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Abstract

Standard paradigms for search do not work
well in the medical context. Typical infor-
mation needs, such as retrieving a full list of
medical interventions for a given condition,
or finding the reported efficacy of a particu-
lar treatment with respect to a specific out-
come of interest cannot be straightforwardly
posed in typical text-box search. Instead, we
propose faceted-search in which a user spec-
ifies a condition and then can browse treat-
ments and outcomes that have been evaluated.
Choosing from these, they can access random-
ized control trials (RCTs) describing individ-
ual studies. Realizing such a view of the med-
ical evidence requires information extraction
techniques to identify the population, interven-
tions, and outcome measures in an RCT. Pa-
tients, health practitioners, and biomedical li-
brarians all stand to benefit from such innova-
tion in search of medical evidence. We present
an initial prototype of such an interface applied
to pre-registered clinical studies. We also dis-
cuss pilot studies into the applicability of in-
formation extraction methods to allow for sim-
ilar access to all published trial results.

1 Introduction

The most authoritative evidence regarding the ef-
ficacy of medical treatments is contained in pa-
pers describing results from randomized control
trials (RCTs) (Byar et al., 1976). Evidence-based
approaches to deciding standards of care require
effective access to this literature, which may en-
tail searching for information that the user does
not have at the outset of their search (Relevo,
2012). Medical librarians (Crum and Cooper,
2013), practitioners, and patients would all bene-
fit from a system that makes access to RCTs faster
and more intuitive via browsing capabilities.

One of the obstacles to accessing RCT papers
is that users may not begin with a well-formulated

information need. For example a user may want to
see what treatments have been studied for a given
condition. Perhaps more importantly, individu-
als will value various health outcomes differently:
some will have more interest in studies that used
a particular criterion (outcome) to measure treat-
ment effectiveness than in other studies.

For example, someone searching for treatments
to control diabetes may be interested in know-
ing the extent to which treatments might prevent
vision problems. But many trials studying dia-
betes use as the primary outcome measure changes
in A1c, i.e. measurements indicative of average
blood sugar levels over a couple of months. There
is no correlation between A1c and retinopathy at
least at diagnosis time (Maa and Sullivan, 2007).
Being able to see a list of outcomes and select-
ing those of highest interest to preform a search
for RCTs that talk about vision problems as well
would be likely appreciated by users. Using surro-
gate outcome measures like A1c is considered as
one of the core reasons ineffective or even harmful
medical practices get adopted as standards of care
(Chapter 3, (Prasad and Cifu, 2015)).

Here we present: (i) a faceted-search view to
browse and search for medical literature based
on the condition being studied (and other partici-
pant characteristics) in the study, the interventions
used, and the outcomes measured; (ii) a proto-
type for the search of clinical studies on clinical-
trials.gov using study metadata; (iii) a study to de-
termine the feasibility of using information extrac-
tion systems to extend this search to papers.

2 Browsing ClinicalTrials.gov

ClinicalTrials.gov is a centralized repos-
itory of clinical studies conducted around the
world. Studies are registered by researchers who
populate a number of required fields, such as the
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medical condition being studied, demographic in-
formation pertaining to the patients to be enrolled
in the study (e.g., women, men, children), the
medical interventions under consideration (e.g.,
specific drugs) and the outcomes that will be mea-
sured to determine success (or failure) of the med-
ical intervention (such as the retinopathy and A1c
example just discussed). The search interface pro-
vides a limited faceted-search ability1 and a pre-
view of interventions. It however does not provide
capabilities to preview and select studies by type
of intervention/outcome.

We provide a sense of how faceted search
interface would work generally for RCT pa-
pers by initially providing this view over tri-
als contained within ClinicalTrials.gov.
The demo can be accessed here: https://
browsing-health.herokuapp.com/.

Users can see at a glance typical outcome mea-
sures used in studies, and they can access stud-
ies that considered specific outcomes of interest.
For example a search for ‘asthma’ reveals that the
most commonly used outcome is time to first se-
vere asthma exacerbation, a direct measure of ef-
fectiveness, while the second most used is ‘fev1’,
a measurement of lung function which is a conve-
nient but indirect surrogate measure – lung func-
tion can improve without affecting the number
of severe exacerbations. Overall, the most com-
mon outcome measures across all registered stud-
ies were overall survival, progression free sur-
vival, response rate and quality of life.

Patient advocates, medical researchers and pol-
icy makers may benefit from this view of inter-
ventions and outcomes data, namely by using it
to inform care and plan future studies. However,
this search prototype was created using the meta-
data manually provided by researchers at the time
of registration. This does not scale to handle the
entire corpus of published evidence.

3 IE for RCTs

To organize all medical papers describing RCTs
under a similar view, we need automated meth-
ods for extracting patient, intervention, and out-
come descriptions from the abstracts (or full-texts)
of articles describing trials. In this section we use
pre-trained models for sequence labeling for these
three aspects of RCTs (Nye et al., 2018). These are

1https://clinicaltrials.gov/ct2/
results?cond=diabetes

standard LSTM-CRF models (Huang et al., 2015;
Lample et al., 2016) trained on crowdsourced
annotations of ∼5000 abstracts of papers from
MEDLINE (via PubMed) that describe RCTs with
human subjects. We use the publicly released
pre-trained models for sequence labeling from
https://ebm-nlp.herokuapp.com/.

In the prior evaluation of these models, token-
level precision and recall for coarse annotation of
spans is reasonably good2. Spans describing par-
ticipants are marked well in terms of both preci-
sion (75%) and recall (80%). Outcomes have good
precision (80%) but lower recall and intervention
spans have the lowest accuracy for automatic tag-
ging. Here we explore the feasibility of using au-
tomated extraction to provide access to the medi-
cal literature via a browsing interface.

3.1 Complete label set

First, we ask whether the automatic span tagging
can identify at least one span for each for patient,
intervention, and outcome descriptors in (most)
papers. This is a minimum requirement for being
able to display the article via a faceted view. Note
that this concern is independent of whether spans
are accurately marked; a bare necessity prior to
this is that any spans are marked at all.

We sampled thousands of abstracts of medical
papers from MEDLINE (Greenhalgh, 1997). We
used the associated metadata to identify a subset
of abstracts for RCTs with human subjects. We
extracted patient, intervention, and outcome spans
using the pre-trained models mentioned above.
Table 1 shows the percentage of articles for which
at least one instance of each information type was
labeled. Nearly 80% of articles had all three la-
bels. Further, there were almost no human RCT
abstracts that did not have any label (less than 1%).
On inspection, we noticed that most of the ab-
stracts without any automatically extracted study
descriptors were either not actually descriptions of
RCTs, or they were RCTs for diagnostic tests, not
treatments for medical conditions.

The contrast with the coverage of extracted
snippets in non-RCT human studies is reassuring.
Only about 15 percent of such studies had all three
study aspects labeled. On inspection, these tended
to be RCTs in animals or observational studies.

We tested the coverage of automated extrac-

2See the leaderboard at http://www.ebm-nlp.
com/#Leaderboard
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Type of Article % with 3 labels % with no labels
Human RCT 76.72 0.77

Other abstracts 14.42 21.00

Table 1: Percentage of abstracts of papers describ-
ing human RCTs (337k) with all three study elements
marked and no study element marked. This is con-
trasted with extracts from other papers (106k), either
not RCTs or not with human subjects.

Type of Article % with 3 labels % with no labels
Structured 78.45 0.27

Unstructured 74.12 1.50

Table 2: The percentage of structured (176k) and un-
structured (161k) abstracts of RCT humans studies for
which all three/no descriptors are extracted.

tors on structured and unstructured abstracts, re-
spectively. In unstructured abstracts authors de-
cide what information to include in the abstracts of
their paper. Structured abstracts were introduced
to ensure that important information is included
under an explicit heading, i.e. BACKGROUND,
PARTICIPANTS, METHOD, OUTCOME. Different
journals require their idiosyncratic structure for
abstract but in general these have become the norm
in the medical literature. The motivation for re-
quiring structured abstracts is that they are more
likely to explicitly and clearly describe important
aspect of the described research (Sharma and Har-
rison, 2006). Here we use this expectation of bet-
ter coverage on structured abstract as indirect mea-
sure of the abilities of automatic sequence tagging.

Here again we use meta-data to consider only
human RCTs. Structured abstracts have been
found to be more accessible and informative
(Huth, 1987), so we expected that an automated
extractor would similarly have different coverage
of extracted information for the two types of ab-
stracts. As Table 2 shows, this is indeed the case.
A larger percentage of structured abstracts have all
three study elements marked automatically, with
4% absolute difference in coverage between the
two types of abstracts. Even in unstructured ab-
stracts, there is virtually no abstracts from which
not a single RCT aspect is extracted.

These results are encouraging. The sequence la-
beling models behave intuitively and do not mark
spans in abstracts where the presence of spans
is not expected (as in non-RCT/human study ab-
stracts) or is expected to be harder to find, either
because of wording or because it is not included
(as in unstructured abstracts).

N
Unseen Seen

Unique Total Unique Total

P

1 13.88% 407k 0.31% 575k
2 33.10% 822k 3.70% 66k
3 61.33% 783k 10.50% 12k
4 80.27% 708k 17.81% 1.8k

I

1 15.22% 432k 0.42% 818k
2 36.39% 796k 3.40% 107k
3 64.92% 704k 6.99% 27k
4 80.55% 595k 12.71% 5k

O

1 9.00% 808k 0.16% 1888k
2 23.45% 1980k 1.63% 222k
3 52.72% 1681k 3.72% 61k
4 73.69% 1387k 6.44% 15k

Table 3: The number of N-grams (N=1,2,3,4) seen dur-
ing training and marked during inference as well for
each label. P stands for Population, I stands for Inter-
vention and O stands for Outcomes

3.2 Do the models generalize?

Another important question is whether IE mod-
els generalize, that is, whether such models mark
phrases not seen in the training data (Augenstein
et al., 2017). To investigate this, we classify
the extracted snippets from MEDLINE data into
‘seen’ (those that match exactly with or that appear
as a substring of an annotated span in the training
data) and ‘unseen’, i.e., snippets that do not appear
as a (sub)unit in the training data.

Table 3 provides the number and percentage of
extracted spans that do not occur in the training
data, broken down by the length of the extracted
span. The results are encouraging: even for uni-
grams, a large fraction of marked snippets are un-
seen and hence are generalized from the context.
As expected, the longer the snippet, the larger the
proportion of uniquely marked phrases, as longer
phrases are unlikely to be repeated verbatim.

These results suggest that the models generalize
well, and can identity novel snippets. This find-
ing is promising in its implications for using IE to
power a browseable view of trial data.

3.3 Impressions of Extraction Quality

In this section, we discuss a few qualitative ob-
servations related to automated extraction of pa-
tient, intervention and outcome information and
the implications these have for further computa-
tional work on the extraction task.

Figures 1 and 2 show two abstracts with au-
tomatic annotations of participants, interventions
and outcomes. Overall, the mark-up looks good,
with all three RCT aspects covered. For the ab-
stract in Figure 1, the interventions are accurately
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This study analyzed the effectiveness of suprascapular
nerve block under ultrasonographic guidance in patients
with perishoulder pain. Patients with perishoulder pain
were enrolled in the study and were randomly divided into
2 groups. In the first group of 25 patients (12 men and 13
women), nerve block was applied under ultrasonographic
guidance. Mean patient age in this group was 55.1 years.
In the control group, 25 patients (11 men and 14 women)
underwent nerve block without ultrasonographic guidance;
mean patient age was 51.6 years. Degree of pain was
assessed using a visual analog scale (VAS) and shoulder
function was evaluated using the Constant shoulder score
(CSS) before the nerve block, immediately following the
procedure, and 1 month after the procedure. There was no
statistically significant difference between the 2 groups in
VAS score and CSS before the procedure (P > .05). Im-
mediately after the procedure, both the study and control
groups revealed significantly improved VAS and CSS pat-
terns (P < .05). However , the study group showed better
VAS and CSS patterns than the control group at 1-month
follow-up (P < .05). No complications occurred in the
study group. In the control group , there were 2 cases of
arterial punctures and 3 cases of direct nerve injury with
neurological deficit for 2 months. Ultrasonography-guided
suprascapular nerve injection is a safe, accurate, and useful
procedure compared to the blind technique.

Figure 1: Example of a Human RCT abstract with
the predicted spans for Participants (red), Intervention
(blue) and Outcome (orange)

identified in the first and last sentence but in addi-
tion, a number of mentions of outcomes are erro-
neously marked as interventions. Importantly, the
(same) outcomes are mentioned four times in the
abstract. Some mentions are missed by the system,
others are mistyped (recognized as interventions)
and others are correctly identified. There is a simi-
lar problem where the unusual and unseen in train-
ing intervention yogic package is correctly marked
but one of the subsequent mentions towards the
end of the abstract is not detected. This observa-
tion implies that typical use of precision and re-
call, either token- or span-level, for evaluation of
the sequence labeling may be misleading. Instead,
an evaluation would need to capture the degree to
which at least one instance of each aspect was cap-
tured correctly. Matching variants of the same as-
pect, such as ‘Constant shoulder score’ and ‘CSS’
will also be needed in order to support indexing
and search over the extracted elements.

Another possible issue is the need to chunk
more complex marked spans, particularly the con-
junction of outcomes in Figure 1 and the list of
outcomes in Figure 2. Similar need arises in get-
ting the medical condition for which treatment is
studied, by separating that string from the over-
all span including ‘patients with/subjects with’.

This study aimed at studying the effect of yogic package
(YP) with some selected pranayama, cleansing practices
and meditation on pain intensity, inflammation, stiffness,
pulse rate (PR), blood pressure (BP), lymphocyte count
(LC), C-reactive protein (CRP) and serum uric acid (UA)
level among subjects of rheumatoid arthritis (RA). Ran-
domized control group design was employed to generate
pre and post data on participants and controls. Repealed
Measure ANOVAs with Bonferroni adjustment were ap-
plied to check significant overall difference among pre and
post means of participants and controls by using PASW
(SPSS Inc. 18th Version). Observed result favored statis-
tically significant positive effect of YP on selected RA pa-
rameters and symptoms under study at P < 0.05 , 0.01 and
0.001 respectively that showed remarkable improvement in
RA severity after 40-day practice of YP. It concluded that
YP is a significant means to reduce intensity of RA .

Figure 2: Example of a Human RCT abstract with
the predicted spans for Participants (red), Intervention
(blue) and Outcome (orange)

Such granular spans were annotated in the original
EBM-NLP corpus (Nye et al., 2018), along with a
detailed types of interventions and outcomes. Per-
formance for labeling these details and granular
spans however is much lower than that for the orig-
inal high-level spans that we examine here. An al-
ternative would be to learn chunking rules to iden-
tify the condition, individual interventions and in-
dividual outcomes in an unsupervised manner, by
collocation analysis of the thousands of extracted
snippets from the MEDLINE corpus.

In sum, progress on IE to aid browsing of the
medical literature would require several modifi-
cations to track meaningful progress. Evaluation
should be on exact spans that can serve directly
as indexing terms for abstracts, and these should
measure the ability of the system to find at least
one mention of each RCT aspect.

4 Conclusion

We presented a proposal for an alternative mode
of access to papers describing randomized control
trials. We present a crude example of the brows-
ing capabilities that can be built upon informa-
tion extraction results from the medical literature.
The initial prototype is powered by RCT descrip-
tors written by a person during the registration of
the study. We then present some preliminary ex-
periments on applying existing sequence labeling
methods for extracting RCT descriptors from the
free text of paper abstracts. Results are promising,
showing good coverage and reasonable activation
of the extraction. We identify aspects in which the
information extraction tasks ought to be adjusted
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in order to better serve indexing needs.
Biomedical librarians are increasingly asked to

identify medical evidence in preparation of future
randomized control trials and questions regarding
patient care. The browsing interface we envision
will likely facilitate their work.
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