

Measures such as PND rely on single, fixed
pronunciations (generally normative/dictionary-
based) and corpus-derived lexical frequencies to
estimate how many similar-sounding words a
given word has, but take no account of variabil-
ity in realization. As there is evidence that listen-
ers remember and can access/use individual exem-
plars of perceived speech (Pierrehumbert, 1980;
Goldinger, 1998), it seems natural to model dis-
tinct realizations within the lexical network. The
variability in a word’s realizations may especially
matter for identifying phonological competitors
(Luce and Pisoni, 1998; Marian et al., 2012; Vaden
et al., 2009). For example, words like “sand” and
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“and” may rarely compete during lexical access,
given that “and” is rarely pronounced similarly to
“sand.” By incorporating the variability available
in naturalistic speech corpora, we hope to provide
a better characterization of a word’s phonological
properties and its relation to the lexicon.

3 Latent phonological representations

Representing arbitrary-length sequences of
phones with a single distributed representation
has a number of potential practical and conceptual
advantages. On the practical side, these repre-
sentations have a fixed dimensionality, so finding
meaningful groupings or clusters is computa-
tionally more tractable than directly clustering
variable-length sequences. Moreover, projecting
these sequences into a latent space offers the
potential of discovering hidden relationships
or variables that affect phonological or lexical
structure.

Our aim in this paper is to test whether and to
what extent recent approaches to building sentence
representations can also be applied to the phono-
logical domain. Both simpler and more complex
latent representations can be constructed to char-
acterize the phonological forms of words. We first
discuss potential “naı̈ve” means of accomplishing
this, and then move into discussion of our pro-
posed model.

Principal components on bag-of-n-phones
A number of document classification schemes and
information retrieval tasks have treated documents
as a product of the vector representations of words
learned by principal components analysis (PCA;
Landauer and Dumais, 1997). We apply this to
the phonetic domain as well. By analogy to a
bag of words, we refer to bag-of-phones (unigram
features) and bag-of-n-phones (higher-order seg-
ment co-occurrence categories), which can then
be fed into a dimensionality reduction algorithm
like principal components analysis (PCA) as an
approximate composition function to produce la-
tent phonological representations of words.

doc2vec
Another dimensionality reduction method extends
the continuous bag-of-words algorithm used to
learn word vectors (Mikolov et al., 2013) to the
document domain. Specifically, the model learns
to compose (predict) a document (i.e. a word)
from its phonological contents. doc2vec (Le and

Mikolov, 2014) has been used in information re-
trieval and natural language processing applica-
tions (Lau and Baldwin, 2016) and so may be a
viable way to obtain lexical phonological repre-
sentations. As with bag-of-phones, this model is
insensitive to serial order.

Sequential representations
Encoder-decoder or sequence-to-sequence
(seq2seq henceforth) neural network architectures
have shown considerable success in encoding
sentences (viz. sequences of words) for tasks
such as machine translation (Sutskever et al.,
2014; Cho et al., 2014). These methods may be
appropriate as a means of composing segmental
representations, as they are intrinsically sensitive
to ordering, easily take usage frequencies into
account (directly from training corpora), and have
been shown to be effective learners of sequential
distributional properties of their training data.

4 Seq2seq model

We trained seq2seq models to either reproduce
their input, or to recover (predict) normative (dic-
tionary) pronunciations from the phonetic tran-
scriptions of words in the Buckeye corpus (Pitt
et al., 2005), a dataset of monologues provided in
response to interviewer questions about the talk-
ers’ hometown of Columbus, Ohio. The corpus
contains approximately 300,000 words.

Data inclusion criteria. There are some tran-
scription errors in the Buckeye corpus, and so we
excluded combinations of phones that did not oc-
cur at least ten times. This removes many errors,
but a few remain. For example, the segment “h”
occurs in some transcriptions but is not part of the
character set of the transcription dictionary, and is
thus likely an error of omission for actual digraphs
from the dictionary; “th”, “hh”, etc. Despite the
presence of these remaining errors, we do not cor-
rect the transcriptions of any words. In total, 57
phone/segment categories are represented. Full
documentation of the coding scheme used in the
corpus can be read in Pitt et al. (2005). For bag-
of-n-phones features, we add the additional char-
acters “w s” and “w e” as word boundary charac-
ters, signaling the starts and ends of words, respec-
tively.

There are no standard train/dev/test splits for the
Buckeye corpus, and so we restricted ourselves to
randomly selected 80/20 train/test split (Pitt et al.,
2005) for training all models.
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Figure 1: Encoder-decoder LSTM architecture (Nor-
mative decoder; for the Observed decoder, the output
is the observed phonetic sequence).

Model architecture. Methodologically, we ap-
proach the problem with an eye to restricting the
computational power of our model, and to re-
stricting the space of hyperparameters to explore.
To this end, our models use a basic recurrent
encoder-decoder architecture, with an input-side
embedding layer, and single-layer, unidirectional3

LSTMs (Hochreiter and Schmidhuber, 1997) on
the encoder and decoder sides. The encoder takes
as input a sequence of phone indices (e.g. “cat”
→ [’k’, ’ae’, ’tq’] → [11, 1, 20]), em-
beds them, and encodes the sequence in the space
defined by the LSTM. The encoder LSTM’s final
hidden state is provided as input to the decoder,
whose task is to “unroll” this latent representa-
tion. The outputs of the decoder LSTM are suc-
cessively fed through a softmax, sequentially out-
putting class probabilities for each character class
in the phone vocabulary, which are then decoded
via simple argmax (see Figure 1).

4.1 Training

Hyperparameters. The number of training
epochs was empirically determined on the basis of
asymptoting training loss, which we determined to
be 25 epochs. We used a cross-entropy loss func-
tion, using the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001. Other Adam
parameters were at default values in the dynet
python implementation as of this writing (version
2.0.3; Neubig et al., 2017). All hyperparameters
were selected on the basis of asymptoting loss on
a small subset of the training set. The embedding

3While we do not perform these experiments here, we be-
lieve that a Bi-LSTM encoder (Schuster and Paliwal, 1997)
will enable further advances in constructing psycholinguisti-
cally predictive word representations.

layer had 32 dimensions, and the encoder and de-
coder LSTMs were 64-dimensional.

Tasks. We trained two models to perform
slightly different decoding tasks; the Norma-
tive Decoder model, and the Observed Decoder
model. In both tasks, the inputs are transcriptions
of observed realizations of words in the Buck-
eye corpus, which include e.g. phonetic changes
and omissions. The Normative Decoder’s task
is to output the word’s normative pronunciation
(e.g. [k, ae, tq] → [k, ae, t]), while
the Observed Decoder model is trained as a se-
quential autoencoder (e.g. Chung et al., 2016);
the task is to reproduce the input sequence exactly.
Both are potentially viable approaches to the cre-
ation of lexical phonological representations and
show similar performance in the downstream tasks
reported on below, which may be useful for re-
searchers who only have access to normative pro-
nunciations.

We evaluated the performance of the model on
the 20% held-out portion of the corpus.

4.2 Lexical representations

Once the model is trained, any sequence of phones
can be input to the encoder, yielding a latent
phonological representation of that sequence. As
with character-based NLP models, the compara-
tively low dimensionality of the input space (57
segments) mitigates sparsity issues, consequently
we can obtain latent phonological representations
not just of vocabulary words that have been trained
but also for rare, out-of-vocabulary (OOV) words
and non-words. We plot some aspects of the
learned representations in Figures 2 and 3. One
pattern that is particularly apparent is that the left-
to-right serial nature of the encoder leads to repre-
sentations that strongly encode the final segment
in their representations, for both consonants and
vowels.

5 Evaluation

As a preliminary investigation of the informa-
tion encoded in the learned lexical representations,
we assess their ability to model phonetic dura-
tion, which is known to be sensitive to phono-
tactic probability and phonological overlap (Gahl
et al., 2012; Watson et al., 2015; Buz and Jaeger,
2016; Yiu and Watson, 2015; Goldrick and Lar-
son, 2008; Vitevitch and Luce, 2005), in addition
to other factors like contextual predictability (e.g.
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Figure 2: Topology of word vectors from phonological encoder models learned by t-SNE (Maaten and Hinton,
2008). Degree to which word vectors encode vowel information. Clusters largely prioritize word-final information,
especially the last segment. Left graph represents the identities of the first segment. Right graph represents the
identities of the final segment. The strong encoding of the final segment may be due to the model architecture
using uni-directional recurrent layers.

Figure 3: Topology of word vectors, t-SNE projection (Maaten and Hinton, 2008). Degree to which word vectors
encode consonant information. Clusters largely prioritize word-final information, especially the last segment. Left
graph represents the identities of the first segment. Right graph represents the identities of the final segment.

Cohen Priva and Jaeger, 2018; Seyfarth, 2014).
We show that the encoder creates sequence repre-
sentations that are useful for predicting word du-
ration, and compare the success of the encoder to
several other models, described below.

5.1 Predicting word duration

Ultimately we are interested in whether latent
phonological representations have predictive va-
lidity for phonetic cues, potentially in conjunc-
tion with other phonological and lexical repre-
sentations. Word duration has been shown to be
strongly related to phonological structure (Gahl
et al., 2012), because duration may reflect the me-
chanics of the phonological sequencing process in
language production (Yiu and Watson, 2015; Wat-
son et al., 2015; Fox et al., 2015) or because speak-
ers lengthen words in dense neighborhoods to pro-
mote the listener’s understanding (Tily and Kuper-

man, 2012).
We built a series of nested statistical models de-

signed to predict whole-word phonetic duration.
The durations were obtained by summing up the
durations of each of the annotated phonetic seg-
ments for an individual word, which are them-
selves derived from time stamps extracted from
the Buckeye metadata. Whole-word durations
were log transformed due to their positive skew;
failing to account for this can make statistical in-
ference more difficult (Campbell, 1992). All mod-
els were constructed using ridge (L1 norm) re-
gression using the scikit-learn package in
Python (version 0.2.0; Pedregosa et al., 2011). We
report goodness of fit measures in all cases by
R2 values (the coefficient of determination; pro-
vided automatically by the score function within
the ridge regression model object).

All duration models were trained on the same
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80-20% split that was used to train the encoder-
decoder. Consequently, there were 282,742 obser-
vations (words) during training, and 70,686 words
at test. The vocabulary for the bag-of-words rep-
resentations was estimated from the training data.
All models are summarized in Table 1.

5.2 Baseline models

Word embeddings. A word’s distributional prop-
erties, such as its part of speech and meaning; la-
tent part-of-speech; or word-frequency informa-
tion may reliably predict a word’s duration (Sey-
farth, 2014; Turnbull et al., 2018; Priva, 2015).
Consequently, we incorporate 100-dimensional
word embeddings into the regression models. We
obtained these word embeddings from gensim’s
(Řehůřek and Sojka, 2010) skip-gram implemen-
tation trained on the Fisher corpus (Cieri et al.,
2004), which we selected due to its size, which
is critical for generating good word embeddings
(Antoniak and Mimno, 2018), and because it be-
longs to the same domain as the Buckeye corpus
(conversational speech).

The skip-gram model used a context window of
5 words and a negative sampling size of 5. We
used a zero vector to represent OOV (e.g. Colum-
bus, Ohio-specific place names that would not oc-
cur in the Fisher corpus). Word embeddings were,
on their own, not a strong predictor of word dura-
tion (R2 = 0.082) on the test set, but nevertheless
account for some of the variance in word duration.

Bag-of-phones models. Bag-of-words repre-
sentations are a useful and informative baseline
in other NLP tasks, especially text classification
(Wang and Manning, 2012). We obtained bag-of-
phone representations by learning a vocabulary on
the training data and creating sparse count vectors
in which the features represent individual phones.
A simple bag-of-uniphones model, which ignores
order information, has greater predictive power
than word embeddings on the test set (R2=0.140).
This shows that it is possible to at least partly pre-
dict the duration of a given word’s realization from
relatively unstructured phonological information.

Bag-of-n-phones. Unlike bag-of-words repre-
sentations, bag-of-ngrams encode localized order
information. We constructed n-gram features of
phone combinations (bag-of-n-phones) of lengths
2 to 5, using a cutoff frequency of 10 observations.
These more complex representations performed
similarly to the simpler bag-of-phones model on

the test set (R2 = 0.140).
We also tested whether incorporating word

boundary information into these models (“w s”
and “w e” phones) would induce boundary-
sensitive phonotactics, but this also did not pro-
vide additional gains over simpler models (R2 =
0.138 and R2 = 0.140).

Principal components analysis over bag-of-
n-phones. Following from the previous section,
we take our bag-of-n-phones representations and
feed them into a truncated singular value de-
composition model to obtain latent representa-
tions of words (“documents”). This representation
explained a slightly greater amount of variance
in word duration than word embeddings (R2 =
0.106). However, this method performed far worse
than the bag-of-phones and bag-of-n-phones mod-
els described in the previous section, indicating
that some information is lost in this dimensionality
reduction method.

doc2vec. Our doc2vec model vectors were
trained to predict a word from a phonological rep-
resentation. The resulting vectors had the same
dimensionality as the PCA vectors and the en-
coder output of the seq2seq models. Surprisingly,
doc2vec performed the worst of models that we
considered (R2 = -0.05).

seq2seq. The outputs of the encoders for the
Observed and Normative decoder models were
among the best we considered, both on their own
and in conjunction with other measures. Inter-
estingly, the Observed Decoder provides a much
closer fit to phonetic duration than word embed-
dings, bag-of-phones, PCA, doc2vec, and the Nor-
mative Decoder representations. When combined
with bag-of-phones and word embedding infor-
mation, the Observed Decoder representations ex-
plain the greatest amount of variance in word du-
ration (R2 = 0.181), suggesting that these latent
phonological representations encode useful infor-
mation for characterizing word form.

The disparity between the Observed and Nor-
mative decoder models may be a consequence
of the Normative model’s more difficult learning
problem. One potential explanation is that de-
spite training the two models for equal lengths
of time (25 epochs), the Normative decoder was
not trained to the same criterion as the Observed
decoder. Future work should explore whether
the worse performance of the Normative decoder
model is due to the precision of its representations
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Simple Test R2 No. features Combined Test R2 No. features
Word embeddings (WE) 0.082 100 BoP + wb + WE 0.161 159

Bag-of-phones (BoP) 0.140 57 + Observed decoder 0.181 223
+ w s + w e (wb) 0.140 59 + Normative decoder 0.177 223

Bag-of-n-phones (BoNP) 0.140 1700 BoNP + wb + WE 0.159 5018
+ w s + w e (wb) 0.138 4918 + Observed decoder 0.175 5082

PCA bag-of-n-phones 0.106 64 + Normative decoder 0.173 5082
doc2vec -0.05 64 Observed + WE 0.149 164

Observed decoder 0.149 64 Normative + WE 0.141 164
Normative decoder 0.140 64

Table 1: Ablation study. Effectiveness of features and combinations of features for predicting (log) phonetic
duration.

or due to what is embedded in the representations
themselves.

6 Probing phonological structure

While it is clear that seq2seq representations of
the phonological forms of words are partially
predictive of a phonetic phenomenon (duration),
whether the representations encode anything use-
ful about the lexicon requires further investiga-
tion. In this section, we explore whether charac-
terizing the similarity space of these phonological
word vectors can approximate standard measures
of a word’s phonological properties. The results
show that the vectors produce coherent clusters of
words with different phonological properties. We
also show that there are correlations between our
measures and phonotactic probability.

6.1 Latent phonological neighborhood
density

While it is not commonly the case that similarity
scores follow a normal distribution, in our case,
the similarity scores for words are by visual spot
inspection roughly symmetric and normally dis-
tributed, so we chose to characterize individual
words wi by the mean and standard deviation of
their similarity scores to every other word in the
lexicon. Although not a priori obvious, one possi-
bility is that these metrics correlate with other lexi-
cal metrics, for example, a wide standard deviation
could mean that a word has a number of different
ways it can be similar to other words, whereas a
narrow standard deviation suggests that the word
is fairly unique.

6.2 The similarity structure of the lexicon

The distributions of similarity scores show some
interesting properties. Unlike the measurements
of phonological neighborhood density provided in
Vaden et al. (2009), which follow a quasi-Zipfian
distribution, a histogram of the mean word-lexicon
similarities across the whole vocabulary shows a
very different pattern. In particular, there appear
to be three distinct clusters of similarity scores, as
shown in Figure 4.

Figure 4: Three clusters of similarity scores from Ob-
served Decoder model.

Words in the first cluster, which show negative
average similarity scores, were highly frequent
words, typically encompassing function words
(e.g. but, about, the). The second cluster ap-
peared to include less high-frequency terms (e.g.
day, brain, wants). Finally, the rightmost cluster
typically had higher similarity scores, represent-
ing low frequency and longer words (e.g. devices,
widely, element).4 Going forward, a meta-model

4We thank our reviewers for pointing out that all of these
properties are correlated with word length in segments (e.g.
highly frequent words are on average shorter), which is a use-
ful baseline that we will explore in future work.
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will be necessary to determine what factors deter-
mine a word’s mean lexicon-similarity value.

6.3 Correlation with existing phonological
properties

Ideally, a new measure of phonological form
should relate to measures already known to af-
fect speech production. For example, a significant
correlation with a particular word’s mean or stan-
dard deviation similarity to all the other words in
the lexicon would suggest that our measures char-
acterize the lexicon in a similar way to existing
measures. Similarly, because our latent represen-
tations encode sequences, we expect them to cor-
relate with phonotactic probability (Vitevitch and
Luce, 2004). So, as a final set of analyses, we
sought to test whether and to what extent the Ob-
served decoder learns representations that can tell
us about a word’s relationship to the rest of the
lexicon.

There are two measures of interest that have re-
ceived some attention in the speech production lit-
erature. For the present analyses, we reference
the phonological neighborhood density metrics
as well as the phonotactic probability scores for
words in Buckeye that are also in the Irvine Phono-
tactic Online Dictionary (IPhOD; Vaden et al.,
2009). We show that our measures (both mean and
standard deviation) strongly correlate with phono-
tactic probability and IPhoD’s additional PND
measure. This suggests that the vectors’ useful-
ness extends to researchers who wish to explore
the phonological similarity structure of the lexicon
for psycholinguistic research.

Phonological neighborhood density. Given
the importance of phonological neighborhood
density (PND) in speech production (Luce and
Pisoni, 1998; Vitevitch and Luce, 2005; Metsala,
1997; Mirman, 2011), we correlated the (log)
number of phonological neighbors with our latent
density scores and phonetic duration. A phono-
logical neighbor is a word that differs by a single
sound (either an addition, a substitution, or a dele-
tion; Levenshtein, 1966). PND ((log) # of neigh-
bors, Figure 5) has a strong negative correlation
with mean word-lexicon similarity (greater mean
similarity translates to fewer neighbors; ρ = -.59)
while the standard deviation of word-lexicon sim-
ilarity shows a non-linear relationship with neigh-
borhood density.

Phonotactic probability. Phonotactic proba-

bility is a measure of the phonological typicality
of a word, computed from product of uni-phone
and bi-phone probabilities of that word pronunci-
ation, in the same fashion that sentence probabil-
ities are computed in a standard bigram language
model (Vitevitch and Luce, 2004, 2005). In our
final analysis, we compare the mean and standard
deviation of a word’s similarity to all other word
types, including alternate pronunciations of the
same word, to existing measures of phonotactic
probability. As with phonological neighborhood
density, we see significant positive correlations be-
tween our phonological similarity measures (both
means and standard deviations; ρ = 0.41 and ρ =
0.13, respectively) between phonotactic probabili-
ties, which we visualize in Figure 5.

7 Conclusion

The results presented here suggest that encoder-
decoder models are a promising framework
for composing segment-based representations of
words. The models also characterize words’
phonological forms relative to the rest of the lex-
icon. We believe that encoder-decoder models’
usefulness extends beyond that of many exist-
ing approaches, as they can seamlessly gener-
ate gestalt representations for out-of-vocabulary
words and even nonce words. Our approach has
a number of potential advantages for the cog-
nitive modeling of language processing in both
comprehension and production tasks, or indeed in
any task that can be modeled with phonological
word representations. Importantly, the encoder-
decoder modeling framework is flexible, learn-
ing both from observed, quasi-phonetic realiza-
tions of words as well as from idealized, normative
(dictionary-based) pronunciations, and allows for
many variations in expressivity and computational
power.

The reported correlations between phonologi-
cal neighborhood density, phonotactic probability,
latent phonological similarity, and phonetic dura-
tion motivate a need to better understand the em-
bedding representations themselves. We have pre-
sented considerable evidence that the models cap-
ture some non-trivial dependencies between pho-
netic segments that can characterize word forms.
Going forward, we believe that our latent phono-
logical representations may be useful for design-
ing stimuli, or provide an alternative to standard
covariates in psycholinguistic experiments such
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Figure 5: Correlation between a word’s phonetic duration in Buckeye, phonological neighborhood density, global
word-lexicon similarity (mean and standard deviation), and phonotactic probability.

as phonological neighborhood density and phono-
tactic probability. Finally, our results on the
Normative-Decoder suggest that low-resource lan-
guages with only a pronunciation dictionary are
also a viable means of learning these represen-
tations, assuming that there is a corresponding
corpus of conversational data. In sum, we have
demonstrated that our approach is useful for mod-
eling of phonological structure.
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Abstract

This paper defines a subregular class of
functions called the tier-based synchronized
strictly local (TSSL) functions. These func-
tions are similar to the the tier-based input–
output strictly local (TIOSL) functions, except
that the locality condition is enforced not on
the input and output streams, but on the com-
putation history of the minimal subsequential
finite-state transducer. We show that TSSL
functions naturally describe rhythmic syncope
while TIOSL functions cannot, and we argue
that TSSL functions provide a more restricted
characterization of rhythmic syncope than ex-
isting treatments within Optimality Theory.

1 Introduction

The subregular program in phonology seeks to de-
fine subclasses of the regular languages and finite-
state functions that describe attested phonotactic
constraints and phonological processes. These
subclasses provide a natural framework for ty-
pological classification of linguistic phenomena
while allowing for the development of precise the-
ories of language learning and processing. The
traditional view in subregular phonology is that
most phonotactic dependencies are described by
tier-based strictly local languages (TSL, Heinz
et al., 2011; McMullin and Hansson, 2016; Mc-
Mullin, 2016), while most phonological process
are described by strictly local functions (Chan-
dlee, 2014; Chandlee et al., 2015, In prep). These
classes of languages and functions are defined by
a principle known as locality—that dependencies
between symbols must occur over a bounded dis-
tance within the string. To account for longer-
distance dependencies, Heinz et al. (2011) pro-
poses a tier projection mechanism that allows ir-
relevant intervening symbols to be exempt from
the locality condition.

Recent work in subregular phonology has iden-
tified a number of exceptions to the traditional
view. On the language side, unbounded culmi-
native stress systems (Baek, 2018), Uyghur back-
ness harmony (Mayer and Major, 2018), and San-
skrit n-retroflexion (Graf and Mayer, 2018) have
been shown to lie outside the class of TSL lan-
guages. These observations have led to an en-
hancement of Heinz et al.’s (2011) tier projection
system. On the function side, a number of pro-
cesses, including bidirectional harmony systems
(Heinz and Lai, 2013) and certain tonal processes
(Jardine, 2016), have been shown to be not subse-
quential, and therefore not strictly local. At least
two proposals, both known as the weakly deter-
ministic functions, have been made in order to cap-
ture these processes (Heinz and Lai, 2013; McCol-
lum et al., 2018).

This paper identifies rhythmic syncope as an ad-
ditional example of a phonological process that is
not strictly local. In rhythmic syncope, every sec-
ond vowel of an underlying form is deleted in the
surface form, starting with either the first or the
second vowel. While rhythmic syncope cannot be
expressed as a local dependency between symbols,
it can be viewed as a local dependency between
actions in the computation history of the mini-
mal subsequential finite-state transducer (SFST).
We formalize such dependencies by proposing
the tier-based synchronized strictly local functions
(TSSL). See Bowers and Hao (To appear) for a
discussion of TSSL functions oriented towards the
phonological literature.

This paper is structured as follows. Section 2
enumerates standard definitions and notation used
throughout the paper, while Section 3 reviews ex-
isting work on strictly local functions. Section 4
introduces rhythmic syncope and shows that it is
not strictly local. Section 5 presents two equiv-
alent definitions of the TSSL functions—an al-
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gebraic definition and a definition in terms of a
canonical SFST. Section 6 develops some formal
properties of the TSSL functions, showing that
they are incomparable to the full class strictly lo-
cal functions. Section 7 compares our proposal to
existing OT treatments of rhythmic syncope, and
Section 8 concludes.

2 Preliminaries

As usual, N denotes the set of nonnegative inte-
gers. Σ and Γ denote finite alphabets not including
the left and right word boundary symbols o and
n, respectively. The length of a string x is denoted
by |x|, and λ denotes the empty string. Alphabet
symbols are identified with strings of length 1, and
individual strings are identified with singleton sets
of strings. For k ∈ N, αk denotes α concatenated
with itself k-many times, α<k denotes

⋃k−1
i=0 α

i,
α∗ denotes

⋃∞
i=0 α

i, and α+ denotes αα∗. The
longest common prefix of a set of strings A is the
longest string lcp(A) such that every string in A
begins with lcp(A). The k-suffix of a string x, de-
noted suffk(x), is the string consisting of the last
k-many symbols of okx.

A subsequential finite-state transducer (SFST)
is a 6-tuple T = 〈Q,Σ,Γ, q0,→, σ〉, where

• Q is the set of states, with q0 ∈ Q being the
start state;

• Σ and Γ are the input and output alphabets,
respectively;

• → : Q× Σ→ Q× Γ∗ is the transition func-
tion; and

• σ : Q→ Γ∗ is the final output function.

For x ∈ Σ∗; y ∈ Γ∗; and q, r ∈ Q, the notation
q

x:y−−→ r means that T emits y to the output stream
and transitions to state r if it reads x in the input
stream while it is in state q. Letting f : Σ∗ → Γ∗,
we say that T computes f if for every x ∈ Σ∗,
f(x) = yσ(q), where q0

x:y−−→ q. A function is
subsequential if it is computed by an SFST.

An SFST T = 〈Q,Σ,Γ, q0,→, σ〉 is onward if
for every state q other than q0,

lcp
({
y
∣∣∣∃x∃r.q x:y−−→ r

}
∪ {σ(q)}

)
= λ.

Putting T in onward form allows us to impose
structure on the timing with which SFSTs produce
output symbols.

Definition 1. Let f : Σ∗ → Γ∗. We define the
function f← : Σ∗ → Γ∗ by

f←(x) := lcp ({f(xy)|y ∈ Σ∗}) .

For any x, y ∈ Σ∗, f→x (y) denotes the string such
that f(xy) = f←(x)f→x (y). We refer to f→x as
the translation of f by x and to f← as f top.1

Suppose T computes f . The following facts are
apparent.

• Fixw, x ∈ Σ∗ and write q0
x:y−−→ q and q0

x:z−−→
r. If q = r, then f→w = f→y .

• T is onward if and only if for all q ∈ Q\{q0},
if q0

x:y−−→ q, then y = f←(x).

These observations allow us to construct the min-
imal SFST for f by identifying each state with a
possible translation f→x (Raney, 1958).

Let A and B be alphabets that are possibly infi-
nite. A function h : A∗ → B∗ is a homomorphism
if for every x, y ∈ A∗, h(xy) = h(x)h(y).

3 Background

The strictly local functions are classes of subse-
quential functions proposed by Chandlee (2014),
Chandlee et al. (2015), and Chandlee et al. (In
prep) as transductive analogues of the strictly lo-
cal languages (McNaughton and Papert, 1971).
Whereas phonotactic dependencies can usually be
described using tier-based strictly local languages
(Heinz et al., 2011; McMullin and Hansson, 2016;
McMullin, 2016), Chandlee (2014) has argued
that local phonological processes can be modelled
as strictly local functions when they are viewed as
mappings between underlying representations and
surface representations. A survey overview of the
related literature can be found in Heinz (2018).

Intuitively, strictly local functions are functions
computed by SFSTs in which each state represents
the i − 1 most recent symbols in the input stream
and the j − 1 most recent symbols in the output
stream along with the current input symbol, for
some parameter values i, j fixed. Such functions
are “local” in the sense that the action performed
on each input symbol depends only on informa-
tion about symbols in the input and output streams

1This terminology follows Sakarovitch (2009, pp. 692–
693). In the transducer inference literature, Oncina et al.
(1993) refer to f→x as the tails of x in f , and Chandlee et al.
(2015) refer to f← as the prefix function associated to f .
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within a bounded distance. In this paper, we aug-
ment strictly local functions with tier projection,
a mechanism introduced by Heinz et al. (2011)
and elaborated by Baek (2018), Mayer and Ma-
jor (2018), and Graf and Mayer (2018) that allows
the locality constraint to bypass irrelevant alpha-
bet symbols, extending the distance over which
dependencies may be enforced.

Definition 2. For any alphabet Σ, a tier on Σ is a
homomorphism τ : Σ∗ → Σ∗ such that for each
a ∈ Σ, either τ(a) = a or τ(a) = λ. In the former
case, we say that a is on τ ; in the latter case, we
say that a is off τ .

Chandlee (2014), Chandlee et al. (2015), and
Chandlee et al. (In prep) give two definitions of
the strictly local functions. Firstly, they state the
locality condition in terms of the algebraic repre-
sentation of minimal SFSTs.

Definition 3. Fix i, j > 0 and let τ be a tier on
Σ ∪ Γ. A function f : Σ∗ → Γ∗ is i, j-input–
output strictly local on tier τ (i, j-TIOSL) if for
all w, x ∈ Σ∗, if

• suffi−1(τ(w)) = suffi−1(τ(x)) and

• suffj−1(τ(f←(w))) = suffj−1(τ(f←(x))),

then f→w = f→x . A function is i-input strictly local
on tier τ (i-TISL) if it is i, 1-TIOSL on tier τ , and
it is j-output strictly local on tier τ (j-TOSL) if it
is 1, j-TIOSL on tier τ .

Secondly, they define strictly local functions in
terms of canonical SFSTs that directly encode (i−
1)-suffixes of the input stream and (j−1)-suffixes
of the output stream in their state names.

Definition 4. Fix i, j > 0 and let τ be a tier on
Σ ∪ Γ. An SFST T = 〈Q,Σ,Γ, q0,→, σ〉 is i, j-
input–output strictly local on tier τ (i, j-TIOSL) if
the following conditions hold.

• Q = ({o} ∪ Σ)i−1 × ({o} ∪ Γ)j−1 and
q0 =

〈
oi−1,oj−1〉.

• If 〈a, b〉 x:y−−→ 〈c, d〉, then c = suffi−1(τ(ax))
and d = suffj−1(τ(by)).

An SFST is i-input strictly local on tier τ (i-TISL)
if it is i, 1-TIOSL on tier τ , and it is j-output
strictly local on tier τ (j-TOSL) if it is 1, j-TIOSL
on tier τ .

These definitions turn out to be equivalent when
the canonical SFSTs are required to be onward.

ostart @ V

C : C

V : @

C : C

V : V

C : C

V : @

Figure 1: An SFST for rhythmic reduction.

Theorem 5 (Chandlee, 2014; Chandlee et al.,
2015, In prep). A function is i, j-TIOSL on tier τ
if and only if it is computed by an onward SFST
that is i, j-TIOSL on tier τ .

Example 6. Rhythmic reduction is a phonological
process in which alternating vowels in a word un-
dergo reduction. The examples in (7) show rhyth-
mic reduction in the Odawa variety of Ojibwe
circa 1912, as documented by Edward Sapir. In
our representation of reduction, vowels are re-
duced to @, starting from the first vowel. There
is no reason to believe that @ appears in underlying
forms.

(7) Rhythmic reduction in Ojibwe circa 1912
(Rhodes et al., 2012)
a. /m2kIzIn2n/ ; [m@kIz@n2n] ‘shoes’
b. /gUtIgUmIn2gIbIna:d/ ;

[g@tIg@mIn@gIb@na:d] ‘if he rolls him’

Figure 1 shows an SFST that implements the
rhythmic reduction pattern illustrated in (7). We
represent the pattern using an alphabet of three
symbols: C, representing consonants; V , repre-
senting vowels that have not been reduced; and @,
representing vowels that have been reduced. Ob-
serve that this SFST is onward and 2-TOSL, with
C off the tier: each state represents the most recent
vowel in the ouput stream.2

4 Rhythmic Syncope

Rhythmic syncope is a phonological process in
which every second vowel in a word is deleted.
The examples of (8) show rhythmic syncope in
Macushi, in which deletion begins with the first
vowel.3

(8) Rhythmic syncope in Macushi (Hawkins,
1950)

2For clarity, we omit the 〈λ, ·〉 portions of the state names.
3The synchronic status of rhythmic syncope is a matter

of current discussion, as its development appears to push a
phonological system into dramatic restructuring (Bowers, To
appear).
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a. /piripi/ ; [pripi] ‘spindle’
b. /wanamari/ ; [wnamri] ‘mirror’

In this section, we show that rhythmic syncope
is not TIOSL. To see this, we formalize rhythmic
syncope as a function over two alphabet symbols:
C, representing consonants, and V , representing
vowels. This idealization does not affect the ar-
gument that rhythmic syncope is not TIOSL, pre-
sented in Proposition 10.

Definition 9. The rhythmic syncope function ρ :
{C, V }∗ → {C, V }∗ is defined as follows. For
c0, c1, . . . , cn ∈ C∗,

ρ(c0V c1V c2 . . . V cn) = c0v1c1v2c2 . . . vncn,

where for each i, vi = V if i is even and vi = λ if
i is odd.

The intuition underlying the argument pre-
sented below is that (i − 1)-suffixes of the input
and (j − 1)-suffixes of the output do not contain
information about whether vowels occupy even or
odd positions within the input and output strings.
Therefore, while an i, j-TIOSL SFST can record
the most recent vowels read from the input stream
and emitted to the output stream, this information
is not sufficient for determining whether or not the
SFST should delete a vowel.

Proposition 10. The rhythmic syncope function is
not i, j-TIOSL on tier τ for any i, j > 0 and any
τ : {C, V }∗ → {C, V }∗.
Proof. Let k > i be even. Consider the strings
w := V k and x := V k+1. Observe that ρ←(w) =
ρ←(x) = V k/2; thus suffj−1(τ(ρ←(w))) =
suffj−1(τ(ρ←(x))). Now, if V is on τ , then
suffi−1(τ(w)) = V i−1 = suffi−1(τ(x)), and
if V is off τ , then suffi−1(τ(w)) = oi−1 =
suffi−1(τ(x)). Thus, if ρ is i, j-TIOSL on tier τ ,
then ρ→w = ρ→x . However, letting y := V k/2, ob-
serve that

y = ρ(wV ) = ρ←(w) ρ→w (V ) = y ρ→w (V )

yV = ρ(xV ) = ρ←(x) ρ→x (V ) = y ρ→x (V ).

This means that ρ→w (V ) = λ but ρ→x (V ) = V , so
ρ is not i, j-TIOSL on tier τ .

5 Synchronized Strictly Local Functions

Proposition 10 raises the question of how to char-
acterize the kind of computation that effects rhyth-
mic syncope. To investigate this question, Figure 2

ostart V : λ V : V

C : C

V : λ

C : C

V : V

C : C

V : λ

Figure 2: An SFST for rhythmic syncope.

shows a natural SFST implementation of rhythmic
syncope. The states in this SFST record the most
recent action performed by the SFST. If the most
recent action was to delete a vowel (V : λ), then
the next vowel the SFST encounters is not deleted
(V : V ); otherwise, the next vowel is deleted. This
SFST is strikingly similar to the rhythmic reduc-
tion SFST in Figure 1. There, the special sym-
bol @, which is not part of the input alphabet, indi-
cates the location of a reduced vowel, effectively
recording the previous action in the output. Since
there is no way to mark the location of a deleted
symbol, the SFST in Figure 2 explicitly records its
previous action in its state names. Thus, the rhyth-
mic syncope SFST may be seen as a generalization
of the rhythmic reduction SFST. The goal of this
section is to define a class of functions, known as
the tier-based synchronized strictly local (TSSL)
functions, based on this intuition. Following Sec-
tion 2, we begin by defining the TSSL functions
algebraically in terms of the minimal SFST, and
then we define a canonical SFST format for the
TSSL functions.

Recall that at each time step, an SFST must read
exactly one input symbol while producing an out-
put string of any length. Since the minimal SFST
for a function f must produce f←(z) after reading
the input string z, we can determine the possible
actions of f by comparing f←(z) with f←(zx)
for arbitrary z ∈ Σ∗ and x ∈ Σ.

Definition 11. Let f : Σ∗ → Γ∗. The actions
of f are the alphabet A(f) ⊆ Σ × Γ∗ defined as
follows.

A(f) := {〈x, y〉|∃z ∈ Σ∗.f←(zx) = f←(z)y}

We denote elements 〈x, y〉 of A(f) by x : y.

Strings over A(f) represent computation histo-
ries of the minimal SFST for f .

Definition 12. Let x ∈ Σ∗ and let f : Σ∗ → Γ∗.
The run of f on input x is the string f⇐(x) ∈
A(f)∗ defined as follows.
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• If |x| ≤ 1, then f⇐(x) := x : f←(x).

• If x = yz, where |y| ≥ 1 and |z| = 1, then
f⇐(x) := f⇐(y)(z : w), where w is the
unique string such that f←(x) = f←(y)w.

The notation f⇐ allows us to define the TSSL
functions in a straightforward manner, highlight-
ing the analogy to the TIOSL functions.

Definition 13. Fix k > 0 and let τ be a tier on
Σ×Γ∗. A function f : Σ∗ → Γ∗ is k-synchronized
strictly local on tier τ (k-TSSL) if for all x, y ∈
Σ∗, if suffk−1(τ(f⇐(x))) = suffk−1(τ(f⇐(y))),
then f→x = f→y .

Now, let us define the canonical SFSTs for
TSSL functions. We define the actions of an SFST
to be its possible transition labels.

Definition 14. Let T = 〈Q,Σ,Γ, q0,→, σ〉 be an
SFST. The actions of T are the alphabet

A(T ) := {〈x, y〉|∃q∃r.→(q, x) = 〈r, y〉} .

We denote elements 〈x, y〉 of A(T ) by x : y.

Again, the definition of the TSSL SFSTs is di-
rectly analogous to that of the TIOSL SFSTs.

Definition 15. Fix k > 0 and let τ be a tier on
Σ × Γ∗. An SFST T = 〈Q,Σ,Γ, q0,→, σ〉 is k-
synchronized strictly local on tier τ (k-TSSL) if
the following conditions hold.

• Q = ({o} ∪ A(T ))k−1 and q0 = ok−1.

• For every q ∈ Q, if→(q, x) = 〈r, y〉, then

r = suffk−1 (τ (q(x : y))) .

As is the case with TIOSL SFSTs, TSSL SFSTs
compute exactly the class of TSSL functions when
they are required to be onward.

Theorem 16. Fix k > 0, and let τ be a tier on
Σ× Γ∗. A function is k-TSSL on tier τ if and only
if it is computed by an onward SFST that is k-TSSL
on tier τ .

We leave the proof of this fact to Appendix A.

6 Properties of TSSL Functions

Having now defined the TSSL functions, this sec-
tion investigates some of their formal properties.
Subsection 6.1 compares the TSSL functions to
the TISL, TOSL, and TIOSL functions. Subsec-
tion 6.2 observes that TSSL SFSTs compute a
large class of functions when they are not required
to be onward.

6.1 Relation to TIOSL Functions
A natural first question regarding the TSSL func-
tions is that of how they relate to previously-
proposed classes of subregular functions. We
know from the discussion of rhythmic syncope
that the TSSL functions are not a subset of the
TIOSL functions: we have already seen that the
rhythmic syncope function is 2-TSSL but not i, j-
TIOSL for any i, j. We will see in this sub-
section that the TIOSL functions are not a sub-
set of the TSSL functions, though both function
classes fully contain the TISL and TOSL func-
tions. Therefore, the two function classes are in-
comparable, and offer two different ways to gen-
eralize the TISL and TOSL functions.

The fact that the TSSL functions contain the
TISL and TOSL functions follows from the obser-
vation that actions contain information about in-
put and output symbols. Remembering the i most
recent actions automatically entails remembering
the i most recent input symbols, and the j most
recent output symbols can be extracted from the j
most recent actions if deletions are ignored.

Proposition 17. Fix k > 0. Every k-TISL function
and every k-TOSL function is k-TSSL.

Proof. Let f : Σ∗ → Γ∗, and let τ be a tier on
Σ∪Γ. First, suppose that f is k-TISL on tier τ . Let
υ be a tier on Σ×Γ∗ defined as follows: an action
x : y is on υ if and only if x is on τ . Now, suppose
w, x ∈ Σ∗ are such that suffk−1(υ(f⇐(w))) =
suffk−1(υ(f⇐(x))). Write

υ(f⇐(w)) = (w1 : y1)(w2 : y2) . . . (wn : yn)

υ(f⇐(x)) = (x1 : z1)(x2 : z2) . . . (xn : zn).

Then, we have τ(w) = w1w2 . . . wn and τ(x) =
x1x2 . . . xn. For all i > n − k + 1, wi : yi =
xi : zi, and therefore wi = xi. But this means
that suffk−1(τ(w)) = suffk−1(τ(x)), and since f
is k-TISL on tier τ , f←w = f←x . We conclude that
f is k-TSSL on tier υ.

Next, suppose that f is k-TOSL on tier τ . Let ϕ
be a tier on Σ×Γ∗ defined as follows: an action x :
y is on ϕ if and only if τ(y) 6= λ. Now, suppose
w, x ∈ Σ∗ are such that suffk−1(ϕ(f⇐(w))) =
suffk−1(ϕ(f⇐(x))). Write

ϕ(f⇐(w)) = (w1 : y1)(w2 : y2) . . . (wn : yn)

ϕ(f⇐(x)) = (x1 : z1)(x2 : z2) . . . (xn : zn).

Now, τ(f←(w)) = y1y2 . . . yn and τ(f←(x)) =
z1z2 . . . zn. Again, for all i > n − k + 1 we have
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Figure 3: An onward 2, 2-TIOSL SFST computing a
function that is not k-TSSL for any k.

wi : yi = xi : zi, so yi = zi. Observe that

suffk−1(τ(f←(w))) = suffk−1(yjyj+1 . . . yn)

= suffk−1(zjzj+1 . . . zn) = suffk−1(τ(f←(x))),

where j = n − k + 2. Since f is k-TOSL on tier
τ , f→w = f→x , so f is k-TSSL on tier ϕ.

This intuition does not carry over to the TIOSL
functions. In Proposition 17, the proposed action
tiers ignore symbols off the input and output tiers,
thus ensuring that the relevant input and output
symbols can always be recovered from the com-
putation history. This approach encounters prob-
lems when an onward TIOSL SFST deletes sym-
bols on the tier. Such SFSTs perform actions of
the form x : λ, where x is on the tier. These ac-
tions do not record any output symbols, but they
must be kept on the tier in a TSSL implementa-
tion so that the input symbol x can be recovered.
If too many (x : λ)s are performed consecutively,
they can overwhelm the memory of a TSSL SFST,
causing it to forget the most recent output sym-
bols. The following construction features exactly
this kind of behavior.

Proposition 18. There exists a function that is i, j-
TIOSL for some i, j but not k-TSSL for any k.

Proof. Let T be the SFST shown in Figure 3, and
let f : {a, b}∗ → {a, b, c, d}∗ be the function
computed by T .4 Observe that T is onward and
2, 2-TIOSL on tier τ , where a and b are on τ but
c and d are not, so f is 2, 2-TIOSL on tier τ . T
always copies the first symbol of its input to the

4The angle brackets are omitted from the state names.

output. Thereafter, T behaves as follows: all as
are deleted; a b is changed to a c if the most recent
input symbol is the same as the first input sym-
bol; a b is changed to a d otherwise. For example,
f(baabb) = bdc.

Let k > 0, and let υ be a tier on {a, b} ×
{a, b, c, d}∗. Suppose that either k = 1 or a : λ
is not on υ, and consider the strings w := ba and
x := b. Observe that f⇐(w) = (b : b)(a : λ) and
f⇐(x) = (b : b). Either suffk−1(υ(f⇐(x))) =
ok−2(b : b) = suffk−1(υ(f⇐(x))) if k > 1 and
b : b is on υ, or suffk−1(υ(f⇐(x))) = ok−1 =
suffk−1(υ(f⇐(x))) if k = 1 or b : b is not on υ.
However, f→w (b) = d but f→x (b) = c, so f cannot
be k-TSSL on tier υ.

Next, suppose that k > 1 and a : λ is on υ.
Consider the input strings w := ak+1 and x :=
bak. Observe that f⇐(w) = (a : a)(a : λ)k and
f⇐(x) = (b : b)(a : λ)k, thus

suffk−1(υ(f⇐(w))) = (a : λ)k−1

= suffk−1(υ(f⇐(x))).

However, f→w (b) = c but f→x (b) = d, so f is not
k-TSSL on tier υ.

6.2 Non-Onward TSSL SFSTs

The equivalence between the two definitions of the
TSSL functions presented in Section 5 crucially
depends on the criterion that TSSL SFSTs be on-
ward. In this subsection we show that without this
criterion, TSSL SFSTs compute a rich class of
subsequential functions. To illustrate how this is
possible, let us consider an example that witnesses
the separation between TSSL functions and TSSL
SFSTs.

Proposition 19. There exists a 2-TSSL SFST that
computes a function that is not k-TSSL for any k.

Proof. Consider the SFST in Figure 4. This SFST
is clearly 2-TSSL on a tier containing all actions,
and the function it computes is given by f(xy) =
xyx, where x ∈ {a, b} and y ∈ {a, b}∗. Observe
that for any z ∈ {a, b}∗, f←(z) = z. Therefore,
writing z = z1z2 . . . zn with |zi| = 1 for each i,

f⇐(z) = (z1 : z1)(z2 : z2) . . . (zn : zn).

We need to show that f is not k-TSSL for any k >
0 and for any tier τ over {a, b} × {a, b}∗.

Fix k and τ . Suppose a : a is on τ , and consider
the input strings w = ak+1 and x = bak. Observe
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Figure 4: A non-onward 2-TSSL SFST computing a function that is not k-TSSL for any k.

that f⇐(w) = (a : a)k+1 and f⇐(x) = (b : b)(a :
a)k, so

suffk−1(τ(f⇐(w))) = (a : a)k−1

= suffk−1(τ(f⇐(x))).

However, f→w (λ) = a but f→x (λ) = b, so f is not
k-TSSL on tier τ .

Next, suppose a : a is not on τ , and consider
the input strings w = b and x = ab. We have
f⇐(w) = b : b and f⇐(x) = (a : a)(b : b), so

suffk−1(τ(f⇐(w))) = suffk−1(τ(b : b))

= suffk−1(τ(a : a)τ(b : b))

= suffk−1(τ((a : a)(b : b)))

= suffk−1(τ(f⇐(x))).

However, f→w (λ) = b but f→x (λ) = a, so f is not
k-TSSL on tier τ .

Let f be the function described in Proposition
19. As discussed in the proof, an onward SFST
computing f must copy the current input symbol
to the output stream during each time step. At the
end of the computation, the final output function
is responsible for adding the first input symbol to
the end of the output string. Any onward TSSL
SFST that attempts to compute f will eventually
forget the identity of the first input symbol, so the
final output function cannot determine what to add
to the output. The SFST T in Figure 4 avoids this
problem by exploiting its non-onwardness. If the

first symbol of its input is an a, then T behaves in
an onward manner, copying the current input sym-
bol at each time step. This can be seen in the left
column of the state diagram. If the first symbol
of T ’s input is a b, then T alternates between pro-
ducing no output and producing two symbols of
output. Every time T performs a non-deleting ac-
tion x : y, y contains both the symbol that the on-
ward SFST would produce at the current time step
and the symbol that the onward SFST would have
produced at the previous time step. This way, T
encodes the identity of the first symbol of its input
using the manner in which it produces output—if
T produces output at every time step, then the first
symbol is an a, and if it produces output every two
time steps, then the first symbol is a b. In general,
this kind of encoding trick can be applied to a wide
range of SFSTs, including all SFSTs V that do not
perform deletions. Informally, we enumerate the
states of V by {q0, q1, . . . , qn}, and we construct a
TSSL SFST S that simulates V by producing out-
put at various frequencies. For each i, S produces
output every i + 1 time steps if V is in state qi. If
S remembers at least 2(n+ 1)-many actions, then
it can always deduce V ’s state at any point in the
computation, allowing it to simulate V .

7 Rhythmic Syncope in Phonology

The view of rhythmic syncope we have presented
here differs substantially in approach from exist-
ing treatments of rhythmic syncope in phonolog-
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ical theory. McCarthy (2008) identifies two ma-
jor approaches to rhythmic syncope in Optimal-
ity Theory. In the pseudo-deletion approach (e.g.,
Kager, 1997), the locations of symbols deleted by
syncope are marked with blank symbols. This
essentially makes rhythmic syncope identical to
rhythmic reduction, which we have seen is 2-
TOSL. McCarthy himself proposes a Harmonic
Serialism approach in which rhythmic syncope is
implemented in multiple steps. Firstly, stress is
assigned to every second vowel in the underlying
form. Then, the unstressed vowels are deleted, re-
sulting in syncope. This kind of derivation is illus-
trated in (20).

(20) Rhythmic syncope in Harmonic Serialism
(McCarthy, 2008)5

/wanamari/ Underlying Form
wanámaŕı Stress
[wnámŕı ] Syncope

In both approaches, rhythmic syncope is de-
composed into a 2-TOSL function and a homo-
morphism. In the pseudo-deletion approach, the
2-TOSL function is rhythmic reduction, and the
homomorphism removes the @s. In (20), the rhyth-
mic stress step is 2-TOSL, while the syncope step
is a homomorphism. In general, this kind of ap-
proach is extremely powerful.

Proposition 21. Every subsequential function f
can be written in the form f = h ◦ g, where g is
2-TOSL and h is a homomorphism.

Proof. Let T = 〈Q,Σ,Γ, q0,→, σ〉 be the mini-
mal SFST for f . Define g as follows. Let g(λ) :=
〈σ, f(λ)〉. For x1, x2, . . . , xn ∈ Σ, write

q0
x1:y1−−−→ q1

x2:y2−−−→ q2
x3:y3−−−→ . . .

xn−1:yn−1−−−−−−→ qn.

Then, g(x1x2 . . . xn) := 〈q1, y1〉〈q2, y2〉 . . . 〈qn,
yn〉〈σ, σ(qn)〉. Next, define h so that for any
〈q, y〉, h(〈q, y〉) = y. It is clear that f(x) =
h(g(x)) for every x. We now show that g is 2-
TOSL on a tier containing the full output alphabet.

Fix w, x ∈ Σ∗. Observe that for all z ∈ Σ∗,
g←(z) ∈ (Q × Γ∗)∗. Therefore, suppose that
suff1(g←(w)) = suff1(g←(x)) = 〈q, y〉. This
means that q0

w:u−−→ q and q0
x:v−−→ q for some

u, v ∈ Γ∗, so g→u = g→v by definition.

5The full derivation proposed by McCarthy (2008) in-
cludes syllabification and footing steps, which are omitted
here for simplicity.

In both pseudo-deletion and Harmonic Seri-
alism, non-segmental phonological symbols are
used to encode state information in the output,
making rhythmic syncope 2-TOSL. Proposition
21 shows that this technique can be applied to arbi-
trary SFSTs, and therefore results in massive over-
generation. By contrast, we have already seen that
the TSSL functions are a proper subset of the sub-
sequential functions, making action-sensitivity a
more restrictive alternative to current approaches
to rhythmic syncope.

8 Conclusion

The classic examples of TIOSL phenomena in
phonology are local processes and unidirectional
spreading processes (Chandlee, 2014). Rhythmic
syncope is qualitatively different from these phe-
nomena in that it leaves no evidence that the pro-
cess has occurred. As we have seen in Section
4, the fact that rhythmic syncope is not TIOSL
is a consequence of this property. In defining the
TSSL functions, we have proposed that rhythmic
syncope should be viewed as a dependency be-
tween incremental steps in a derivation, here for-
malized as the actions of the minimal SFST.

A potential risk of such an analysis is that the
notion of “action” is specific to the computational
system used to implement rhythmic syncope, and
therefore potentially subject to a broad range of
interpretations. In this paper, we have used on-
wardness and the existence of the minimal SFST
to formulate a notion of “action-sensitivity” that is
both formalism-independent and implementation-
independent. In Subsection 6.2, we have seen
that action-sensitivity can be made very power-
ful if we relax our assumptions about the nature
of the computation. This means that if action-
sensitivity is to be incorporated into phonological
analyses of rhythmic syncope, then care should be
taken to avoid loopholes like the one featured in
Proposition 19. Based on Proposition 21, a similar
warning can be made regarding the composition
of phonological processes. When decomposing
phonemena into several processes, as McCarthy
(2008) does in the Harmonic Serialism analysis,
care should be taken to ensure that theoretical pro-
posals do not allow for overgeneration.

Outstanding formal questions regarding the
TSSL functions include their closure properties
and the complexity of learning TSSL functions.
We leave such questions to future work.
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René Kager. 1997. Rhythmic vowel deletion in Op-
timality Theory. In Iggy Roca, editor, Deriva-
tions and Constraints in Phonology, pages 463–499.
Clarendon Press, Oxford, United Kingdom.

Connor Mayer and Travis Major. 2018. A Challenge
for Tier-Based Strict Locality from Uyghur Back-
ness Harmony. In Formal Grammar 2018, 23rd In-
ternational Conference, FG 2018, Sofia, Bulgaria,
August 11-12, 2018, Proceedings, volume 10950 of
Lecture Notes in Computer Science, pages 62–83,
Berlin, Germany. Springer Berlin Heidelberg.

John J. McCarthy. 2008. The serial interaction of stress
and syncope. Natural Language & Linguistic The-
ory, 26(3):499–546.

Adam McCollum, Eric Baković, Anna Mai, and Eric
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A Proof of Theorem 16

This appendix proves the equivalence between
TSSL functions and onward TSSL SFSTs. We be-
gin by showing how to construct an onward TSSL
SFST computing any given TSSL function.
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Definition 22. Let f : Σ∗ → Γ∗ be k-TSSL
on tier τ . Define the SFST transducer T (f) =
〈Q,Σ,Γ, q0,→, σ〉 as follows.

• Q := ({o} ∪ A(f))k−1 and q0 := ok−1.

• For each x ∈ Σ, →(q0, x) := 〈r, f←(x)〉,
where r = suffk−1 (τ (x : f←(x))).

• For each q ∈ Q\{q0}, let x ∈ Σ∗ be such
that suffk−1 (τ (f⇐(x))) = q, and let w :
y ∈ A(f) be such that f←(xw) = f←(x)y.
We define →(q, w) := 〈r, y〉, where r =
suffk−1 (τ (q(w : y))).

• Fix q ∈ Q. If q = q0, then σ(q) := f(λ).
Otherwise, we define σ(q) := f→x (λ), where
suffk−1 (τ (f⇐(x))) = q.

Remark 23. T (f) is k-TSSL on tier τ .

Note that in the third and fourth bullet points
of Definition 22, the action w : y and the string
f→x (λ) only depend on q and not on x, since f is
k-TSSL on tier τ . We now need to show that T (f)
computes f and that it is onward.

Lemma 24. Let f : Σ∗ → Γ∗ be k-TSSL on tier τ ,
and write T (f) = 〈Q,Σ,Γ, q0,→, σ〉. For every
x ∈ Σ+, if q0

x:y−−→ r, then y = f←(x).

Proof. Let us induct on |x|. For the base case, sup-
pose |x| = 1. Then, y = f←(x) by definition.

Now, fix n > 1, and suppose that if 0 < |u| < n
and q0

u:v−−→ r, then v = f←(u). Fix w ∈ Σn−1

and x ∈ Σ, and suppose that q0
w:y−−→ s

x:z−−→ t. By
the induction hypothesis, y = f←(w). The defini-
tion of T (f) states that z is the unique string such
that f←(wx) = f←(w)z. Thus, yz = f←(w)z =
f←(wx), and the proof is complete.

Lemma 25. Let f : Σ∗ → Γ∗ be k-TSSL on tier τ ,
and write T (f) = 〈Q,Σ,Γ, q0,→, σ〉. For all x ∈
Σ+, if q0

x:y−−→ r, then r = suffk−1(τ(f⇐(x))).

Proof. Let us induct on |x|. For the base case, sup-
pose |x| = 1. Since f⇐(x) = x : f←(x), by
definition r = suffk−1(τ(f⇐(x))).

Now, fix n > 1, and suppose that if |w| < n

and q0
w:y−−→ r, then r = suffk−1 (τ (f⇐(w))).

We need to show that for all w ∈ Σn−1 and
x ∈ Σ, if q0

w:y−−→ r
x:z−−→ s, then s =

suffk−1 (τ (f⇐(wx))). The induction hypothe-
sis gives us r = suffk−1 (τ (f⇐(w))). Since
〈s, z〉 =→(r, x), by the definition of T (f),

s = suffk−1(τ(r(x : z)))

= suffk−1(τ(r)τ(x : z))

= suffk−1
(
τ
(

suffk−1(τ(f⇐(w)))
)
τ(x : z)

)

= suffk−1(τ(τ(f⇐(w)))τ(x : z))

= suffk−1(τ(f⇐(w))τ(x : z))

= suffk−1(τ(f⇐(w)(x : z)))

= suffk−1 (τ (f⇐(wx))) , (26)

as desired.

Proposition 27. If f : Σ∗ → Γ∗ is k-TSSL on tier
τ , then T (f) computes f.

Proof. We need to show that for every x ∈ Σ∗,
T (f) outputs f(x) on input x. Write T (f) =

〈Q,Σ,Γ, q0,→, σ〉 and q0
x:y−−→ q. By Lemma

24, y = f←(x), and by Lemma 25, q =
suffk−1(τ(f⇐(x))). Definition 22 then states that
σ(q) = f→x (λ), so yσ(q) = f←(x)f→x (λ) =
f(x), thus T (f) outputs f(x) on input x.

Corollary 28. If f : Σ∗ → Γ∗ is k-TSSL on tier
τ , then T (f) is onward.

We then complete the proof by showing that ev-
ery onward TSSL SFST computes a TSSL func-
tion.

Lemma 29. Let T = 〈Q,Σ,Γ, q0,→, σ〉 be on-
ward and k-TSSL on tier τ . Let f be the function
computed by T . For all x ∈ Σ∗, if q0

x:y−−→ q, then
q = suffk−1(τ(f⇐(x))).

Proof. Let us induct on |x|. For the base case, sup-
pose |x| = 1. Since T is onward, y = f←(x), so

q = suffk−1
(
τ
(
ok−1(x : y)

))

= suffk−1
(
τ
(
ok−1(x : f←(x))

))

= suffk−1
(
τ
(
ok−1f⇐(x)

))

= suffk−1
(
τ
(
ok−1

)
τ (f⇐(x))

)

= suffk−1 (τ (f⇐(x))) .

Now, fix n > 1, and suppose that if |w| < n

and q0
w:y−−→ q, then q = suffk−1(τ(f⇐(w))).

We need to show that for all w ∈ Σn−1 and
x ∈ Σ, if q0

w:y−−→ r
x:z−−→ s, then s =

suffk−1(τ(f⇐(wx))). The induction hypothesis
gives us r = suffk−1(τ(f⇐(w))), and Defini-
tion 15 states that s = suffk−1(τ(r(x : z))). A
derivation similar to equation (26) then gives us
s = suffk−1(τ(f⇐(wx))), as desired.

227



Proof of Theorem 16. Proposition 27 has already
shown the forward direction. Let T =
〈Q,Σ,Γ, q0,→, σ〉 be an onward SFST com-
puting f that is k-TSSL on tier τ . Suppose
x, y ∈ Σ∗ are such that suffk−1(τ(f⇐(w))) =

suffk−1(τ(f⇐(x))). Write q0
w:y−−→ r and q0

x:z−−→
s. By Lemma 29, r = suffk−1(τ(f⇐(w))) =
suffk−1(τ(f⇐(x))) = s, so f→w = f→x , thus f
is k-TSSL on tier τ .
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Abstract
The SIGMORPHON 2019 shared task on
cross-lingual transfer and contextual analysis
in morphology examined transfer learning of
inflection between 100 language pairs, as well
as contextual lemmatization and morphosyn-
tactic description in 66 languages. The first
task evolves past years’ inflection tasks by ex-
amining transfer of morphological inflection
knowledge from a high-resource language to a
low-resource language. This year also presents
a new second challenge on lemmatization and
morphological feature analysis in context. All
submissions featured a neural component and
built on either this year’s strong baselines or
highly ranked systems from previous years’
shared tasks. Every participating team im-
proved in accuracy over the baselines for the
inflection task (though not Levenshtein dis-
tance), and every team in the contextual analy-
sis task improved on both state-of-the-art neu-
ral and non-neural baselines.

1 Introduction

While producing a sentence, humans combine vari-
ous types of knowledge to produce fluent output—
various shades of meaning are expressed through
word selection and tone, while the language is
made to conform to underlying structural rules via
syntax and morphology. Native speakers are often
quick to identify disfluency, even if the meaning of
a sentence is mostly clear.

Automatic systems must also consider these
constraints when constructing or processing lan-
guage. Strong enough language models can often
reconstruct common syntactic structures, but are
insufficient to properly model morphology. Many
languages implement large inflectional paradigms
that mark both function and content words with
a varying levels of morphosyntactic information.
For instance, Romanian verb forms inflect for per-
son, number, tense, mood, and voice; meanwhile,

Archi verbs can take on thousands of forms (Kib-
rik, 1998). Such complex paradigms produce large
inventories of words, all of which must be pro-
ducible by a realistic system, even though a large
percentage of them will never be observed over
billions of lines of linguistic input. Compounding
the issue, good inflectional systems often require
large amounts of supervised training data, which is
infeasible in many of the world’s languages.

This year’s shared task is concentrated on en-
couraging the construction of strong morphologi-
cal systems that perform two related but different
inflectional tasks. The first task asks participants
to create morphological inflectors for a large num-
ber of under-resourced languages, encouraging sys-
tems that use highly-resourced, related languages
as a cross-lingual training signal. The second task
welcomes submissions that invert this operation in
light of contextual information: Given an unanno-
tated sentence, lemmatize each word, and tag them
with a morphosyntactic description. Both of these
tasks extend upon previous morphological competi-
tions, and the best submitted systems now represent
the state of the art in their respective tasks.

2 Tasks and Evaluation

2.1 Task 1: Cross-lingual transfer for
morphological inflection

Annotated resources for the world’s languages are
not distributed equally—some languages simply
have more as they have more native speakers will-
ing and able to annotate more data. We explore
how to transfer knowledge from high-resource lan-
guages that are genetically related to low-resource
languages.

The first task iterates on last year’s main task:
morphological inflection (Cotterell et al., 2018).
Instead of giving some number of training exam-
ples in the language of interest, we provided only
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a limited number in that language. To accompany
it, we provided a larger number of examples in
either a related or unrelated language. Each test
example asked participants to produce some other
inflected form when given a lemma and a bundle
of morphosyntactic features as input. The goal,
thus, is to perform morphological inflection in
the low-resource language, having hopefully ex-
ploited some similarity to the high-resource lan-
guage. Models which perform well here can aid
downstream tasks like machine translation in low-
resource settings. All datasets were resampled from
UniMorph, which makes them distinct from past
years.

The mode of the task is inspired by Zoph et al.
(2016), who fine-tune a model pre-trained on a
high-resource language to perform well on a low-
resource language. We do not, though, require that
models be trained by fine-tuning. Joint modeling or
any number of methods may be explored instead.

Example The model will have access to type-
level data in a low-resource target language, plus
a high-resource source language. We give an ex-
ample here of Asturian as the target language with
Spanish as the source language.

Low-resource target training data (Asturian)
facer “fechu” V;V.PTCP;PST

aguar “aguà” V;PRS;2;PL;IND
...

...
...

High-resource source language training data
(Spanish)
tocar “tocando” V;V.PTCP;PRS

bailar “bailaba” V;PST;IPFV;3;SG;IND

mentir “mintió” V;PST;PFV;3;SG;IND
...

...
...

Test input (Asturian)
baxar V;V.PTCP;PRS

Test output (Asturian)
“baxando”

Table 1: Sample language pair and data format for
Task 1

Evaluation We score the output of each system
in terms of its predictions’ exact-match accuracy
and the average Levenshtein distance between the
predictions and their corresponding true forms.

2.2 Task 2: Morphological analysis in context

Although inflection of words in a context-agnostic
manner is a useful evaluation of the morphological
quality of a system, people do not learn morphol-
ogy in isolation.

In 2018, the second task of the CoNLL–
SIGMORPHON Shared Task (Cotterell et al.,
2018) required submitting systems to complete an
inflectional cloze task (Taylor, 1953) given only
the sentential context and the desired lemma – an
example of the problem is given in the following
lines: A successful system would predict the plu-
ral form “dogs”. Likewise, a Spanish word form
“ayuda” may be a feminine noun or a third-person
verb form, which must be disambiguated by con-
text.

The are barking.
(dog)

This year’s task extends the second task from last
year. Rather than inflect a single word in context,
the task is to provide a complete morphological
tagging of a sentence: for each word, a successful
system will need to lemmatize and tag it with a
morphsyntactic description (MSD).

The dogs are barking .

the dog be bark .
DET N;PL V;PRS;3;PL V;V.PTCP;PRS PUNCT

Context is critical—depending on the sentence,
identical word forms realize a large number of po-
tential inflectional categories, which will in turn
influence lemmatization decisions. If the sen-
tence were instead “The barking dogs kept us up
all night”, “barking” is now an adjective, and its
lemma is also “barking”.

3 Data

3.1 Data for Task 1

Language pairs We presented data in 100 lan-
guage pairs spanning 79 unique languages. Data
for all but four languages (Basque, Kurmanji, Mur-
rinhpatha, and Sorani) are extracted from English
Wiktionary, a large multi-lingual crowd-sourced
dictionary with morphological paradigms for many
lemmata.1 20 of the 100 language pairs are either

1The Basque language data was extracted from a manually
designed finite-state morphological analyzer (Alegria et al.,
2009). Murrinhpatha data was donated by John Mansfield; it
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distantly related or unrelated; this allows specula-
tion into the relative importance of data quantity
and linguistic relatedness.

Data format For each language, the basic data
consists of triples of the form (lemma, feature bun-
dle, inflected form), as in Table 1. The first fea-
ture in the bundle always specifies the core part of
speech (e.g., verb). For each language pair, sepa-
rate files contain the high- and low-resource train-
ing examples.

All features in the bundle are coded according to
the UniMorph Schema, a cross-linguistically con-
sistent universal morphological feature set (Sylak-
Glassman et al., 2015a,b).

Extraction from Wiktionary For each of the
Wiktionary languages, Wiktionary provides a num-
ber of tables, each of which specifies the full in-
flectional paradigm for a particular lemma. As in
the previous iteration, tables were extracted using a
template annotation procedure described in (Kirov
et al., 2018).

Sampling data splits From each language’s col-
lection of paradigms, we sampled the training, de-
velopment, and test sets as in 2018.2 Crucially,
while the data were sampled in the same fashion,
the datasets are distinct from those used for the
2018 shared task.

Our first step was to construct probability distri-
butions over the (lemma, feature bundle, inflected
form) triples in our full dataset. For each triple, we
counted how many tokens the inflected form has
in the February 2017 dump of Wikipedia for that
language. To distribute the counts of an observed
form over all the triples that have this token as its
form, we follow the method used in the previous
shared task (Cotterell et al., 2018), training a neu-
ral network on unambiguous forms to estimate the
distribution over all, even ambiguous, forms. We
then sampled 12,000 triples without replacement
from this distribution. The first 100 were taken as
training data for low-resource settings. The first
10,000 were used as high-resource training sets. As
these sets are nested, the highest-count triples tend
to appear in the smaller training sets.3

is discussed in Mansfield (2019). Data for Kurmanji Kurdish
and Sorani Kurdish were created as part of the Alexina project
(Walther et al., 2010; Walther and Sagot, 2010).

2These datasets can be obtained from https://
sigmorphon.github.io/sharedtasks/2019/

3Several high-resource languages had necessarily fewer,
but on a similar order of magnitude. Bengali, Uzbek, Kannada,

The final 2000 triples were randomly shuffled
and then split in half to obtain development and
test sets of 1000 forms each.4 The final shuffling
was performed to ensure that the development set is
similar to the test set. By contrast, the development
and test sets tend to contain lower-count triples
than the training set.5

Other modifications We further adopted some
changes to increase compatibility. Namely, we cor-
rected some annotation errors created while scrap-
ing Wiktionary for the 2018 task, and we standard-
ized Romanian t-cedilla and t-comma to t-comma.
(The same was done with s-cedilla and s-comma.)

3.2 Data for Task 2

Our data for task 2 come from the Universal Depen-
dencies treebanks (UD; Nivre et al., 2018, v2.3),
which provides pre-defined training, development,
and test splits and annotations in a unified anno-
tation schema for morphosyntax and dependency
relationships. Unlike the 2018 cloze task which
used UD data, we require no manual data prepa-
ration and are able to leverage all 107 monolin-
gual treebanks. As is typical, data are presented in
CoNLL-U format,6 although we modify the mor-
phological feature and lemma fields.

Data conversion The morphological annotations
for the 2019 shared task were converted to the Uni-
Morph schema (Kirov et al., 2018) according to
McCarthy et al. (2018), who provide a determin-
istic mapping that increases agreement across lan-
guages. This also moves the part of speech into
the bundle of morphological features. We do not
attempt to individually correct any errors in the UD
source material. Further, some languages received
additional pre-processing. In the Finnish data, we
removed morpheme boundaries that were present
in the lemmata (e.g., puhe#kieli 7→ puhekieli
‘spoken+language’). Russian lemmata in the GSD
treebank were presented in all uppercase; to match

Swahili. Likewise, the low-resource language Telugu had
fewer than 100 forms.

4When sufficient data are unavailable, we instead use 50
or 100 examples.

5This mimics a realistic setting, as supervised training is
usually employed to generalize from frequent words that ap-
pear in annotated resources to less frequent words that do not.
Unsupervised learning methods also tend to generalize from
more frequent words (which can be analyzed more easily by
combining information from many contexts) to less frequent
ones.

6https://universaldependencies.org/format.
html
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the 2018 shared task, we lowercased these. In de-
velopment and test data, all fields except for form
and index within the sentence were struck.

4 Baselines

4.1 Task 1 Baseline
We include four neural sequence-to-sequence mod-
els mapping lemma into inflected word forms: soft
attention (Luong et al., 2015), non-monotonic hard
attention (Wu et al., 2018), monotonic hard atten-
tion and a variant with offset-based transition distri-
bution (Wu and Cotterell, 2019). Neural sequence-
to-sequence models with soft attention (Luong
et al., 2015) have dominated previous SIGMOR-
PHON shared tasks (Cotterell et al., 2017). Wu
et al. (2018) instead models the alignment between
characters in the lemma and the inflected word
form explicitly with hard attention and learns this
alignment and transduction jointly. Wu and Cot-
terell (2019) shows that enforcing strict monotonic-
ity with hard attention is beneficial in tasks such
as morphological inflection where the transduction
is mostly monotonic. The encoder is a biLSTM
while the decoder is a left-to-right LSTM. All mod-
els use multiplicative attention and have roughly
the same number of parameters. In the model, a
morphological tag is fed to the decoder along with
target character embeddings to guide the decoding.
During the training of the hard attention model, dy-
namic programming is applied to marginalize all
latent alignments exactly.

4.2 Task 2 Baselines
Non-neural (Müller et al., 2015): The Lemming
model is a log-linear model that performs joint
morphological tagging and lemmatization. The
model is globally normalized with the use of a sec-
ond order linear-chain CRF. To efficiently calculate
the partition function, the choice of lemmata are
pruned with the use of pre-extracted edit trees.

Neural (Malaviya et al., 2019): This is a state-
of-the-art neural model that also performs joint
morphological tagging and lemmatization, but also
accounts for the exposure bias with the applica-
tion of maximum likelihood (MLE). The model
stitches the tagger and lemmatizer together with
the use of jackknifing (Agić and Schluter, 2017) to
expose the lemmatizer to the errors made by the
tagger model during training. The morphological
tagger is based on a character-level biLSTM em-
bedder that produces the embedding for a word,

Team Avg. Accuracy Avg. Levenshtein

AX-01 18.54 3.62
AX-02 24.99 2.72
CMU-03 58.79 1.52
IT-IST-01 49.00 1.29
IT-IST-02 50.18 1.32
Tuebingen-01† 34.49 1.88
Tuebingen-02† 20.86 2.36
UAlberta-01* 48.33 1.23
UAlberta-02*† 54.75 1.03
UAlberta-03*† 8.45 4.06
UAlberta-04*† 11.00 3.86
UAlberta-05* 4.10 3.08
UAlberta-06*† 26.85 2.65

Baseline 48.55 1.33

Table 2: Task 1 Team Scores, averaged across all Lan-
guages; * indicates submissions were only applied to a
subset of languages, making scores incomparable. † in-
dicates that additional resources were used for training.

and a word-level biLSTM tagger that predicts a
morphological tag sequence for each word in the
sentence. The lemmatizer is a neural sequence-
to-sequence model (Wu and Cotterell, 2019) that
uses the decoded morphological tag sequence from
the tagger as an additional attribute. The model
uses hard monotonic attention instead of standard
soft attention, along with a dynamic programming
based training scheme.

5 Results

The SIGMORPHON 2019 shared task received
30 submissions—14 for task 1 and 16 for task 2—
from 23 teams. In addition, the organizers’ baseline
systems were evaluated.

5.1 Task 1 Results

Five teams participated in the first Task, with a
variety of methods aimed at leveraging the cross-
lingual data to improve system performance.

The University of Alberta (UAlberta) performed
a focused investigation on four language pairs,
training cognate-projection systems from exter-
nal cognate lists. Two methods were considered:
one which trained a high-resource neural encoder-
decoder, and projected the test data into the HRL,
and one that projected the HRL data into the LRL,
and trained a combined system. Results demon-
strated that certain language pairs may be amenable
to such methods.
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HRL–LRL Baseline Best Team HRL–LRL Baseline Best Team

adyghe–kabardian 96.0 97.0 Tuebingen-02 hungarian–livonian 29.0 44.0 it-ist-01
albanian–breton 40.0 81.0 CMU-03 hungarian–votic 19.0 34.0 it-ist-01
arabic–classical-syriac 66.0 92.0 CMU-03 irish–breton 39.0 79.0 CMU-03
arabic–maltese 31.0 41.0 CMU-03 irish–cornish 24.0 34.0 it-ist-01
arabic–turkmen 74.0 84.0 CMU-03 irish–old-irish 2.0 6.0 it-ist-02
armenian–kabardian 83.0 87.0 it-ist-01 irish–scottish-gaelic 64.0 66.0 CMU-03
asturian–occitan 48.0 77.0 CMU-03 italian–friulian 56.0 78.0 CMU-03
bashkir–azeri 39.0 69.0 it-ist-02 italian–ladin 55.0 74.0 CMU-03
bashkir–crimean-tatar 70.0 70.0 CMU-03 italian–maltese 26.0 45.0 CMU-03
bashkir–kazakh 80.0 90.0 it-ist-01 italian–neapolitan 80.0 83.0 CMU-03
bashkir–khakas 86.0 96.0 it-ist-02 kannada–telugu 82.0 94.0 CMU-03
bashkir–tatar 68.0 74.0 it-ist-02 kurmanji–sorani 15.0 69.0 CMU-03
bashkir–turkmen 94.0 88.0 it-ist-01 latin–czech 20.1 71.4 CMU-03
basque–kashubian 40.0 76.0 CMU-03 latvian–lithuanian 17.1 48.4 CMU-03
belarusian–old-irish 2.0 10.0 CMU-03 latvian–scottish-gaelic 48.0 68.0 CMU-03
bengali–greek 17.7 74.6 CMU-03 persian–azeri 46.0 69.0 CMU-03
bulgarian–old-church-slavonic 44.0 56.0 CMU-03 persian–pashto 27.0 48.0 CMU-03
czech–kashubian 52.0 78.0 CMU-03 polish–kashubian 74.0 78.0 CMU-03
czech–latin 8.4 42.0 CMU-03 polish–old-church-slavonic 40.0 58.0 CMU-03
danish–middle-high-german 72.0 82.0 it-ist-02 portuguese–russian 27.5 76.3 CMU-03
danish–middle-low-german 36.0 44.0 it-ist-01 romanian–latin 6.7 41.3 CMU-03
danish–north-frisian 28.0 46.0 CMU-03 russian–old-church-slavonic 34.0 64.0 CMU-03
danish–west-frisian 42.0 43.0 CMU-03 russian–portuguese 50.5 88.4 CMU-03
danish–yiddish 76.0 67.0 it-ist-01 sanskrit–bengali 33.0 65.0 CMU-03
dutch–middle-high-german 76.0 78.0 it-ist-01 / it-ist-02 sanskrit–pashto 34.0 43.0 CMU-03
dutch–middle-low-german 42.0 52.0 it-ist-02 slovak–kashubian 54.0 76.0 CMU-03
dutch–north-frisian 32.0 46.0 CMU-03 slovene–old-saxon 10.6 53.2 CMU-03
dutch–west-frisian 38.0 51.0 it-ist-02 sorani–irish 27.6 66.3 CMU-03
dutch–yiddish 78.0 64.0 it-ist-01 spanish–friulian 53.0 81.0 CMU-03
english–murrinhpatha 22.0 42.0 it-ist-02 spanish–occitan 57.0 78.0 CMU-03
english–north-frisian 31.0 42.0 CMU-03 swahili–quechua 13.9 92.1 CMU-03
english–west-frisian 35.0 43.0 CMU-03 turkish–azeri 80.0 87.0 it-ist-02
estonian–ingrian 30.0 44.0 it-ist-02 turkish–crimean-tatar 83.0 89.0 CMU-03 / it-ist-02
estonian–karelian 74.0 68.0 it-ist-01 turkish–kazakh 76.0 86.0 it-ist-02
estonian–livonian 36.0 40.0 it-ist-02 turkish–khakas 76.0 94.0 it-ist-01
estonian–votic 25.0 35.0 it-ist-01 turkish–tatar 73.0 83.0 it-ist-02
finnish–ingrian 54.0 48.0 it-ist-02 turkish–turkmen 86.0 98.0 it-ist-01
finnish–karelian 70.0 78.0 it-ist-01 urdu–bengali 49.0 67.0 CMU-03
finnish–livonian 22.0 34.0 CMU-03 / it-ist-01 urdu–old-english 20.8 40.3 CMU-03
finnish–votic 42.0 40.0 it-ist-02 uzbek–azeri 57.0 70.0 CMU-03
french–occitan 50.0 80.0 CMU-03 uzbek–crimean-tatar 67.0 67.0 CMU-03
german–middle-high-german 72.0 82.0 CMU-03 uzbek–kazakh 84.0 72.0 CMU-03
german–middle-low-german 42.0 52.0 it-ist-02 uzbek–khakas 86.0 92.0 it-ist-01
german–yiddish 77.0 68.0 it-ist-01 uzbek–tatar 69.0 72.0 CMU-03
greek–bengali 51.0 67.0 CMU-03 uzbek–turkmen 80.0 78.0 CMU-03
hebrew–classical-syriac 89.0 95.0 CMU-03 welsh–breton 45.0 86.0 CMU-03
hebrew–maltese 37.0 47.0 CMU-03 welsh–cornish 22.0 42.0 it-ist-01
hindi–bengali 54.0 68.0 CMU-03 welsh–old-irish 6.0 6.0 CMU-03
hungarian–ingrian 12.0 40.0 it-ist-01 welsh–scottish-gaelic 40.0 64.0 CMU-03
hungarian–karelian 62.0 70.0 it-ist-02 zulu–swahili 44.0 81.0 CMU-03

Table 3: Task 1 Accuracy scores

233



HRL–LRL Baseline Best Team HRL–LRL Baseline Best Team

adyghe–kabardian 0.04 0.03 Tuebingen-02 hungarian–livonian 2.56 1.81 it-ist-02
albanian–breton 1.30 0.44 it-ist-02 hungarian–votic 2.47 1.11 it-ist-01
arabic–classical-syriac 0.46 0.10 CMU-03 irish–breton 1.57 0.38 CMU-03
arabic–maltese 1.42 1.37 CMU-03 irish–cornish 2.00 1.56 it-ist-01
arabic–turkmen 0.46 0.32 CMU-03 irish–old-irish 3.30 3.12 it-ist-02
armenian–kabardian 0.21 0.14 CMU-03 / it-ist-01 irish–scottish-gaelic 0.96 1.06 CMU-03
asturian–occitan 1.74 0.80 it-ist-01 italian–friulian 1.03 0.72 it-ist-02
bashkir–azeri 1.64 0.69 it-ist-02 italian–ladin 0.79 0.60 CMU-03
bashkir–crimean-tatar 0.39 0.42 CMU-03 italian–maltese 1.39 1.23 CMU-03
bashkir–kazakh 0.32 0.10 it-ist-01 italian–neapolitan 0.40 0.36 it-ist-02
bashkir–khakas 0.18 0.04 it-ist-02 kannada–telugu 0.60 0.14 CMU-03
bashkir–tatar 0.46 0.33 CMU-03 kurmanji–sorani 2.56 0.65 CMU-03
bashkir–turkmen 0.10 0.12 it-ist-01 latin–czech 2.77 1.14 CMU-03
basque–kashubian 1.16 0.42 CMU-03 latvian–lithuanian 2.21 1.69 CMU-03
belarusian–old-irish 3.90 3.14 CMU-03 latvian–scottish-gaelic 1.16 1.00 CMU-03
bengali–greek 2.86 0.59 CMU-03 persian–azeri 1.35 0.74 CMU-03
bulgarian–old-church-slavonic 1.14 1.06 CMU-03 persian–pashto 1.70 1.54 CMU-03
czech–kashubian 0.84 0.36 CMU-03 polish–kashubian 0.34 0.34 CMU-03
czech–latin 2.95 1.36 CMU-03 polish–old-church-slavonic 1.22 0.96 CMU-03
danish–middle-high-german 0.50 0.38 it-ist-02 portuguese–russian 1.70 1.16 CMU-03
danish–middle-low-german 1.44 1.26 it-ist-01 romanian–latin 3.05 1.35 CMU-03
danish–north-frisian 2.78 2.11 CMU-03 russian–old-church-slavonic 1.33 0.86 CMU-03
danish–west-frisian 1.57 1.27 it-ist-02 russian–portuguese 1.04 0.66 CMU-03
danish–yiddish 0.91 0.72 Tuebingen-01 sanskrit–bengali 1.79 1.13 CMU-03
dutch–middle-high-german 0.44 0.36 it-ist-02 sanskrit–pashto 1.54 1.27 it-ist-02
dutch–middle-low-german 1.34 1.16 it-ist-02 slovak–kashubian 0.60 0.34 CMU-03
dutch–north-frisian 2.67 1.99 CMU-03 slovene–old-saxon 2.23 1.14 CMU-03
dutch–west-frisian 2.18 1.18 it-ist-02 sorani–irish 2.40 0.99 CMU-03
dutch–yiddish 0.53 0.72 Tuebingen-01 spanish–friulian 1.01 0.61 CMU-03
english–murrinhpatha 1.68 1.10 it-ist-02 spanish–occitan 1.14 0.57 it-ist-01
english–north-frisian 2.73 2.22 it-ist-02 swahili–quechua 3.90 0.56 CMU-03
english–west-frisian 1.48 1.26 it-ist-02 turkish–azeri 0.35 0.22 it-ist-01
estonian–ingrian 1.56 1.24 it-ist-02 turkish–crimean-tatar 0.24 0.14 CMU-03
estonian–karelian 0.52 0.62 it-ist-02 turkish–kazakh 0.34 0.16 it-ist-02
estonian–livonian 1.87 1.47 it-ist-02 turkish–khakas 0.80 0.06 it-ist-01
estonian–votic 1.55 1.17 it-ist-02 turkish–tatar 0.37 0.21 it-ist-02
finnish–ingrian 1.08 1.20 it-ist-02 turkish–turkmen 0.24 0.02 it-ist-01
finnish–karelian 0.64 0.42 it-ist-01 urdu–bengali 1.12 0.98 CMU-03
finnish–livonian 2.48 1.71 it-ist-01 urdu–old-english 1.72 1.20 CMU-03
finnish–votic 1.25 1.02 it-ist-02 uzbek–azeri 1.23 0.70 CMU-03
french–occitan 1.22 0.69 it-ist-01 uzbek–crimean-tatar 0.49 0.45 CMU-03
german–middle-high-german 0.44 0.32 it-ist-02 uzbek–kazakh 0.20 0.32 CMU-03
german–middle-low-german 1.24 1.16 it-ist-02 uzbek–khakas 0.24 0.18 it-ist-01
german–yiddish 0.46 0.72 Tuebingen-01 uzbek–tatar 0.48 0.35 CMU-03
greek–bengali 1.21 1.02 CMU-03 uzbek–turkmen 0.32 0.42 CMU-03
hebrew–classical-syriac 0.14 0.06 CMU-03 welsh–breton 0.90 0.31 CMU-03
hebrew–maltese 1.24 1.10 CMU-03 welsh–cornish 2.44 1.50 it-ist-01
hindi–bengali 1.18 0.72 UAlberta-02 welsh–old-irish 3.36 3.08 CMU-03
hungarian–ingrian 2.60 1.46 it-ist-01 welsh–scottish-gaelic 1.22 1.08 CMU-03
hungarian–karelian 0.90 0.50 it-ist-01 zulu–swahili 1.24 0.33 CMU-03

Table 4: Task 1 Levenshtein scores
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The Tuebingen University submission (Tuebin-
gen) aligned source and target to learn a set of edit-
actions with both linear and neural classifiers that
independently learned to predict action sequences
for each morphological category. Adding in the
cross-lingual data only led to modest gains.

AX-Semantics combined the low- and high-
resource data to train an encoder-decoder seq2seq
model; optionally also implementing domain adap-
tation methods to focus later epochs on the target
language.

The CMU submission first attends over a decou-
pled representation of the desired morphological
sequence before using the updated decoder state to
attend over the character sequence of the lemma.
Secondly, in order to reduce the bias of the de-
coder’s language model, they hallucinate two types
of data that encourage common affixes and charac-
ter copying. Simply allowing the model to learn to
copy characters for several epochs significantly out-
performs the task baseline, while further improve-
ments are obtained through fine-tuning. Making
use of an adversarial language discriminator, cross
lingual gains are highly-correlated to linguistic sim-
ilarity, while augmenting the data with hallucinated
forms and multiple related target language further
improves the model.

The system from IT-IST also attends separately
to tags and lemmas, using a gating mechanism to
interpolate the importance of the individual atten-
tions. By combining the gated dual-head attention
with a SparseMax activation function, they are able
to jointly learn stem and affix modifications, im-
proving significantly over the baseline system.

The relative system performance is described
in Table 5, which shows the average per-language
accuracy of each system. The table reflects the fact
that some teams submitted more than one system
(e.g. Tuebingen-1 & Tuebingen-2 in the table).

5.2 Task 2 Results

Nine teams submitted system papers for Task 2,
with several interesting modifications to either the
baseline or other prior work that led to modest
improvements.

Charles-Saarland achieved the highest overall
tagging accuracy by leveraging multi-lingual BERT
embeddings fine-tuned on a concatenation of all
available languages, effectively transporting the
cross-lingual objective of Task 1 into Task 2. Lem-
mas and tags are decoded separately (with a joint

encoder and separate attention); Lemmas are a se-
quence of edit-actions, while tags are calculated
jointly. (There is no splitting of tags into features;
tags are atomic.)

CBNU instead lemmatize using a transformer
network, while performing tagging with a mul-
tilayer perceptron with biaffine attention. Input
words are first lemmatized, and then pipelined to
the tagger, which produces atomic tag sequences
(i.e., no splitting of features).

The team from Istanbul Technical University
(ITU) jointly produces lemmatic edit-actions and
morphological tags via a two level encoder (first
word embeddings, and then context embeddings)
and separate decoders. Their system slightly im-
proves over the baseline lemmatization, but signifi-
cantly improves tagging accuracy.

The team from the University of Groningen
(RUG) also uses separate decoders for lemmati-
zation and tagging, but uses ELMo to initialize the
contextual embeddings, leading to large gains in
performance. Furthermore, joint training on related
languages further improves results.

CMU approaches tagging differently than the
multi-task decoding we’ve seen so far (baseline is
used for lemmatization). Making use of a hierar-
chical CRF that first predicts POS (that is subse-
quently looped back into the encoder), they then
seek to predict each feature separately. In partic-
ular, predicting POS separately greatly improves
results. An attempt to leverage gold typological
information led to little gain in the results; experi-
ments suggest that the system is already learning
the pertinent information.

The team from Ohio State University
(OHIOSTATE) concentrates on predicting
tags; the baseline lemmatizer is used for lemma-
tization. To that end, they make use of a dual
decoder that first predicts features given only the
word embedding as input; the predictions are fed to
a GRU seq2seq, which then predicts the sequence
of tags.

The UNT HiLT+Ling team investigates a low-
resource setting of the tagging, by using parallel
Bible data to learn a translation matrix between
English and the target language, learning morpho-
logical tags through analogy with English.

The UFAL-Prague team extends their submis-
sion from the UD shared task (multi-layer LSTM),
replacing the pretrained embeddings with BERT,
to great success (first in lemmatization, 2nd in tag-
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Team Lemma Accuracy Lemma Levenshtein Morph Accuracy Morph F1

CBNU-01† 94.07 0.13 88.09 91.84
CHARLES-MALTA-01 74.95 0.62 50.37 58.81
CHARLES-SAARLAND-02† 95.00 0.11 93.23 96.02
CMU-02 92.20 0.17 85.06 88.97
CMU-DataAug-01‡ 92.51 0.17 86.53 91.18
Edinburgh-01 94.20 0.13 88.93 92.89
ITU-01 94.46 0.11 86.67 90.54
NLPCUBE-01 91.43 2.43 84.92 88.67
OHIOSTATE-01 93.43 0.17 87.42 92.51
RUG-01† 93.91 0.14 90.53 94.54
RUG-02 93.06 0.15 88.80 93.22
UFALPRAGUE-01† 95.78 0.10 93.19 95.92
UNTHILTLING-02† 83.14 0.55 15.69 51.87
EDINBURGH-02* 97.35 0.06 93.02 95.94
CMU-Monolingual* 88.31 0.27 84.60 91.18
CMU-PolyGlot-01*† 76.81 0.54 60.98 75.42
Baseline 94.17 0.13 73.16 87.92

Table 5: Task 2 Team Scores, averaged across all treebanks; * indicates submissions were only applied to a subset
of languages, making scores incomparable. † indicates that additional external resources were used for training,
and ‡ indicates that training data were shared across languages or treebanks.

ging). Although they predict complete tags, they
use the individual features to regularize the decoder.
Small gains are also obtained from joining multi-
lingual corpora and ensembling.

CUNI–Malta performs lemmatization as oper-
ations over edit actions with LSTM and ReLU.
Tagging is a bidirectional LSTM augmented by the
edit actions (i.e., two-stage decoding), predicting
features separately.

The Edinburgh system is a character-based
LSTM encoder-decoder with attention, imple-
mented in OpenNMT. It can be seen as an extension
of the contextual lemmatization system Lematus
(Bergmanis and Goldwater, 2018) to include mor-
phological tagging, or alternatively as an adaptation
of the morphological re-inflection system MED
(Kann and Schütze, 2016) to incorporate context
and perform analysis rather than re-inflection. Like
these systems it uses a completely generic encoder-
decoder architecture with no specific adaptation
to the morphological processing task other than
the form of the input. In the submitted version
of the system, the input is split into short chunks
corresponding to the target word plus one word of
context on either side, and the system is trained to
output the corresponding lemmas and tags for each
three-word chunk.

Several teams relied on external resources to

improve their lemmatization and feature analysis.
Several teams made use of pre-trained embeddings.
CHARLES-SAARLAND-2 and UFALPRAGUE-
1 used pretrained contextual embeddings (BERT)
provided by Google (Devlin et al., 2019). CBNU-
1 used a mix of pre-trained embeddings from the
CoNLL 2017 shared task and fastText. Further,
some teams trained their own embeddings to aid
performance.

6 Future Directions

In general, the application of typology to natu-
ral language processing (e.g., Gerz et al., 2018;
Ponti et al., 2018) provides an interesting avenue
for multilinguality. Further, our shared task was
designed to only leverage a single helper language,
though many may exist with lexical or morpholog-
ical overlap with the target language. Techniques
like those of Neubig and Hu (2018) may aid in de-
signing universal inflection architectures. Neither
task this year included unannotated monolingual
corpora. Using such data is well-motivated from
an L1-learning point of view, and may affect the
performance of low-resource data settings.

In the case of inflection an interesting future
topic could involve departing from orthographic
representation and using more IPA-like representa-
tions, i.e. transductions over pronunciations. Differ-
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Table 6: Task 2 Lemma Accuracy scores
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Table 8: Task 2 Morph Accuracy scores
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Table 9: Task 2 Morph F1 scores
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ent languages, in particular those with idiosyncratic
orthographies, may offer new challenges in this re-
spect.7

Only one team tried to learn inflection in a multi-
lingual setting—i.e. to use all training data to train
one model. Such transfer learning is an interest-
ing avenue of future research, but evaluation could
be difficult. Whether any cross-language transfer
is actually being learned vs. whether having more
data better biases the networks to copy strings is an
evaluation step to disentangle.8

Creating new data sets that accurately reflect
learner exposure (whether L1 or L2) is also an
important consideration in the design of future
shared tasks. One pertinent facet of this is informa-
tion about inflectional categories—often the inflec-
tional information is insufficiently prescribed by
the lemma, as with the Romanian verbal inflection
classes or nominal gender in German.

As we move toward multilingual models for mor-
phology, it becomes important to understand which
representations are critical or irrelevant for adapt-
ing to new languages; this may be probed in the
style of (Thompson et al., 2018), and it can be used
as a first step toward designing systems that avoid
“catastrophic forgetting” as they learn to inflect new
languages (Thompson et al., 2019).

Future directions for Task 2 include exploring
cross-lingual analysis—in stride with both Task 1
and Malaviya et al. (2018)—and leveraging these
analyses in downstream tasks.

7 Conclusions

The SIGMORPHON 2019 shared task provided a
type-level evaluation on 100 language pairs in 79
languages and a token-level evaluation on 107 tree-
banks in 66 languages, of systems for inflection and
analysis. On task 1 (low-resource inflection with
cross-lingual transfer), 14 systems were submitted,
while on task 2 (lemmatization and morphological
feature analysis), 16 systems were submitted. All
used neural network models, completing a trend in
past years’ shared tasks and other recent work on
morphology.

In task 1, gains from cross-lingual training were
generally modest, with gains positively correlating
with the linguistic similarity of the two languages.

7Although some work suggests that working with IPA or
phonological distinctive features in this context yields very
similar results to working with graphemes (Wiemerslage et al.,
2018).

8This has been addressed by Jin and Kann (2017).

In the second task, several methods were im-
plemented by multiple groups, with the most suc-
cessful systems implementing variations of multi-
headed attention, multi-level encoding, multiple
decoders, and ELMo and BERT contextual embed-
dings.

We have released the training, development, and
test sets, and expect these datasets to provide a
useful benchmark for future research into learn-
ing of inflectional morphology and string-to-string
transduction.
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Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1–27, Brus-
sels. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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ders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kan-
erva, Boris Katz, Tolga Kayadelen, Jessica Ken-
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Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili Müürisep,
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