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Introduction

Scientific knowledge is one of the greatest assets of humankind. This knowledge is recorded and
disseminated in scientific publications, and the body of scientific literature is growing at an enormous
rate. Automatic methods of processing and cataloguing that information are necessary for assisting
scientists to navigate this vast amount of information, and for facilitating automated reasoning, discovery
and decision making on that data.

Structured information can be extracted at different levels of granularity. Previous and ongoing work
has focused on bibliographic information (segmentation and linking of referenced literature), keyword
extraction and categorization (e.g., what are tasks, materials and processes central to a publication), and
cataloguing research findings. Scientific discoveries can often be represented as pairwise relationships,
e.g., protein-protein, drug-drug, and chemical-disease interactions, or as more complicated networks
such as action graphs describing scientific procedures (e.g., synthesis recipes in material sciences).
Information extracted with such methods can be enriched with time-stamps, and other meta-information,
such as indicators of uncertainty or limitations of the discovered facts.

Structured representations, such as knowledge graphs, summarize information from a variety of sources
in a convenient and machine readable format. Graph representations that link the information of a large
body of publications can reveal patterns and lead to the discovery of new information that would not be
apparent from the analysis of just one publication, or from extracted isolated pieces of information. This
kind of aggregation can lead to new scientific insights and it can also help to detect trends or find experts
for a particular scientific area.

While various workshops have focused separately on several aspects – extraction of information from
scientific articles, building and using knowledge graphs, the analysis of bibliographical information,
graph algorithms for text analysis – the aim of the ESSP workshop is to elicit and stimulate work that
targets the extraction and aggregation of structured information, and to ultimately lead to finding novel
information and scientific discoveries.

We have received 15 submissions, of which we accepted 10: 5 for oral presentation, 4 as posters and one
demo. The topics covered the biomedical domain, mathematics, computer science and general science,
with approaches focusing on various aspects of the extraction, learning, and knowledge processing.

To complement the accepted papers, we welcome four invited speakers from industry, state institutions
and academia, to provide insights into knowledge requirements and state of the art in specific fields
(medicine, social sciences) and contexts:

Michael Cafarella
University of Michigan
Extraction-Intensive Systems for the Social Sciences

Dina Demner-Fushman
National Library of Medicine
Extracting structured knowledge from biomedical publications

Hoifung Poon
Director, Precision Health NLP @ Microsoft
Machine Reading for Precision Medicine

Chris Welty
Google Research
Just when I thought I was out, they pull me back in – The role of KG in AKBC
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Research Foundation (DFG grant RO5127/2-1) – for making such a diverse and speaker-rich program
possible.
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Abstract

The increased demand for structured scientific
knowledge has attracted considerable attention
in extracting scientific relation from the ever
growing scientific publications. Distant su-
pervision is widely applied approach to auto-
matically generate large amounts of labelled
data for Relation Extraction (RE). However,
distant supervision inevitably accompanies the
wrong labelling problem, which will nega-
tively affect the RE performance. To address
this issue, (Han et al., 2018) proposes a novel
framework for jointly training RE model and
Knowledge Graph Completion (KGC) model
to extract structured knowledge from non-
scientific dataset. In this work, we firstly in-
vestigate the feasibility of this framework on
scientific dataset, specifically on biomedical
dataset. Secondly, to achieve better perfor-
mance on the biomedical dataset, we extend
the framework with other competitive KGC
models. Moreover, we proposed a new end-
to-end KGC model to extend the framework.
Experimental results not only show the fea-
sibility of the framework on the biomedical
dataset, but also indicate the effectiveness of
our extensions, because our extended model
achieves significant and consistent improve-
ments on distantly supervised RE as compared
with baselines.

1 Introduction

Scientific Knowledge Graph (KG), such as Uni-
fied Medical Language System (UMLS) 1, is ex-
tremely crucial for many scientific Natural Lan-
guage Processing (NLP) tasks such as Question
Answering (QA), Information Retrieval (IR), Re-
lation Extraction (RE), etc. Scientific KG provides
large collections of relations between entities, typ-
ically stored as (h, r, t) triplets, where h = head

1https://www.nlm.nih.gov/research/
umls/

entity, r = relation and t = tail entity, e.g., (ac-
etaminophen, may treat, pain). However, as with
general KGs such as Freebase (Bollacker et al.,
2008) and DBpedia (Lehmann et al., 2015), sci-
entific KGs are far from complete and this would
impede their usefulness in real-world applications.
Scientific KGs, on the one hand, face the data spar-
sity problem. On the other hand, scientific pub-
lications have become the largest repository ever
for scientific KGs and continue to increase at an
unprecedented rate (Munroe, 2013). Therefore, it
is an essential and fundamental task to turn the
unstructured scientific publications into well orga-
nized KG, and it belongs to the task of RE.

In RE, one obstacle that is encountered when
building a RE system is the generation of training
instances. For coping with this difficulty, (Mintz
et al., 2009) proposes distant supervision to au-
tomatically generate training samples via leverag-
ing the alignment between KGs and texts. They
assumes that if two entities are connected by a
relation in a KG, then all sentences that contain
these entity pairs will express the relation. For in-
stance, (aspirin, may treat, pain) is a fact triplet
in UMLS. Distant supervision will automatically
label all sentences, such as Example 1, Exam-
ple 2 and Example 3, as positive instances for the
relation may treat. Although distant supervision
could provide a large amount of training data at
low cost, it always suffers from wrong labelling
problem. For instance, comparing to Example 1,
Example 2 and Example 3 should not be seen as
the evidences to support the may treat relationship
between aspirin and pain, but will still be anno-
tated as positive instances by the distant supervi-
sion.

(1) The clinical manifestations are generally typ-
ical nocturnal pain that prevents sleep and
that is alleviated with aspirin.
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(2) The tumor was remarkably large in size , and
pain unrelieved by aspirin.

(3) The level of pain did not change significantly
with either aspirin or pentoxifylline , but the
walking distance was farther with the pentox-
ifylline group .

To automatically alleviate the wrong labelling
problem, (Riedel et al., 2010; Hoffmann et al.,
2011) apply multi-instance learning. In order to
avoid the handcrafted features and errors propa-
gated from NLP tools, (Zeng et al., 2015) proposes
a Convolutional Neural Network (CNN), which
incorporate mutli-instance learning with neural
network model, and achieves significant improve-
ment in distantly supervised RE. Despite the im-
pressive achievement in RE, this model still has
the limitation that it only selects the most infor-
mative sentence and ignores the rest, thereby loses
the rich information stored in those neglected sen-
tences, For instance, among Example 1, Exam-
ple 2 and Example 3, Example 1 is undoubtedly
the most informative one for detecting relation
may treat, but it unnecessarily means other sen-
tences such as Example 3 could not contribute to
the relation detection. In Example 3, entity aspirin
and entity pentoxifylline have alternative relation,
and the latter is a drug to treat muscle pain, there-
fore the former is also likely to be a pain-killing
drug. To address this issue, recently, attention
mechanism is applied to extract features from all
collected sentences. (Lin et al., 2016) proposes a
relation vector based attention mechanism for dis-
tantly supervised RE. (Han et al., 2018) proposes
a novel joint model that leverages the KG-based
attention mechanism and achieves better perfor-
mance than (Lin et al., 2016) on distantly super-
vised RE from New York Times (NYT) corpus.

The success that the joint model (Han et al.,
2018) has attained in the newswire domain (or
non-scientific domain) inspires us to choose the
strong model as our base model and assess its
feasibility on biomedical domain. Specifically,
the first question of this research is how the joint
model behaves when the system is trained on
biomedical KG (e.g., UMLS) and biomeical cor-
pus (e.g., Medline corpus). (Han et al., 2018)
indicates that the performance of the base model
could be affected the representation ability of
KGC model. The representation ability of a KGC
model also varies with dataset (Wang et al., 2017).

Therefore, given a new dataset (e.g., a biomedical
dataset), it is necessary to extend the base model
with other competitive KGC models, and choose
the best fit for the given dataset. However, the
base model only implements two KGC models,
which are based on TransE (Bordes et al., 2013)
and TransD (Ji et al., 2015) respectively. Thus, the
second question of this work is how other com-
petitive KGC models such as ComplEx (Trouil-
lon et al., 2016) and SimplE (Kazemi and Poole,
2018) influence the performance of the base model
on biomedical dataset. At last but not least,
in biomedical KG, a relation is scientifically re-
stricted by entity type (ET). For instance, in the
relation (h, may treat, t), the ET of t should be
Disease or Syndrome. Therefore, ET in-
formation is an important feature for biomedical
RE and KGC. For leveraging the ET information,
which the base model lacks, in this work, we pro-
pose an end-to-end KGC model to enhance the
base model. The proposed KGC model is capable
of identifying ET via the word embedding of tar-
get entity and incorporating the predicted ET into
a state-of-to-art KGC model to evaluate the plau-
sibility of potential fact triplets.

We conduct evaluation on biomedical datasets
in which KG is collected from UMLS and textual
data is extracted from Medline corpus. The ex-
perimental results not only show the feasibility of
the base model on the biomedical domain, but also
prove the effectiveness of our proposed extensions
for the base model.

2 Related Work

RE is a fundamental task in the NLP commu-
nity. In recent years, Neural Network (NN)-based
models have been the dominant approaches for
non-scientific RE, which include Convolutional
Neural Network (CNN)-based frameworks (Zeng
et al., 2014; Xu et al., 2015; Santos et al., 2015)
Recurrent Neural Network (RNN)-based frame-
works (Zhang and Wang, 2015; Miwa and Bansal,
2016; Zhou et al., 2016). NN-based approaches
are also used in scientific RE. For instance, (Gu
et al., 2017) utilizes a CNN-based model for iden-
tifying chemical-disease relations from Medline
corpus. (Hahn-Powell et al., 2016) proposes an
LSTM-based model for identifying causal prece-
dence relationship between two event mentions in
biomedical papers. (Ammar et al., 2017) applies
(Miwa and Bansal, 2016)’s model for scientific
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RE.

Although remarkably good performances are
achieved by the models mentioned above, they
still train and extract relations on sentence-level
and thus need a large amount of annotation data,
which is expensive and time-consuming. To ad-
dress this issue, distant supervision is proposed
by (Mintz et al., 2009). To alleviate the noisy
data from the distant supervision, many studies
model distant supervision for RE as a Multiple
Instance Learning (MIL) problem (Riedel et al.,
2010; Hoffmann et al., 2011; Zeng et al., 2015), in
which all sentences containing a target entity pair
(e.g.,aspirin and pain) are seen as a bag to be clas-
sified. To make full use of all the sentences in the
bag, rather than just the most informative one, (Lin
et al., 2016) proposes a relation vector based atten-
tion mechanism to extract feature from the entire
bag and outperforms the prior approaches. (Han
et al., 2018) proposes a joint model that adopts a
KG-based attention mechanism and achieves bet-
ter performance than (Lin et al., 2016) on distantly
supervised RE from NYT corpus.

In this work, we are primarily interested in ap-
plying distant supervision techniques to extract
biomedical fact triplets from scientific publica-
tions. To validate and enhance the efficacy of
the previous techniques in biomedical domain,
we choose the strong joint model proposed by
(Han et al., 2018) as the base model and make
some necessary extension for our scientific RE
task. Since from the two main groups of KGC
models (Wang et al., 2017): translational dis-
tance models and semantic matching models, the
base model only implements the translational dis-
tance models, TransE (Bordes et al., 2013) and
TransD (Ji et al., 2015), we thus extend the base
model with the semantic matching models, Com-
plEx (Trouillon et al., 2016) and SimplE (Kazemi
and Poole, 2018), for selecting the best fit for our
task. In addition, the base model has not incor-
porated the ET information, which we assume is
crucial for scientific RE. Therefore, we propose
an end-to-end KGC model to enhance the base
model. Different from the work (Xie et al., 2016),
which utilizes an ET look-up dictionary to obtain
ET, the end-to-end KGC is capable of identifying
ET via the word embedding of a target entity and
thus is free of the attachment to an incomplete ET
look-up dictionary.
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Figure 1: Overview of the base model.

3 Base Model

The architecture of the base model is illustrated
in Figure 1. In this section, we will introduce the
base model proposed by (Han et al., 2018) in two
main parts: KGC part, RE part.

3.1 KGC Part
Suppose we have a KG containing a set of fact
triplets O = {(e1, r, e2)}, where each fact triplet
consists of two entities e1, e2 ∈ E and their re-
lation r ∈ R. Here E and R stand for the set
of entities and relations respectively. KGC model
then encodes e1, e2 ∈ E and their relation r ∈ R
into low-dimensional vectors h, t ∈ Rd and r
∈ Rd respectively, where d is the dimensional-
ity of the embedding space. As mentioned above,
the base model adopts two representative trans-
lational distance models Prob-TransE and Prob-
TransD, which are based on TransE (Bordes et al.,
2013) and TransD (Ji et al., 2015) repectively, to
score a fact triplet. Specifically, given an entity
pair (e1, e2), Prob-TransE defines its latent rela-
tion embedding rht via the Equation 1.

rht = t− h (1)

Prob-TransD is an extension of Prob-TransE and
introduces additional mapping vectors hp, tp ∈
Rd and rp ∈ Rd for e1, e2 and r respectively.
Prob-TransD encodes the latent relation embed-
ding via the Equation 2, where Mrh and Mrt

are projection matrices for mapping entity embed-
dings into relation spaces.

rht = tr − hr, (2)
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hr = Mrhh,

tr = Mrtt,

Mrh = rph
>
p + Id×d,

Mrt = rpt
>
p + Id×d

The conditional probability can be formalized
over all fact triplets O via the Equations 3 and
4, where fr(e1, e2) is the KG scoring function,
which is used to evaluate the plausibility of a given
fact triplet. For instance, the score for (aspirin,
may treat, pain) would be higher than the one for
(aspirin, has ingredient, pain), because the former
is more plausible than the latter. θE and θR are pa-
rameters for entities and relations respectively, b is
a bias constant.

P(r|(e1, e2), θE , θR) =
exp(fr(e1, e2))∑

r′∈R exp(fr′(e1, e2))

(3)

fr(e1, e2) = b− ‖rht − r‖ (4)

3.2 RE Part
Sentence Representation Learning. Given a sen-
tence s with n words s = {w1, ..., wn} includ-
ing a target entity pair (e1, e2), CNN is used
to generate a distributed representation s for the
sentence. Specifically, vector representation vt

for each word wt is calculated via Equation 5,
where Ww

emb is a word embedding projection ma-
trix (Mikolov et al., 2013), Wwp

emb is a word posi-
tion embedding projection matrix, xw

t is a one-hot
word representation and xwp

t is a one-hot word po-
sition representation. The word position describes
the relative distance between the current word and
the target entity pair (Zeng et al., 2014). For in-
stance, in the sentence “Patients recorded pain

e2
and aspirin

e1
consumption in a daily diary”, the

relative distance of the word “and” is [1, -1].

vt = [vw
t ;vwp1

t ;vwp2
t ], (5)

vw
t = Ww

embx
w
t ,

vwp1
t = Wwp

embx
wp1
t ,

vwp2
t = Wwp

embx
wp2
t

The distributed representation s is formulated via
the Equation 6, where, [s]i and [ht]i are the i-th
value of s and ht, M is the dimensionality of s,
W is the convolution kernal, b is a bias vector,
and k is the convolutional window size.

[s]i = max
t
{[ht]i}, ∀i = 1, ...,M (6)

ht = tanh(Wzt + b),

zt = [vt−(k−1)/2; ...;vt+(k−1)/2]

KG-based Attention. Suppose for each fact
triplet (e1, r, e2), there might be multiple sen-
tences Sr = {s1, ..., sm} in which each sentence
contains the entity pair (e1, e2) and is assumed to
imply the relation r, m is the size of Sr. As dis-
cussed before, the distant supervision inevitably
collect noisy sentences, the base model adopts a
KG-based attention mechanism to discriminate the
informative sentences from the noisy ones. Specif-
ically, the base model use the latent relation em-
bedding rht from Equation 1 (or Equation 2) as
the attention over Sr to generate its final represen-
tation sfinal. sfinal is calculated via Equation 7,
where Ws is the weight matrix, bs is the bias vec-
tor, ai is the weight for si, which is the distributed
representation for the i-th sentence in Sr.

sfinal =
m∑

i=1

aisi, (7)

ai =
exp(〈rht,xi〉)∑m

k=1 exp(〈rht,xk〉)
,

xi = tanh(Wssi + bs)

Finally, the conditional probability P (r|Sr, θ)
is formulated via Equation 8 and Equation 9,
where, θ is the parameters for RE, which includes
{Ww

emb,W
wp
emb,W,b,Ws,bs,M,d}, M is the

representation matrix of relations, d is a bias vec-
tor, o is the output vector containing the predic-
tion probabilities of all target relations for the in-
put sentences set Sr, and nr is the total number of
relations.

P (r|Sr, θ) =
exp(or)∑nr
c=1 exp(oc)

(8)

o = Msfinal + d (9)

4 Extensions

The base model opens the possibility to jointly
train RE models with KGC models for distantly
supervised RE. The empirical results of the base
model on NYT corpus indicate that the perfor-
mance of distantly supervised RE varies with
KGC models (Han et al., 2018). In addition, the
performance of KGC models depends on a given
dataset (Wang et al., 2017). Therefore, we assume
that it is necessary to attempt multiple competi-
tive KGC models for the joint framework so as
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to find the optimal combination for our biomedi-
cal dataset. However, the base model only imple-
ments translational distance models: TransE and
TransD, but not the semantic matching models,
and this, we assume, might hinder its performance
in the new dataset. To address this, we select two
representative semantic matching models: Com-
plEx (Trouillon et al., 2016) and SimplE (Kazemi
and Poole, 2018) as the alternative KGC part.

As discussed in Section 1, in scientific
KGs, a fact triplet is severely restricted by
ET information (e.g., ET of e2 should be
Disease or Syndrome in the fact triplet
(e1,may treat, e2)). Therefore, for leveraging
ET information, which the base model lacks, we
also propose an end-to-end KGC model to extend
the base model. Since the proposed KGC model is
build on SimplE and is capable of Named Entity
Recognition (NER), we call it SimplE NER.

4.1 ComplEx based Attention

Given a fact triplet (e1, r, e2), ComplEx then en-
codes entities e1, e2 and relation r into a complex-
valued vector e1 ∈ Cd, e2 ∈ Cd and r ∈ Cd

respectively, where d is the dimensionality of the
embedding space. Since entities and relations are
represented as complex-valued vector, each x ∈
Cd consists of a real vector component Re(x)
and imaginary vector component Im(x), namely
x = Re(x)+iIm(x). The KG scoring function of
ComplEx for a fact triplet (e1, r, e2) is calculated
via Equation 10, where ē2 is the conjugate of e2;
Re(·) (or Im(·)) means taking the real (or imagi-
nary) part of a complex value. 〈u, v, w〉 is defined
via Equation 11, where [·]n is the n-th entry of a
vector.

fr(e1, e2) = Re(〈e1, r, ē2〉) =

〈Re(r), Re(e1), Re(e2)〉
+〈Re(r), Im(e1), Im(e2)〉
+〈Im(r), Re(e1), Im(e2)〉
−〈Im(r), Im(e1), Re(e2)〉

(10)

〈u,v,w〉 =

d∑

n=1

[u]n[v]n[w]n (11)

Since the asymmetry of this scoring function,
namely fr(e1, e2) 6= fr(e2, e1), ComplEx can ef-
fectively encode asymmetric relations (Trouillon
et al., 2016). For calculating the attention, the rht
in Equation 7 is defined via Equation 12, where �

represents the element-wise multiplication.

rht = Re(e1)�Re(e2)+Im(e1)�Im(e2) (12)

4.2 SimplE based Attention
Given a fact triplet (e1, r, e2), SimplE then en-
codes each entity e ∈ E into two vectors he, te
∈ Rd and each relation r ∈ R into two vectors
vr, vr−1 ∈ Rd respectively, where d is the di-
mensionality of the embedding space. he captures
the entity e’s behaviour as the head entity of a fact
triplet and te captures e’s behaviour as the tail en-
tity. vr represents r in a fact triplet (e1, r, e2),
while vr−1 represents its inverse relation r−1 in
the triplet (e2, r

−1, e1). The KG scoring function
of SimplE for a fact triplet (e1, r, e2) is defined via
Equation 13.

fr(e1, e2) =
1

2
(〈he1 ,vr, te2〉+ 〈he2 ,vr−1 , te1〉)

(13)
Similar to the attention from ComplEx, the rht in
Equation 7 is defined via Equation 14.

rht =
1

2
(he1 � he2 + te1 � te2) (14)

4.3 SimplE NER based Attention
The proposed end-to-end KGC model is based
on SimplE, because SimplE outperforms sev-
eral state-of-the-art models including Com-
plEx (Kazemi and Poole, 2018). The proposed
model is illustrated in Figure 2. It includes ET
classification part (below) and KG Scoring part
(above). In ET classification part, a multi-layer
perceptron (MLP) with two hidden layers are
applied to identify ET based on word embedding
of target entity. In KG Scoring part, head entity
and tail entity along with their predicted ETs and
their relation are projected into corresponding KG
embeddings, which are then fed to a KG scoring
function.

ET Classification Part. In this work, we use
a MLP network to classify ET for head entity and
tail entity. The architecture of our MLP network
is as bellow:

hw = tanh(Ww
embx

w),

h1 = sigmoid(W1hw + b1),

h2 = sigmoid(W2h1 + b2),

y = sigmoid(WETh2 + bET )

(15)

where Ww
emb is a word embedding projection ma-

trix, which is initialized by the pre-trained word
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Figure 2: Overview of the proposed end-to-end KGC
model.

embedding that is trained on Medline corpus via
Gensim word2vec tool, xw is a one-hot entity rep-
resentation, y is the output vector containing the
prediction probabilities of all target ETs. W1, b1,
W2, b2, WET and bET are parameters to opti-
mize.

KG Scoring Part. Given fact triplet and pre-
dicted ET pair ET1 (for e1) and ET2 (for e2),
the proposed model project them into their cor-
responding KG embeddings namely he1 , te1 , vr,
vr−1 , he2 , te2 , hET1 , tET1 , hET2 and tET2 respec-
tively, where hET1 (or tET1) represents the KG
embedding of ET for e1 when e1 acts as the head
entity (or tail entity) in a fact triplet. The KG scor-
ing function is defined via Equation 16. Since the
proposed KGC model is build on SimplE, we ap-
ply Equation 14 to calculate rht.

fr(e1, e2) =
1

4
(〈he1 ,vr, te2〉

+〈he2 ,vr−1 , te1〉
+〈hET1 ,vr, tET2〉

+〈hET2 ,vr−1 , tET1〉)

(16)

5 Experiments

Our experiments aim to demonstrate that, (1) the
base model proposed by (Han et al., 2018) is fea-
sible for biomedical dataset, such as UMLS and
Medline corpus, and (2) in order to improve the
performance on the given biomedical dataset, it
is necessary to extend the base model with other
competitive KGC models, such as ComplEx and
SimplE, and (3) the proposed end-to-end KGC
model is effective for distantly supervised RE
from biomedical dataset.

#Entity #Relation #Train #Test
25,080 360 53,036 11,810

Table 1: Statistics of KG in this work.

5.1 Data

The biomedical datasets used for evaluation con-
sist of biomedical knowledge graph and biomedi-
cal textual data, which will be detailed as follows.

Knowledge Graph. We choose the UMLS as
the KG. UMLS is a large biomedical knowledge
base developed at the U.S. National Library of
Medicine. UMLS contains millions of biomedi-
cal concepts and relations between them. We fol-
low (Wang et al., 2014), and only collect the fact
triplet with RO relation category (RO stands for
“has Relationship Other than synonymous, nar-
rower, or broader”), which covers the interesting
relations like may treat, my prevent, etc. From the
UMLS 2018 release, we extract about 60 thousand
such RO fact triplets (i.e., (e1, r, e2)) under the
restriction that their entity pairs (i.e., e1 and e2)
should coexist within a sentence in Medline cor-
pus. They are then randomly divided into train-
ing and testing sets for KGC. Following (Weston
et al., 2013), we keep high entity overlap between
training and testing set, but zero fact triplet over-
lap. The statistics of the extracted KG is shown
in Table 1. For training the ET Classification
Part in Section 4.3, we also collect about 35 thou-
sand entity-ET pairs (e.g., heart rates-Clinical
Attribute) from the UMLS 2018 release.

Textual Data. Medline corpus is a collection
of bimedical abstracts maintained by the National
Library of Medicine. From the Medline corpus,
by applying a string matching model 2, we extract
732, 771 sentences that contain the entity pairs
(i.e., e1 and e2) in the KG mentioned above as our
textual data, in which 592, 605 sentences are for
training and 140, 166 sentences for testing. For
identifying the NA relation, besides the “related”
sentences, we also extract the “unrelated” sen-
tences based on a closed world assumption: pairs
of entities not listed in the KG are regarded to have
NA relation and sentences containing them con-
sidered to be the “unrelated” sentences. By this
way, we extract 1, 738, 801 “unrelated” sentences
for the training data, and 431, 212 “unrelated” sen-
tences for the testing data. Table 2 presents some

2We adopt the NER model that is available at https:
//github.com/mpuig/spacy-lookup.
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Figure 3: Aggregate precision/recall curves for differ-
ent RE models.

sample sentences in the training data.

5.2 Parameter Settings

We base our work on (Han et al., 2018) and ex-
tend their implementation available at https://
github.com/thunlp/JointNRE, and thus
adopt identical optimization process. We use the
default settings of parameters 3 provided by the
base model. Since we address the distantly super-
vised RE in biomedical domain, we use the Med-
line corpus to train the domain specific word em-
bedding projection matrix Ww

emb.

5.3 Result and Discussion

(Han et al., 2018) evaluates the base model on non-
scientific dataset. In this work, we firstly plan to
assess its feasibility on scientific dataset, and sec-
ondly, to investigate the effectiveness of our exten-
sions, which is discussed in Section 4, with respect
to enhancing the distantly supervised RE from sci-
entific dataset.

Relation Extraction We follow (Mintz et al.,
2009; Weston et al., 2013; Lin et al., 2016; Han
et al., 2018) and conduct the held-out evaluation,
in which the model for distantly supervised RE
is evaluated by comparing the fact triplets identi-
fied from textual data (i.e., the bag of sentences
containing the target entity pairs) with those in

3As a preliminary study, we only adopt the default hyper-
parameters, but we will tune them in the furture.

KG. We report precision-recall curves and Preci-
sion@N (P@N) as well in our evaluation.

The precision-recall curves are shown
in Figure 3, where “JointD+KATT” and
“JointE+KATT” represent the RE model with the
KG-based attention obtained from Prob-TransD
and Prob-TransE respectively, which are our base
models and trained on both KG and textual data.
Similarly, “JointComplEx+KATT”, “JointSim-
plE+KATT” and “JointSimplE NER+KATT”
represent the RE model with the KG-based
attention obtained from ComplEx, SimplE and
SimplE NER respectively, which are our exten-
sions. “CNN+AVE” and “CNN+ATT” represent
the RE model with average attention and relation
vector based attention (Lin et al., 2016) respec-
tively, which are not joint models and only trained
on textual data. The results show that:

(1) All RE models with KG-based attention,
such as “JointE+KATT”, outperform those models
without it, such as “CNN+ATT”. This observation
is in line with (Han et al., 2018). This demon-
strates that not just for non-scientific dataset ,
jointly training a KGC model with a RE model
is also an effective approach to improve the per-
formance of distantly supervised RE for biomed-
ical dataset. In other words, the outperformance
proves the feasibility of the base model proposed
by (Han et al., 2018) on biomedical dataset. The
comparison between (Han et al., 2018)’s results on
non-scientific dataset and ours on scientific dataset
also indicates that the performance of base model
could differ according to the dataset. Specifically,
on scientific dataset, “JointE+KATT” performs
better than “JointD+KATT” but in non-scientific
dataset the latter outperforms the former.

(2) Our extended models, “JointCom-
plEx+KATT”, “JointSimplE+KATT” and
“JointSimplE NER+KATT”, achieve better
precision than the base model over the major
range of recall. It could be attributed to their
better capability of modeling asymmetric relations
(e.g., may treat and may prevent), because
their KG scoring functions are asymmetry (i.e.,
fr(e1, e2) 6= fr(e2, e1)). The superior perfor-
mance indicates the necessity of our extensions on
the base model. Specifically, given the frequently
used biomedical dataset, UMLS and Medline
corpus, it would be an effective method to switch
the translational distance models, such as TransE
and TransD, with the semantic matching models,
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Fact Triplet Textual Data

(insulin,
gene plays role in process,
lipid metabolism)

s1 : It is unknown whether short - term angiotensin receptor blocker therapy
can improve glucose and lipid metabolisme2 in insuline1 - resistant subjects.
s2 : Adipocyte lipid metabolisme2 is primarily regulated by insuline1 and the
catecholamines norepinephrine and epinephrine.
s3 : ...

(insulin, NA, TPA)

s1 : M wortmannin resulted in 80% and 20% decreases of glucose uptake
stimulated by insuline1 and TPAe2 , respectively.
s2 : The effects of insuline1 , IGF1 and TPAe2 were also observed in the
presence of cycloheximide.
s3 : ...

Table 2: Examples of textual data extracted from Medline corpus.

such as ComplEx and SimplE, for increasing
the performance of distantly supervised RE. The
effect of different KGC models on the distantly
supervised RE will be discussed later.

(3) The model enhanced by our proposed KGC
model, “JointSimplE NER+KATT”, achieves the
highest precision over almost entire range of recall
compared with the models that apply the existing
KGC models. This proves the effectiveness of our
proposed KGC model for the distantly supervised
RE. Additionally, different from the exiting KGC
models, the proposed end-to-end KGC model is
capable of identifying ET information from word
embedding of target entity. This indicates that the
incorporation of semantic information of entity,
such as ET, is a promising approach for enhanc-
ing the base model.

Effect of KGC on RE. (Han et al., 2018) in-
dicates that KGC models could affect the perfor-
mance of distantly supervised RE. For investigat-
ing the influence of KGC models on our specific
RE task, we compare their link prediction results
on our KG with their corresponding Precision@N
(P@N) results on our RE task. Link prediction is
the task that predicts tail entity t given both head
entity h and relation r, e.g., (h, r, ∗), or predict
head entity h given (∗, r, t). We report the mean
reciprocal rank (MRR) and mean Hit@N scores
for evaluating the KGC models. MRR is defined
as: MRR = 1

2∗|tt|
∑

(h,r,t)∈tt(
1

rankh
+ 1

rankt
),

where tt represents the test triplets. Hit@N is the
proportion of the correctly predicted entities (h or
t) in top N ranked entities. Table 3 and Table 4 rep-
resent the RE precision@N and link prediction re-
sults respectively. This comparison indicates that
given a biomedical dataset, the performance of a
KGC model on the link prediction task could pre-
dict its effectiveness on its corresponding distantly

supervised RE task. This observation also instruct
us how to select the best KGC model for the base
model. In addition, Table 3 and Table 4 indicate
that ET is not only effective for distantly super-
vised RE task, but also for KGC task, and this ob-
servation will inspire us to explore other useful se-
mantic feature of entity, such as the definition of
entity, for our task.

Model P@2k P@4k P@6k Mean
JointE+KATT 0.876 0.786 0.698 0.786
JointD+KATT 0.848 0.725 0.528 0.700

JointComplEx+KATT 0.892 0.819 0.741 0.817
JointSimplE+KATT 0.900 0.808 0.721 0.809

JointSimplE NER+KATT 0.913 0.829 0.753 0.831

Table 3: P@N for different RE models, where k=1000.

MRR Hit@
Model Raw Filter 1 3 10
TransE 0.156 0.200 0.113 0.244 0.356
TransD 0.138 0.149 0.098 0.160 0.245

ComplEx 0.278 0.457 0.380 0.507 0.587
SimplE 0.273 0.455 0.368 0.516 0.598

SimplE NER 0.339 0.538 0.473 0.578 0.651

Table 4: Link prediction results for different KGC
models.

6 Conclusion and Future Work

In this work, we tackle the task of distantly su-
pervised RE from biomedical publications. To
this end, we apply the strong joint framework pro-
posed by (Han et al., 2018) as the base model. For
enhancing its performance on our specific task,
we extend the base model with other competitive
KGC models. What is more, we also propose a
new end-to-end KGC model, which incorporates
word embedding based entity type information
into a sate-of-the-art KGC model. Experimental
results not only show the feasibility of the base
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model on the biomedical domain, but also indicate
the effectiveness of our extensions. Our extended
model achieves significant and consistent im-
provements on the biomedical dataset as compared
with baselines. Since the semantic information of
target entity, such as ET information, is effective
for our task, in the future, we will explore other
useful semantic features, such as the definition of
target entity and fact triplet chain between enti-
ties (e.g., cancer→disease has associated gene→
Ku86→gene plays role in process→NHEJ), for
our task.
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Abstract

As scientific communities grow and evolve,
there is a high demand for improved meth-
ods for finding relevant papers, comparing
papers on similar topics and studying trends
in the research community. All these tasks
involve the common problem of extracting
structured information from scientific arti-
cles. In this paper, we propose a novel, scal-
able, semi-supervised method for extracting
relevant structured information from the vast
available raw scientific literature. We extract
the fundamental concepts of aim, method and
result from scientific articles and use them to
construct a knowledge graph. Our algorithm
makes use of domain-based word embedding
and the bootstrap framework. Our experiments
show the domain independence of our algo-
rithm and that our system achieves precision
and recall comparable to the state of the art.
We also show the research trends of two dis-
tinct communities - computational linguistics
and computer vision.

1 Introduction

With the tremendous amount of research publica-
tions available online, there is an increasing de-
mand to automatically process this information to
facilitate easy navigation through this enormous
literature for researchers. Whenever researchers
start working on a problem, they are interested to
know if the problem has been solved previously,
methods used to solve this problem, the impor-
tance of the problem and the applications of that
problem. This leads to the requirement of find-
ing automatic ways of extracting such structured
information from the vast available raw scientific
literature which can help summarize the research
paper as well as the research community and can
help in finding relevant papers. Organizing scien-
tific information into structured knowledge bases
requires information extraction (IE) about scien-
tific entities and their relationships. However, the

challenges associated with scientific information
extraction are greater than for a general domain.
General methods of information extraction cannot
be applied to research papers due to their semi-
structured nature and also the new and unique ter-
minologies used in them. Secondly, annotation
of scientific text requires domain expertise which
makes annotation costly and limits resources.

There is a considerable amount of previous and
ongoing work in this direction, starting from key-
word extraction (Kim et al., 2010) (Gollapalli and
Caragea, 2014) and textual summarization (Jaidka
et al., 2018). Other research has focused on unsu-
pervised approaches such as bootstrapping (Tsai
et al., 2013)(Gupta and Manning, 2011), where
they introduced hand-designed templates to ex-
tract scientific keyphrases and categorize them
into different concepts, and then more templates
are added automatically through bootstrapping.
Hand-designed templates limit their generaliza-
tion to all the different domains present within the
scientific literature. A recent challenge on Scien-
tific Information Extraction (ScienceIE) (Augen-
stein et al., 2017) provided a dataset consisting of
500 scientific paragraphs with keyphrase annota-
tions for three categories: TASK, PROCESS, MA-
TERIAL across three scientific domains, Com-
puter Science, Material Science, and Physics.
This invited many supervised and semi-supervised
techniques in this field. Although all these tech-
niques can help extract important concepts of a re-
search paper in a particular domain, we need more
general and scalable methods which can summa-
rize the complete research community.

In this work, we propose a new technique to
extract key concepts from the research publica-
tions. Our main insight is that a paper cites an-
other paper either for its aim, or method, or re-
sult. Therefore, key contribution of paper in the
research community can be best summarized by
its aim, the method used to solve the problem and
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the final result. We define these concepts as:
Aim: Target or primary focus of the paper.
Method: Techniques used to achieve the aim.
Result: well-defined output of the experiments or
contribution which can be directly used by the re-
search community.
Example: “The support-vector network (Result) is a new

learning machine for two-group classification (Aim) prob-

lems. The machine conceptually implements the following

idea: input vectors are non-linearly mapped to a very high-

dimension feature space (Method). In this feature space, a

linear decision surface is constructed.“

We extract these concepts from Title, Abstract
and Citation Contexts of a research paper. These
sections can be accurately automatically extracted
from research papers. Title and Abstract work as
a short and to the point summary of work done in
the paper. They are an essential place to find the
exact phrases for these concepts without the intro-
duction of too much noise. Citation context is the
text around the citation marker. This text serves as
“micro summaries“ of a cited paper and phrases in
this text are important candidates for aim, method
or result of the cited paper. We combine data min-
ing and natural language techniques to solve the
problem scalably in a semi-supervised manner.
Graph representations like knowledge graph that
link the information of a large body of publica-
tions can reveal patterns and lead to the discov-
ery of new information that would not be apparent
from the analysis of just one publication. Anal-
ysis on top of these representations can lead to
new scientific insights and discovery of trends in
a research area. They can also facilitate some
other tasks like assigning reviewers, recommend-
ing relevant papers or improving scientific search
engines. Therefore, we propose to build graphical
representation by extracting phrases representing
the concepts Aim, Method and Result from scien-
tific publications. We introduce these phrases as
additional nodes and connect them to their corre-
sponding paper nodes in the citation graph. We ar-
gue that the citation network is an integral part of
scientific knowledge graph and the proposed rep-
resentation can adequately summarize the research
community. Proposed graph is shown in Figure 1.

Contributions: Our key contributions are:
(i) We propose a novel, scalable, semi-supervised
and domain-independent method for extracting
concepts, aim, method and result from the vast
available raw scientific literature by using domain-

Figure 1: Structure of proposed Representation

based word embeddings and data mining tech-
niques. Our approach also takes Citation Con-
text into account apart from Title and Abstract on
which most of the work relied till now. (ii) We
experimentally validate our approach and show
statistically significant improvements over exist-
ing state-of-the-art models. (iii) We show how
the extracted concepts and the available citation
graph can be used to represent the research com-
munity as a knowledge graph. (iv) We demon-
strate our method on a large multi-domain dataset
built with the help of DBLP citation network. Our
dataset consists of 332,793 papers and 1,508,560
links between them. (v) We present a case study
on the computational linguistics community and
computer vision community using the three con-
cepts extracted from its articles, for verifying the
results of our system and for showing domain in-
dependence of our approach.

Our research background, hypothesis, and mo-
tivation were presented in this section. In the fol-
lowing section, we describe proposed approach in
detail. Finally, we present our datasets, experi-
ments, and results and briefly summarize state-of-
the-art approaches before concluding the paper.

2 Approach

2.1 Concept Extraction

Problem Definition: Given a target document d,
the objective of the concept extraction task is to
extract a list of words or phrases which best repre-
sent the aim, method and result of document d.
Prior work has solved the problem of extracting
keyphrases and relations between them as a se-
quence labelling task. However, due to the non-
availability of large annotated data for this purpose
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limits this approach. Also this approach does not
take advantage of the fact that more than 96 per-
cent of phrases that form aim, method and result
are noun phrases (Augenstein et al., 2017). Since
we already have a defined set of candidates for
the key phrases, we attempt this problem as multi-
class classification problem. Given a document,
we classify its phrases as Aim, Method, Result.
Our approach is built on the observation that the
semantics of the sentence of document d contain-
ing a phrase belonging to any of the concept type
is similar across research papers. To capture this
semantic similarity, we use k nearest neighbour
classifier on top of state-of-the-art (Devlin et al.,
2018) domain based word embeddings. We start
by extracting features from a small set of anno-
tated examples and used bootstrapping (Gupta and
Manning, 2014) for extracting new features from
unlabeled dataset. Figure 2 shows our pipeline.

Figure 2: Proposed Method

Following are some of the terminologies which
will be used throughout the paper that follows:

• Candidate phrases: Phrases present in the
target document d which will be considered
for labeling.
• Concept mention: Phrases labeled as either

aim, method or Result in the labeled dataset.
• Parent sentence of a phrase p: The original

sentence in target document to which the can-
didate phrase/concept mention p belongs to.
• Left context phrase(S,p): The part of the par-

ent sentence S before the occurrence of the
candidate phrase p or concept mention.
• Right context phrase(S,p): The part of the

parent sentence S after the occurrence of the
candidate phrase p or concept mention.
• Left Context Vectors(p): Vector representa-

tions of left context phrase p.
• Right Context Vectors(p): Vector representa-

tions of right context phrase p.
• Feature Vectors: Tuple of Left and Right

Context Vectors which is being used as fea-
tures to label candidate phrases.

• Feature Score: Each feature vector has an as-
sociated feature score between 0 and 1 that
represents the confidence of it being a repre-
sentative of the class. Seed features have a
feature score of 1.
• Support Score of candidate phrase p for class

c: Every phrase is assigned a support score
for all classes that represents the confidence
that the phrase belongs to that class.

Seed Feature Extraction: In this step, we
extract features for each of the concept type using
the small set of annotated examples. For each
concept mention in the annotated examples, we
construct left context vector lcv and right context
vector rcv. These lcv and rcv then form part
of the features for the class to which concept
mention belongs to. Phrase embeddings are
generated using pre-trained BERT model (Devlin
et al., 2018) fine-tuned on DBLP research papers
dataset. Details of BERT training and datasets
used for seed feature extraction are given in the
Experiments Section.
Candidate Phrase Extraction: To limit the
search space of phrases, we propose to use noun
phrases present in the Title and Abstract of
document d as candidate phrases. For citation
contexts, named entities form a better set of can-
didates as shown by (Ganguly and Pudi, 2016).
However different named entities can be linked to
different papers cited in the same citation context.
So it becomes essential to first identify which
entity e corresponds to which cited paper cp and
then use the proposed algorithm to classify e as
aim/method/result for the corresponding paper
cp. For the above purpose, we use entity-citation
linking algorithm (Ganguly and Pudi, 2016).
The matching function iterates over entities and
citations to get their closeness score. After the
scoring step, a two-step pruning is performed.
It first takes all the citations and keeps a list of
the closest entity per citation. Then it takes the
remaining entities and keeps only the closest
citations per entity. Finally, we get a list of tuples
where each element contains a unique entity
matched with its citation. Only the entities which
are present in this list of tuples are considered as
candidate phrases.
Labeling Candidate Phrases: For labeling can-
didates in iteration i, we use k-NN. The algorithm
for labeling candidate phrases is presented in
Algorithm 1.
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Algorithm 1: Label Candidate Phrases
1. For each sentence s in document d in the
dataset, p← unlabeled Phrase in sentence s.

2. Let lcv be the left context vector and rcv be
the right context vector corresponding to
phrase p in sentence s.

3. Find nearest neighbours of lcv and rcv
from the feature vectors that are atmax
distance r. Let the nearest neigbours
corresponding to lcv be lnn or left nearest
neighbours and rcv be rnn or right nearest
neighbours.

4. If the size of both lnn and rnn is less than
the minimum number of neighbours required
for classification k then the phrase can not be
labeled in this iteration and we move to the
next phrase.

5. Else we take k nearest neighbours for both
the lcv and rcv and the support score of the
phrase for class c is calculated as follows :

N = {n|n ∈ Top k Neighbours of lcv or rcv
and label(n) = c }

supportScore(p, c) =
∑

n∈N
featureScore(n)

6. Then the predicted class for phrase p is
argmax

c
supportScore(p, c).

Finally after T iterations, unlabeled candi-
date phrases are discarded.
Extraction of new features: For each phrase
p assigned class c in any of the iterations, we
generate context vectors lcv and rcv. We define
the feature score corresponding to the context
vectors of phrase p labeled as class c as:

featureScore(p) =
supprtScore(p, c)∑
c′ supportScore(p, c

′)

For each class, the context vectors are sorted based
on their feature score and top 5000 are taken as
feature vectors.
Final Selection: For each document, we take top
t phrases (based on their supportScore) for each
class as the final output of our system.

2.2 Graph Construction

Graph definition: We build a graphical represen-
tation by using the extracted concepts and citation
graph. Our graph has the following types of nodes

and edges:
Paper nodes: These are the original paper nodes
in the citation graph. Each paper node has
metadata related to the paper like dblp id, title,
authors, conference, year of publication.
Entity nodes: These nodes are the phrases ex-
tracted in the concept extraction step.
Cited by relation: A cited by relation is defined
between paper nodes pi and pj if paper pi has
cited pj .
Aim relation: Aim relation is defined between
a paper node pi and entity node ei if ei was
extracted as aim concept for pi.
Method relation: A method relation is defined
between a paper node pi and entity node ei if ei
was extracted as method concept for pi.
Result relation: A result relation is defined
between a paper node pi and entity node ei if ei
was extracted as a result concept for pi.

Construction of Graph: A major challenge
in the construction of graph using phrases ex-
tracted in concept extraction step is merging of
phrases with the same meaning. For the purpose
of entity node merging, we do the following:
1. We group the papers according to the confer-
ence in which they were published. Then ∀ papers
in the same group, we cluster their extracted
phrases by running DBSCAN (Ester et al., 1996)
over vector space representations of these phrases.
The clusters are created based on lexical similarity
which is captured by cosine distance between
phrase embeddings. The intuition behind cluster-
ing phrases conference wise is that the research
papers in a conference have same domain and thus
phrases with high lexical similarity belonging to
a particular conference are much more likely to
mean the same as compared to phrases across
conferences. This helps to avoid error as in
the example : ‘real time intrusion detection‘ in
security domain and ‘real time object detection‘
in computer vision domain are very different from
each other but they may be clustered together by
DBSCAN algorithm based on lexical similarity if
DBSCAN is run on all the papers in the dataset at
once.
2. Clusters merging across conferences: A cluster
i belonging to conference c1 and a cluster j be-
longing to conference c2 are merged if they have
any common phrase. This is done to capture the
fact that there can be more than one conference
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on same domain and hence some of their clusters
should be merged if they correspond to same term
or phrase. For example, both NAACL and ACL
have papers on machine translation and therefore
the individual clusters of these conferences
corresponding to machine translation should be
merged.
Finally we get clusters such that phrases in each
cluster have the same meaning. We add only
one entity node to the graph for each cluster.
We define the relation type between a paper
node and an entity node based on the label of
the entity (phrase inside the entity node) for the
corresponding paper as identified in Concept
Extraction step.

3 Experimental Setup

Dataset Creation: All the experiments were con-
ducted on DBLP Citation Network (version 7)
dataset. This dataset is an extensive collection of
computer science papers. DBLP only provides
citation-link information, abstract, and paper ti-
tles. For the full text of these papers, we use the
same dataset as have been used by (Ganguly and
Pudi, 2017). This dataset is partly noisy with some
duplicate paper information, and there is a lack of
unique one-to-one mapping from the DBLP pa-
per ids to the actual text of that paper. During the
creation of our final dataset, we either pruned out
ambiguous papers or manually resolved the con-
flicts. We came up with a final set of 465,355 pa-
pers from the DBLP corpus for which we have full
text available. Since we need papers that are con-
nected via citation relations, we prune our dataset
by taking only the largest connected component in
the citation network while considering the links to
be bidirectional. We get 332,793 papers having
1,508,560 citation links. For extraction of cita-
tion context, we used Parscit (Prasad et al., 2018).
For the papers for which abstract was not available
in the DBLP dataset, we use the one extracted by
Parscit.
Phrase embeddings: For vector representation of
a phrase, we use BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understand-
ing as proposed in (Devlin et al., 2018). We use the
pre-trained model BERT-Base, Uncased: 12-layer,
768-hidden, 12-heads, 110M parameters available
publically. We fine tune the model on our DBLP
research paper dataset. Complete text of papers
after cleaning has been used for the purpose of

fine tuning. The model is fined tuned on total of
20970300 sentences with max sequence length as
128 and learning rate as 2× 10−5. For generating
the phrase embedding we use second last layer as
the pooling layer with pooling strategy as reduced
mean.
Concept Extraction: (a) For the purpose of seed
feature generation we use the following two pub-
licly available datasets :

(i) SemEval 2017 Task 10 dataset (Augenstein
et al., 2017): It contains 500 scientific paragraphs
from physics, material science and computer sci-
ence domain, each marked with keyphrases and
each keyphrase is labelled as TASK, PROCESS
and MATERIAL. The concepts of TASK and
PROCESS in this dataset closely relates to our
definition of AIM and METHOD. This complete
dataset is used for seed feature extraction.

(ii) Gupta and Manning(2011) introduced a
dataset of titles and abstracts of 474 research
publications from ACL Anthology annotated with
phrases corresponding to FOCUS, TECHNIQUE
and DOMAIN. Their definitions of FOCUS and
TECHNIQUE closely relate to our definitions of
AIM and METHOD respectively. We divided this
data into two parts- one is used as training data for
seed features extraction having 277 papers and an-
other as test data for evaluation purposes having
197 papers.
These two datasets helped to build seed features
for AIM and METHOD category. We removed the
papers from SemEval dataset which overlapped
with (Gupta and Manning, 2011).
For RESULT, we manually annotated titles and ab-
stracts of 100 research publications in computer
science domain.

(b) While generating vector encoding for con-
text phrases, we limit the length of the con-
text phrase to 25 in-order to handle very long
sentences. We used cosine distance to mea-
sure distance between vector representation of the
phrases.

(c) It may be possible that there are more than
one concept mention in a sentence. To nullify the
effect of other concept mentions, we generated the
seed features list in two ways:

• Take the left context phrase and right context
phrase and generate their vector representa-
tion. This is called as unmasked feature list.

• We mask the other candidate phrases C in the
left and right context phrase of candidate ci
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k r t f1 score precision recall
30 0.65 3 40.66 46.04 36.41
60 0.65 3 40.47 52.60 32.88
40 0.65 3 40.38 48.65 34.51
40 0.60 4 40.06 47.12 34.84
30 0.75 4 38.38 41.95 35.37

Table 1: f1, precision & recall score for AIM concept

k r t f1 score precision recall
40 0.85 20 32.58 22.65 58.1
30 0.75 17 30.81 21.12 56.89
30 0.90 14 30.87 23.78 44
30 0.80 25 31.16 20.72 62.77
30 0.65 15 30.69 21.35 54.6

Table 2: f1, precision & recall score for METHOD
concept

before generating their embedding. This is
called as masked feature list.

Experiments were done for masked and unmasked
feature lists separately.

(d) As number of phrases added per iteration de-
creased substantially after iteration 5, we ran only
5 iterations of bootstrapping algorithm for all the
experiments.

(e) We experimented with different values of
distance r and k. We observed that in general pre-
cision increases with increase in value of k and
recall increases with decrease in value of r.
Evaluation: For evaluating our results, we use
the labeled dataset made available by (Gupta and
Manning, 2011). We used 197 out of 474 papers
for evaluation purpose. We calculate precision,
recall and f1 score for each class. However, as
Result phrases were not annotated in that dataset,
we could evaluate only for Aim and Method. We
compare our proposed approach with (Tsai et al.,
2013) which ran the bootstrapping algorithm for
a similar problem but used n-gram based features.
They reported results for ACL Anthopology Net-
work(AAN) Corpus (Radev et al., 2013). We ran
their algorithm on our dataset with parameter tun-
ing as mentioned by them.

4 Results and Discussion

4.1 Concept Extraction

We got the best results for parameter values, r =
0.65 and k = 60. Our bootstrapping algorithm

Approach f1 score precision recall
GM (2011) 30.5 46.7 36.9
(Tsai et al., 2013) 48.2 48.8 48.5
Our Approach 32.58 22.65 58.1

Table 3: Comparison with state-of-the-art for
METHOD Concept

Approach f1 score precision recall
(Tsai et al., 2013) 8.26 31.37 4.761
Our Approach 40.66 46.04 36.41

Table 4: Comparison with state-of-the-art for AIM
Concept on DBLP dataset

Approach f1 score precision recall
(Tsai et al., 2013) 18.0 50.70 10.94
Our Approach 32.58 22.65 58.1

Table 5: Comparison with state-of-the-art for Method
Concept on DBLP dataset

gave output for 332,242 out of 332,793 papers. In
Table 1, we report the top five scores for Aim for
different parameters. Top ten scores for both aim
and method concept were given by unmasked fea-
ture list. Therefore mask feature list results have
not been shown. In Table 2 we report the top five
scores for Method on different parameters. Table
3 and 4 compares our scores with that of (Gupta
and Manning, 2011) and (Tsai et al., 2013). Table
5 compares our scores with the score computed for
(Tsai et al., 2013) approach on our dataset.

Our proposed algorithm was able to extract
phrases from scientific articles in a large dataset
in semi-supervised manner with f1 score compa-
rable to the state-of-the-art. Our f1 score was
lower as compared to (Gupta and Manning, 2011)
(Tsai et al., 2013). However, our recall was con-
sistently higher. Our precision was perhaps low
as we were considering only the noun phrases
whereas such limitation was not there while anno-
tating the test corpus. They (Gupta and Manning,
2011) (Tsai et al., 2013) used hand crafted fea-
tures for AAN Corpus whereas our features were
extracted algorithmically starting from a small an-
notated dataset containing multiple domains such
as physics, material science and computer science.
Table 5 shows the scalability of our approach. Tsai
et al. (2013) bootstrapping algorithm could not
give a decent score when ran on our multi-domain
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dataset because phrases could not be extracted for
most of the papers.

4.2 Graph Construction

Total number of unique phrases produced by the
proposed algorithm are 565,031. Using DB-
SCAN we form 63,638 clusters having 266,015
phrases. Our final graph contains 332,242 paper
nodes, 362654 entity nodes, 483899 aim relations,
982396 relations and 661 result relations. We store
our graph in Neo4j database (Webber and Robin-
son, 2018). A small sample from our constructed
graph is shown in figure 3. We can see that re-
sult relations are quite few as compared to method
and aim relations. This is mainly because of less
number of seed features for Result due to less an-
notated data as compared to Aim and Method.
The constructed graph can summarize the research
community in the following way:
(i) All the papers on a particular topic can be ac-
cessed by just finding the entity node correspond-
ing to the topic in the graph. The associated papers
can also be differentiated on the basis of whether
the topic appears as aim or method or result in the
paper. This can also help in academic search and
recommendation.
(ii) A field can be summarized by finding all the
methods used in the field and applications of field
by finding all the aims where the field has been
used as method.
(iii) Trend Analysis, conference proceedings sum-
marization, or summarization of a particular au-
thor’s work can be done using the meta data in the
paper node.
Neo4j provides interface for all kind of queries re-
quired for the above applications. The queries are
out of scope of this paper.

5 Trend Analysis

We studied the field of computational linguistics
and computer vision.
Computational Linguistics: We studied the
growth and decline of following topics on the ba-
sis of relative number of papers published on each
topic over a period of years: summarization, word
sense disambiguation and machine translation.
Papers are included from NAACL and ACL con-
ferences from 1990 to 2012. Figure 4 and 6 show
an example of trends as extracted from our con-
structed knowledge graph. Figure 6 shows transi-

tion of a topic from aim to method concept in the
domain.

Computer Vision: We studied the growth and
decline of following topics on the basis of rela-
tive number of papers published each topic over a
period of years: human pose detection, image seg-
mentation and 3d reconstruction. Papers are in-
cluded from CVPR, ECCV, ICCV and ICPR con-
ferences from 1990 to 2012. Figure 5 and 7 show
an example of trends as extracted from our con-
structed knowledge graph. Figure 7 shows transi-
tion of a topic from aim to method concept in the
domain.

Meaningful results in the analysis for both the
communities show the scalability and domain in-
dependence of our approach.

6 Related Work

There has been growing interest in studying au-
tomatic methods of information extraction from
scientific articles. Our work maps to mainly two
types of problems - Extracting keyphrases, con-
cepts, and relations between them and extracting
structured information in the form of knowledge
graph from scientific literature.
Keyphrase extraction specifically from scientific
articles started with SemEval 2010 Task 5 (Kim
et al., 2010) which was focused on automatic
keyphrase extraction from scientific articles and
prepared a dataset of 284 articles marked with
keyphrases. Gollapalli and Caragea (2014) stud-
ied the keyphrase extraction problem in an unsu-
pervised setting. They extracted candidates from
the title, abstracts and citation contexts and used
Page Rank (PAGE, 1998) to give a score to the
candidates. Gupta and Manning (2011) first pro-
posed a task that defines scientific terms for 474
abstracts from the ACL anthology (Radev et al.,
2013) into three aspects: domain, technique, and
focus. They applied template-based bootstrapping
on title and abstract of articles to tackle the prob-
lem. They used handcrafted dependency based
features. Based on this study, (Tsai et al., 2013)
improved the performance by introducing hand-
designed features to the bootstrapping framework.
Our system beats their systems in terms of re-
call for both aim and method concepts. Also, we
worked on larger multi-domain dataset. SemEval
2017 Task 10 (Augenstein et al., 2017) focused
on mention level keyphrase identification and their
classification into three categories - TASK, PRO-
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Figure 3: Sample from our constructed graph. Green nodes correspond to research papers and brown nodes
correspond to extracted phrase entities.

Figure 4: Growth and decline of research in different
topics in computational linguistics

CESS, and MATERIAL. They prepared an an-
notated dataset comprising of 500 papers from
Material Science and Computer Science journals.
Many systems (Ammar et al., 2017) (Tsujimura
et al., 2017) solved the problem in a supervised
manner. Top system (Ammar et al., 2017) mod-
eled the problem as a sequence labeling problem.
(Tsujimura et al., 2017) trained LSTM-ER on that
dataset. However, these supervised systems re-
quire a large amount of training data, in the ab-
sence of which they tend to overfit. Our semi-

Figure 5: Growth and decline of research in different
topics in Computer Vision

supervised method can work using a small set of
annotated documents for initial features.
There is also an ongoing work on constructing
knowledge graph from the scientific literature.
Sinha et al. (2015) builds a heterogeneous graph
consisting of six types of entities: field of study,
author, institution (the affiliation of the author),
paper, venue (journal and conference series) and
event. Ammar et al. (2018) focussed on construct-
ing literature graph consisting of papers, authors,
entities nodes and various interactions between
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Figure 6: Transition from aim to method for 1. Summarization 2. Machine Translation 3. Word Sense Disam-
biguation

Figure 7: Transition from aim to method for 1. 3d reconstruction 2. Human pose-detection 3. Image Segmentation

them (e.g., authorship, citations, entity mentions).
Luan et al. (2018) developed a unified framework
for identifying entities, relations, and coreference
clusters in scientific articles with shared span rep-
resentations. They used supervised methods by
creating a dataset which included annotations for
scientific entities, their relations, and coreference
clusters for 500 scientific abstracts from AI con-
ferences proceedings. Our knowledge graph is
more straightforward to build. Also, it is built
upon the citation graph due to which it retains the
vital citation information which is an integral part
of the research community.

Conclusion

This work propose semi-supervised techniques
for identifying Aim, Method and Result con-
cepts from scientific articles. We show how
these concepts can be introduced in the citation
graph to graphically summarize the research
community and the various applications of the
graphical representation thus formed. We show
the domain-independence of our approach as
:- a) Seed features from one domain (physics,
material science from SemEval dataset) were
used to extract concepts for another domain
(computer science papers from DBLP dataset), b)
Meaningful results for two distinct communities
as section 5. We also experimentally show the

scalability of our approach and compared the
results with the state-of-the-art.
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Abstract

An important task in the machine reading
of biochemical events expressed in biomed-
ical texts is correctly reading the polarity,
i.e., attributing whether the biochemical event
is a promotion or an inhibition. Here we
present a novel dataset for studying polar-
ity attribution accuracy. We use this dataset
to train and evaluate several deep learning
models for polarity identification, and com-
pare these to a linguistically-informed model.
The best performing deep learning architec-
ture achieves 0.968 average F1 performance
in a five-fold cross-validation study, a consid-
erable improvement over the linguistically in-
formed model average F1 of 0.862.

1 Introduction

Recent advances in information extraction (IE)
have resulted in high-precision, high-throughput
systems tailored to the reading of biomedical sci-
entific publications (Valenzuela-Escárcega et al.,
2018; Peng et al., 2017; Quirk and Poon, 2016;
Kim et al., 2013; Björne and Salakoski, 2013;
Hakala et al., 2013; Bui et al., 2013, inter alia).
This, in turn, has resulted in the use of machine
reading systems as the foundation of more com-
plex, higher-level inference applications in spe-
cific domains such as cancer research (Valenzuela-
Escárcega et al., 2018).

However, the presence of noise in pipelined sys-
tems that use IE as an initial component may seri-
ously hinder the quality of downstream results. In
particular, biomedical research literature is prone
to noise caused by the mischaracterization of the
polarity (e.g., promotion vs. inhibition) of bio-
chemical interactions. This is the focus of this
work.

The identification of polarity in the biomedical
domain is complicated by the fact that the lan-
guage used is often hedged through multiple nega-

tions to stay closer to the complex biology under-
neath. For example, consider the statement: The
inactivation of Bad is sufficient to antagonize p38
MAPK. Under the (simplified but commonly used)
representation of polarized interactions, a naive IE
system would extract a negative interaction be-
tween the two proteins: Bad inhibits p38
MAPK, due to the presence of the negative pred-
icate antagonize. However, a more careful read-
ing of this text indicates that the better represen-
tation for this extraction is a positive interaction:
Bad promotes p38 MAPK,1 due to the inter-
action of two predicates with negative semantics,
inactivation and antagonize. This situation is ex-
acerbated by the fact that statements in this domain
may contain three and even four inter-related pred-
icates that affect polarity (as observed in Section
8).

This paper analyzes the identification of polar-
ity of biomedical interactions, from the perspec-
tive of multiple possible methods. In particular,
the contributions of this work are:

(1) We introduce a novel dataset that annotates
the polarity of biomedical interactions. The
dataset comes in multiple variants. A first vari-
ant was derived using distant supervision (DS)
(Mintz et al., 2009) by aligning a knowledge base
(KB) of protein interactions (Perfetto et al., 2015)
with the outputs of a machine reader (Valenzuela-
Escárcega et al., 2018). This dataset contains
52,779 promotion and 35,177 inhibition interac-
tions. To account for the noise introduced through
the DS process, we provide a second variant of this
dataset consisting of a sample of the full dataset

1This representation is better but not perfect. The
correct representation should be: (decrease of Bad)
causes (decrease of p38 MAPK). However, the
promotes/inhibits representation is widely used both in IE
datasets and by a domain expert, so we continue to use it in
this work.
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that was manually curated by domain experts. We
divide this sample into an Easy partition where
the IE system initially agreed with the KB, and
a Challenge partition where the IE system’s ex-
tractions conflicted with the KB. These manually-
curated partitions contain 62 and 67 data points,
respectively.

(2) We compare several approaches for polarity
identification, including a linguistically-informed
method (Valenzuela-Escárcega et al., 2018), and
several deep learning (DL) approaches. The
DL methods incorporate: (a) multiple sequence
models that capture the text before/after argu-
ments/predicate, (b) attention models, and (c)
explicit features from the linguistically-informed
method. Our analysis indicates that: (a) the
simpler DL methods perform better than the
more complicated ones, (b) all DL approaches
outperform the standalone linguistically-informed
method, and (c) the difference between the two
strategies grows larger with the complexity of the
text.

2 Related work

The rate of scientific publishing has grown sub-
stantially each year, reaching a level that exceeds
the human capacity to read and process. For
example, PubMed, a search engine of biomed-
ical publications2 now indexes over 25 million
papers, 17 million of which were published be-
tween 1990 and the present. Domain-agnostic
approaches, such as open information extraction
(OpenIE) (Angeli et al., 2015) can begin to miti-
gate this by extracting information in the form of
relation triples. However the widely varied lan-
guage used by authors means that extractions can
be difficult to aggregate and utilize.

On the other hand, there have been significant
efforts to develop domain-specific information ex-
traction approaches that are tailored to scientific
publications. These approaches range from rule-
based to machine learning-based, and hybrid ap-
proaches (Valenzuela-Escárcega et al., 2018; Peng
et al., 2017; Quirk and Poon, 2016; Kim et al.,
2013; Björne and Salakoski, 2013; Hakala et al.,
2013; Bui et al., 2013).

On top of the extractions produced by these
methods, causal influence crucially relies on the
polarity of the influence interactions, i.e., whether

2http://www.ncbi.nlm.nih.gov/pubmed

one factor promotes or inhibits another factor. Bi-
ological models have been assembled from these
interactions and used for domain-specific applica-
tions (Gyori et al., 2017). Here we propose an ap-
proach for automatically detecting this polarity.

Polarity detection has been explored in several
other natural language processing tasks, perhaps
most notably in sentiment analysis (e.g., Pang
et al., 2008; Liu, 2012; Liu and Zhang, 2012),
where the polarity of a text is measured on a spec-
trum from negative to positive sentiment. Simi-
larly, in Wilson et al. (2005), the authors frame the
problem of extracting opinion polarity explicitly
as a sentiment analysis task. Our work is similar
in spirit, but it focuses on the polarity of scientific
statements. In (Lauscher et al., 2017), the authors
investigate the polarity polarity of citations within
the context of bibliometric analysis. In contrast,
our work addresses the polarity of content, i.e.,
events extracted from the biomedical literature.

To summarize, our approach is inspired by this
previous work, but it differs in two ways: first,
we focus on statements in the biomedical domain,
and, second, we extract polarity for specific, struc-
tured events rather than unstructured texts.

3 Linguistically-informed polarity
identification approach

In preliminary analyses, we observed that the ar-
guments of biomedical events are generally cor-
rectly identified, but the polarity of the interac-
tions is often incorrect due to the complex lan-
guage used (see, for example, the example in Sec-
tion 1). Based on this observation, all the methods
introduced in this paper assume that an unlabeled
event is provided, e.g., Bad interacts with
p38 MAPK, and the methods then label the event
with a polarity type, e.g., Bad promotes p38
MAPK.

The first method analyzed, which extends the
approach in Valenzuela-Escárcega et al. (2018),
relies on linguistic cues. The approach takes the
following steps:

1. First, it extracts the syntactic dependency
path between the participants in the interac-
tion.

2. Then, the path is expanded to include modi-
fiers of the words along the above path.

3. Finally, the method counts the number of
polarity-carrying words and affixes (Bach-
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Figure 1: Example of the linguistically-informed ap-
proach. From the syntactic dependency tree, the
approach extracts the shortest undirected path be-
tween the participants in the interaction, Bad and p38
MAPK: nsubj:xsubj> dobj>, where the > and
< markers indicate the direction of a dependency
arc. Then, the path is extended with modifiers of
the elements on the path: amod< nsubj:xsubj>
mark< dobj> compound<. (The complete path
is highlighted and the negative words are underlined.)
Lastly, the approach counts the number of polarity-
carrying words along this path. An odd number indi-
cates negative event polarity; otherwise the polarity is
positive. In this example, the polarity is positive be-
cause there is an even number of polarity words: inac-
tivated and antagonize.

man et al., 2018) from a defined lexicon. This
lexicon contains 33 elements, such as “in-
hibition” and “loss”. The event is labeled
with negative polarity (inhibits) if the count
of these words is odd. Otherwise, the polar-
ity of the event is positive (promotes).

Figure 1 shows a walkthrough of this algorithm
for the sentence Inactivated Bad is sufficient to an-
tagonize p38 MAPK, which contains an event con-
necting the two entities Bad and p38 MAPK. Step
2 of this algorithm is crucial, as many polarity-
carrying words, e.g., inactivated, do not appear
along the syntactic dependency path between the
event arguments, but rather modify terms on the
path.

We extended the original algorithm in
Valenzuela-Escárcega et al. (2018) as follows:

• We made the polarity lexicon case-
insensitive.

• We changed the algorithm to match the words
in the polarity lexicon only if they occur as a
full word or as a prefix, instead of any sub-
string of a word. For example, in the text Re-
duction of triglyceride synthesis without af-
fecting ALLN-inhibitable protease, the orig-
inal algorithm generates a false positive by
matching inhibit in ALLN-inhibitable.

• We handle verb particles, which were ignored
in the original algorithm. For example, in
the text The Wip1 gene is overexpressed by

switching off p53, the polarity of the inter-
action cannot be detected from the predicate
alone (switching) without its attached particle
(off).

• We adjusted the polarity lexicon, e.g., we
removed target; and we added the suffix -
KD (Bachman et al., 2018), which stands for
knockdown.

4 Deep learning polarity identification
approaches

We propose several deep learning approaches for
the classification of event polarity. In general,
all proposed approaches use recurrent neural net-
work (RNN) architectures, which incorporate both
lexical and structural information into the learn-
ing process by considering one or more sequences
of words from the source sentence for the given
event.

In each of the RNN model variants we inves-
tigate, the input sentence is represented as a se-
quence of word embeddings. Every word wt trig-
gers a recurrent state that generates a hidden vec-
tor ht, which encodes information about the input
word subsequence 1..t. The output of the RNN is
a sequence {ht} of hidden vectors, one for each of
the input words.

The hidden vector sequence is then aggregated
using one of a couple of different strategies (as
described in the next two sub-sections), and then
passed forward as the input to a multi-layer per-
ceptron (MLP) that performs binary classification
of the event’s polarity: positive or negative.

Because our approach applies to biochemical
events, we use the result of the underlying IE
method to encode the predicate of the event, or
its trigger, as a feature in the MLP. That is, if
the trigger belongs to the lexicon of positive-
polarity terms, such as promotes or activates, the
network uses this as evidence for positive po-
larity. Conversely, if the trigger belongs to the
negative-polarity lexicon, such as inhibits, the trig-
ger is evidence of negative polarity. We use the
same dictionary of polarity-carrying words as the
linguistically-informed method.

We investigated two families of architectures:
(a) passing the entire input sentence to a single
recurrent network, and (b) splitting the sentence
into several semantic segments and passing these
fragments to independent RNNs (see Figure 2).
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“Under basal conditions”  “so that …”

LSTM LSTM

MLP

Prediction

LSTM LSTM

“TSC2 negatively regulate” “the expression of mTOR”

Rule trigger
(i.e. Inhibits)

Figure 2: Four-segment LSTM architecture for polar-
ity identification. The four segments model: the text
before the left-most event argument, the text between
the left-most argument and the event predicate, the text
between the predicate and the right-most argument; and
the text after the right-most argument. The outputs of
the four LSTMs are integrated through a MLP, which
also uses the polarity of the event trigger as an explicit
feature.

We describe these approaches in the next two sub-
sections.

4.1 Single-segment architecture
For this variant of the architecture, we consider the
input sequence, consisting of the span of text that
belongs to the event as a single unit, and take the
last vector of the hidden sequence as input to the
MLP, discarding the rest of the sequence’s hidden
states. The output of the MLP directly labels the
polarity of the event on top of this hidden state
vector.

4.2 Four-segment architecture
The structure of the biochemical events modeled
here have the following elements: controller (or
cause), trigger (or predicate), and controlled (or
theme). These elements are text-bounded and par-
tition the source sentence into four regions: a
window of text before the controller, up to three
words, the text between the controller and the trig-
ger, the text between the trigger and the controlled
and the window of text after the controlled. If
the trigger appears before or after both, controller
and controlled (i.e. the phosphorylation of ERK by
MEK), then the event text is considered as a single
segment instead of two.

Each of the four sections of the source sentence
is then fed to an independent LSTM using the
same strategy as in Section 4.1. Figure 2 illustrates

how the sentence Under basal conditions, TSC2
negatively regulates the expression of mTOR, so
that ... is split and processed by this approach. The
last vectors of the four hidden sequences are con-
catenated and passed as input to MLP for polarity
classification.

4.3 Additional enhancements

We implemented and tested the following en-
hancements with both the single-segment and
four-segment architectures from Sections 4.1 and
4.2 respectively.

Pre-trained word embeddings
We used Word2Vec (Mikolov et al., 2013) to pre-
initialize the word embeddings. We pre-trained
these embeddings over the open-access subset of
PubMed Central3. We used dimension 100 for
these vectors.

Character-level embeddings
To capture information present in the morpho-
logical structure of a word, we extended our ap-
proaches to use character-level embeddings. Each
word w in an input sentence is enhanced by adding
character-level embeddings to its word embedding
ew.

Given the characters of word w, each is mapped
to an embedding ec. The resulting sequence of
character embeddings {ect} is then passed for-
wards and backwards through a bi-directional
GRU (Goldberg, 2017). Then, the last hidden vec-
tors of the forward and backward GRUs are con-
catenated into the word’s characters embedding
ewc.

The word embedding and the word’s charac-
ters embedding are then concatenated into an en-
hanced word embedding ew

′
= [ew; ewc], which is

passed as input for the current word of our polarity
network architecture.

Attention mechanisms for aggregation
So far, in all proposed approaches the last element
of a sequence has been used as input to the MLP
for classification. By doing this, the remaining se-
quence leading to the selected hidden vector is dis-
carded with respect to classification. To account
for this potential limitation, we implemented at-
tention mechanisms (Bahdanau et al., 2014) to ag-

3https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
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gregate all the hidden vectors into the classifica-
tion step of the network.

The attention mechanism functions as a
weighted average of a sequence {ht} of vectors
dictated by

󰁓T
t αtht. The weight parameters {αt}

are learnt jointly with the rest of the network pa-
rameters. The scalar coefficient αt for the vec-
tor ht is computed using the linear combination:
at = Waht + ba, where the parameters Wa and ba
are shared for all the observations passed through
the network. The resulting sequence of coeffi-
cients {at} is normalized with the softmax func-
tion by αt = softmax({at}) to enforce that the
weights sum up to 1.

The single-segment architecture is enhanced
with this mechanism on top of the sequence of
hidden vectors produced by the recurrent network.
For the four-segment architecture, we tested an
attention mechanism for the hidden vector se-
quences of each segment of the sentence (shallow
attention) and an additional approach that also in-
cludes an attention mechanism to aggregate, in-
stead of concatenate the four resulting sequence
vectors before the MLP step (deep attention). This
deep attention approach computes a weighted av-
erage of the four sequences {si}, dictated by󰁓4

i βisi. Similarly to the weights of the hidden
vectors, each individual weight in {βi} is com-
puted by the linear combination bt = Wbhi + b0,
where the parameters Wb and b0 are shared and
later normalized by βi = softmax({bi}).

Bidirectional LSTMs
At any given index t of a source sentence, the
LSTM network considers only the sequence 1..t
of words to compute the hidden state vector of
wt. Clearly, this formulation discards information
from words to the right of t. To address this limi-
tation, we modified our architecture to use a bidi-
rectional LSTM (Graves et al., 2013) as a drop-in
replacement of the vanilla LSTM wherever it is
used. Similarly to the bidirectional GRU, the bidi-
rectional LSTM contains two distinct LSTM net-
works that process the input sentence left-to-right
(forward) and right-to-left (backward). The last
hidden vectors of both are concatenated and used
for the next step in our architectures.

5 Dataset

To analyze the performance of the above ap-
proaches, we assembled a dataset of sentences as-
sociated with protein-protein interaction events,

as well as polarity labels. The dataset was con-
structed through distant supervision (Mintz et al.,
2009), by aligning events extracted from biomed-
ical literature by Reach, a biomedical IE system
(Valenzuela-Escárcega et al., 2018), with polarity
labels from the SIGNOR database (Perfetto et al.,
2015).

SIGNOR contains approximately 20,000 man-
ually curated protein interactions, the majority of
which are annotated with the polarity of the effect
of the interaction on the downstream protein (ac-
tivation or inhibition). These signed interactions
were used to establish the true polarities for each
pair of proteins in the database. A potential is-
sue with this approach is that an interaction among
proteins may have more than one possible polar-
ity depending on the biological context: for ex-
ample, protein A may activate protein B in cell
type X, but inhibit protein B in cell type Y. To
mitigate this, we filtered the relations in SIGNOR
for those annotated with only a single, unambigu-
ous polarity, under the assumption that for the rel-
atively well-characterized interactions prioritized
for curation in a pathway database, the assign-
ment of a single polarity would be a good indicator
of “ground truth” for the majority of texts. Pro-
cessing the SIGNOR database in this way yielded
17,163 protein-protein interactions among with a
single polarity, composed of the following interac-
tion types: 13,302 interactions with positive polar-
ity, and 3,861 interactions with negative polarity.

We extracted protein-protein-interaction events
from text by running the Reach IE system over
all full-text articles in PubMed Central4, the
PubMed Central Author’s Manuscript collection5,
and MEDLINE6 abstracts (for articles not in-
cluded in the full-text datasets). We kept all in-
formation about the events (e.g., triggers, partici-
pants, overall interaction type), but discarded po-
larity information. We assigned polarity labels
by aligning these events with SIGNOR interac-
tions that involved the same two proteins and the
same overall interaction type, irrespective of sign
(e.g., regulation of activity or regulation of phos-
phorylation). From this dataset we removed: (a)
duplicate sentences, and (b) sentences containing
events where at least one of the participating pro-

4
https://www.ncbi.nlm.nih.gov/pmc/tools/

openftlist/
5
https://www.ncbi.nlm.nih.gov/pmc/about/

mscollection/
6
https://www.nlm.nih.gov/bsd/medline.html
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tein names could not be grounded to an entry in
the UniProt protein database7. This process pro-
duced 68,935 polarity-labeled events (with sup-
porting sentences). For 54,105 of these events, the
original polarity detector in Reach agreed with the
SIGNOR polarity label (a strong indication that
these sentences are easier to classify). For 14,830
events, Reach’s polarity disagreed with SIGNOR
(an indication that these sentences are more chal-
lenging). We call this dataset the DS dataset (from
distant supervision). Table 1 lists the distribution
of labels for the DS dataset on both the Easy and
Challenge partitions and overall.

Positive polarity Negative polarity

Easy 40, 339 13, 766
Challenge 7, 262 7, 568

Total 47, 601 21, 334

Table 1: Label distribution on the DS dataset.

The distant supervision process is potentially
noisy (Yao et al., 2011). To control for this noise,
we also created two smaller hand-curated datasets,
as follows:

1. We randomly sampled 100 sentences from
the sentences where Reach agreed with SIG-
NOR, and 100 from the sentences where
Reach disagreed with SIGNOR. Based on
the intuition mentioned in the previous para-
graph, we call these partitions Easy and Chal-
lenge.

2. Because the focus of this work is on polarity
identification given a correct event, we elimi-
nated the false positive events from both par-
titions, i.e., events extracted by Reach that
were not supported by the corresponding un-
derlying sentence. Further, we removed sen-
tences containing events where at least one of
the participating protein names could not be
grounded to UniProt. This reduced the size
of the dataset to 62 Easy and 67 Challenge
examples.

3. The remaining sentences were manually cu-
rated by a domain expert. The expert cor-
rected 2 polarity labels in the Easy partition,
and 53 labels in the Challenge partition, con-

7https://www.uniprot.org

firming our expectation that the latter parti-
tion is harder than the former.

To facilitate reproducibility, we will release all
these datasets (and the software) upon acceptance.

6 Results

We performed a five-fold cross validation exper-
iment on the DS dataset introduced in Section 5
to assess the performance of the linguistically-
informed baseline (Section 3) and of the various
neural models previously described in Section 4.
Note that this dataset contains all the elements
from both Easy and Challenge partitions. The
data was split randomly and the experiment was
repeated with five different random seeds and the
numbers reported are the corresponding averages
from all the trials. Table 2 reports these average
scores as well as the standard deviations for all the
approaches analyzed.

Tables 3 and 4 contain the results on the
manually-curated Easy and Challenge partitions,
when the corresponding models were trained on
the entire DS dataset.

The code and data used to generate these results
are available at this URL: https://github.
com/clulab/releases/tree/master/
naacl-essp2019-polarity.

7 Discussion

7.1 Discussion of the main results

Table 2 shows that the linguistically-informed ap-
proach performs reasonably well overall, with a
F1 score of 0.862. This is encouraging, but also
somewhat misleading. The DS dataset consists of
mostly Easy examples, where Reach agreed with
SIGNOR labels. As discussed in Section 5, the
distribution of the examples in the DS dataset is
78.4/21.6% Easy/Challenge. Tables 3 and 4 show
that the performance of the linguistically-informed
approach, which is an improved version of the
method in Reach, drops to 0.143 F1 when eval-
uated solely on challenging sentences.

On the other hand, the results summarized
in Tables 2 through 4 demonstrate that overall,
deep learning architectures that incorporate bidi-
rectional recurrence with character-level embed-
dings perform the best. The reasonable explana-
tion for this is that those specific enhancements
are aimed at capturing more global information
from the sentence, instead of just the information
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Architecture variant F1 (st. dev.) Precision (st. dev.) Recall (st. dev.)

Linguistically-informed approach 0.862 0.859 0.865

Single-segment architecture
– biLSTM, char embed, no pretrained embed, no attention, trigger 0.968(0.001) 0.967(0.001) 0.969(0.000)
– biLSTM, char embed, no pretrained embed, no attention, no trigger 0.968(0.001) 0.967(0.001) 0.968(0.000)
– LSTM, char embed, no pretrained embed, no attention, trigger 0.966(0.001) 0.964(0.001) 0.967(0.001)
– LSTM, no char embed, no pretrained embed, no attention, trigger 0.961(0.000) 0.959(0.001) 0.963(0.001)
– LSTM, char embed, no pretrained embed, attention, trigger 0.954(0.001) 0.954(0.001) 0.955(0.002)
– LSTM, char embed, pretrained embed, no attention, trigger 0.948(0.001) 0.944(0.002) 0.952(0.001)
– LSTM, no char embed, pretrained embed, no attention, trigger 0.943(0.000) 0.938(0.001) 0.948(0.001)
– biLSTM, char embed, no pretrained embed, no attention, trigger, mask 0.874(0.001) 0.852(0.010) 0.897(0.012)

Four-segment architecture
– LSTM, char embed, no pretrained embed, no attention, trigger 0.956(0.000) 0.956(0.001) 0.956(0.000)
– LSTM, char embed, no pretrained embed, attentiondeep 0.948(0.000) 0.949(0.001) 0.947(0.001)
– LSTM, char embed, no pretrained embed, attentionshallow 0.948(0.000) 0.951(0.001) 0.945(0.001)

Table 2: Deep learning scores from a five-fold cross-validation experiment on the larger DS dataset. The “mask”
option indicates that event participants have been masked (please see Section 7.3 for details).

Architecture variant F1 (st. dev.) Precision (st. dev.) Recall (st. dev.)

Linguistically-informed approach 0.989 0.979 1.0

Single-segment architecture
– biLSTM, char embed, no pretrained embed, no attention, no trigger 0.983(0.009) 0.978(0.000) 0.987(0.017)
– biLSTM, char embed, no pretrained embed, no attention, trigger 0.980(0.011) 0.978(0.000) 0.983(0.021)
– LSTM, no char embed, pretrained embed, no attention, trigger 0.974(0.005) 0.987(0.011) 0.961(0.009)
– LSTM, char embed, no pretrained embed, no attention, trigger 0.972(0.006) 0.978(0.000) 0.965(0.011)
– LSTM, no char embed, no pretrained embed, no attention, trigger 0.972(0.006) 0.978(0.000) 0.965(0.011)
– LSTM, char embed, pretrained embed, no attention, trigger 0.971(0.005) 0.987(0.011) 0.957(0.000)
– LSTM, char embed, no pretrained embed, attention, trigger 0.964(0.011) 0.987(0.011) 0.943(0.022)
– biLSTM, char embed, no pretrained embed, no attention, trigger, mask 0.942(0.017) 0.964(0.017) 0.922(0.029)

Four-segment architecture
– LSTM, char embed, no pretrained embed, no attention, trigger 0.974(0.006) 0.978(0.000) 0.970(0.011)
– LSTM, char embed, no pretrained embed, attentionshallow 0.960(0.005) 0.973(0.008) 0.948(0.011)
– LSTM, char embed, no pretrained embed, attentiondeep 0.958(0.017) 0.965(0.010) 0.952(0.035)

Table 3: Performance of all approaches on the Easy partition. The “mask” option indicates that event participants
have been masked (please see Section 7.3 for details).

Architecture variant F1 (st. dev.) Precision (st. dev.) Recall (st. dev.)

Linguistically-informed approach 0.143 0.138 0.148

Single-segment architecture
– LSTM, char embed, no pretrained embed, no attention, trigger 0.757(0.022) 0.659(0.019) 0.889(0.033)
– biLSTM, char embed, no pretrained embed, no attention, no trigger 0.752(0.007) 0.665(0.011) 0.867(0.018)
– biLSTM, char embed, no pretrained embed, no attention, trigger 0.748(0.031) 0.658(0.032) 0.867(0.030)
– LSTM, no char embed, no pretrained embed, no attention, trigger 0.733(0.008) 0.648(0.008) 0.844(0.015)
– LSTM, char embed, no pretrained embed, attention, trigger 0.703(0.010) 0.628(0.008) 0.800(0.030)
– LSTM, char embed, pretrained embed, no attention, trigger 0.690(0.025) 0.607(0.024) 0.800(0.030)
– LSTM, no char embed, pretrained embed, no attention, trigger 0.686(0.013) 0.610(0.014) 0.785(0.028)
– biLSTM, char embed, no pretrained embed, no attention, trigger, mask 0.576(0.009) 0.472(0.008) 0.741(0.033)
Four-segment architecture
– LSTM, char embed, no pretrained embed, no attention, trigger 0.698(0.014) 0.638(0.008) 0.770(0.028)
– LSTM, char embed, no pretrained embed, attentiondeep 0.696(0.017) 0.640(0.019) 0.763(0.018)
– LSTM, char embed, no pretrained embed, attentionshallow 0.690(0.018) 0.640(0.020) 0.748(0.015)

Table 4: Performance of all approaches on the Challenge partition. The “mask” option indicates that event partici-
pants have been masked (please see Section 7.3 for details).

found around the dependency path representing
the event. Taking into account the full, global in-
formation in the sentence as a single segment re-
sults in a simpler neural network with fewer pa-
rameters, which may also explain why the four-
segment architecture, which splits the sentence
into subsequences according to the components

associated with the cause, predicate and theme,
and runs each through distinct recurrent compo-
nents in the architecture does not perform quite as
well as the full, single-segment architecture.

Although the deep learning models generally
outperform the linguistically-informed model, Ta-
bles 3 and 4 uncover an interesting pattern in the
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Number of negative
words per sentence Sample size Best DL approach Linguistically-informed approach

Precision Recall F1 Precision Recall F1

0 49,972 0.978 0.980 0.98 0.873 0.937 0.904
1 16,063 0.90 0.902 0.901 0.694 0.38 0.491
2 2,566 0.94 0.896 0.917 0.773 0.691 0.730
3 300 0.884 0.857 0.87 0.675 0.49 0.568
4 30 1.0 0.92 0.958 0.8 0.48 0.6
5 3 1.0 1.0 1.0 0.5 0.5 0.5
6 1 1.0 1.0 1.0 1.0 1.0 1.0

Table 5: Polarity classification results stratified by the number of polarity-carrying words in the corresponding
sentence.

Number of negative
words per sentence Sample size Best DL approach Linguistically-informed approach

Precision Recall F1 Precision Recall F1

0 49,972 0.882 0.934 0.907 0.873 0.937 0.904
1 16,063 0.643 0.627 0.761 0.694 0.38 0.491
2 2,566 0.789 0.734 0.761 0.773 0.691 0.730
3 300 0.744 0.689 0.716 0.675 0.49 0.568
4 30 0.941 0.64 0.761 0.8 0.48 0.6
5 3 1.0 1.0 1.0 0.5 0.5 0.5
6 1 1.0 1.0 1.0 1.0 1.0 1.0

Table 6: Polarity classification results stratified by the number of polarity-carrying words in the corresponding
sentence with masked participants.

differential performance on the Easy and Chal-
lenge data sets. In particular, on the Easy data set,
the linguistically informed approach performs ex-
ceptionally well, better than the highest perform-
ing deep learning model. The good performance
of the linguistically-informed model is not surpris-
ing here because, as discussed, the instances in the
data set were those for which the linguistically-
informed agreed with SIGNOR. But it is encour-
aging that the best deep learning model manages
to achieve this performance as well.

On the Challenge data set, however, the
linguistically-informed model performance dives
to an F1 of 0.143. Again, this is not a surprise
given that these data were ones that specifically
disagreed with a version of the linguistic model.
However, the performance of the best deep learn-
ing model degrades just to 0.757 F1, demonstrat-
ing the capacity of the model to maintain relatively
good performance in the face of more challeng-
ing data. We find this very encouraging, especially
considering that the neural models were trained on
the DS dataset, which contains distant-supervision
noise. These results demonstrate that the neural
models are able to generalize despite the presence
of noise.

Somewhat surprisingly, no attention-based
model outperformed the simpler bidirectional
LSTM without attention. This highlights that the

simpler LSTM method is sufficient to model po-
larity in this context, and that, possibly, the at-
tention mechanisms are more likely to overfit on
the distant-supervision noise present in this train-
ing data.

7.2 Analysis of complexity by negative terms

To better understand why the Challenge data set
was more difficult, we compared the performance
of the linguistically-informed approach to the best
deep learning model in detail. In this experiment,
we partitioned the data from the DS dataset into
subsets according to how many negative polar-
ity words (from the negative polarity lexicon de-
scribed in Section 3) appeared in a sentence and
evaluated each subset individually. Training for
the DL approach was performed using five-fold
cross-validation and the testing scores were com-
puted only for the instances with a specific num-
ber of negative polarity words. Table 5 summa-
rizes these results. Unsurprisingly, the scores are
negatively correlated with the number of negative
words in the sentence for both approaches. How-
ever, the linguistic approach suffers a much faster
drop in performance as the complexity of the sen-
tence increases. The best deep learning model,
however, still attains good performance even when
there are more than two negative words in the sen-
tence. For example, the linguistically-informed
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method drops in performance from 0.904 F1 in
sentences with zero negative words to just 0.6 F1
in sentences with four negative words, whereas
the best neural model drops from 0.98 to 0.958
F1 in the same subsets. This is further proof that
the neural methods are able to aggregate multiple
negative-polarity hints from the larger context sur-
rounding the events.

7.3 Masking participants

To mitigate the potential of our method to over-
fit to the entities present in the events analyzed,
we implemented a variant of the previous analysis
in which we replaced the words that belonged to
a participant in a regulation event, both controller
and controlled, with a predefined token that masks
its identity but preserves its role in the event. For
example, in the sentence PTEN Plays a Role in
the Activation of the PI3K Signaling Pathway, the
participants PTEN and PI3K will be replaced by
the terms CONTROLLER and CONTROLLED, re-
spectively.

Table 6 presents the results of this analysis. The
table indicates that the performance of deep learn-
ing models decreases in general. However, the
same pattern observed when not masking the par-
ticipants arises. That is, the deep learning ap-
proach is not affected as much when the number
of negative terms increases compared to the lin-
guistic approach. Please note that this evaluation
is more stringent and could be considered a lower-
bound to what can be expected from a real world
scenario. It also proves that the deep learning
models do capture most their signal from the struc-
ture of the sentence in which the event is extracted,
and have a degree of resilience when facing partic-
ipants that were not observed during training. Ta-
bles 2–4 also show results for a model trained with
masked participants in the corresponding scenario.

8 Conclusions

We have introduced a corpus for the development
and assessment of approaches to assigning correct
polarity to biochemical events. Using this cor-
pus, we trained and evaluated a variety of deep
learning architectures and compared them to a
linguistically-informed model.

The best-performing deep learning architec-
tures incorporate character embeddings with
a bidirectional LSTM across the entire input
sentence, achieving an average F1 of 0.972

in a five-fold cross-validation study. This
model was found to do just as well as the
linguistically-informed model on examples that
the linguistically-informed model does well on,
but maintains much more robust performance in
the face of more difficult cases.

We also explored a deep learning architecture
that splits the input sentence into components that
are generally meaningful for the task, but found
that this did not reach the accuracy of the single-
segment input model, suggesting that there is im-
portant information spread across sentence com-
ponents that should be jointly processed.

Additional work remains. Further work should
be devoted to gain further F1 improvement, and
the place to start is deeper analyses of the kinds
of errors made by the best performing model. An-
other issue is speed efficiency: the linguistically-
informed model processes a sentence much faster
than the deep learning models, so is better-adapted
for high-throughput use cases. An area of fur-
ther exploration is to consider the pattern observed
in Table 5 and assess the tradeoffs of using the
fast linguistically-informed model for simpler sen-
tences (with no negative words) and then use the
slower deep learning model for more complex sen-
tences.
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Abstract

Datasets are integral artifacts of empirical sci-
entific research. However, due to natural lan-
guage variation, their recognition can be dif-
ficult and even when identified, can often be
inconsistently referred across and within pub-
lications. We report our approach to the
Coleridge Initiative’s Rich Context Competi-
tion, which tasks participants with identifying
dataset surface forms (dataset mention extrac-
tion) and associating the extracted mention to
its referred dataset (dataset classification). In
this work, we propose various neural base-
lines and evaluate these model on one-plus and
zero-shot classification scenarios. We further
explore various joint learning approaches – ex-
ploring the synergy between the tasks – and
report the issues with such techniques.

1 Introduction

The modern scientific method hinges on replica-
bility and falsifiability. Datasets are an essential
aspect of enabling such analysis in much of mod-
ern empirical studies. Datasets themselves are var-
ied — in size, complexity, substructure, and scope
— and references to them are also varied — in
naming convention and subsequent reference or
citation, both within and across documents.

Dataset mention extraction and classification
has thus become more critical not only to facilitate
the identification of proper target datasets for test-
ing hypotheses but also to benchmark incremental
research by extension. In this work, we explore
various neural approaches to identifying cited sur-
face forms associated with a dataset and interlink-
ing them. We benchmark our approach on the Co-
leridge Initiative’s Rich Text Context Competition
(RTCC), released in 2018, which we participated
in, whose dataset comprises of social science pub-
lications exemplify such confusability problems
with multiple surface dataset citations.

2 Related Work

The extraction of important scientific terms within
full-text documents has been desiderata of schol-
arly document analyses extending back decades.
In the early 90s, work by Liddy (Liddy, 1991)
explored the possibility of promoting key schol-
arly document metadata into structured abstracts.
Generic aspects of scholarly documents have been
explored in (Gupta and Manning, 2011) where key
aspects of publications namely focus, domain and
techniques were identified using linguistic pat-
terns. Domain-specific corpora with complex tax-
onomies such as the ACL RD-TEC (QasemiZadeh
and Schumann, 2016) have also been employed
to train systems to identify fine-grained aspects.
In the field of nursing and primary care, the key
metadata of Patients, Intervention, Condition, and
Outcome characterize the acronym “PICO”, which
has also been the target of much work (Zhao et al.,
2010; Wallace et al., 2016).

Recently, shared tasks concerning key generic
metadata (inclusive of datasets) have been run in
the community. The ScienceIE shared task (Au-
genstein et al., 2017) benchmarked techniques for
identifying predefined entities matching Process,
Task and Materials; where the definition of Ma-
terial entities overlap with that of datasets. The
task asked to extract such entities and identify the
relations among them on short excerpts of sci-
entific documents. State-of-the-art deep learning
and feature-based sequential labeling models set
the standard for approaches on such tasks, us-
ing Long Short-Term Memory (LSTM) (Ammar
et al., 2017) and Conditional Random Field (CRF)
(Prasad and Kan, 2017) models, respectively.

Though related to a general named entity recog-
nition, we see the problem of dataset mention ex-
traction as having particular challenges. In con-
trast to the related scientific document process-
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Publication: ....Source: Monitoring the Future: National Survey on Drug Use, 1975-2009....Section 2 provides a brief
summary of trends in adolescent drinking and smoking, using data for the US from the annual Monitoring the Future sur-
vey.....Trends in Adolescent Drinking and Smoking: Monitoring the Future.....Systematic annual data on the prevalence of
underage drinking and smoking in the US are collected and tracked by several organizations. This section relies on data
from the Monitoring the Future (MTF)....
Datasets (Present): [ ... 56: Monitoring the Future: A Continuing Study of the Lifestyles and Values of Youth, 1984; 101:
Monitoring the Future: A Continuing Study of the Lifestyles and Values of Youth, 1989;...]
Datasets (Not Present): [ ... 100: Monitoring the Future: A Continuing Study of American Youth (12th-Grade Survey),
1996; 108: Current Population Survey, May 1973; ...] –

Figure 1: A text fragment from the training data. Highlighted text represent dataset mentions (citations). Note
that a particular mention may refer to multiple datasets. In some examples, as highlighted here, there are many
different datasets which closely resemble each other in their surface form.

ing tasks of keyphrase extraction (with 10–15
keywords within a document; i.e., (Kim et al.,
2010)) or identify such semantic entities within a
small excerpt (identifying which 5-10 tokens con-
stitute entities over 30–40 tokens; i.e., (Augenstein
et al., 2017)) dataset mentions within full-text doc-
uments exhibits a much higher ratio of sparsity.
Further, coreference resolution techniques specific
to linking the dataset mention to the dataset have
yet to be well explored.

3 Background

We first formally define the task following the
specification from the RTCC, as consisting of two
sub-problems:
•Dataset Mention Extraction: Given a publica-
tion (di), identify fragments of the text that are
mentions of a dataset.
•Dataset Classification: Classify the detection
mention text fragment to a particular dataset in the
knowledge base (Di).

Corpus. The corpus is compiled by Coleridge
Initiative Rich Context Competition1 (see the ex-
ample in Fig. 1) and consists of 5K publication
sampled from various social studies, averaging
7K tokens in length. About half of the docu-
ments (2.5K) are annotated, featuring an average
of 2.2 datasets and 7.5 different dataset mentions
per document. Note that some documents do not
mention datasets at all. Additionally, the RTCC
makes a list of known datasets available (sized
10K), which is taken as an input knowledge base
for resolution. Many of the 10K datasets do not
appear in the corpus. Hence for these datasets,
there is no mention–dataset pair. The corpus al-
lows us to explore the dataset classification prob-
lem at three levels of complexity, from easiest to

1https://coleridgeinitiative.org/
richcontextcompetition

most challenging:
•One-plus classification: at least one dataset–
mention pair is present in training for all the test-
ing datasets.
•Zero-shot classification: no dataset–mention
pairs are known in training data for the testing
dataset, but the dataset is known to the provided
knowledge base. The model knows the dataset de-
scription and has to do the classification subtask,
but not discovery.
•Zero-shot discovery: the scenario where even
the dataset (and by extension, dataset–mentions
pairs) is unknown to the system (not present in the
provided knowledge base). This is also the ulti-
mate aim of a discovery system, which simulta-
neously needs to populate datasets and their men-
tions from an empty knowledge base. We do not
address this scenario directly in this current work
but discuss joint models that can potentially cater
to this problem.

4 Model

As the RTCC corpus has only been recently
released, there are no formally published ap-
proaches, nor public results. However, we have
identified that the top performing systems in the
competition treat the subtasks of mention extrac-
tion and dataset classification as two separate
tasks. We explore various neural approaches for
both the individual tasks and the look more closely
the case of joint modeling. Correct extraction
dataset mention is the direct prerequisite task of
dataset classification. This motivates us to investi-
gate joint model to perform both tasks. We exam-
ine two different realizations of such a joint model
that supports multi-task learning.

Baselines. We model mention extraction as
a sequence labeling task. This admits a range
of neural models as sequence labeling baselines
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for this task. We start with a Bidirectional Long
Short-Term Memory (Hochreiter and Schmidhu-
ber, 1997) (‘BiLSTM’) model that employs pre-
trained word embeddings. We then incremen-
tally increase the model’s power of represen-
tation in other baselines. First, we incorpo-
rate a Convolutional Neural Network (CNN) over
character embeddings (‘CNN-BiLSTM’). Second,
we add a CRF layer over the BiLSTM outputs
(‘CNN-BiLSTM-CRF’); and finally incorporate
Bahdanau attention (Bahdanau et al., 2014) over
the LSTM layer (‘CNN-BiLSTM-Attn-CRF’).

Our selection of these incremental components
is motivated by the aspects of the problem. Apply-
ing a CNN over the character embeddings is intro-
duced to tackle domain-specific terminology that
may conserve internal character sequences, such
as acronyms found in dataset names. Such names
are generally out-of-vocabulary (OOV) with re-
spect to generic word embeddings. The applica-
tion of the CRF is motivated to reduce token-level
noise by incorporating global (i.e., within a sen-
tence input) decoding. The attention mechanism is
similarly motivated to focus the model on the spe-
cific parts of the input sequence, as datasets and
their mentions occur within specific contexts and
are not uniformly distributed. The attention mech-
anism used is defined as follows: first, suppose the
sequence output of the BiLSTM H ∈ RN×T×h,
where N is the batch size, T is the sequence length
and h is the hidden dimension of BiLSTM. Then
the model performs the following operations:

A = HT

A = Softmax(A)

S = AT �H

(1)

where W ∈ RT×T is the weight matrix to be
trained and � represents the Hadamard prod-
uct. For the third dataset discovery task, we use
sentence classification models i.e. BiLSTM and
CNN (Kim, 2014) as baselines, replacing the stan-
dard sigmoid final binary classification with a soft-
max layer to enable multilabel multiclass classifi-
cation.

Shared Layer Extraction–Classification (‘SL
E–C’). The first joint system selects the best
system for each of the individual subtasks, then
unifies them by providing a common feature
extraction base and optimization using joint losses
over both subtasks. We start with the best overall
baseline for the mention extraction subtask (cf.

Figure 2: KBSL E–C model. Word embeddings for
tokens in each text fragment TFi (upper left) are trans-
lated to its hidden representation via BiLSTM-CNN-
Attn-CRF trained with binary labels for mention to-
kens (upper right). Separately, we apply CNN on the
text fragment and all j datasets to obtain datasets rep-
resentation (individually at a time; bottom row). These
are merged and passed to a dense layer, which we train
with binary labels to establish which dataset is refer-
enced.

5): CNN-BiLSTM-Attn-CRF. It uses the single
CNN-BiLSTM-Attn to encode the textual content,
followed by a CRF. For the dataset classification
subtask, we share the output from the CNN-
BiLSTM-Attn base, and substitute the CRF layer
with a CNN layer for dataset classification, as
from our empirical tuning, we found the CNN
model provides the best performance for dataset
classification.

KB Shared Layer Extraction–Classification
(‘KBSL E–C’). In this model (cf. Fig. 2), we
leverage on the meta-information of the dataset
knowledge base to better support zero-shot learn-
ing. There is a description (we experiment two
configurations – name and description) of each
dataset in the given knowledge base as part of
the corpus. First, we use convolution followed
by global max pooling to obtain a representation
of each dataset’s description text. We then apply
convolutions to known mentions of the dataset Di.
Both representations are then merged and passed
to a dense layer with a binary output such that
f(TFk, Di) = 1 if TFk mentions Di, else 0. This
step is repeated for all datasets (i ∈ [0,m]) during
testing, and a few randomly, sampled datasets per
text fragment during training.

Unlike SL E–C, KBSL E–C can incorporate
new classes dynamically by creating a new class
representation for predicted new class. Thus
KBSL E–C represents an end-to-end zero-shot
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dataset discovery model.

Figure 3: Token ngram-based CRF performance with
differing segment lengths.

Figure 4: Token ngram-based CRF performance with
different NSR, segment length 40.

4.1 Experiment
We elaborate on the complete experimental setup,
which has the following configuration:

Hyper-parameters. As the documents in the
corpus have 7K tokens on average, the sequence
lengths are too long for any model to process di-
rectly. We split the documents into shorter text
fragment (TFi) for training and inference. Most
fragments do not contain any dataset mentions;
these segments we term “negative segments”.

The document collection is thus highly skewed,
with only 0.4% positive tokens (similarly for pos-
itive segments). We under-sample to lessen the ef-
fect of data skew, by only considering some of the
negative segments during training. We sample all
“positive segments”, those with dataset mentions.

Our processing methods involve two hyper-
parameters – the segment length and the sampling
rate of negative segments. Both hyper-parameters
affect the ratio of negative tokens sampled in the
training set, which in turn impacts performance.
We experiment with the CRF baseline model (tri-
gram model, whose hand-tuned features include
uppercasing and digits) to analyze the effect of
these hyper-parameters and select optimal values
(cf. Fig. 3 and Fig. 4). For example, a negative
sampling rate (NSR) of 0.05 means that we sam-
ple 5% of the total number of negative segments
from the original dataset for training; conversely,
NSR=0 means every training segment contains at

least one dataset mention. Note that even for
NSR=0, there are still many negative tokens as
each segment only contains a few short mention
phrases (4.7 tokens per mention on average), with
the rest negative.

From the table, we can see that the model
generally works better when the negative token
rate is small. We use the optimal segment length
40 and NSR=0.015 (1.5%) for all neural models
in this paper.

Model Configuration. For all models, we
use the 300-dimensional GloVe (Pennington et al.,
2014) word embeddings. All models are trained
with Adam optimizer.

For dataset mention extraction, the task-specific
parameters are as follows. For the base BiLSTM,
we use a hidden size of 100 and a dropout rate
of 0.2 on word embeddings. We then used a
dense layer with sigmoid activation to determine
the probability of the input being part of a dataset
mention. For the character embedding CNN, we
use character embedding dimension 300, 1D con-
volution 300 filters, window size 6, and a dropout
rate of 0.4. For the CNN-BiLSTM-CRF model,
we add a CRF layer on top of the BiLSTM instead
of a dense layer.

For dataset classification, the task-specific
parameters are as follows. For the CNN model,
we use 1D convolution with 256 kernels, with
window size 6, followed by global max pooling,
and a dense layer for the final classification
output. For the LSTM based model, we use a
BiLSTM with hidden dimension 100 to encode
the input sequence and use a dense layer on the
final state of the BiLSTM for the final dataset
classification. We use a sigmoid for the final
non-linear activation function. As explained
earlier, the rationale to use sigmoid is to allow the
model to associate a single mention to multiple
datasets which appear commonly in the dataset
(see the example in Fig. 1).

Evaluation Method. We evaluate our model
on the development set, the test set and on the
zero-shot test set. We first randomly held out
7% of the datasets from the corpus and select the
publications (219 documents in total) containing
these datasets to form the zero-shot test set. To be
clear, the datasets in the zero-shot test set are not
seen at all within the training set. We then ran-
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Development Set Test Set Zero-Shot Test Set
Partial Exact Partial Exact Partial Exact

Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

BiLSTM 71.4 64.4 67.7 31.3 34.0 32.6 29.4 32.1 30.7 11.2 12.8 12.0 25.3 20.0 22.4 6.3 6.3 6.3
CNN-BiLSTM 77.5 75.5 76.5 41.4 44.6 43.0 49.8 44.7 47.1 28.6 31.2 29.8 38.7 28.6 32.9 18.0 20.8 19.3

CNN-BiLSTM-CRF 79.1 71.1 74.9 42.7 44.6 43.6 54.1 44.6 48.9 35.6 33.8 34.7 41.6 27.9 33.4 23.2 22.7 23.0
CNN-BiLSTM-Attn-CRF 76.1 73.8 74.9 39.4 47.7 43.2 58.0 50.0 53.7 34.8 38.0 36.4 42.6 28.9 34.4 17.2 17.3 17.3

SL E–C 77.2 72.6 74.8 39.9 41.6 40.7 40.3 43.1 41.7 27.1 28.4 27.7 29.0 28.0 28.5 16.3 16.7 16.5

Table 1: Mention Extraction Subtask performance. Segment length 40, negative sampling rate: 0.015.

Development Set Test Set Zero-Shot Test Set
Model P R F1 P R F1 P R F1

BiLSTM 73.1 71.6 72.3 27.5 47.4 34.8 3.0 5.7 3.9
CNN 81.3 79.5 80.4 42.8 46.5 44.6 4.9 5.0 5.0

SL E–C 70.6 70.0 70.3 31.8 49.3 38.6 3.6 6.3 4.6
KBSL E–C 96.0 85.9 90.7 17.6 27.5 21.5 0.8 1.1 0.9

KBSL E–C descript 97.5 88.1 92.6 12.3 44.6 19.4 0.5 1.9 0.9

Table 2: Dataset Classification Subtask performance. Segment length 40, negative sampling rate 0.015.

domly hold out 225 publications to form the test
set. The datasets mentioned in these testing docu-
ments may have other mentions in the training set
as well. The dev set is split from the training set
(5%) and has the same distribution and length as
the training set.

Since the test set and zero-shot test set contain
complete documents and do not have any sam-
pling, the distribution is different from the sam-
pled training set. During the evaluation, we do
not sample. We first split the test documents into
text segments of the same length as the training
segments and perform inference with our trained
model on these segments. We combine the pre-
dicted results as the prediction for the entire test
document.

We employ precision (P), recall (R) and F1

score as our evaluation metrics. For dataset men-
tion subtask, these metrics can be interpreted in a
relaxed or strict manner, with respect to true token
coverage. The relaxed, partial match metric at-
tributes a true positive count if any of the ground
truth tokens are correctly predicted by the model
as a mention phrase. The strict, exact match met-
ric attributes a true positive only when if every to-
ken in the mention is predicted correctly. We also
report exact match P, R, F1 at the document level.

5 Results

CNN-LSTM-Attn-CRF and CNN outperform all
the other models in the single task setup for men-
tion extraction and dataset discovery, respectively.
We note that the performance of sequence labeling
models is not very high even though when the task
seems trivial. We attribute this to the high number
of text fragments with no dataset mention, result-

ing in low accuracy. Similar to CRF (cf. Fig. 3 and
Fig. 4), the precision-recall trade-off for smaller-
to-bigger fragments does not allow for optimiza-
tion by mere tuning of fragment size.

We further find that surprisingly the SL E–C
model doesn’t increase the performance of either
of the tasks. The sequence labeling task is more
sensitive to local information. Ideally, the out-
put of mention extraction should be input to clas-
sification and hence prime signal for the classifi-
cation task. But, we find that the classification
benefit from more contextual information than just
the mention (in fact we find using extracted men-
tions works even worse) and hence sharing layers
causes mix-up of representations of the text input
which isn’t ideal for either task.

KBSL E–C model retain the trend of the de-
crease in performance on individual tasks. But
surprisingly the model doesn’t perform well on the
zero-shot test set. On further analysis, we realize
this is caused by the nature of dataset with multiple
similar datasets making it easier for even simple
classification model to achieve a partial score for
classification even when the model has not seen an
example of the dataset.

6 Conclusion

We explore the problem of identifying the mention
of datasets in publications and associate the iden-
tified mention to a dataset. In our experiments we
find CNN-BiLSTM-CRF and CNN models work
best for dataset mention extraction and classifica-
tion respectively. We identify that while mention
extraction is primarily dependent on local signals
the dataset classification uses a much wider con-
text than just the mention.
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Abstract
This study explores the task of extracting
a technological expression and its pros/cons
from computer science papers. We report the
ongoing efforts on the annotated corpus of
pros/cons and the analysis of the nature of
the automatic extraction task. Specifically, we
show how to adapt the targeted sentiment anal-
ysis task for extracting pros/cons from com-
puter science papers and conduct an annota-
tion study. We construct a strong baseline
model and conduct an error analysis to iden-
tify the challenges of the automatic extraction
task. Experimental results show that pros/cons
can be consistently annotated by annotators,
and that the task is challenging owing to the re-
quirement of domain-specific knowledge. The
annotated dataset is made publicly available
for research purposes.

1 Introduction

The number of scientific publications has been
rapidly increasing. Johnson et al. (2018) showed
that over 3 million research articles are published
annually. It is increasingly difficult for researchers
to have a bird’s-eye view of current research trends
with such a large number of publications.

This study explores information extraction from
computer science papers. The main focus of com-
puter science publications involves problem solv-
ing (e.g., optimization algorithm). One typical
form of computer science publications is present-
ing an issue and then discusses solutions for it.
Specifically, the pros and cons of previously pro-
posed technologies are discussed and propose new
technology. Example (1) discusses the cons of pre-
vious technologies for coreference resolution:1

(1) While successful, these approaches require
labeled training data, consisting of mention

1Throughout the paper, an appended 8-character identifier
indicates the ACL anthology’s paper identifier.

pairs and the correct decisions for them.
(D08-1068)

Therefore, when computer scientists write a paper,
it is important to have a bird’s-eye view of the pros
and cons of previous technologies. As the number
of publications rapidly increases, it is desirable to
develop an automated tool for mining the pros and
cons of technologies.

Previous works have explored automatic extrac-
tion of a wide variety of scientific knowledge to
assist researchers in collecting relevant publica-
tions. This research direction includes domain-
independent approaches, such as Citation Net-
work (Kajikawa et al., 2007) and Argumenta-
tive Zoning (Teufel et al., 1999), and domain-
dependent approaches such as BioNLP (Deléger
et al., 2016). These technologies are the founda-
tion of scientific search engines or knowledge dis-
covery tools, such as Semantic Scholar2 and Dr.
Inventor (Ronzano and Saggion, 2015). Neverthe-
less, less attention has been paid to the mining of
the pros and cons of technologies.

This study performs a preliminary investiga-
tion on automatically identifying technologies and
their pros/cons from computer science papers
(henceforth referred to as pros/cons identifica-
tion). We frame pros/cons identification as the
well-known NLP task of targeted sentiment anal-
ysis (Jiang et al., 2011) and conduct an annota-
tion study. Futhermore, we build a neural base-
line model to identify the challenges of pros/cons
identification task. The annotation study indicates
that the pros/cons identification task can be rea-
sonably framed as the task of targeted sentiment
analysis. The experimental results of automatic
extraction show that pros/cons identification is dif-
ficult mainly owing to the requirement of domain-
specific knowledge. The annotated dataset is made

2https://www.semanticscholar.org
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publicly available.3

2 Annotation Scheme

We investigate the task of pros/cons identification
task by adopting an existing annotation scheme
to our task and conducting an annotation study.
Specifically, we apply an annotation scheme from
the targeted sentiment analysis task (Jiang et al.,
2011), which is mainly developed for mining pos-
itive/negative opinion about named entities (e.g.
person, products) from twitter.

2.1 TERM

We introduce TERM label to annotate with tech-
nological terms. We define TERM as a noun
phrase that represents a mechanism, a function, or
a method to solve the problem. In Example (2),
recursive neural network and AdaRNN are labeled
as TERM because these are types of neural net-
work models.

(2) We employ a novel adaptive multi-
compositionality layer in recursive neural
network, which is named as AdaRNN (Dong
et al., 2014). (P14-2009)

Note that we also annotate a general noun
phrase (e.g. our method) with the TERM label
and named entities with the TERM label.

2.2 Sentiment

For each phrase labeled as TERM, we addition-
ally annotate it with a Sentiment attribute, which
represents how a technology is evaluated. Fol-
lowing the previous work on targeted sentiment
analysis (Jiang et al., 2011, etc.), an evaluation
is expressed by three types of attributes: Posi-
tive, Negative, and Neutral. These labels rep-
resent a local polarity within a sentence and are
only judged based on the information obtained
from a sentence containing TERM. In Example
(3), the whole-sentence-based classifier that is la-
beled TERM is assigined Positive attribute, be-
cause it is positively evaluated by the expression
“performs the best”.

(3) The results indicate that the
whole-sentence-based classifier

:::::::
performs

:::
the

::::
best. (D09-1019)

Similarly, the negative attribute is assigned to the
examples of negative aspects of technologies.

3https://github.com/cl-tohoku/scientific-paper-pros-cons

Figure 1: The brat annotation interface used for con-
ducting our annotation study.

Neutral attribute is given to TERM if only the
neutral features and properties of technology are
described in the sentence. In Example (2), recur-
sive neural network and AdaRNN are assigned to
Neutral attributes.

3 Annotation Study

In this section, we describe our annotation study
used for creating a dataset for the automatic ex-
traction of pros/cons.

3.1 Dataset
We retrieved 92 computational linguistics papers
that contained the keyword “coreference resolu-
tion” in the title or body texts using Google Cus-
tom Search in ACL Anthology.4 Various methods
have been proposed for coreference resolution be-
cause it has been a subject of research for numer-
ous years. This is suitable for our trial annotation.
These papers we considered were published from
1999 to 2017.

In a publication, the pros and cons of the pro-
posed/existing methods are generally discussed in
the introduction section. Therefore, we focus on
annotating only the introduction section to reduce
the cost of annotation.

3.2 Settings
We employed three fluent-English speakers who
specialize in NLP. We assigned two annotators
per paper to investigate the inter-annotator agree-
ment. Figure 1 illustrates the annotation interface
brat (Stenetorp et al., 2012), which is used for con-
ducting our annotation.

3.3 Results and Discussion
We measured the inter-annotator agreement after
the annotation was completed.

TERM The percentage of the exact match of
TERM spans between annotators was 24.0 %. We
observed multiple of cases where one annotator la-
beled a phrase as TERM, but the other annotator

4http://www.aclweb.org/anthology/
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did not. Such examples included joint inference
and a learned cluster ranker. We speculate that
this is because these noun phrases indirectly indi-
cate whether a phrase is a mechanism, function, or
method.

The percentage of partial match between anno-
tators was 38.2 %. We observed that the interpreta-
tion of span was sometimes different across anno-
tators in certain cases. For example, one annotator
included a modifier such as a simplified semantic
role labeling (SRL) framework, but the other did
not (i.e., semantic role labeling (SRL) framework).

Sentiment We calculated the inter-annotator
agreement of the Sentiment attributes for 390 in-
stances whose TERM span annotation matched
exactly matched between annotators. We obtained
a Fleiss’s Kappa of 0.65, which indicated substan-
tial agreement (Fleiss, 1971).

Even though the inter-annotator agreement was
generally high, there are a few disagreements. The
primary cause of disagreements is that one annota-
tor assigned the Neutral attribute, and the other as-
signed the non-Neutral attributes (i.e., Positive or
Negative). Among the disagreements, we found
numerous cases where domain-specific knowledge
was required. In Example (4), one annotator la-
beled ranking models as Positive and the other la-
beled them as Neutral. To judge the sentiment at-
tributes correctly, one required the domain knowl-
edge of coreference resolution that directly cap-
turing the competition among potential antecedent
candidates is appropriate.

(4) In essence, ranking models
::::::
directly

:::::::
capture

during training the competition among po-
tential antecedent candidates, instead of con-
sidering them independently. (D08-1069)

We found a large number of cases where sen-
tences took the form of concession. In Example
(5), one annotator labeled the pairwise approach
as Negative and the other Neutral. We spec-
ulate that annotators were confused because the
pairwise approach is evaluated positively by the
phrase high precision in the subordinate clause,
but negatively by the phrase neither realistic nor
scalable in the main clause.

(5) While the pairwise approach has high pre-
cision, it is

::::::
neither

::::::::
realistic

::::
nor

::::::::
scalable to

explicitly enumerate all pairs of compatible
word pairs. (N10-1061)

# TERM spans

# sentences Positive Neutral Negative

2,058 255 1,100 116

Table 1: Statistics of annotated corpus.

4 Experiments

To identify the challenges of the automatic extrac-
tion task, we ran a strong baseline model to con-
duct an error analysis.

4.1 Dataset

To obtain high-recall annotations, we aggregated
all annotations from each annotator pair. We
solved the conflicts between Sentiment attributes
by employing the following rules: (i) if both la-
bels are Positive and Negative, Neutral label is
applied, and (ii) if one label being Positive or
Negative and the other Neutral, the non-Neutral
attribute is applied. Furthermore, we manually
cleaned the data by resolving the conflicts be-
tween the spans assigned by two annotators (e.g.,
a model v.s. model). The statistics of the final cor-
pus are shown in Table 1.

4.2 Model

We formulate the automatic extraction task as a
BIO sequence tagging task. Specifically, given a
sentence, the model tags each word as one of {O,
B-POS, I-POS, B-NEG, I-NEG, B-NEU, I-NEU},
where a combination of BI tags represents a Posi-
tive (POS), Negative (NEG), and Neutral (NEU)
technical term span.

We use the BiLSTM-CRF model proposed
by Lample et al. (2016) which was originally
designed for the task of named entity recog-
nition.5 Regarding word embedding, we use
word2vec (Mikolov et al., 2013) embeddings
trained on ACL Anthology Corpus (Aizawa et al.,
2018) (henceforth, CL), and ELMo (Peters et al.,
2018) embeddings trained on 1 Billion Word
Benchmark (henceforth, EL).

4.3 Configurations

For the detection, TERM and Sentiment are
judged as correct only if they exactly match with
gold-standard spans. We report F1 scores as an
evaluation measure. We evaluate our models in
two configurations.

5We use the implementation provided at
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
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ID Sentence Gold Prediction

(i) Several studies report successful applications of concept maps in
this direction... (I17-1081)

Positive N/M

(ii) Second, they have
:::::::::
limitations in their expressiveness.

(D09-1101)
Negative N/M

(iii) While successful, these approaches
::::::
require

::::::::
labeled

::::::::
training

::::
data, consisting of mention pairs and... (D08-1068)

Negative Neutral

(iv) We compare the prediction accuracy of memory network with an
existing state-of-the-art coreference resolution... (W17-2605)

Neutral N/M

Table 2: Examples of the model predictions. Underlined words indicate a TERM phrase span. N/M indicates that
the model does not label it as TERM.

Setting Emb. dev F1 test F1 / Prec. / Rec.

10-FCV CL 50.70 49.79 / 50.0 / 49.7
CL+EL 54.23 52.35 / 54.4 / 50.8

NEWYEAR CL+EL 53.29 42.69 / 51.8 / 36.3

Table 3: Performance of pros/cons identification.

10-FCV We employ 10-fold cross validation in
this configuration. When data are split, we en-
sure that the paper IDs in the training set do not
have an overlap with the paper IDs in the test set.
For model selection, we reserve 10% of the train-
ing dataset as the development set. We report F1
scores averaged across all folds.

NEWYEAR In this configuration, to evaluate the
models in real-life situations, we verify whether
the models are able to extract the pros and cons of
new papers after being trained on older papers. We
utilize the papers from 2017 (i.e. the latest papers)
and data from other years as the test and training
sets, respectively.

4.4 Results and Discussion
The results are shown in Table 3. ELMo embed-
dings improve the prediction performance on the
test and dev sets.6 This indicates that contextual
information is important for pros/cons identifica-
tion.

The results also highlight the difficulty of our
task. We analyzed the results given by the best
model (CL+EL model) to investigate how chal-
lenging the task is. Model predictions along with
their gold labels are shown in Table 2.

First, we observe that when an input does not in-
clude a word that directly indicates a method, then
we are likely to obtain a false negative error (i.e.,

6 The improvement is statistically significant (Wilcoxon’s
signed-rank test, p < 0.05).

the recognition of TERM fails). In sentence (i),
the model is unable to predict a label for the term
concept maps because it does not include a word
that indicates a TERM. Sentence (ii) is another
case in which the model cannot predict whether
they is TERM. Although they refers to a model,
our model cannot recognize it because it does not
resolve coreference.

We also discovered that it is difficult to predict
Sentiment attributes when the phrase implicitly
expresses sentiment. In sentence (iii), the gold la-
bel for these approaches is Negative. However,
the model predicts Neutral because successful is
a positive expression for these approaches and re-
quire labeled training data, ... is negative.

The performance of the models in the
NEWYEAR configuration is poorer than that
in the 10-FCV configuration. We observed
that prediction fails for sentences that contain
unknown words. For example, in sentence (iv),
memory network is not observed in training data.

5 Use Case

To show the use cases of our study, we parsed 60
ACL papers published in 2017 with our best per-
forming model. One use case is to employ our
system with a search engine-style interface. We
implemented a prototype pros/cons identification
system. We consider a situation in which we want
to obtain an overview of the evaluation measures
of dialogue responses and we already have sev-
eral keywords such as ADEM and BLEU. Given a
search query ADEM, our system lists pros/cons of
ADEM, as illustrated in Figure 2. Analyzing the
results, the cons of ADEM are provided such as
“ADEM tends to be too conservative when predict-
ing response scores”. We believe that this search
interface will provide useful information for re-

40



Figure 2: Search results obtained from our pros/cons identification prototype system.

searchers who are starting work in a new field.
Another possible interface is an “add-on” for

a PDF viewer. For each important keyword in a
PDF, a pop-up window can appear and inform the
user about the pros/cons of the keyword.

6 Related Work

There are several types of attempts on extracting
useful information from scientific papers. Cita-
tion Network (Kajikawa et al., 2007) analyzes the
trends of important technology in papers. Argu-
mentative Zoning (Teufel et al., 1999) classifies
the sentences in papers into an argumentative type
such as BACKGROUND and RELATEDWORK, etc.

A few studies annotate scientific pa-
pers with relations between entities such as
“APPLY-TO(CRF, POS tagger)”. Tateisi et al.
(2016) propose an annotation scheme for describ-
ing the semantic structures of research articles.
SemEval, which is one of the shared tasks
workshop in NLP, proposes some information
extraction tasks in the scientific paper domain.
ScienceIE (Augenstein et al., 2017) is the task
of extracting phrases and relationships from
papers in multiple domains. SemEval-2018 Task
7 (Gábor et al., 2018) proposes a classification
task that classifies the relations between entities
in the ACL Anthology. BioNLP (Deléger et al.,
2016) aims to extract technical terms, such as
proteins, relations between proteins, and sub-
stances and their side effects, in the biological and
medical domains.

In the field of sentiment analysis, Aspect-Based
Sentiment Analysis is performed in the domain of

review documents is performed. SemEval-2015
Task 12 (Pontiki et al., 2015) is the task of per-
forming sentiment analysis based on the defined
viewpoints such as the prices, cooking or qual-
ity of service in hotels and restaurants. Targeted
sentiment analysis (Jiang et al., 2011) is the task
of classifying a sentiment towards a certain target
entity in given sentences. The target entity is the
name of persons, companies, and products. In the
sentiment analysis in the scientific paper domain,
Citation Sentiment Analysis (Yousif et al., 2017)
has been performed to analyze the sentiment po-
larity of an author against documents cited in a
paper. However, targeted sentiment analysis of the
paper content itself has not been explored.

7 Conclusion

We have proposed the task of pros/cons identifi-
cation. We have designed a scheme for annotat-
ing technological terms and its pros/cons. An an-
notation study shows that annotators can consis-
tently annotate sentiment attributes. Experiments
performed on automatic extraction show that the
task is still challenging because domain-specific
knowledge and inference are required.

In our future work, we plan to expand our anno-
tation to other domains such as computer vision.
We also plan to develop a mechanism of recog-
nizing sentiment attributes using domain-specific
knowledge.
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Abstract

Standard paradigms for search do not work
well in the medical context. Typical infor-
mation needs, such as retrieving a full list of
medical interventions for a given condition,
or finding the reported efficacy of a particu-
lar treatment with respect to a specific out-
come of interest cannot be straightforwardly
posed in typical text-box search. Instead, we
propose faceted-search in which a user spec-
ifies a condition and then can browse treat-
ments and outcomes that have been evaluated.
Choosing from these, they can access random-
ized control trials (RCTs) describing individ-
ual studies. Realizing such a view of the med-
ical evidence requires information extraction
techniques to identify the population, interven-
tions, and outcome measures in an RCT. Pa-
tients, health practitioners, and biomedical li-
brarians all stand to benefit from such innova-
tion in search of medical evidence. We present
an initial prototype of such an interface applied
to pre-registered clinical studies. We also dis-
cuss pilot studies into the applicability of in-
formation extraction methods to allow for sim-
ilar access to all published trial results.

1 Introduction

The most authoritative evidence regarding the ef-
ficacy of medical treatments is contained in pa-
pers describing results from randomized control
trials (RCTs) (Byar et al., 1976). Evidence-based
approaches to deciding standards of care require
effective access to this literature, which may en-
tail searching for information that the user does
not have at the outset of their search (Relevo,
2012). Medical librarians (Crum and Cooper,
2013), practitioners, and patients would all bene-
fit from a system that makes access to RCTs faster
and more intuitive via browsing capabilities.

One of the obstacles to accessing RCT papers
is that users may not begin with a well-formulated

information need. For example a user may want to
see what treatments have been studied for a given
condition. Perhaps more importantly, individu-
als will value various health outcomes differently:
some will have more interest in studies that used
a particular criterion (outcome) to measure treat-
ment effectiveness than in other studies.

For example, someone searching for treatments
to control diabetes may be interested in know-
ing the extent to which treatments might prevent
vision problems. But many trials studying dia-
betes use as the primary outcome measure changes
in A1c, i.e. measurements indicative of average
blood sugar levels over a couple of months. There
is no correlation between A1c and retinopathy at
least at diagnosis time (Maa and Sullivan, 2007).
Being able to see a list of outcomes and select-
ing those of highest interest to preform a search
for RCTs that talk about vision problems as well
would be likely appreciated by users. Using surro-
gate outcome measures like A1c is considered as
one of the core reasons ineffective or even harmful
medical practices get adopted as standards of care
(Chapter 3, (Prasad and Cifu, 2015)).

Here we present: (i) a faceted-search view to
browse and search for medical literature based
on the condition being studied (and other partici-
pant characteristics) in the study, the interventions
used, and the outcomes measured; (ii) a proto-
type for the search of clinical studies on clinical-
trials.gov using study metadata; (iii) a study to de-
termine the feasibility of using information extrac-
tion systems to extend this search to papers.

2 Browsing ClinicalTrials.gov

ClinicalTrials.gov is a centralized repos-
itory of clinical studies conducted around the
world. Studies are registered by researchers who
populate a number of required fields, such as the
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medical condition being studied, demographic in-
formation pertaining to the patients to be enrolled
in the study (e.g., women, men, children), the
medical interventions under consideration (e.g.,
specific drugs) and the outcomes that will be mea-
sured to determine success (or failure) of the med-
ical intervention (such as the retinopathy and A1c
example just discussed). The search interface pro-
vides a limited faceted-search ability1 and a pre-
view of interventions. It however does not provide
capabilities to preview and select studies by type
of intervention/outcome.

We provide a sense of how faceted search
interface would work generally for RCT pa-
pers by initially providing this view over tri-
als contained within ClinicalTrials.gov.
The demo can be accessed here: https://
browsing-health.herokuapp.com/.

Users can see at a glance typical outcome mea-
sures used in studies, and they can access stud-
ies that considered specific outcomes of interest.
For example a search for ‘asthma’ reveals that the
most commonly used outcome is time to first se-
vere asthma exacerbation, a direct measure of ef-
fectiveness, while the second most used is ‘fev1’,
a measurement of lung function which is a conve-
nient but indirect surrogate measure – lung func-
tion can improve without affecting the number
of severe exacerbations. Overall, the most com-
mon outcome measures across all registered stud-
ies were overall survival, progression free sur-
vival, response rate and quality of life.

Patient advocates, medical researchers and pol-
icy makers may benefit from this view of inter-
ventions and outcomes data, namely by using it
to inform care and plan future studies. However,
this search prototype was created using the meta-
data manually provided by researchers at the time
of registration. This does not scale to handle the
entire corpus of published evidence.

3 IE for RCTs

To organize all medical papers describing RCTs
under a similar view, we need automated meth-
ods for extracting patient, intervention, and out-
come descriptions from the abstracts (or full-texts)
of articles describing trials. In this section we use
pre-trained models for sequence labeling for these
three aspects of RCTs (Nye et al., 2018). These are

1https://clinicaltrials.gov/ct2/
results?cond=diabetes

standard LSTM-CRF models (Huang et al., 2015;
Lample et al., 2016) trained on crowdsourced
annotations of ∼5000 abstracts of papers from
MEDLINE (via PubMed) that describe RCTs with
human subjects. We use the publicly released
pre-trained models for sequence labeling from
https://ebm-nlp.herokuapp.com/.

In the prior evaluation of these models, token-
level precision and recall for coarse annotation of
spans is reasonably good2. Spans describing par-
ticipants are marked well in terms of both preci-
sion (75%) and recall (80%). Outcomes have good
precision (80%) but lower recall and intervention
spans have the lowest accuracy for automatic tag-
ging. Here we explore the feasibility of using au-
tomated extraction to provide access to the medi-
cal literature via a browsing interface.

3.1 Complete label set

First, we ask whether the automatic span tagging
can identify at least one span for each for patient,
intervention, and outcome descriptors in (most)
papers. This is a minimum requirement for being
able to display the article via a faceted view. Note
that this concern is independent of whether spans
are accurately marked; a bare necessity prior to
this is that any spans are marked at all.

We sampled thousands of abstracts of medical
papers from MEDLINE (Greenhalgh, 1997). We
used the associated metadata to identify a subset
of abstracts for RCTs with human subjects. We
extracted patient, intervention, and outcome spans
using the pre-trained models mentioned above.
Table 1 shows the percentage of articles for which
at least one instance of each information type was
labeled. Nearly 80% of articles had all three la-
bels. Further, there were almost no human RCT
abstracts that did not have any label (less than 1%).
On inspection, we noticed that most of the ab-
stracts without any automatically extracted study
descriptors were either not actually descriptions of
RCTs, or they were RCTs for diagnostic tests, not
treatments for medical conditions.

The contrast with the coverage of extracted
snippets in non-RCT human studies is reassuring.
Only about 15 percent of such studies had all three
study aspects labeled. On inspection, these tended
to be RCTs in animals or observational studies.

We tested the coverage of automated extrac-

2See the leaderboard at http://www.ebm-nlp.
com/#Leaderboard
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Type of Article % with 3 labels % with no labels
Human RCT 76.72 0.77

Other abstracts 14.42 21.00

Table 1: Percentage of abstracts of papers describ-
ing human RCTs (337k) with all three study elements
marked and no study element marked. This is con-
trasted with extracts from other papers (106k), either
not RCTs or not with human subjects.

Type of Article % with 3 labels % with no labels
Structured 78.45 0.27

Unstructured 74.12 1.50

Table 2: The percentage of structured (176k) and un-
structured (161k) abstracts of RCT humans studies for
which all three/no descriptors are extracted.

tors on structured and unstructured abstracts, re-
spectively. In unstructured abstracts authors de-
cide what information to include in the abstracts of
their paper. Structured abstracts were introduced
to ensure that important information is included
under an explicit heading, i.e. BACKGROUND,
PARTICIPANTS, METHOD, OUTCOME. Different
journals require their idiosyncratic structure for
abstract but in general these have become the norm
in the medical literature. The motivation for re-
quiring structured abstracts is that they are more
likely to explicitly and clearly describe important
aspect of the described research (Sharma and Har-
rison, 2006). Here we use this expectation of bet-
ter coverage on structured abstract as indirect mea-
sure of the abilities of automatic sequence tagging.

Here again we use meta-data to consider only
human RCTs. Structured abstracts have been
found to be more accessible and informative
(Huth, 1987), so we expected that an automated
extractor would similarly have different coverage
of extracted information for the two types of ab-
stracts. As Table 2 shows, this is indeed the case.
A larger percentage of structured abstracts have all
three study elements marked automatically, with
4% absolute difference in coverage between the
two types of abstracts. Even in unstructured ab-
stracts, there is virtually no abstracts from which
not a single RCT aspect is extracted.

These results are encouraging. The sequence la-
beling models behave intuitively and do not mark
spans in abstracts where the presence of spans
is not expected (as in non-RCT/human study ab-
stracts) or is expected to be harder to find, either
because of wording or because it is not included
(as in unstructured abstracts).

N
Unseen Seen

Unique Total Unique Total

P

1 13.88% 407k 0.31% 575k
2 33.10% 822k 3.70% 66k
3 61.33% 783k 10.50% 12k
4 80.27% 708k 17.81% 1.8k

I

1 15.22% 432k 0.42% 818k
2 36.39% 796k 3.40% 107k
3 64.92% 704k 6.99% 27k
4 80.55% 595k 12.71% 5k

O

1 9.00% 808k 0.16% 1888k
2 23.45% 1980k 1.63% 222k
3 52.72% 1681k 3.72% 61k
4 73.69% 1387k 6.44% 15k

Table 3: The number of N-grams (N=1,2,3,4) seen dur-
ing training and marked during inference as well for
each label. P stands for Population, I stands for Inter-
vention and O stands for Outcomes

3.2 Do the models generalize?

Another important question is whether IE mod-
els generalize, that is, whether such models mark
phrases not seen in the training data (Augenstein
et al., 2017). To investigate this, we classify
the extracted snippets from MEDLINE data into
‘seen’ (those that match exactly with or that appear
as a substring of an annotated span in the training
data) and ‘unseen’, i.e., snippets that do not appear
as a (sub)unit in the training data.

Table 3 provides the number and percentage of
extracted spans that do not occur in the training
data, broken down by the length of the extracted
span. The results are encouraging: even for uni-
grams, a large fraction of marked snippets are un-
seen and hence are generalized from the context.
As expected, the longer the snippet, the larger the
proportion of uniquely marked phrases, as longer
phrases are unlikely to be repeated verbatim.

These results suggest that the models generalize
well, and can identity novel snippets. This find-
ing is promising in its implications for using IE to
power a browseable view of trial data.

3.3 Impressions of Extraction Quality

In this section, we discuss a few qualitative ob-
servations related to automated extraction of pa-
tient, intervention and outcome information and
the implications these have for further computa-
tional work on the extraction task.

Figures 1 and 2 show two abstracts with au-
tomatic annotations of participants, interventions
and outcomes. Overall, the mark-up looks good,
with all three RCT aspects covered. For the ab-
stract in Figure 1, the interventions are accurately
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This study analyzed the effectiveness of suprascapular
nerve block under ultrasonographic guidance in patients
with perishoulder pain. Patients with perishoulder pain
were enrolled in the study and were randomly divided into
2 groups. In the first group of 25 patients (12 men and 13
women), nerve block was applied under ultrasonographic
guidance. Mean patient age in this group was 55.1 years.
In the control group, 25 patients (11 men and 14 women)
underwent nerve block without ultrasonographic guidance;
mean patient age was 51.6 years. Degree of pain was
assessed using a visual analog scale (VAS) and shoulder
function was evaluated using the Constant shoulder score
(CSS) before the nerve block, immediately following the
procedure, and 1 month after the procedure. There was no
statistically significant difference between the 2 groups in
VAS score and CSS before the procedure (P > .05). Im-
mediately after the procedure, both the study and control
groups revealed significantly improved VAS and CSS pat-
terns (P < .05). However , the study group showed better
VAS and CSS patterns than the control group at 1-month
follow-up (P < .05). No complications occurred in the
study group. In the control group , there were 2 cases of
arterial punctures and 3 cases of direct nerve injury with
neurological deficit for 2 months. Ultrasonography-guided
suprascapular nerve injection is a safe, accurate, and useful
procedure compared to the blind technique.

Figure 1: Example of a Human RCT abstract with
the predicted spans for Participants (red), Intervention
(blue) and Outcome (orange)

identified in the first and last sentence but in addi-
tion, a number of mentions of outcomes are erro-
neously marked as interventions. Importantly, the
(same) outcomes are mentioned four times in the
abstract. Some mentions are missed by the system,
others are mistyped (recognized as interventions)
and others are correctly identified. There is a simi-
lar problem where the unusual and unseen in train-
ing intervention yogic package is correctly marked
but one of the subsequent mentions towards the
end of the abstract is not detected. This observa-
tion implies that typical use of precision and re-
call, either token- or span-level, for evaluation of
the sequence labeling may be misleading. Instead,
an evaluation would need to capture the degree to
which at least one instance of each aspect was cap-
tured correctly. Matching variants of the same as-
pect, such as ‘Constant shoulder score’ and ‘CSS’
will also be needed in order to support indexing
and search over the extracted elements.

Another possible issue is the need to chunk
more complex marked spans, particularly the con-
junction of outcomes in Figure 1 and the list of
outcomes in Figure 2. Similar need arises in get-
ting the medical condition for which treatment is
studied, by separating that string from the over-
all span including ‘patients with/subjects with’.

This study aimed at studying the effect of yogic package
(YP) with some selected pranayama, cleansing practices
and meditation on pain intensity, inflammation, stiffness,
pulse rate (PR), blood pressure (BP), lymphocyte count
(LC), C-reactive protein (CRP) and serum uric acid (UA)
level among subjects of rheumatoid arthritis (RA). Ran-
domized control group design was employed to generate
pre and post data on participants and controls. Repealed
Measure ANOVAs with Bonferroni adjustment were ap-
plied to check significant overall difference among pre and
post means of participants and controls by using PASW
(SPSS Inc. 18th Version). Observed result favored statis-
tically significant positive effect of YP on selected RA pa-
rameters and symptoms under study at P < 0.05 , 0.01 and
0.001 respectively that showed remarkable improvement in
RA severity after 40-day practice of YP. It concluded that
YP is a significant means to reduce intensity of RA .

Figure 2: Example of a Human RCT abstract with
the predicted spans for Participants (red), Intervention
(blue) and Outcome (orange)

Such granular spans were annotated in the original
EBM-NLP corpus (Nye et al., 2018), along with a
detailed types of interventions and outcomes. Per-
formance for labeling these details and granular
spans however is much lower than that for the orig-
inal high-level spans that we examine here. An al-
ternative would be to learn chunking rules to iden-
tify the condition, individual interventions and in-
dividual outcomes in an unsupervised manner, by
collocation analysis of the thousands of extracted
snippets from the MEDLINE corpus.

In sum, progress on IE to aid browsing of the
medical literature would require several modifi-
cations to track meaningful progress. Evaluation
should be on exact spans that can serve directly
as indexing terms for abstracts, and these should
measure the ability of the system to find at least
one mention of each RCT aspect.

4 Conclusion

We presented a proposal for an alternative mode
of access to papers describing randomized control
trials. We present a crude example of the brows-
ing capabilities that can be built upon informa-
tion extraction results from the medical literature.
The initial prototype is powered by RCT descrip-
tors written by a person during the registration of
the study. We then present some preliminary ex-
periments on applying existing sequence labeling
methods for extracting RCT descriptors from the
free text of paper abstracts. Results are promising,
showing good coverage and reasonable activation
of the extraction. We identify aspects in which the
information extraction tasks ought to be adjusted
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in order to better serve indexing needs.
Biomedical librarians are increasingly asked to

identify medical evidence in preparation of future
randomized control trials and questions regarding
patient care. The browsing interface we envision
will likely facilitate their work.
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Abstract

Toponym detection in scientific papers is an
open task and a key first step in place en-
tity enrichment of documents. We examine
three common neural architectures in NLP: 1)
convolutional neural network, 2) multi-layer
perceptron (both applied in a sliding window
context) and 3) bi-directional LSTM and ap-
ply contextual and non-contextual word em-
bedding layers to these models. We find that
deep contextual word embeddings improve
the performance of the bi-LSTM with CRF
neural architecture achieving the best perfor-
mance when multiple layers of deep contex-
tual embeddings are concatenated. Our best
performing model achieves an average F1 of
0.910 when evaluated on overlap macro ex-
ceeding previous state-of-the-art models in the
toponym detection task.

1 Introduction

The available scientific knowledge is growing ev-
ery day.1 Yet, this knowledge is often locked into
publications in pdf format, that are not condusive
to machine-reading or automated analyses. In this
work we take a step towards automated knowl-
edge extraction that is compatible with extraction
and visualization frameworks for scientific publi-
cations (Ronzano and Saggion, 2016).

Many scientific publications contain geographic
references which are commonly confused by ex-
tractors with other entities such as people or pro-
teins whose name contains references to places.
Extracting such placenames, or toponyms, has
several important applications such as the identifi-
cation of virus outbreak locations (Weissenbacher
et al., 2015), treatment adherence (Zhang et al.,
2012), and mapping of research findings (Level-
ing, 2015).

1 In 2016, 2.3 million science and engineering publica-
tions were produced globally up from 1.2 million in 2003 for
a 5.2% compound annual growth rate (NSF, 2018).

Toponyms are textual spans of text that iden-
tify geospatial locations. This can range from
the canonical name of populated places, such as
“Chengdu” to direct or indirect mentions of geo-
graphic entities, including “Cho Oyu” or “5 km
south of Mirnyy”. The parsing of geographic lo-
cations from unstructured text is often addressed
with gazeteers. It is generally very difficult to
achieve high accuracy due to domain diversity,
place name ambiguity, metonymic language and
limited contextual cues (Gritta et al., 2018). Fur-
thermore, major challenges to toponym detection
in scientific texts come from the fact that names
of institutions, viruses and proteins often contain
geographic references. Moreover, the extractor
needs to handle the overall noisy nature of sci-
entific articles after PDF extraction—with chal-
lenges include associating figures and tables as
well as handling character encodings.

Task: Toponym detection. Given the text of a
scientific publication (as extracted from the PDF),
the task is to extract character offset locations of
true toponyms. This location is referred to as a
toponym mention in the following. A toponym is
defined to include proper names and geographic
entities but to exclude indirect mentions of places
and metonyms. Toponym detection is a first step
towards toponym resolution where each toponym
mention is to be aligned to a geospatial location.

In this work we focus on toponym detection and
evaluate different neural specialization models for
word embeddings on this task.2 This approach
has benefitted many natural language processing
(NLP) tasks, such as named entity recognition
(Collobert et al., 2011). Previous work in toponym
detection has mostly focused on non-contextual
word embeddings (Magge et al., 2018). Here we
study which neural model and which word embed-

2Data and code available in appendix: https://cs.
unh.edu/˜mfm2/index.html
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ding types are best suited for the detection of to-
ponyms in scientific publications. We also demon-
strate the benefits of neural architectures in com-
parison to Tagme, a state-of-the-art entity linker,
from which we isolate toponym spots based on
DBpedia categories.

The contribution of our work lies in answering
the following research questions in regards to the
task of toponym detection in scientific papers:

RQ1 Independent of the neural model architec-
ture for specialization, which embedding
demonstrates better performance: A task-
independent deep contextual embeddings or
a non-contextual embedding trained on a
scientific-domain specific corpus?

RQ2 Given an optimal embedding, which neural
specialization architecture is optimal for the
task?

RQ3 Given an optimal word embedding and neu-
ral architecture, what are the performance im-
pacts of different combinations of the embed-
ding and the classifier?

Our findings show that the best performance on
toponym detection is achieved by deep contex-
tual embeddings (even though trained on a non-
scientific corpus) when using bidirectional LSTMs
with CRFs as the specialization architecture (Pe-
ters et al., 2018), while concatenating the layers of
the embeddings. However, other deep contextual
configurations including weighted average, and
single layer selection also yield similar average
performance. We also find that handcrafted ortho-
graphic features did not impact bi-LSTM model
performance, but did positively impact MLP and
negatively impacted CNN.

Outline. In Section 2 we discuss related work.
Section 3 explains the neural models types in-
cluded in our analysis and discusses word embed-
ding types. In Section 4, we provide details on the
approaches examined in our study. In Section 5 we
discuss the data, metrics, and results obtained. We
finish with a conclusion about the research ques-
tions posed.

2 Related Work

There is significant work in the area of toponym
detection (Matsuda et al., 2015; Lieberman et al.,

2010) and the closely related fields of named en-
tity recognition (Li et al., 2018) and entity men-
tion detection (Shen et al., 2015) with many dif-
ferent approaches. State-of-the-art named entity
detection models have historically employed a
combination of hand-crafted features, rules, natu-
ral language processing, string-pattern matching,
and domain knowledge using supervised learn-
ing on relatively-small manually annotated cor-
pora (Piskorski and Yangarber, 2013). A common
approach to toponym detection has been to utilize
place name gazetteers which are directories of ge-
ographic names and their corresponding geoloca-
tions to perform string matching of place names in
text (Lieberman et al., 2010).

Contemporary approaches in entity detection
have included conditional random fields (CRF)
(Lafferty et al., 2001) and neural-based architec-
tures. (Collobert et al., 2011) propose a window-
based, multi-layer, dense feed-forward neural ar-
chitecture using word embeddings concatenated
with orthographic features and a gazetteer as an
input layer with a hard Tanh output layer for
superior performance on a standard NER task.
Huang et al. (2015) utilise a bi-directional LSTM
with a sequential conditional random layer using
a gazetteer and Senna word embeddings to ob-
tain superior performance. Magge et al. (2018)
achieves state-of-the-art results in toponym de-
tection by utilizing a window-based deep neural
network, word embeddings trained on a domain-
specific corpus, orthographic features, and a
gazetteer.

3 Background

We briefly recap the background of several meth-
ods we include in our study.

3.1 Neural Models

Many neural approaches to natural language appli-
cations make use of in input layer that consists of
tokenized text mapped to a pre-trained word em-
bedding matrix. One common neural architecture
is the deep multi-layer perceptron (MLP) which
is a densely connected feed forward network with
multiple layers. One or more layers of densely
connected neurons are combined allowing for
complex function approximation. Another com-
mon architecture, the convolutional neural net-
work (CNN), uses mathematical cross-correlation
to reduce the number of free parameters in deep
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models. Pooling layers can be used to combine
the output of specific sets of neurons in one layer
to a single neuron in a subsequent layer.

Recently, more approaches incorporate a re-
current neural network (RNN) architecture which
contrasts with MLP or CNN by using internal state
in subsequent processing of input sequences. A
bi-LSTM is a variant of a recurrent neural net-
work that processes sequences of input in both di-
rections with a hidden state shared between each
“step” of the sequence processing. Many deep
models contain mixtures in different layers of
these three architecture types.

3.2 Word Embeddings

A word embedding is a popular approach for rep-
resenting text using a dense vector representation.
This contrasts with traditional bag-of-word model
encodings where high dimensional one-hot vec-
tors are used to represent each words. A drawback
of the bag-of-words approach is that the seman-
tic similarity between words is lost, while dense
embeddings have been shown to exhibit seman-
tic similarity with linear relationships (Turney and
Pantel, 2010).

Pre-trained embedding models can be applied
as the input layer of a neural model which is then
specialized for the task at hand. Mikolov et al.
(2013) brought the concept of word embeddings
to the forefront of natural language research with
the continuous skip-gram word2vec model. This
method utilizes a feedforward neural net to create
a language model. The dense continuous vector
representation of words in these models demon-
strate superior performance on semantic word re-
lationship tests relative to sparse term vectors.
A limitation of feedforward language models in-
cluding word2vec is that they are non-contextual
which means that all senses of a word are merged
into one dense vector.

Peters et al. (2018) propose a deep neural model
(ELMo) that generates contextual word embed-
dings which are able to model both language and
semantics of word use. ELMo embeddings assign
a representation to a token as a function of the en-
tire input token sequence. Devlin et al. (2018) in-
troduce a pre-trained language model transformer
architecture called BERT that is jointly condi-
tioned on left and right context in all layers. The
model can be fine-tuned or deep contextual em-
beddings can be extracted from the model layers.

4 Approach

We study three different neural approaches for to-
ponym detection: 1) sliding windows convolu-
tional neural networks, 2) sliding window multi-
layer perceptrons, and 3) bi-LSTM. Both con-
textual and non-contextual word embeddings are
used and enriched with a limited number of hand-
crafted features. We run 5 trials for each config-
uration. Deep embedding variants in the analysis
are: first, middle (mid), and last layer; layer con-
catenation (concat); weighted-average (w-avg);
softmax classifier (soft) and no orthographic fea-
tures (no-ortho).

We study the effects on the performance, when
choosing a particular embedding (4.1) in a spe-
cialization architecture (4.3), with or without hand
crafted features (4.2). The remainder of this sec-
tion lays out the options we included in our study.

4.1 Embeddings
ELMo: We use deep contextual embeddings from
ELMo embeddings (Peters et al., 2018) which rep-
resent learned functions of the internal states of a
deep bidirectional language model that has been
pre-trained on the 1B Word Benchmark (Chelba
et al., 2013). In Table 2 ELMo embeddings are
abbreviated as EL.

BERT: We use deep contextual embeddings
generated by extracting the three uppermost layers
of the model (Devlin et al., 2018) using the pre-
trained BERT-Base 12-layer Cased model.3 The
BERT model uses WordPiece embeddings (Wu
et al., 2016) with a 30,000 token vocabulary. We
use the WordPiece embedding corresponding to
the input source token and concatenate the three
upper layers of the model.

w2v: The scientific-domain specific non-
contextual word embeddings are provided by
Pyysalo et al. (2013) which are generated from
Wikipedia, PubMed, and PMC texts using the
word2vec tool. They are 200-dimensional vectors
trained using the skip-gram model.

For the MLP model an input embedding is gen-
erated by concatenating the ELMo vectors with
the one-hot encoding of orthographic features and
an additional binary encoding indicating if the to-
ken was contained within the set of gazetteer to-
kens. The CNN is not enhanced with either ortho-
graphic or gazetteer tokens. The bi-LSTM embed-
ding is only enhanced with orthographic features.

3https://github.com/google-research/bert
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4.2 Hand-crafted Features

Neural network based approaches have been
shown to achieve strong results without the use
of hand-crafted features, however, in many cases,
hand-crafted features can boost model perfor-
mance. We use two sets of hand-crafted features
that frequently appear in the literature to increase
performance in named entity recognition. In both
sets of features, their inclusion did benefit perfor-
mance.

Orthographic Features: a one hot encoding is
assigned to each token based on its orthographic
structure including presence of digits, alphabetic
characters, and upper case characters. The ortho-
graphic features assist the model for managing out
of vocabulary tokens.

Gazeteer Features: a set of toponynm tokens is
generated from the GeoNames entries.4 For exam-
ple, for the entry in Geonames, “Gulf of Mexico”,
the tokens “Gulf”, ”of”, and ”Mexico” are added
to the toponym set. This approach does include
stop words such as “of”. The impact of excluding
stop words was not examined. This is used as a bi-
nary feature for the presence of the parsed token in
the constructed Geonames token set. An indicator
of inclusion in a gazetteer is a common feature in
toponym detection models. Our study shows that
this approach yields a small improvement in the
MLP model performance.

4.3 Specialization Architectures

MLP: We use a sliding window multi-layer per-
ceptron model with w2v and ELMo embeddings.
A sliding window (size = 5) is applied to each to-
kenized sentence using the corresponding embed-
dings. The input layer is connected to two fully
connected layers with 128 hidden units each and
relu activation. The output layer uses a sigmoid
with a binary output to indicate if the token is part
of a toponym. MLP-EL-max is the maximum run
by macro overlap F1 when using ELMo embed-
dings with orthographic features and gazetter in-
dicator. MLP-w2v-max is the same model only
differing by using the w2v embedding.

CNN: We use a sliding window convolutional
neural network using w2v and ELMo embeddings.
A sliding window (size = 5) is applied to each tok-
enized sentence using the corresponding embed-
dings. The input layer is two 1d convolutional
layers with filter sizes of 250 and a kernel size

4https://www.geonames.org/export/

of 3. A global 1-d max pooling layer follows the
convolutional layers. Two fully connected layers
with 100 hidden units each and relu activation fol-
low max pooling. A sigmoid function is applied
in output layer to indicate if the token is part of
a toponym. CNN-EL-max is the maximum run
by macro overlap F1 when using ELMo embed-
dings with gazetter indicator. CNN-w2v-max is
the same model only differing by using the w2v
embedding.

Bi-LSTM with CRF: The implementation used
is based on the approach develped by Lample
et al. (2016) using code adapted from Reimers and
Gurevych (2017).5 Input sentences for the model
are generated in IOB representation for labeled to-
ponyms in the training data. Each LSTM has a
size of 100 and is trained with a dropout of 0.50.
Character embeddings are generated using a con-
volutional neural network and the maximum char-
acter length is 50. We use the w2v, ELMo and
BERT embeddings for token encoding. LSTM-
w2v uses w2v and orthographic features; LSTM-
BERT uses BERT embeddings (top 3-layers con-
catenated) without orthographic features; LSTM-
EL uses concatenated ELMo embeddings with
orthographic features. LSTM-EL-concat-w2v is
LSTM-EL embeddings concatenated with w2v.

4.4 Baseline

The following two models are included as base-
lines in the evaluation.

MLP-Baseline-w2v: A sliding window multi-
layer perceptron as suggested by Magge et al.
(2018). The system has a specific component for
toponym detection using a two-layer feedforward
neural network (200 hidden units per layer). The
baseline features a sliding window (size = 5) over
each sentence using the w2v embeddings for to-
ken encoding. The baseline did not include a
gazetter-based lookup but did incorporate ortho-
graphic structure of the tokens.

TagMe: TagMe (Ferragina and Scaiella, 2010)
is a state-of-the-art entity linking tool that aligns
spans in text to entities in Wikipedia snapshots
of April, 2016. We filter entity links to include
location entities only. Spots are included as to-
ponyms if their linked Wikipedia entity is asso-
ciated with a category that contains one of the
words: place, capital, province, nations, coun-
tries, territories, territory, geography, or continent

5https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
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Table 1: Gold Standard Corpus Statistics.

Documents Tokens Toponyms

Train 72 396,668 3,637
Valid 32 179,443 2,141
Test 45 253,159 4,616

Total 149 829,720 10,394

(TagMe-Baseline). We also run a SVM classifier
that takes all categories as phrases and words. It
is using LibSVM with the c-SVC algorithm and
a linear kernel. The regularizer (aka ”C” parame-
ter) is tuned on the tuning split to optimize F1 and
the dataset is balanced before training and tuning
(TagMe-SVM).

5 Experiment Evaluation

In the following we describe our experimental
evaluation using data and metrics from the Se-
mEval Toponym resolution task.

5.1 Data

The experimental evaluation is based on a dataset
of 150 full texts of open access journal articles
from PubMed Central (PMC) which is provided
by Davy Weissenbacher (2019).6 To create the
corpus, they convert PDF to text with the “pdf-
to-text” software and then manually annotate to-
ponym spots using the Brat annotator 3. Table 1
details statistics of this dataset.

The text documents are parsed from PDF files
as many scientific articles are still not available
in well-structured text formats such as XML and
therefore annotators need to be adaptable to noisy
inputs. The structure of the text demonstrates the
challenge of using scientific text for toponym de-
tection as the pdf-to-text conversion process re-
sults in text that introduces new line characters at
non-sentence boundaries and exhibits hyphenation
which splits tokens in the middle of the word. This
complicates tokenization and sentence boundary
detection. The pdf conversion process also injects
header and footer text in the document which in-
terrupts the flow of the documents. Tables and
equations add additional noise to the text with ir-
regular line lengths that can further complicate the
extraction of toponym mentions from documents.

6From the train data set, PMC4009295.txt was not in-
cluded because of encoding issues

5.2 Metrics

Quality of predictions is evaluated in terms of pre-
cision, recall and F1-measure. The model is tuned
on F1 with validation on the valid set and predic-
tion on the test set.

The dataset comes with a recommendation for
two variants of evaluation: strict boundaries and
overlapping boundaries. In the strict evaluation,
spots must match the exact span boundaries in the
gold standard. In the overlapping evaluation, a
match occurs when the spot span and gold stan-
dard span overlap.

Furthermore, two options for computing preci-
sion and recall are available handling spots qual-
ity per publication. In micro-averaging all spans
across the corpus treated as one set on which pre-
cision and recall is calculated. In macro averag-
ing precision, recall, and F1 are calculated on a
per publication basis, and then the results are av-
eraged.

Over all four the evaluations measures provide
similar results, we only report results on the over-
lapping evaluation with macro-averaging. Be-
cause the average performance of the CNN and
MLP were below the average performance demon-
strated by bi-LSTM, we show the maximum value
of CNN and MLP to highlight that even best ob-
tained result is less than bi-LSTM.

5.3 Results

The results are provided for precision (P), recall
(P), and F1 for overlapping boundaries and macro-
averages. Because of small errors in character off-
set alignment, the performance across all of the
models for strict evaluation is slightly lower over-
all (omitted results will be available online).

Table 2 provides the comparison of different ar-
chitectures, embeddings, and baselines.

TagMe-SVM obtains the lowest performance of
all measures with a F1 of 0.330. TagMe-Baseline
achieves a F1 of 0.544 and is the only model not
directly trained on the data. The TagMe-SVM has
a recall that is similar to that of the CNN and MLP
neural methods but with a severe degradation in
precision.

The ELMo embeddings enhance the F1 per-
formance of the bi-LSTM model but appear to
have limited benefit to the other studied neural
models. The convolutional network using the
ELMo-based embeddings exhibits higher perfor-
mance on the F1 score relative to MLP-ELMo.
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The CNN exhibits higher precision with similar
recall to other methods that are not bi-LSTM. Bi-
LSTM with CRF outperforms the MLP and CNN
models independent of the embedding type. The
best average performance of the bi-LSTM model
is achieved when the three ELMo embeddings
were concatenated, obtaining 0.910 F1. When
word2vec and averaged ELMo embeddings are
concatenated, a similar average F1 is achieved
(0.909), however this model has the highest aver-
age precision (0.909).

Table 3 reports the results of different combina-
tions of the ELMo embeddings based on bi-LSTM
with CRF, the best performing neural model in
our study. We also examine replacing the CRF
classifier with a softmax when the ELMo embed-
dings are concatenated. The softmax classifier ex-
hibits decreased performance with an F1 of 0.900.
This indicates the importance of choosing the right
classifier for the task in the bi-LSTM architecture.

We examine the effect of only using one of the
three vectors provided in the ELMo embedding. In
terms of average F1, the poorest performing layer
is the first layer. The middle and last layer ex-
hibit similar F1 performance. Peters et al. (2018)
indicates that the lowest layer captures more syn-
tactical information while the upper layers have a
higher degree of semantic information, which may
explain the performance difference in the layers.

Across all measures, the concatenation of all
three ELMo vectors performed the best on aver-
age over any layer in isolation. Concatenating
these three embeddings performs also slightly bet-
ter than calculating an average or weighted aver-
age of the embeddings. This is based on a sample
size of 5 for each measure evaluated.

Orthographic features yields an average abso-
lute performance benefit of 2.4% in the tested
MLP-w2v model. But somewhat surprisingly,
causes a substantial degradation in CNN-w2v per-
formance (-16.6% absolute). In bi-LSTM, the re-
moval of orthographic features causes a very slight
degradation in performance. This indicates that in
MLP and CNN models, handcrafted features are
a consideration, but may not be necessary in bi-
LSTM models for toponym detection.

We also compare the performance between two
contextual embeddings BERT and ELMo. Both
contextual embeddings exhibit similar average F1
measures with BERT slightly underperforming
ELMo. An explanatory factor could be that by

Table 2: Comparison of different architectures and em-
beddings.

Run P R F1

TagMe-SVM 0.214 0.712 0.330
TagMe-Baseline 0.449 0.692 0.544
MLP-Baseline-w2v 0.864 0.797 0.829
MLP-EL-max 0.886 0.798 0.840
CNN-w2v-max 0.896 0.797 0.843
CNN-EL-max 0.908 0.788 0.844
MLP-w2v-max 0.888 0.835 0.861
LSTM-w2v 0.893 0.871 0.882
LSTM-BERT 0.895 0.913 0.904
LSTM-EL-concat-w2v 0.909 0.910 0.909
LSTM-EL-concat 0.904 0.916 0.910

only extracting the first WordPiece embedding
per corresponding source token (based on the ap-
proach (Devlin et al., 2018) undertake for NER
task) that information is being lost by not using
all WordPiece tokens. We also use the Cased
Based model, alternatively the uncased and/or
Large models may yield better performance. From
an implementation standpoint, the WordPiece to-
kenization is challenging for maintaining align-
ment in embedding layer composition approaches
other than mapping source-to-head WordPiece to-
ken. The additional coding effort complicates the
implementation of this approach.

For implementations using CNN or MLP, the
results of this task did not indicate that the
implementation of deep contextual embeddings
yields superior performance. The appeal of non-
contextual embeddings such as word2vec is their
ease of implementation, which require only map-
ping a source token to its corresponding vector in a
fixed vocabulary (or unknown if OOV). Deep con-
textual embeddings require mapping a token to a
vector based on the ”key” of its entire sentence.
This is reasonable to implement but does require
extra effort. The results of bi-LSTM clearly in-
dicate that the additional performance may justify
the additional implementation resources.

Figure 1 illustrates the different variations ap-
plied to the bi-LSTM with ELMo embeddings af-
ter 5 runs for each variation. Using the first layer
alone in the embedding appeared to have the most
negative impact on performance. Either concate-
nation or weighted average appear to have the
most consistent highest level of performance. This
is consistent with Peters et al. (2018) that found
that weighted average had the best performance
on a NER task using ELMo embeddings and De-
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Table 3: Comparison of variations of bi-LSTM with
ELMo embeddings.

Run P R F1

first 0.897 0.880 0.889
soft 0.897 0.903 0.900
avg 0.920 0.885 0.901
last 0.896 0.912 0.904
mid 0.908 0.903 0.905
no-ortho 0.904 0.911 0.907
w-avg 0.907 0.911 0.909
concat 0.904 0.916 0.910

avg concat first last mid w-avg no-ortho soft

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

Figure 1: Comparison of variations of bi-LSTM with
ELMo embeddings.

vlin et al. (2018) that found that concatenation of
deep contextual embeddings (BERT) had the best
performance. So either appear to be an appropri-
ate approach given they both possess the overrid-
ing characteristic of using all layers for represen-
tation. Averaging appears to inject more variablity
into performance which limits its appeal. Using
softmax instead of CRF as a classifier resulted in
a slight decline in performance. This highlights
the importance of having a quality classifier at the
top layer of the bi-LSTM for structured predic-
tion. The omission of orthographic characters may
slightly impair performance, but this is not certain,
as the highest score observed out of all trials is
without orthographic features (0.916). This analy-
sis also highlights the importance of multiple trials
with testing neural models as relying on one trial
may sert to under or over state the average perfor-
mance of a hyperparameter.

5.4 Error Analysis

Figure 2 illustrates a challenging passage of text
in the corpus where none of the text should be an-
notated. The best performing model LSTM-EL-
concat (highlighted in yellow) identifies “Britain”

Figure 2: False positives by Tagme-Baseline and
LSTM-EL-concat.

Figure 3: False positive and false negative by Tagme-
Baseline.

as a mention. While Great Britain is a place, in this
context, it is highlighting a character span within
an entity that is not a place. Tagme-Baseline
correctly does not identify text in the prevously
identified span but does incorrectly (highlighted in
blue) identifies the character spans for “addresses”
(a general concept not a specific location) and
“Great Britain Historical GIS” (adjective for the
“team” entity) as mentions. These are all exam-
ples of false positives for toponym detection.

Figure 3 shows Tagme-Baseline incorrectly
identifying “Hong Kong” (highlighted in yellow)
as a mention (false postive) and failing to cor-
rectly identify the second “Hong Kong” (under-
lined) which is an annotated mention (false nega-
tive). LSTM-EL-concat correctly did not identify
the first “Hong Kong” as a mention but did prop-
erly identify the second. The first “Hong Kong”
mention is part of a virus name and while has a
relationship to that place it is not meant to identify
the place.

6 Conclusion

In this work, we study the benefits of different
neural architecture for the specialization of pre-
trained embeddings for the task of toponym de-
tection in scientific publications. We demonstrate
superior results using neural models in compari-
son to a state-of-the-art entity linker. This indi-
cates that general-purpose popular entity linking
tools are not the optimum choice for the task. We
also show that non-contextual yet domain-specific
word embeddings underperform compared to deep
contextual embeddings trained on a general large-
scale corpus for state-of-art bi-LSTM models. We

54



believe the increase in performance due to ELMo-
based embeddings is due to the richer context and
character structure contained in the embeddings.
This richer representation did not benefit toponym
detection in the CNN and MLP neural models
tested and in fact the maximum result for MLP
was using the domain specific non-contextual em-
bedding vectors.

Out of all the neural architectures, the neural
model with the best performance is bi-LSTM with
CRF using concatenated ELMo contextual embed-
dings. This finding is consistent with other re-
search using bi-LSTM with CRF that has demon-
strated state of the art results for named entity
recognition tasks. It is noteworthy, that the Bi-
LSTM with CRF is able to extract toponym men-
tions using context from embeddings without rely-
ing on the presence of a gazetteer. An open ques-
tion is if a gazetteer or other knowledge graph re-
sources could be incorporated into a neural model
to achieve superior performance.

Areas of future research include exploring the
integration of dense, convolutional, or other neu-
ral architectures as a top layer of the bi-LSTM
to enhance classification. Concatenating contex-
tual and the non-contextual embeddings improved
recall and incorporating both into future models
could be an area that yield further performance
gains.
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Abstract

Chinese idioms (Cheng Yu) have seen five t-
housand years’ history and culture of China,
meanwhile they contain large number of sci-
entific achievement of ancient China. How-
ever, existing Chinese online idiom dictionar-
ies have limited function for scientific explo-
ration. In this paper, we first construct a
Chinese idiom knowledge graph by extracting
domains and dynasties and associating them
with idioms, and based on the idiom knowl-
edge graph, we propose a Science Toolkit for
Ancient China (STAC) aiming to support sci-
entific exploration. In the STAC toolkit, idiom
navigator helps users explore overall scientif-
ic progress from idiom perspective with visu-
alization tools, and idiom card and idiom QA
shorten action path and avoid thinking being
interrupted while users are reading and writ-
ing. The current STAC toolkit is deployed at
http://120.92.208.22:7476/demo/#/stac.

1 Introduction

Large scientific wealth has been accumulated dur-
ing five thousand years’ history of ancient China,
and much knowledge passed down from ancients
is still valuable for modern people, therefore lots
of researchers are exploring ancient Chinese sci-
ence and technology (Jia et al., 2004; Zhu et al.,
1998b,a) continuously.

Chinese idioms (Cheng Yu) have seen the his-
tory and culture of China, meanwhile they contain
large number of scientific achievement of ancien-
t China (Dai, 2003). For the example in Table 1,
“ ” (One inch of time, one inch of
gold) mentions time measurement technique using
sundial of ancient Astronomy domain in Han dy-
nasty ( ). Therefore, Chinese idioms are re-
garded as an important source of ancient scien-
tific achievement information. However, existing
Chinese online idiom dictionaries, such as Baidu

Chinese Channel1, Han dictionary2 and Cihai on-
line dictionaries3, have limited function for sci-
entific exploration. Those online idiom dictionar-
ies mainly store basic information of idioms, e.g.,
pronunciation, explanation, source, synonyms and
antonyms, and they can be leveraged to search id-
ioms by names or keywords and to get basic infor-
mation of idioms, but it is difficult for researchers
to get idioms by domain and dynasty information,
and it is also impossible to obtain the trend of sci-
entific progress from idiom perspective.

In this paper, we propose a Science Toolkit for
Ancient China (STAC) based on a Chinese idiom
knowledge graph aiming to support scientific ex-
ploration. We first extract domains and dynasties
from explanation and source of idioms, and then
associate domains and dynasties with idioms to
construct the idiom knowledge graph. Based on
the knowledge graph, we design and implement
idiom navigator, idiom card and idiom QA of S-
TAC toolkit. Idiom navigator provides a visual p-
resentation for relations among idioms, dynasties
and domains, reflecting overall scientific progress
from idiom perspective, and idiom card gives ba-
sic information of idioms contained in users’ text,
such as dynasty, domain, explanation and source,
and idiom QA answers idioms to questions about
dynasties and domains, such as “

” (The idioms on Astronomy domain in Song
dynasty). Both idiom card and idiom QA are de-
signed for scenarios of text reading and writing to
shorten the path of users’ actions and avoid users’
thinking being interrupted.

2 Dataset

We mainly collect idiom data from Han dictionary
and Baidu Chinese Channel, and Han dictionary

1https://dict.baidu.com/
2www.zdic.net
3For example, http://www.cihai123.com/
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Name (One inch of time, one inch of gold)

Explanation

“ ”
(One inch of time is as expensive

as one inch of gold, where “one inch of time” refers to time taking by shadow
of gnomon to move one inch distance on sundial plate.)

Source (“Huai Nan Zi” of Liu An)
Domain (Astronomy)
Dynasty (Han dynasty)

Table 1: An example of Chinese idioms.

is the most reliable and Baidu Chinese is much
more comprehensive. Firstly, we get 31,605 id-
ioms from Han dictionary and 30,923 idioms from
Baidu Chinese Channel respectively, and proper-
ties of these idioms include pronunciation, expla-
nation and source. Then we merge the two idiom
sets by setting Han dictionary prior to Baidu dic-
tionary for the duplicate idioms. The final dataset
is stored in MySQL database, containing 31,632
idioms, whose average number of characters in ex-
planation is 24 and average number of characters
in source is 32.

3 Idiom Knowledge Graph (IKG)
Construction

We construct an idiom knowledge graph based on
the dataset collected in Section 2. Hereinafter the
idiom knowledge graph is referred to as IKG. The
ontology definition of IKG contains:

(1) three types of entities, which are idiom enti-
ty denoted as IDIOM , dynasty entity denoted
as DYNASTY , and domain entity denoted as
DOMAIN ;

(2) three types of properties, which are expla-
nation of idiom denoted as explanation of ,
source of idiom denoted as source of ,
and pronunciation of idiom denoted as
pronunciation of ;

(3) two types of relations, which are relation
between dynasties and idioms denoted as
dynasty of , and relation between domains
and idioms denoted as domain of .

Instances of IDIOM are selected from 31,632
idioms of the dataset in relation extraction process,
and instances of explanation of , source of and
pronunciation of are queried directly from the
dataset. There are 14 DYNASTY instances, which

are defined according to the main dynasties of
ancient Chinese history, such as “ ” (War-
ring), “ ” (Han) and “ ” (Song), and there are
11 DOMAIN instances, which almost cover al-
l the domains in ancient China, such as “ ”
(Astronomy), “ ”(Handicraft) and “ ”
(Medicine).

The relation extraction process of domain of
and dynasty of is divided into following steps as
shown in Figure 1:

(1) For each idiom in the dataset, concat its ex-
planation string and source string and tokenize
the result string into a word bag with jieba
tool4, and then for each word in the word bag,
add its hypernym and hyponym words from
semantic dictionaries (e.g., HowNet5) into the
word bag, until the word bag is no longer
changing in its size, and the result word bag
is used as a feature of the idiom.

(2) Load a Chinese word vectors corpus pre-
trained on Chinese Wikipedia and Baidu En-
cyclopedia (Li et al., 2018), and then embed-
dings of 31,632 idioms, 14 DYNASTY in-
stances and 11 DOMAIN instances can be
looked up from it.

(3) Compute correlation based on WMD (Word
Mover’s Distance) algorithm (Kusner et al.,
2015) that can achieve better results for short
texts, and confirm final relations by human re-
viewers:

• for each DOMAIN instance, compute its
correlation with all the idioms, and send
top 100 idioms for human review to con-
firm final instances of domain of rela-
tion;

4https://github.com/fxsjy/jieba
5http://www.keenage.com/zhiwang/c zhiwang.html
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Figure 1: Relation extraction framework of IKG.

• for each idiom, compute its correlation
with all the DYNASTY instances and
send top 3 DYNASTY entities for hu-
man review to confirm final instances of
dynasty of relation, and human review-
ers could make decision with information
of books and authors contained in source
text, e.g., “Huai Nan Zi” ( )
and “Liu An” ( ) in Table 1.

Finally, 542 instances of domain of relation are
extracted and 532 IDIOM instances are selected
from the 31,632 idioms, and for the 532IDIOM in-
stances, 541 instances of dynasty of relation are
extracted. The whole knowledge graph is stored in
Neo4j6 graph database.

Figure 2 describes some statistics about IKG.
From Figure 2(a), we can see that the scientif-
ic progress in “ ” (Warring), “ ” (Han) and
“ ” (Song) is more significant than in other dy-
nasties, and from Figure 2(b), we can see that the
scientific progress in “ ” (Medicine), “
”(Handicraft) and “ ” (Physics) is more signif-
icant than in other domains.

4 STAC Toolkit

Based on IKG, we design and implement STAC
toolkit for scientific exploration of ancient China,
and the toolkit contains functions of idiom naviga-
tor, idiom card and idiom QA.

4.1 Idiom navigator
Idiom navigator is an idiom visualization tool, and
it gets all the idioms, dynasties and domains from
IKG and organizes them in tree structures based
on the relations contained in IKG. With idiom nav-
igator, users can browse idioms starting from dy-
nasties or domains. For example, after selecting
each dynasty, users can get expanded all the do-
mains that were developed in the dynasty, and af-

6https://neo4j.com/

(a) Distribution of IDIOM instances across DYNASTY
instances.

(b) Distribution of IDIOM instances across
DOMAIN instances.

Figure 2: Distribution of IDIOM instances across
DYNASTY instances and DOMAIN instances.

ter selecting one of these domains, they can also
get expanded all the idioms related with both the
domain and the dynasty. Then users could gain in-
formation on scientific progress level from idiom
perspective.

4.2 Idiom card

Idiom card provides basic information for the id-
ioms contained in users’ text, and users do not
need to switch to online idiom dictionaries, there-
fore the action path to get information of idioms is
shortened and users’ thinking is not interrupted.

Given a piece of text, we first extract all the id-
ioms from the text by multi-pattern matching al-
gorithm (e.g., Aho-Corasick string match algorith-
m (Aho and Corasick, 1975)), and then for each
idiom extracted, we query its dynasty, domain, ex-
planation, source and pronunciation from IKG. In
detail, domain and dynasty are queried by relation-
s, and explanation, source and pronunciation are
queried by properties. Finally, queried results for
all the idioms are presented to users.
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Figure 3: Snapshot of STAC toolkit landing page.

4.3 Idiom QA
For questions about dynasties and domains, idiom
QA gives corresponding accurate idioms as an-
swer.

Given a question, we first extract all the dy-
nasties and domains from the question by multi-
pattern matching algorithm, and then we construc-
t a query statement using the extracted dynasties
and domains and execute the statement on IKG to
get idioms. In detail, the query statement is con-
structed as “select all the idioms that are associ-
ated with all the dynasties and domains”. Finally,
queried idioms are presented to users.

4.4 Deployment
STAC toolkit is developed using Django7 we-
b framework as backend, Neo4j as graph
database and Vue.js JavaScript library8 for fron-
tend page rendering, and we implement visu-
alization of idiom navigator with Zoomchart-
s.js library9. STAC toolkit is currently accessi-
ble at http://120.92.208.22:7476/demo/#/stac with
Google Chrome browser (Please note that the first
visit may take about 60 seconds). Figure 3 shows
a snapshot of STAC toolkit landing page.

We are continuously improving STAC toolkit,
and currently, users can use it in the following
way:

(1) Call out idiom navigator visualization tool
by clicking button “Domains” or “Dynasties”,
and double-click nodes of type DOMAIN
or DYNASTY to expand related nodes until
reaching end. Please note that some nodes of
DOMAIN or DYNASTY cannot be expanded
because there are no related nodes under them.

7https://www.djangoproject.com/
8https://vuejs.org/
9https://zoomcharts.com/

(2) Input some text into the left “Input” area, and
get card for idioms contained in text by click-
ing button “Card”. For example, input “ ‘

’ ...” (From the idiom “One
inch of time, one inch of gold” we can see
that...) and the idiom card of “

” is displayed in the right “Idiom” area,
containing its dynasty, domain, explanation,
source and pronunciation.

(3) Call out QA dialog box by clicking button
“QA”, and then enter some question about dy-
nasties and domains (e.g., the question exam-
ple in Section 1), and finally click “OK” but-
ton to get idioms as answer. Meanwhile id-
ioms in answer could be inserted into text by
clicking button “Insert”. Please note that dy-
nasties and domains in questions are assumed
to be correct, and similar words are not sup-
ported for questions.

(4) Call out glossary window by clicking button
“Glossary”, and then read the Chinese-English
glossary of dynasties and domains.

5 Conclusion

In this paper, we first construct a Chinese idiom
knowledge graph and then propose STAC toolkit
that contains functions of idiom navigator, idiom
card and idiom QA for scientific exploration. Cur-
rently, idiom navigator helps users explore overall
scientific progress from idiom perspective, and id-
iom card and idiom QA shorten action path and
avoid thinking being interrupted while users are
reading and writing. In future, we plan to improve
idiom QA by context understanding and conduc-
t more evaluations on the idiom knowledge graph
and STAC.
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Abstract

Understanding procedural text requires track-
ing entities, actions and effects as the narra-
tive unfolds. We focus on the challenging real-
world problem of action-graph extraction from
materials science papers, where language is
highly specialized and data annotation is ex-
pensive and scarce. We propose a novel ap-
proach, TEXT2QUEST, where procedural text
is interpreted as instructions for an interactive
game. A learning agent completes the game
by executing the procedure correctly in a text-
based simulated lab environment. The frame-
work can complement existing approaches and
enables richer forms of learning compared to
static texts. We discuss potential limitations
and advantages of the approach, and release a
prototype proof-of-concept, hoping to encour-
age research in this direction.

1 Introduction

Materials science literature includes a vast amount
of synthesis procedures described in natural lan-
guage. The ability to automatically parse these
texts into a structured form could allow for data-
driven synthesis planning, a key enabler in the de-
sign and discovery of novel materials (Kim et al.,
2018; Mysore et al., 2017). A particularly useful
parsing is action graph extraction, which maps
a passage describing a procedure to a symbolic
action-graph representation of the core entities, op-
erations and their accompanying arguments, as they
unfold throughout the text (Fig. 1).

Procedural text understanding is a highly chal-
lenging task for today’s learning algorithms (Lucy
and Gauthier, 2017; Levy et al., 2017). Synthesis
procedures are especially challenging, as they are
written in difficult and highly technical language
assuming prior knowledge. Some texts are long,

∗Work was begun while author was an intern at RIKEN
and continued at the Hebrew University.

many follow a non-linear narrative, or include logi-
cal quantifiers (“all synthesis steps were performed
in an argon atmosphere...”). Furthermore, anno-
tated data is scarce and expensive to obtain.

Two related research areas are grounded
semantic parsing and state-tracking reading-
comprehension. Grounded (or executable) seman-
tic parsers map natural language to a symbolic
representation which can also be thought of as a
sequence of instructions in some pre-defined pro-
gramming language. Such “neural-programing” ar-
chitectures offer strong symbolic reasoning capabil-
ities, compositionality modelling, and strong gen-
eralization (Reed and de Freitas, 2015), but are typ-
ically applied to simple texts due to prohibitive an-
notation costs (Liang et al., 2016). State-tracking
models (Bosselut et al., 2018; Das et al., 2018;
Bansal et al., 2017) can model complex relations
between entities as they unfold, with easier training
but less symbolic reasoning abilities. Their appli-
cability to longer texts is hindered as well by the
lack of fine-grained annotated data.

In this work we describe an approach,
TEXT2QUEST, that attempts to combine the
strengths of both methods. Instead of trying to
learn from static text, we propose to treat proce-
dural text as instructions for an interactive game
(or “quest”). The learning agent interacts with en-
tities defined in the text by executing symbolic
actions (Fig. 2). A text-based symbolic interpreter
handles execution and tracking of the agent’s state
and actions. The game is completed by “simulating”
the instructions correctly; i.e., mapping instructions
to a sequence of actions. Correct simulation thus
directly yields the desired action graph.

While there is some engineering overhead re-
quired for the simulator, we demonstrate that it
is relatively straightforward to convert an annota-
tion schema to a text-based game. We believe that
the benefits make it worth pursuing: the game for-
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Figure 1: Sample surface text (left) and possible corresponding action-graph (right) for typical partial material
synthesis procedure. Operation numbers in parentheses are added for clarity. Nodes are entities, edges are relations
linking them, equivalent to actions in the text-based game.

mat allows applying powerful neural programming
methods, with a significantly richer training envi-
ronment, including advances such as curriculum
learning, common-sense and domain-specific con-
straints, and full state tracking. Such “friendly”
environments that assist the learning agent have
been shown to be valuable (Liang et al., 2016) and
enable learning of patterns that are often hard to
learn from surface annotations alone, such as im-
plicit effects of operations (i.e., filtering a mixture
splits it into two entities).

Interestingly, understanding by simulation aligns
well with models of human cognition; mental sim-
ulation, the ability to construct and manipulate an
internal world model, is a cornerstone of human
intelligence involved in many unique behaviors,
including language comprehension (Marblestone
et al., 2016; Hamrick, 2019). In this work we take
first steps towards this idea. Our contributions are:
• We propose a novel formulation of the prob-

lem of procedural text understanding as a text-
based game, enabling the use of neural pro-
gramming and text-based reinforcement learn-
ing (RL) methods.
• We present and release TEXTLABS1, an in-

stance of TEXT2QUEST designed for interac-
tion with synthesis procedure texts. We fo-
cus on the material-science setting, but the
approach is intended to be more generally ap-
plicable.
• We propose to address the problem of obtain-

ing full-graph annotations at scale by cou-
pling the simulator with controllable natural
language generation (NLG) to generate syn-
thetic data, also enabling curriculum learning.

1Code and experiments available at https://github.
com/ronentk/TextLabs

Figure 2: Excerpt from an actual “material synthe-
sis quest” generated by our system with example in-
put/outputs.

While this work is preliminary in nature, neural
programming and text-based reinforcement learn-
ing approaches are attracting significant and grow-
ing interest, and we expect advances in these areas
to directly benefit future versions of the system.

2 Related Work

Procedure understanding: Many recent works
have focused on tracking entities and relations in
long texts, such as cooking recipes and scientific
processes (Bosselut et al., 2018; Das et al., 2018).
However, these methods do not directly extract a
full action graph. For action graph extraction, ear-
lier works use sequence tagging methods (Mysore
et al., 2017). Feng et al. (2018) have applied deep-
RL to the problem of extracting action sequences,
but assume explicit procedural instruction texts. In
Johnson (2017), a graph is constructed from simple
generated stories, using state tracking at each time
step as supervision.

Semantic parsing & Neural Programming:
Research to-date has focused mainly on shorter
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and simpler texts which may require complex sym-
bolic reasoning, such as mapping natural language
to queries over knowledge graphs (Liang et al.,
2016). In the case of narrative parsing, the text
itself may be complex while the programs are rel-
atively simple (creating and linking between enti-
ties present in the text). Recent work (Lu et al.,
2018) frames narrative understanding as neural-
programming, the learner converts a document into
a structured form, using a predefined set of data-
structures. This approach is similar to ours, though
with simpler texts and without a simulated environ-
ment. In our approach, the learning architecture is
decoupled from the symbolic interpreter environ-
ment, enabling greater architectural flexibility.

Text-RL: Text-based games are used to study
language grounding and understanding and RL for
combinatorical action spaces (Zahavy et al., 2018;
Narasimhan, 2017) but have not yet been applied
to real world problems. TextWorld (Côté et al.,
2018) is a recently released reinforcement learning
sandbox environment for creation of custom text-
based games, upon which we base TEXTLABS.

3 Problem Formulation

Entities, Relations & Rules (E ,R,Λ): Assume
two vocabularies defining types of entities E =
{e1, ..., eN} and relations R = {r1, ..., rK}. A
fact f is a grounded predicate of the form f =
r (h, t) , h, t ∈ E , r ∈ R (single or double argu-
ment predicate relations are allowed). We define
the set of valid world-states S, where a state s ∈ S
is a set of facts, and validity is decided by a world-
model Λ defined using linear logic. Λ is comprised
of production rules (or transition rules) over enti-
ties and relations governing which new facts can
be produced from a given state. Following the
schema used in the Synthesis Project2 (see for ex-
ample MSP), entity types include materials, opera-
tions, and relevant descriptors (like operation condi-
tions, etc.). Relations link between entities (like in-
put(material,operation) or denote single predicate
relations (entity properties such as solid(material)).
We currently use a simplified version of the schema
to ease the learning problem. See appendix A.1
for a mapping of relations and entities. Pro-
duction rules correspond to the actions available
to the learner, in our domain these include for
example link-descriptor(descriptor,entity), input-
assign(material, operation). While not currently

2https://www.synthesisproject.org/

included, actions such as co-reference linking and
generation of entities can also be incorporated.

Action-Graph (K): An action sequence is de-
fined to be a sequence of valid actions (or produc-
tion rules) rooted at some initial state s0: K =
(s0, λ0, λ1, ..., λn) (applying λi to si results in
si+1, intermediate states are left out for brevity).
Note that actions may apply to implicit entities
not present in the surface text (for example, the
result of an operation). Construction of an action
graph corresponding to K is straightforward (en-
tities as nodes, actions connecting them as edges),
and henceforth we use K to denote either the se-
quence or the graph. Note that there can be multiple
possible action sequences resulting in the same ac-
tion graph, equivalent w.r.t the topological ordering
of operations induced by their dependencies.

Surface (X): A surface is simply a text in natu-
ral language describing a process.

Learning Task: Our objective is to learn a map-
ping Ψ : X → K. As this mapping may be highly
complex, we convert the problem to a structured
prediction setting. As an intermediate step we map
an input X to an enriched text-based-game G
representation (details below), where the solution
of G is the required action graph K. The game is
modelled as a partially observable Markov Deci-
sion Process (POMDP) G = (S,A, T,Ω, O,R, γ).

We refer the reader to Côté et al. (2018) for a
detailed exposition, and focus here on mapping
the game-setting to our approach: S are states,
A are actions, T are conditional state transition
probabilities, where all are constant per domain
and defined by E ,R,Λ. Ω are observations, and
O are conditional observations probabilities. R :
S×A→ R is the reward function, γ ∈ [0, 1] is the
discount factor. As γ,Ω, O are also preset (with
actual observations dependent on agent actions),
mapping a surface X to game G boils down to
providing a list of entities for initializing s0. For
training and evaluation, a reward function must also
be provided (not necessary for applying a trained
model on un-annotated text “in the wild”).

If a fully annotated action graph is available
(whether synthetic or real), this mapping is simple:
the initial game state s0 is a room where the agent
is placed alongside all entities. Each edge corre-
sponds to an action in the game. Given an action
sequence K, a reward function R can be automat-
ically computed, giving intermediate rewards and
penalizing wrong actions. A quest in TextWorld
can be defined via a final goal state, thus allowing
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Figure 3: Proposed solution architecture of
TEXT2QUEST. (i) Flow for training agent on games
from real annotated data. (ii) Flow for training agent
on synthetic games. (iii) Extracting action graph from
un-annotated real data.

multiple possible winning action sequences. See
appendices A.2, A.3 for examples.

For data “in the wild”, entities can be identi-
fied using named entity recognition (NER) as pre-
processing. Future directions include end-to-end
learning to reduce cascading initialization errors.

By default, the TextWorld environment is par-
tially observable. The agent observes the surface
X at time t = 0 and other textual descriptions
upon executing an “examine” action. Unlike clas-
sic text-based games where partial observability is
part of the challenge, in our case we can adopt the
“friendly-environment” perspective and assist the
learner with information such as state-tracking or
action pruning (Liang et al., 2016; Johnson, 2017).

4 Proposed Solution Architecture

Our system consists of 6 core modules (Fig. 3): a
Knowledge Base defines entity, relation and action
vocabularies. This is used by the Surface Genera-
tor and Quest Generator modules to generate pairs
(X̃, K̃) of synthetic surfaces and their correspond-
ing action graphs for training. For un-annotated
text, a pre-trained domain specific NER tagger3

is used to extract an initial game state s0 by iden-
tifying the mentioned entities. A learning agent
extracts K from a generated game.

The TEXT2QUEST architecture supports three
central modes of operation: (i) Enrich existing real
world annotated pairs (X,K) by converting them

3For the materials synthesis domain we use the tagger
available at https://github.com/olivettigroup/
materials-synthesis-generative-models

to game instances for training the game-solving
agent. (ii) Produce synthetic training pairs (X̃, K̃).
(iii) Convert un-annotated texts to game instances
for action graph extraction “in the wild”.

The current version of TEXTLABS supports
mode (ii). We implemented simple prototypes of
the domain-specific Knowledge Base, plus Quest
and Surface Generators. See Sec. A.1 for details
about converting the entity and relation annotation
schema into TextWorld. TextWorld is easily ex-
tensible and can support a variety of interaction
semantics. Aside from adding a domain specific
entity type-tree and actions, most of the underlying
logic engine and interface is handled automatically.
For the game environment, we use Inform7, a pro-
gramming language and interpreter for text-based
games. For quest generation, we currently use sim-
ple forward chaining and heuristic search strategies
to create plausible quests (for example, all start
materials must be incorporated into the synthesis
route). Combining these with a simple rule-based
Surface Generator already allows for creating sim-
ple synthetic training game instances (Fig. 2).

5 Preliminary Evaluation

As a very preliminary sanity check for the TEXT-
LABS environment, we train a simple text-based
RL agent on synthetic games in increasingly dif-
ficult environments. Difficulty is measured by
maximum quest length, and the number of en-
tities in the target action graph. See Sec. A.2
for representative examples. We use the basic
LSTM-DQN agent of Narasimhan (2017) adapted
to the TEXTLABS setting. The action space is
A = {Wv ×Wo1 ×Wo2}, where Wv consists of
8 action-verbs corresponding to the entity relations
tracked and additional native TextWorld actions
like take (see Sec. A.1 for details). Wo1 ,Wo2 are
(identical) sets of potential arguments correspond-
ing to the active entities which can be interacted
with in the game (single and double argument ac-
tions allowed). As this basic agent is not condi-
tioned on previous actions, we further concatenate
the last four commands taken to the current obser-
vation. For the same reason, we also append the
full quest instructions at every timestep’s observa-
tion. All illegal actions are pruned at each state to
reduce search space size.

We train the agent on 100 games per level and
test on 10 games. Evaluation is measured by avg.
normalized reward per game: 1

|K|
∑T

t=1 ri, where
K is the true action sequence, T is the episode
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Figure 4: Preliminary evaluation results for a basic
LSTM-DQN text-RL agent on synthetic quests. Dot-
ted line shows average generated quest lengths.

length (set to 50) and ri = 1 for each action in K
and−1 for otherwise (and 0 for neutral actions like
examine). A normalized score of 1 means the agent
performed the required actions exactly.

As can be seen in Fig. 4, the agent learns to suc-
cessfully perform the required actions only for the
easiest levels. Examining longer games the agent
did not complete, we note that the lack of condi-
tioning on previous states is a serious limitation.
Equipping agents with better sequence encoding
(e.g., attention), recurrent memory, and utilizing
state information is expected to significantly im-
prove performance. Furthermore, due to technical
limitations of the current implementation, some
actions cannot be reversed. This adds to the diffi-
culty of the task, and will be addressed in future
versions. Finally, learning good initial policies for
semantic parsers is known to be a hard problem
with RL alone, and related approaches commonly
use hybrid RL/supervised training methods (Liang
et al., 2016; Jiang et al., 2012).

6 Discussion

Our approach faces tough challenges. However, we
are encouraged by the significant recent advances
towards these challenges in related areas, and plan
to leverage this progress for our framework.

Programming semantics and rewards for
instruction-following agents is known to be no-
toriously difficult (Winograd, 1972) as language
and environments grow increasingly complex. Re-
search on learned instruction-conditional re-
ward models (Bahdanau et al., 2018) is a promis-
ing approach towards reducing the amount of “en-
vironment engineering” required.

Another critical open question in our framework
is whether the surface generator will be able to
generate surfaces representative enough to allow
for generalization to real examples. Current NLG
systems are increasingly capable of structured text
generation (Marcheggiani and Perez, 2018), and
though they produce relatively short surfaces, we
believe that coupling them with the generated ac-
tion graphs is a promising approach to scaling
up to longer sequences while maintaining coher-
ence. Such systems can use sentence-level se-
mantic parses as training data, meaning they can
leverage existing weakly-supervised shallow pars-
ing techniques. Encouraging for our modelling
paradigm, recent work (Peng et al., 2018) extend-
ing the Dyna-Q (DQ) framework (Sutton, 1990)
demonstrates a real-world application of structured
NLG with a simulated RL training environment.

Given sufficient text generation capabilities, one
may question the added utility of the game en-
vironment (as opposed to learning a direct map-
ping X → K). Recent research suggests that
for stronger generalization, data alone may not
be enough, and symbolic reasoning capabilities
are necessary (Khashabi et al., 2018; Yi et al.,
2018). Given the compositional complexity and
difficulty of the language involved, we believe they
will prove necessary in our setting as well.

7 Conclusions

There is a growing need for combining neuro-
symbolic reasoning with advanced language repre-
sentation methods. In the case of procedural text
understanding, key obstacles are suitable training
environments, as well as the lack of fully annotated
action graphs. Motivated by this, we proposed
TEXT2QUEST, an approach intended to enhance
learning by turning raw text inputs into a struc-
tured text-based game environment, as well as aug-
menting data with synthetic fully annotated action
graphs. To encourage further research in this direc-
tion, we publicly release TEXTLABS, an instance
of TEXT2QUEST for the materials synthesis task.
We implemented prototype modules for basic game
generation and solving. Future work will focus on
designing learning agents to solve the games, as
well as improving text generation capabilities. We
hope that the proposed approach will lead to devel-
oping useful systems for action graph extraction as
well as other language understanding tasks.

66



References
The materials science procedural text corpus.
https://github.com/olivettigroup/
annotated-materials-syntheses. Ac-
cessed: 5/4/2019.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward
Hughes, Pushmeet Kohli, and Edward Grefenstette.
2018. Learning to Understand Goal Specifications
by Modelling Reward. pages 1–19.

Trapit Bansal, Arvind Neelakantan, and Andrew Mc-
Callum. 2017. RelNet: End-to-end Modeling of En-
tities & Relations. pages 1–6.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2018. Simulat-
ing action dynamics with neural process networks.
Proceedings of the 6th International Conference for
Learning Representations.
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A Appendices

A.1 Entity & Relation Types
We have claimed that converting an annotation
schema to a game for TEXTLABS was relatively
straightforward. In this section, we provide de-
tails of the mapping between the Synthesis Project
annotation schema of (denoted with “SP” in the
tables) to the TEXTLABS implementation (denoted
“TL”). A mapping between the central entity types
is presented in Figure 5, as well as the TEXTLABS

actions and representative corresponding relations
in the schema. All current TEXTLABS entities and
actions are shown here, though not all of the orig-
inal entities and relations are listed. For the full
mapping, refer to the project source repository.

A.2 Synthetic Action-Graphs
Figure 6 displays sample representative generated
quests for the various difficulty levels evaluated in
Sec. 5, demonstrating the controllable complexity.
As can be seen by comparison with the real text in
Fig. 7 (which is only one sentence), these graphs
correspond to short real-world surfaces, where even
the hardest could by covered by a 2-3 sentence-long
procedure.

A.3 Action-Graphs from Real Annotated
Graphs

We now provide further details on how the origi-
nal Synthesis Project (SP) annotated graphs can be
converted to a TEXTLABS action graph K. There
are some minor differences between the formats,
primarily in the handling of the SP “next-operation”
relation. Rather than use a “next-operation” re-
lation, we currently opt to explicitly model in-
puts/outputs to operations, as can be seen in Fig.
7. This is a natural abstraction away from the sur-
face text enabled by the grounded environment,
and helps in tracking which materials participated
in each operation, which is useful information for
later analysis. Also, as noted, we currently use a
simplified mapping (for example, many descriptor
annotations such “Amount-Unit”, “Property-Misc”,
etc. are chunked together as generic descriptors).
In Fig. 7 we show K both in action graph and ac-
tion sequence form to demonstrate the equivalence.
Also, we note that the “next-operation” annotations
in MSP are currently just placeholders and not the
true labels. For the purpose of demonstration, in
Fig. 7 we manually add the correct annotation to
our example (center and bottom).
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Entity Type (SP) Entity Type (TL) Notes
Material Material
Number Descriptor
Operation Operation
Amount-Unit Descriptor
Condition-Unit Operation-Descriptor
Material-Descriptor Material-Descriptor
Condition-Misc Operation-Descriptor
Synthesis-Apparatus Synthesis-Apparatus
Nonrecipe-Material Null Currently ignored, not part of synthesis
Brand Descriptor
Apparatus-Descriptor Synthesis-Apparatus-Descriptor
- Mixture Internal entity, represents a mixture

Relation Type (SP) Action (TL)
Participant-Material input-assign
Apparatus-of locate
Recipe-Target obtain
Descriptor-of link-descriptor
- run-op Internal, used for simulating actions
- take/drop/examine Native TextWorld actions on entities

Figure 5: Central entity/relation types from the Synthesis Project schema (“SP”), and the corresponding TEXT-
LABS version (“TL”).

69



Figure 6: Sample representative generated quests for various difficulty levels (listed in parentheses by each graph).
Each edge corresponds to an action in the text-based game.
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Figure 7: Comparisons of the equivalent action graph representations. Top: Action graph section from Synthesis
Project (MSP). Center: TEXTLABS, showing same section with K in graph form. Dashed borders indicate
operation result entities which may be implicit in the text. Bottom: TEXTLABS with same K as list of actions
from initial state s0.
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Abstract

Mathematical expressions (ME) are widely
used in scholar documents. In this paper we
analyze characteristics of textual and visual
MEs characteristics for the image-to-LATEX
translation task. While there are open data-
sets of LATEX files with MEs included it is
very complicated to extract these MEs from
a document and to compile the list of MEs.
Therefore we release a corpus of open-access
scholar documents with PDF and JATS-XML
parallel files. The MEs in these documents are
LATEX encoded and are document independent.
The data contains more than 1.2 million dis-
tinct annotated formulae and more than 80 mil-
lion raw tokens of LATEX MEs in more than 8
thousand documents. While the variety of tex-
tual lengths and visual sizes of MEs are not
well defined we found that the task of analyz-
ing MEs in scholar documents can be reduced
to the subtask of a particular text length, image
width and height bounds, and display MEs can
be processed as arrays of partial MEs.

1 Introduction

Mathematics is recognized as the most ancient sci-
entific field in the world. Symbols were used
from the beginning of mathematics. A spe-
cific breakthrough in mathematical language was
the invention of the equals symbol (=) that is
now universally accepted in mathematics, which
was first recorded by the Welsh mathematician
Robert Recorde in The Whetstone of Witte (1557)1.
Mathematics became the language of symbols to
ease mathematical writing, reading and reasoning.
Mathematical expressions (ME) are widely used
phenomena in scholar documents but we know just
little about the textual and visual characteristics of
these MEs as this field is less studied in NLP do-

1https://en.wikipedia.org/wiki/Equals_
sign

main. The language of MEs is not linear as for in-
stance the English language. Instead, every mathe-
matical symbol has various types of relations, and
these relations are vertically and visually repre-
sented in 2D space.

The majority of scholar documents is produced
in PDF format. The main advantage of this format
that it is a universal and human readable format
on many devices. PDF also has many advance-
ments for adopting the content of documents for
machines by creating tagged PDF, though these
features are used occasionally. In general, a PDF
file contains layout specifications of fonts and
their attributes, and no explicit labels are avail-
able for mathematics. Many researchers are strug-
gling with the replication of MEs in other docu-
ments. Being able to automatically identify and
decode mathematics (Lin et al., 2011; Wang and
Liu, 2017a,b) in PDF files will enable a wide range
of high-level applications such as information re-
trieval, machine reading, similarity analysis, infor-
mation aggregation, and reasoning. Siegel et al.
(2018) discuss how to recover the positional in-
formation of figures in PDF files. The proposed
methods could be also used for the alignment
of MEs in PDF and XML files. There are also
efforts to automatically decode image MEs into
LATEX(Deng et al., 2016, 2017). The length and
size of MEs in scholar documents are little dis-
cussed. We find that researchers apply specific
bounds to the textual length and visual size of MEs
without any explanation. Therefore, our interest
is to find out specific characteristics of MEs in
scholar documents to be used for machine learn-
ing.

The Mathematical REtrieval Collection
(MREC) (Lı́ška et al., 2011) is a subset of the
arXMLiv corpus and includes documents that
were successfully converted to XML. MREC
consists of well-formed XHTML documents.
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MathML, a W3C standard, is used for represen-
tation of mathematical formulas. This corpus
contains XHTML files only.

2 Markups and MEs

In general, all MEs in scholar documents can
be read out loud as a linear sequence of words.
The pseudo-linearity allows to embed MEs into
natural language texts despite the visual multi-
dimensional representation. This is a big advan-
tage for humans to be able to combine natural lan-
guage and symbolic language into one text. But it
is not easy for machines to recognize the content
and structure of these MEs.

There are several editors and markups for MEs.
OpenOffice and MS Office R© have internal support
for writing MEs using special editors. These edi-
tors are frequently used when documents are not
highly loaded with MEs, and they are sufficient
for most users. The LATEX typesetting system
is used as the main technology in mathematics,
physics, and other related domains. LATEX is
widely accepted because of its simplicity for
humans to write and read MEs in linear order
and to get very complex ME representations.
MathML2 is the only standardized markup for
MEs which preserves content and layout. Both
markups, LATEX and MathML, are supported by
the JATS NISO standard3. For instance, the
representation of the formula

1− e−
1
2
|x|2 (1)

in LATEX is:
$1-{\mathrm{e}}ˆ{-\frac{1}{2}|x{|}ˆ{2}}$

whereas in MathML it is:
<mml:math>
<mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup>
<mml:mrow><mml:mi mathvariant="normal">e</mml:mi>
</mml:mrow><mml:mrow><mml:mo>-</mml:mo>
<mml:mstyle displaystyle="false"><mml:mfrac>
<mml:mrow><mml:mn>1</mml:mn></mml:mrow>
<mml:mrow><mml:mn>2</mml:mn></mml:mrow>
</mml:mfrac></mml:mstyle><mml:mo stretchy="false">|
</mml:mo><mml:mi mathvariant="italic">x</mml:mi>
<mml:msup><mml:mrow><mml:mo stretchy="false">|
</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn>
</mml:mrow></mml:msup></mml:mrow></mml:msup>
</mml:math>.

Both representations are equal but the readabil-
ity for humans and for computers are obviously
discrepant. For humans, the LATEX representation
is easy to read, edit and interpret4. But LATEX data

2Mathematical Markup Language (MathML) Version 3.0
2nd Edition

3JATS: Journal Article Tag Suite, version 1.2
4The first resource for mathematics zbMATH formula

search uses the MathWebSearch system, which is a content-

has no explicit structural representation and ad-
vance knowledge is necessary to interpret ME en-
tities and relations. On the other side, MathML
data are well structured, relations and bounds of
entities are explicitly defined in the data itself.
Therefore, we often find both markup representa-
tions in scholar documents on-line.

3 Tokenization of LATEX MEs

In this section we analyze the tokenization task of
MEs encoded in LATEX. Usually, tokenization is
the first task of data preprocessing when a long
sequence of information is split into words. Fre-
quently, a white-space character is used to separate
words. LATEX allows to use white-space characters
in MEs and these white-space characters usually
do not affect the visual representation of MEs. For
instance,
$1-{\mathrm{e}}ˆ{-\frac{1}{2}|x{|}ˆ{2}}$

and
$ 1 - { \mathrm { e } } ˆ { - \frac { 1 }
{ 2 } | x { | } ˆ { 2 } } $

will result into the same ME image of Formula 1.
Sometimes researchers need to insert some text
into an ME or use a different approach for en-
coding variables. Often \text or \mbox are
used for this purpose. The content of these com-
mands is switched into LATEX mode and, therefore,
a white-space character becomes important and in-
fluences image rendering. Tokenization by insert-
ing white-spaces
$ 1 - { \text { e } } ˆ { - \frac { 1 }
{ 2 } | x { | } ˆ { \text { 2 } } } $

will result to slightly different output:

1− e −
1
2
|x| 2 .

White-space characters should not be used
straightforwardly for the separation of tokens and
should be used with caution. White-space charac-
ters should also be included into the vocabulary of
ME tokens for the image-to-text task.

Tokenization of MEs is a task of splitting text
into minimal meaningful LaTeX tokens, and to-
kenization should not affect image rendering. A
sequence of letters in an ME often denotes a se-
quence of unique variables visually not split with
white-space character. Variables often are single

based search engine for MathML formulas based on substi-
tuting tree indexing. A query should be inserted in LATEX, but
the database is MathML based.
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letters and there is no evident sign for the bound-
aries of each variable. Single characters and num-
bers can be used as single tokens in most cases.
We suggest to use a TAB or other specific charac-
ter as a split character for tokenization.

4 The corpus of open-access scholar
documents

We collected 8599 open-access scholar documents
that are freely accessible on-line, that have both
PDF and xhtml versions, include MEs at least
once, and are under CC BY, CC BY NC, or CC BY
NC SA licence5. The documents were published
between 2012 and 2018. The majority of docu-
ments are research papers in the following jour-
nals:

– Advances in Difference Equations (2283 doc-
uments)

– Boundary Value Problems (1457 documents)
– Fixed Point Theory and Applications (1101

documents)
– Journal of Inequalities and Applications

(2645 documents)
The average number of MEs per document is

291, and the average number of distinct MEs is
1936. In Figure 1 we can see that the number of
distinct MEs is linearly increasing with the cor-
pus size. This observation shows that the variety
of MEs is very complex and new MEs are intro-
duced in each document. This observation is very
intriguing as we expected to see the very com-
mon distribution called ’heavy tail’, Zipf, or other
names of the same idea. We also observe that the
typical MEs and distinct MEs ratio in each docu-
ment is similar and equals to 1.5. This means that
about 60 percent of MEs are duplicated in the doc-
ument. The rest of the MEs are unique. The total
number of MEs in the corpus is 2.5 million and the
number of distinct MEs is 1.2 million. The max-
imum number of MEs in one document is 26717.
There are several documents that have only one
ME.

In Figure 2 we observe the vocabulary size in
the corpus of MEs. Vocabulary size does not in-
crease significantly when a corpus is doubled from
40 million tokens to 80 million tokens. There are
39 types out of 728 types in total that occur only

5The compiled corpus of PDFs, JATS NISO XML files
and list of mathematical expressions are available for down-
load at http://textmining.lt/OAScholarXML/.

6Hereafter, we use JATS XML files to extract LATEX MEs.
7
http://dx.doi.org/10.1186/s13662-015-0541-4
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Figure 1: The increase of the number of LATEX MEs.

0
100
200
300
400
500
600
700
800

0 20 40 60 80

Vo
ca

bu
la

ry
 si

ze
Corpus size Millions tokens

Figure 2: The increase of the vocabulary size of LATEX
tokens.

once in the corpus. And there are 135 types that
occur less than ten times in the corpus. The major-
ity in vocabulary are LATEX commands. The most
frequent tokens are {, }, _ and ˆ. The most fre-
quent LATEX command is \frac. This shows that
the vocabulary of MEs is small and already satu-
rated. We could expect 1000 as vocabulary size
upper limit of MEs for very large corpora.

5 Analysis of textual and visual
characteristics

In this section we analyze the length of MEs en-
coded in LATEX. For the image-to-LATEX translation
task Deng et al. (2017) uses a strict length range
which falls in between 40 and 1024 characters and
which is limited to 150 tokens. These bounds are
used for training data and generated MEs. The pa-
per does not describe the procedure of bounds set-
tings. Do these bounds falsify the real world of
MEs and do they consider only some part of the
problem?

It is important to differentiate MEs (1) that are
used as part of regular text and are placed on
the same text line (inline mode), and (2) that are
placed on a separate line and usually take more
than one regular text line (display mode). The
same ME in inline and display modes have slightly
different visual layout and size. Therefore, we dif-
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Figure 3: The LATEX length histogram of inline MEs.

Figure 4: Width (x-axis) and height (y-axis) of ren-
dered inline ME images in pixels (200 dpi).

Figure 5: The image width histogram of inline MEs.

Figure 6: The image height histogram of inline MEs.

ferentiate analysis of inline and display MEs.

5.1 Inline MEs

Inline MEs are often short insertions of symbolic
language into regular text and they are not spread
across many text lines. There are 732498 dis-
tinct inline MEs in the corpus. In Figure 3 we
observe that the peak length in the list of distinct
inline MEs is around 10 tokens and it slowly goes
down until 75 tokens. In inline mode formulae that
are longer than 75 tokens length we often find an

Figure 7: The LATEX length histogram of display MEs.

Figure 8: Width (x-axis) and height (y-axis) of ren-
dered display ME images in pixels (200 dpi).

Figure 9: The image width histogram of display MEs.

Figure 10: The image height histogram of display MEs.

\displaystyle switch which turns inline for-
mulae into display formulae. The longest inline
ME is 1008 tokens (see Appendix B). Thus, the
upper limit of complex inline formula is around
100 token. The most frequent inline ME is {xn},
which occurs 13937 times, and is encoded as
$\{x_{n}\}$ that is 9 tokens length.

We rendered images of all MEs using the
shell script in Appendix A. Rendered images
have 200dpi resolution. In Figure 4 we show
a variety of image sizes in pixels. The heights
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of images fall into the range between 1 and 100
with some odd image height of over 100 pixels.
The widths of images are in the range between 1
and 1000 pixels8. Figure 4 does not emphasize a
specific inline image height and width except the
ranges. In Figure 5 we observe the wide range dis-
tribution of rendered images. The majority of im-
ages are in the range between 30 and 500 pixels.
In Figure 6 we observe a specific image height at
which the majority of images were rendered. The
majority of inline images have a height of 27 or 28
pixels. All other image heights of inline images
are less frequent. Therefore, for the ME detection
in PDF scholar documents we can expect a for-
mula image size of 30-500 pixels width and 27-
28 pixels height. Deng et al. (2017) uses groups
of 128, 160, 192, 224, 256, 320, 384, 480 pix-
els image widths and 32, 64, 96, 128, 160 pixels
image heights for the image-to-LATEX translation
task. We can see that image size boxes are very
similar to what we observe in our corpus.

5.2 Display MEs
Display MEs are insertions of symbolic language
in text and occur in a document as a separate area
from the regular text and can be spread over sev-
eral text lines. There are 467056 distinct display
MEs in our corpus. The most frequent display ME
occurs 59 times in 55 documents and is 27 tokens
length:

lim
n→∞

‖xn+1 − xn‖ = 0.

This low frequency shows the trend that display
MEs are unique and we should not expect occur-
rence of the same formula in many places. This
explains the linear growth of unique MEs in the
corpus (see Figure 1). The longest display ME
is 13987 tokens length (see Appendix C). Display
MEs are very long and many of them can be over
500 tokens in length (see Figure 7). The majority
of display formulae range from 20 to 250 tokens.
It is definitely much longer than Deng et al. (2017)
bound that is 150 tokens.

The display formula image size ranges from 5
to 1000 pixels width and 5 to 6000 pixels height.
There is some dependency between the image
width and height. If the image height is over 2000
pixels then the image width is always expected to
be close to 1000 pixels. In Figure 9 we observe a
wide range of frequent image widths and there are
many of them at the maximum image width. So,

81000 pixels take the full page width.

the image width mentioned in Deng et al. (2017)
is too low for many display MEs. In Figure 10
we observe that the majority of display formulae
height is at 30-35 and 65-70 pixels. The image
height range between 30-35, which is close to in-
line formulae image height. This shows that many
display formulae fit on a regular text line height.
65-70 pixels height is enough to visualize complex
mathematical expressions such as

∑
or
∏

and it
also fit on one line. Display formulae are very
complex for the image-to-LATEX translation task as
the text length is much longer than current Deep
Neural Networks (DNN) can embed, and image
height is too high to feed it to the DNN input. The
solution to the problem could be to split display
images into arrays of single line display images
and to implement the image-to-LATEX task as a list
if partial display images. For this we should also
align break points in LATEX code and images. In
general, this is not very complicated as there are
clear clues in LATEX code (e.g., \\ or \cr com-
mands) and in an image (e.g., horizontal gap be-
tween lines).

6 Conclusions

We release the corpus of more than 8000 open-
access, JATS-NISO-XML tagged and PDF paral-
lel scholar documents which contain at least one
mathematical expression. Our analysis shows that
inline MEs and display MEs have different tex-
tual and visual characteristics. Further, a display
mathematical expression should be used as an ar-
ray of partial mathematical expressions that each
fit on one visual line. The textual length of in-
line MEs ranges between 5 to 75 tokens, image
width ranges between 30 to 500 pixels, and image
height ranges between 20 to 40 pixels. Display
ME textual length ranges from 15 to more than
500 tokens, image width ranges between 100 to
1000 pixels, and image height ranges between 20
to more than 300 pixels. The partial display im-
age height ranges between 20 to 85 pixels. These
bounding settings include the majority of all math-
ematical expressions and can be used for image-
to-LATEX translation task implementation.
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A shell script for rendering png images with pdflatex
#!/bin/sh

cd "$1"
pdflatex -jobname "$2"

"\documentclass[border=2pt]{standalone}\usepackage{amsmath}\usepackage{amssymb}
\usepackage{upgreek}\usepackage{mathrsfs}\usepackage{wasysym}
\usepackage{esint}\usepackage{varwidth} \begin{document}
\begin{varwidth}{\linewidth}
$3
\end{varwidth}\end{document}"

convert -density 200 $2.pdf -quality 100 -colorspace RGB $2.png

convert $2.png -trim $2.png
rm $2.pdf $2.log $2.aux

texlive and imagemagic packages should be on your system to run a sample command:
$./formula path filename "$$\sqrt{\frac{1}{2}}$$"

B The longest inline mathematical expression 9

A3 = p1(a1d
2
1µÎP̂ + a1d1q1µÎP̂ + a1d

2
1d2Î

2P̂ + a1d1d2q1Î
2P̂ + a1d

2
1q2Î

2P̂ + a1d1q1q2Î
2P̂ ) +

(p1 − τ1)(a1d1q1µÎP̂ ) + a1q
2
1µÎP̂ + a1d1d2q1Î

2P̂ + a1d2q
2
1 Î

2P̂ + a1d1q1q2Î
2P̂ + a1q

2
1q2Î

2P̂ ) +
p2(−a2d22rÎM̂−a2d2q2rÎM̂−a2d22γÎM̂−a2d2q2γÎM̂+a2d1d

2
2Î

2M̂+a2d
2
2q1Î

2M̂+a2d1d2q2Î
2M̂+

a2d2q1q2Î
2M̂ +

2a2d22rÎM̂P̂
K + 2a2d2q2rÎM̂P̂

K + (p2 − τ2)(a2d2q2rÎM̂ + a2q
2
2rÎM̂ + a2d2q2γÎM̂ +

a2q
2
2γÎM̂ −a2d1d2q2Î2M̂ −a2d2q1q2Î2M̂ −a2d1q22 Î2M̂ −a2q1q22 Î2M̂ − 2a2d2q2rÎM̂P̂

K − 2a2q22rÎM̂P̂
K )

C The longest display mathematical expression 10

φ(1) = −1

8
e

i
2
(−x−tα+2tαβ)

√
2
(
−2it2α2 − 4tα+ 2t2α2 + 2x2 + 1 + i+ 4xtα

− 4ixtα− 4ixtαβ2 + 4itαβ2 − 2t2α2β4 − 4x+ 2iα2β4t2

− 4it2α2β2 − 4xtαβ2 − 4α2β2t2 − 2ix2
)
,

ψ(1) =
i

8
e−

i
2
(−x−tα+2tαβ)

√
2
(
2x2 + 4x− 2it2α2 + 1 + i

− 4ixtα+ 4tα+ 2t2α2 − 4itαβ2 − 4xtαβ2 − 4α2β2t2

− 4ixtαβ2 + 2iα2β4t2 + 4xtα− 4it2α2β2 − 2ix2 − 2t2α2β4
)
,

φ(2) = − 1

192
e

i
2
(−x−tα+2tαβ)

√
2
(
−12 + 48t2α2β2 + 60x− 24xtα+ 8it3α3β6 + 8t3α3

+ 36itαβ2 − 24t3α3β2 + 8t3α3β6 + 24x2tα+ 24xt2α2 − 24t3α3β4 + 48b1

− 48ixt3α3β4 + 240ixtα− 24xt2α2β4 − 24x2tαβ2 − 48xt2α2β2 + 12αβ2t

+ 60tα− 12x2 − 12t2α2 + 48xtαβ2 + 48tαβ2b1 − 48tαβ2d1 + 48x2t2α2β2

+ 48xt3α3β2 − 16t3α3β6x+ 16x3tαβ2 − 48b1x− 48xd1 − 48tαb1 − 48tαd1

+ 12t2α2β4 + 16t4α4β2 − 16t4α4β6 + 120ix2 − 24ix2t2α2β4 + 48itαβ2d1

− 48ixt2α2β2 − 24ix2tαβ2 − 24it4α4β4 + 24it2α2β2 − 24ixt2α2 + 8x3

− 24ix2tα+ 48id1 + 48itαβ2b1 + 4ix4 + 24ix2t2α2 + 48itαb1 + 24ixtαβ2

+ 24ixt2α2β4 + 24it3α3β4 − 8ix3 + 15i− 84ix+ 72it2α2β4 − 48itαd1

− 24it3α3β2 + 16ix3tα+ 4it4α4β8 + 120it2α2 + 48ib1x+ 4it4α4

9See the original formula at Chaudhary, M., Pathak, R. A dynamical approach to the legal and illegal logging of forestry
population and conservation using taxation Advances in Difference Equations (2017) 2017:385.

10See the original formula at Wen Advances in Difference Equations (2016) 2016:311. This kind of formula is automatically
generated by the specific algorithms to mathematically describe some phenomenon.
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− 84itα− 8it3α3 − 48ixd1 + 16it3α3x
)
,

ψ(2) =
i

192
e−

i
2
(−x−tα+2tαβ)

√
2
(
−12 + 48t2α2β2 − 60x− 24xtα− 8t3α3 + 24t3α3β2

− 8t3α3β6 − 24x2tα− 24xt2α2 + 24t3α3β4 − 48b1 − 36itαβ2 + 16it3α3x

+ 24xt2α2β4 + 24x2tαβ2 + 48xt2α2β2 − 12αβ2t− 60tα− 12x2 − 12t2α2

+ 48xtαβ2 + 48tαβ2b1 − 48tαβ2d1 + 48x2t2α2β2 + 48xt3α3β2 − 16t3α3β6x

+ 16x3tαβ2 − 48b1x− 48xd1 − 48tαb1 − 48tαd1 + 12t2α2β4 + 16t4α4β2

− 16t4α4β6 − 24ixt2α2β4 + 24ix2tα+ 48itαβ2b1 − 48itαd1 + 48itαb1

+ 24it3α3β2 − 24ix2t2α2β4 + 120it2α2 + 48ib1x− 24it3α3β4 + 240ixtα

+ 48ixt2α2β2 + 72it2α2β4 + 120ix2 − 48ixt3α3β4 + 24it2α2β2 + 16ix3tα

+ 8ix3 − 8x3 − 8it3α3β6 + 48itαβ2d1 + 84ix− 48id1 + 24ixt2α2

+ 15i+ 24ix2tαβ2 + 4it4α4β8 + 84itα− 24it4α4β4 + 24ix2t2α2 + 4ix4

+ 4it4α4 − 48ixd1 + 8it3α3 + 24ixtαβ2
)
,

φ(3) = − 1

23,040
e

i
2
(−x−tα+2tαβ)

√
2
(
−405− 1,440x2d1 − 1,440b1x2 − 5,760ixd2

+ 8t6α6β12− 48t6α6β2 + 48it5α5 − 8,100t2α2β2 − 6,840x2t2α2 + 2,880x

− 120t6α6β8 − 1,440ib21 + 1,440id21 + 3,840ix3 − 8ix6 − 17,010ix2 − 1,260ix4

+ 5,760id2 + 48ix5 − 1,440itαβ2b1 − 5,760tαb2 − 4,560xt3α3 + 5,760ib2x

− 120t4α4x2 + 1,080t4α4β4 + 48it5α5β10x− 2,880ixt2α2b1 − 25,380xtα

− 17,010it2α2 − 1,440ix2d1 + 240t3α3 − 2,880ixd1tα+ 1,440it2α2β4d1

+ 2,880it3α3β4b1 − 2,880it3α3d1β
2 + 2,880it2α2β4b1x− 2,880ix2tαb1

− 2,880ix2tαβ2d1 − 5,760ixd1t2α2β2 − 720ix2tαβ2 − 1,440ixt2α2β2

+ 2,880id1b1 − 480it4α4β6x2 + 480ix2t4α4β2 + 240it5α5β2x+ 240ix4t2α2β2

+ 1,200it3α3β6x− 120it4α4β8x2 + 480ixt5α5β4 + 720ix2t4α4β4

+ 480ix3t3α3β4 + 48ix5tαβ2 + 5,220ixtαβ2 + 7,920ixt3α3β2 + 7,920ix2t2α2β2

+ 2,640ix3tαβ2 + 120ix4t2α2β4 − 240it5α5β8x− 480ix3t2α2β4

+ 240it4α4β8x− 14,400ib1x− 1,440ixt4α4β4 − 1,440ix2t3α3β4 − 4,560x3tα

+ 2,880ib1xtαβ2 + 2,880it2α2b1β
2 + 5,760t3α3β2 + 1,920t3α3β6 + 720x2tα

+ 720xt2α2 − 720t3α3β4 + 13,140ix− 3,600b1 − 5,040d1 + 5,760b2
− 5,760tαd2 − 960ix3b1 − 160it3α3β6x3 − 8it6α6 + 1,800ix2t2α2β4

+ 1,440ib1x2 + 3,840it3α3 − 720xt2α2β4 + 5,760x2tαβ2 + 11,520xt2α2β2

+ 1,620αβ2t+ 1,440ixd1 + 2,880tα− 1,260it4α4 − 12,690x2 − 12,690t2α2

− 120x4t2α2 + 11,520ix2tα− 8,100xtαβ2 − 2,880tαβ2b1 + 1,440tαβ2d1
− 9,360x2t2α2β2 − 9,360xt3α3β2 + 2,160t3α3β4x− 720t3α3β6x− 3,120x3tαβ2

+ 1,080x2t2α2β4 − 1,140t4α4 + 1,440b1x+ 14,400xd1 − 1,140x4 + 780t4α4β8

+ 1,440tαb1 + 14,400tαd1 + 4,050t2α2β4 − 3,120t4α4β2 − 720t4α4β6

+ 240it3α3β6 − 720it3α3β2 + 240ix4tα+ 13,140itα+ 11,520ixt2α2

− 2,880xtαβ2d1 − 1,440it2α2d1 + 480ix3t2α2 + 480it3α3x2 + 240it5α5β8

− 5,040it3α3x− 34,020ixtα− 5,040ix3tα+ 2,610it2α2β4 + 1,440itαd1
+ 660it4α4β8 − 7,560ix2t2α2 − 1,440t2α2b1 + 240t5α5β2 − 480t5α5β6
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+ 48t5α5β10− 1,440t2α2d1 + 960x3d1 − 5,760b2x− 5,760xd2 + 2,880d1b1
+ 1,440b21 − 8x6 − 1,440d21 + 5,760tαβ2b2 − 5,760tαβ2d2 + 2,880x2tαd1
+ 2,880xt2α2d1 − 2,880t3α3β4d1 − 2,880t3α3β2b1 + 960t3α3β6b1 − 48x5tαβ2

+ 160t6α6β6 − 160t3α3x3 − 48t5α5x− 48t6α6β10 + 960t3α3d1 − 48x5tα

+ 120t6α6β4 − 2,880x2tαβ2b1 − 5,760xt2α2β2b1 − 2,880xt2α2β4d1 − 8t6α6

− 240t5α5β2x+ 480t5α5β6x− 240x4t2α2β2 − 480x3t3α3β2 + 480x3t3α3β4

− 480x2t4α4β2 + 720x2t4α4β4 + 480xt5α5β4 + 160t3α3β6x3 + 480t4α4β6x2

− 120t4α4β8x2 − 240t5α5β8x+ 120x4t2α2β4 − 48t5α5β10x− 14,400itαb1
− 960it3α3b1 + 3,600ixt3α3β4 + 480ix3t3α3β2 + 5,220it2α2β2 − 48ix5tα

+ 5,760itαb2 − 160it3α3x3 − 120it4α4x2 − 120ix4t2α2 − 48it5α5x− 120it6α6β8

+ 120it6α6β4 + 240x4tαβ2 − 2,880xtαb1 − 2,880t2α2β2d1 + 8it6α6β12

+ 1,200it4α4β6 + 2,640it4α4β2 − 160it6α6β6 + 48it6α6β2 − 480it5α5β4

+ 240it4α4x+ 1,800it4α4β4 − 5,760itαd2 + 48it6α6β10 + 1,440it2α2b1

+ 240x3 + 2,880it2α2β2d1 + 2,880ixtαβ2d1 − 1,440it2α2β4b1 + 1,440t2α2β4b1

− 2,880xtαd1 + 2,880t2α2β2b1 + 1,440t2α2β4d1 + 960x3t2α2β2

+ 1,440x2t3α3β2 + 960xt4α4β2 − 480t3α3β6x2 − 960t4α4β6x− 3,600id1
− 2,880itαβ2d1 + 5,760itαβ2b2 + 2,880ib1xtα− 1,395i+ 5,040ib1
+ 2,880xtαβ2b1 + 960it3α3β6d1 − 480it5α5β6x+ 5,760itαβ2d2

)
,

ψ(3) =
i

23,040
e−

i
2
(−x−tα+2tαβ)

√
2
(
−405 + 720it3α3β2 + 1,440x2d1 + 1,440b1x2

+ 8t6α6β12− 48t6α6β2 − 8,100t2α2β2 − 6,840x2t2α2 − 2,880x

+ 480ix3t2α2β4 − 120t6α6β8 − 1,440ib21 − 5,760ixd1t2α2β2 − 5,760ixd2
− 5,760tαb2 − 4,560xt3α3 + 2,880id1b1 − 2,880ixt2α2b1 − 120t4α4x2

+ 1,080t4α4β4 − 25,380xtα+ 7,920ixt3α3β2 + 48it5α5β10x− 17,010it2α2

− 240t3α3 − 2,880ixtαβ2d1 − 1,260ix4 − 4,560x3tα− 5,760t3α3β2

− 1,920t3α3β6 − 720x2tα− 720xt2α2 + 720t3α3β4 + 5,760itαb2 + 3,600b1
+ 5,040d1 − 5,760b2 − 5,760tαd2 + 5,760ib2x+ 1,800ix2t2α2β4 − 5,040ix3tα

− 240it5α5β8 − 160it3α3β6x3 − 2,880itαβ2d1 − 5,040it3α3x− 1,440itαβ2b1
+ 720xt2α2β4 − 5,760x2tαβ2 − 11,520xt2α2β2 − 1,620αβ2t− 2,880tα− 8it6α6

− 12,690x2 − 12,690t2α2 − 120x4t2α2 + 120ix4t2α2β4 + 240it5α5β2x

− 8,100xtαβ2 − 2,880tαβ2b1 + 1,440tαβ2d1 − 9,360x2t2α2β2 − 9,360xt3α3β2

+ 2,160t3α3β4x− 720t3α3β6x− 3,120x3tαβ2 + 1,080x2t2α2β4 − 1,140t4α4

+ 1,440b1x+ 14,400xd1 − 1,140x4 + 780t4α4β8 + 1,440tαb1 + 14,400tαd1
+ 4,050t2α2β4 − 3,120t4α4β2 − 720t4α4β6 + 2,880xtαβ2d1 − 480it5α5β6x

− 160it3α3x3 + 1,440ixt2α2β2 − 1,440ib1x2 − 48it5α5 + 1,440t2α2b1

− 240t5α5β2 + 480t5α5β6 − 48t5α5β10 + 1,440t2α2d1 + 960x3d1 − 5,760b2x

− 5,760xd2 + 2,880d1b1 + 1,440b21 − 8x6 − 1,440d21 + 5,760tαβ2b2
− 5,760tαβ2d2 + 2,880x2tαd1 + 2,880xt2α2d1 − 2,880t3α3β4d1

− 2,880t3α3β2b1 + 960t3α3β6b1 − 48x5tαβ2 + 160t6α6β6 − 160t3α3x3

− 48t5α5x− 48t6α6β10 + 960t3α3d1 − 48x5tα+ 120t6α6β4 − 2,880x2tαβ2b1
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− 5,760xt2α2β2b1 − 2,880xt2α2β4d1 − 8t6α6 − 240t5α5β2x+ 480t5α5β6x

− 1,260it4α4 − 240x4t2α2β2 − 480x3t3α3β2 + 480x3t3α3β4 − 480x2t4α4β2

+ 720x2t4α4β4 + 480xt5α5β4 + 160t3α3β6x3 + 480t4α4β6x2 − 120t4α4β8x2

− 240t5α5β8x+ 120x4t2α2β4 − 48t5α5β10x+ 48ix5tαβ2 + 2,640ix3tαβ2

+ 48it6α6β10 + 480it5α5β4 − 2,880it3α3d1β
2 + 1,440ixt4α4β4 − 48ix5

− 120it6α6β8 − 240x4tαβ2 + 2,880xtαb1 + 2,880t2α2β2d1 − 120it4α4β8x2

− 480it4α4β6x2 + 7,920ix2t2α2β2 − 960it3α3b1 + 2,880it2α2β4b1x− 8ix6

− 7,560ix2t2α2 + 2,640it4α4β2 − 240x3 − 48ix5tα+ 960it3α3β6d1

+ 48it6α6β2 + 1,440itαd1 − 14,400ib1x− 14,400itαb1 + 5,760itαβ2d2
+ 5,220ixtαβ2 − 2,880ib1xtαβ2 + 1,440ix2t3α3β4 − 1,440t2α2β4b1

+ 2,880xtαd1 − 2,880t2α2β2b1 − 1,440t2α2β4d1 − 960x3t2α2β2

− 1,440x2t3α3β2 − 960xt4α4β2 + 480t3α3β6x2 + 960t4α4β6x+ 480ixt5α5β4

− 120it4α4x2 − 13,140itα+ 3,600ixt3α3β4 − 2,880ix2tαb1 + 8it6α6β12

− 5,040ib1 − 2,880ix2tαβ2d1 − 160it6α6β6 − 5,760itαd2 − 240it3α3β6

− 13,140ix+ 1,200it3α3β6x− 480ix3t2α2 + 1,440ixd1 + 1,200it4α4β6

− 34,020ixtα− 2,880it2α2β2d1 − 1,440it2α2β4d1 + 5,760itαβ2b2
− 2,880xtαβ2b1 + 480ix3t3α3β4 + 720ix2tαβ2 − 48it5α5x− 11,520ixt2α2

+ 240ix4t2α2β2 − 2,880ib1xtα− 3,840it3α3 − 3,840ix3 + 1,440it2α2d1

− 5,760id2 + 120it6α6β4 + 2,880ixd1tα+ 480ix3t3α3β2 − 2,880it2α2b1β
2

− 120ix4t2α2 + 660it4α4β8 − 480it3α3x2 + 1,440ix2d1 + 2,880it3α3β4b1

+ 1,440it2α2β4b1 + 480ix2t4α4β2 − 1,440it2α2b1 − 240it5α5β8x− 240it4α4x

+ 720ix2t4α4β4 + 1,800it4α4β4 − 17,010ix2 − 1,395i+ 1,440id21 + 3,600id1
− 11,520ix2tα− 960ix3b1 + 2,610it2α2β4 − 240it4α4β8x

− 240ix4tα+ 5,220it2α2β2
)
.
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