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Abstract

In this paper, we describe our entry in the gen-
dered pronoun resolution competition which
achieved fourth place without data augmen-
tation. Our method is an ensemble system
of BERTs which resolves co-reference in an
interaction space. We report four insights
from our work: BERT’s representations in-
volve significant redundancy; modeling inter-
action effects similar to natural language infer-
ence models is useful for this task; there is an
optimal BERT layer to extract representations
for pronoun resolution; and the difference be-
tween the attention weights from the pronoun
to the candidate entities was highly correlated
with the correct label, with interesting impli-
cations for future work.

1 Introduction

The Gendered Ambiguous Pronouns (GAP)
dataset1 (Webster et al., 2018) addresses gender
bias by providing a dataset balanced over male and
female pronouns. The task is made challenging by
long paragraph lengths of multiple sentences with
a variety of named entities. The text comes from
the encyclopedia genre which is more formal and
contains numerous technical terms. Furthermore,
world knowledge is indispensable to this task. An
example is given in Figure 1 where the pronoun
is highlighted in green and the entities are high-
lighted in blue. To know that She refers to Chris-
tine rather than Elsie Tanne, a model requires
knowing that “never been mentioned again” is a
result of having died.

Due to the small size of the dataset (Table 1),
our solution was mainly based on transfer learn-
ing. Specifically, we used representations of the
pronoun and entities from an optimal frozen BERT

1https://github.com/
google-research-datasets/gap-coreference

Christine sent a telegram to congratulate Elsie and Steve Tan-
ner on their wedding day in 1967. In 1984, Elsie Tanner
informed Ken Barlow that Christine had died of liver fail-

ure after becoming an alcoholic in the late 1970s. She has
never been mentioned again.

Figure 1: An example in GAP dataset. To refer “she” to
“Christine”, a model has to connect “never been men-
tioned again” with “had died of liver failure”, which
requires world knowledge.

layer (Devlin et al., 2018) as inputs to a novel en-
coder architecture (Figure 2), whose results were
then ensembled (Maclin and Opitz, 2011) over
various BERT models (base and large, cased and
uncased) using shallow neural networks.

Our result achieved fourth place in the Kag-
gle shared-task competition2. The competition is
composed of two stages. In the first stage, the
the development set of GAP which is used for
evaluation and is entirely public to help competi-
tors search for model architectures. In the second
stage, a large and unpublished dataset was used to
test generalization ability as well as prevent label
probing.

Our model makes the following contributions
to this task. We propose a multi-head natural
language inference (NLI) encoder which resolves
co-reference though heuristic interaction and effi-
ciently addresses the redundancy in BERT by ap-
plying dropout to inputs directly. With layer-by-
layer exploration, we extract the task-specific fea-
tures from the optimal layer of BERT for coref-
erence resolution where we observe pronouns
strongly attend to the corresponding candidate en-
tities.

2https://www.kaggle.com/c/
gendered-pronoun-resolution/over

https://github.com/google-research-datasets/gap-coreference
https://github.com/google-research-datasets/gap-coreference
https://www.kaggle.com/c/gendered-pronoun-resolution/over
https://www.kaggle.com/c/gendered-pronoun-resolution/over
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Figure 2: Our multi-head NLI encoder model. The in-
puts are representations of the pronoun and candidate
entities from frozen BERT models.

Dataset Size Label Distribution
A B Neither

Validation 454 0.412 0.452 0.136
Development 2,000 0.437 0.463 0.100
Testing 2,000 0.459 0.428 0.113

Table 1: GAP dataset sizes and label distributions.

2 Methodology

2.1 Overview

We use the GAP dataset to train and evaluate our
model. For stage 1, following the evaluation set-
tings of Kaggle, our models were trained with the
test set, validation set and evaluated on the devel-
opment set. For stage 2, the models were trained
with the whole GAP dataset. The number of sam-
ples and distribution of labels in each dataset is
shown in Table 1.

Given a query (entitya, entityb, pronoun), we
obtain deep contextual representations from the
optimal layer of BERT for the pronoun and each
entity. Where the entities are composed of multi-
ple word pieces, we take the mean of those vec-
tors.

The relations between query words were mod-
eled by two base neural architectures. The first
architecture concatenates the contextual represen-
tations and aggregates the features with a shal-
low MLP, which turns out to be simple yet effi-
cient. The second architecture is based on natu-
ral language inference. It projects the contextual
representations into several low-dimensional sub-
spaces to extract task-specific features which are

Figure 3: Performance of representations from differ-
ent BERT layers. Log loss is calculated with the first
stage evaluation set.

then passed to an interaction layer and Siamese
encoders. We chose the second method as our
main model because it is more structural and in-
terpretable. Each base model is trained on frozen
BERT Base and Large, and from both cased and
uncased versions. The final prediction was an
ensemble over all types of base models using a
densely connected neural network.

2.2 Optimal BERT Layer

Unlike the common practice of taking the last
hidden layer of BERT, we searched for a task-
specific layer to obtain the most relevant contex-
tualized representations, which yielded significant
improvements. As pointed out by Peters et al.
(2018), the hidden layers in language models en-
code different linguistic knowledge. We therefore
conducted a layer by layer analysis to find the best
features for this task. As shown in Figure 3, not
all BERT layers performed equally well. A similar
pattern is observed in both BERT Base and Large,
where performance increases until around three
quarters of the depth, before becoming worse. The
optimal layers turn out to be 8 and 19 for BERT
Base and Large, respectively.
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Figure 4: Redundancy in BERT Base and Large. Log
loss is calculated with the first stage evaluation set. We
can still achieve close to the best log loss in each case
by taking a subset of the BERT vectors. This has a
regularization benefit overall.

2.3 Redundancy in BERT

Manual analysis of the progression of attention
distributions through each layer of BERT indi-
cated the potential for a lot of redundancy in the in-
formation attended to, and therefore encoded. We
empirically tested this idea by randomly sampling
a subset of features in the BERT vectors (held con-
stant through training) and comparing log loss to
the sampling rate. Performance degradation halts
well before the entire BERT vector is included.
This indicates information necessary for this task
is present in about 70% to 80% of the BERT vec-
tors (taken from the optimal layer).

Based on this observation, we leverage the
redundancy by adding dropout(Srivastava et al.,
2014) directly to BERT features, which can be
considered a kind of model boosting (Breiman,
1998), similar to training several prototypes with
subsets that are randomly sampled from the BERT
vector, and letting the neural network figure out
the best ensemble architecture through back prop-
agation.

The idea of sampling subsets and then training
several models is quite similar to random forests
(Breiman, 2001). However, unlike the general sit-
uation in random forests where the performance
of base models degrade when using less data, our
base models can still achieve strong performance
because of the redundancy in BERT.

2.4 Word Encoder

Because of the small size of the dataset and
the redundency in the BERT vectors, we chose
to project the BERT representations into several

lower-dimensional spaces using multiple affine
layers with SELU activation (Klambauer et al.,
2017), rather than using the whole BERT vector
directly. For a k-dimensional word embedding w,
the word encoder of the head h encodes it as a n-
dimensional vector, which is described as:

xh = SELU(Wehw + beh) (1)

where Weh ∈ Rn×k is shared for the pronoun
and entities. Our word encoder was also inspired
by the multi-head attention (Vaswani et al., 2017),
an essential component in BERT, which projects
hidden representations into multiple sub-spaces
where it can infer the relations between query and
key efficiently. We attempted to use more com-
plicated architectures, such as independent trans-
formations for pronouns and entities, or deeper
highway transformations (Srivastava et al., 2015),
which all resulted in overfitting.

2.5 Modeling Interactions
This task can be considered a sub-task of binary
answer selection. We found success modeling in-
teractions between the representations of each en-
tity and the pronoun. We use an established tech-
nique from successful natural language inference
models (Mou et al., 2015) to model the interaction
of encoded results from every head. For the head
h, the interaction between encoded entities ah, bh
and the pronoun ph is modeled as:

iah = [[ah; ph]; ah − ph; ah ∗ ph] (2)

ibh = [[bh; ph]; bh − ph; bh ∗ ph] (3)

where iha,hb ∈ R4n and [.; .] is the concatenation
operator. The interaction vectors are then aggre-
gated to m-dimensional vectors by Siamese en-
coders which share parameters for (ah, ph) and
(bh, ph), but not shared to different heads:

eah = SELU(Wnh
iah + bnh

) (4)

ebh = SELU(Wnh
ibh + bnh

) (5)

where Wnh
∈ Rm×4n. We then sum the results

from each Siamese encoder to gather the evidence
from all heads:

ea =
∑
h

eah ; eb =
∑
h

ebh (6)

2.6 Handcrafted Features
We also manually create features from parse trees
which were generated by spacy,(Honnibal and
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Model Stage 1 Stage 2
Handcrafted features baseline 0.60 -
BERT (B) 0.50 -
BERT (B) + drop. 0.45 0.38
BERT (B) + drop. + inter. 0.43 -
BERT (B) + drop. + inter. + proj. 0.39 0.32
BERT (B) + all∗ 0.38 0.32
BERT (L) + drop. 0.39 0.31
BERT (L) + drop. + inter. + proj. 0.32 0.24
BERT (L) + all∗ 0.31 0.24
BERT (B) and BERT (L) ensemble 0.30 0.18

Table 2: The performance gain of each component for
both Bert Base and Bert Large, where all denotes using
input dropout, interaction layers, projection, and hand-
crafted features at the same time. Performance is log
loss from the stage 1 and stage 2 testing data.

Figure 5: Overview of our ensemble.

Montani, 2017) and from heuristics such as the
number of words between the candidate and pro-
noun. We normalized the hand-crafted features
into the range [0, 1] and aggregated them using a
feature encoder which consists of an affine layer
with SELU activation. To combine the hand-
crafted features with our encoder architecture, we
concatenate the outputs of feature encoder with ea
and eb.

2.7 Putting it Together
Table 2 shows the performance gains of imple-
menting input dropout, projection, interactions
and handcrafted features. In the case all, hand-
crafted features are included. We saw a steady im-
provement in performance implementing these to-
gether that carried over from BERT Base to BERT
Large on the both stage 1 and stage 2 evaluation
data.

2.8 Ensemble
Figure 5 shows the overview of our ensemble ar-
chitecture. The ensemble was composed of mod-
els whose inputs were from different types of
BERTs and handcrafted features. We then ag-
gregated the predictions of the base models with
a five-layer densely-connected feedforward net-
work.

Figure 6: Average attention energy from the pronoun
to the entity A and B as a function of layer. Due to im-
balance in the dataset, B is more likely to be the correct
answer, which explains BERT’s preference for B.

2.9 Experiment Setting

Our models were built with Keras. The input
dropout rates were 0.6 and 0.7 for BERT Base and
Large, respectively. For the concatenation based
model, the classifier was composed of a single hid-
den layer with size 37 following a batch normal-
ization layer and a dropout layer with rate 0.6. For
the multi-head NLI encoder, the number of heads
was 6 and the dimension of the down-projected
vector space was 37. The interactive encoder as
composed of a hidden layer with size 37 following
SELU activation. To summarize the output from
each NLI encoders, we used either a concatena-
tion or summation operation following a dropout
layer with rates 0.8, 0.85 respectively. The classi-
fier of the multi-head NLI encoder was exactly the
same as the concatenation based encoder.

For training, we validated our models with 7-
fold cross-validation and early-stopping on cross-
entropy with patience 20. The batch size was 32
and the optimizer was Adam (Kingma and Ba,
2014) with initial learning rate 1e−3 for all mod-
els. We regularized the output layer with 0.1 L2
penalty. The overall training time was about 8
hours for stage 1. For other detailed settings and
hyper-parameters please refer to our public code
repository.3

3 Conclusion

We have demonstrated that BERT has an opti-
mal layer for this task. We also showed that
BERT’s representations contain redundant infor-

3https://github.com/zake7749/
Fill-the-GAP

https://github.com/zake7749/Fill-the-GAP
https://github.com/zake7749/Fill-the-GAP
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Figure 7: Average attention energy from the pronoun
to the correct (YES) and incorrect entity (NO), and the
difference between them. These attention distributions
provide a signal may be useful for further improve-
ments to our solution.

mation, and that dropout can be used to over-
come this problem. Projecting to lower dimen-
sions with multiple heads also allowed us to con-
sider multiple perspectives on this information in
more tractable space. Considering interactions be-
tween these perspectives also proved beneficial for
this task. However, manual error analysis still re-
vealed a large number of world knowledge cases,
a major limitation of our solution.

4 Future Work

Post-competition analysis revealed that the differ-
ence between attention weights from the target
pronoun to the candidate entities in the optimal
layer was found to be highly predictive of the cor-
rect label. In Figure 6 we can see the overall en-
ergy of attention from the pronoun to the candidate
entities’ peaks. Notice that due to imbalance in the
dataset, B is more likely to be the correct answer,
which explains BERT’s preference for B. Figure
7 shows the average difference in attention energy
from the pronoun to the entity that is referred to,
or not referred to, and the difference. There are
significant gaps between the correct and incorrect
candidates in layers 17 to layers 20. The pattern
of attention energies is consistent as the observa-
tions in section 2.2, which indicates that instead
of using the attended vectors, the energies in the
attention process can also be efficient and highly-
interpretable features for correference resolution.

In future work, we intend to add features from
BERT’s attention layers to see if we can improve
our performance. Furthermore, this discovery
could lead to a more general pronoun resolution

technique based on BERT that doesn’t require can-
didate entity labeling. We would also like to inves-
tigate using this signal for unsupervised and semi-
supervised pronoun resolution.
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