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Introduction

Welcome to the first Workshop on Narrative Understanding!

This interdisciplinary workshop aims to bring together researchers from natural language processing,
machine learning, and other computational fields with humanities scholars to discuss methods to improve
and evaluate automatic narrative understanding capabilities.

In addition to papers on a variety of topics (including non-archival submissions that do not appear in
this proceedings but will be presented at the workshop), we are excited to host invited talks by Nanyung
Peng, Mark Riedl and Richard So.

We would like to thank all submitters and program committee members, and hope that you enjoy the
workshop!

David, Elizabeth, Madalina, Mohit and Snigdha
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Abstract
Generating coherent and cohesive long-form
texts is a challenging task. Previous works
relied on large amounts of human-generated
texts to train neural language models. How-
ever, few attempted to explicitly improve neu-
ral language models from the perspectives of
coherence and cohesion. In this work, we
propose a new neural language model that
is equipped with two neural discriminators
which provide feedback signals at the levels
of sentence (cohesion) and paragraph (coher-
ence). Our model is trained using a simple
yet efficient variant of policy gradient, called
negative-critical sequence training, which is
proposed to eliminate the need of training a
separate critic for estimating baseline. Results
demonstrate the effectiveness of our approach,
showing improvements over the strong base-
line – recurrent attention-based bidirectional
MLE-trained neural language model.

1 Introduction

The terms coherence and cohesion in linguistics
are commonly defined as follows (Williams and
Colomb, 1995).
• Cohesion: sentence pairs fitting together the

way two pieces of a jigsaw puzzle do.
• Coherence: what all the sentences in a piece

of writing add up to, the way all the pieces in
a puzzle add up to the picture on the box.

In layman’s terms, cohesion indicates that two
consecutive sentences are locally well-connected,
and coherence indicates that multiple sentences
globally hold together.

Generating cohesive and coherent natural lan-
guage texts that span multiple sentences is a chal-
lenging task for two principal reasons. First, there
is no formal specification of cross-sentence lin-
guistic properties, such as coherence and cohesion
of a text. Secondly, there is no widely accepted
model to measure the two properties.

Most state-of-the-art neural approaches to nat-
ural language generation rely on a large amount
of human-generated text to train language mod-
els (Cho et al., 2014; Graves, 2013; Sutskever
et al., 2014). Although these models can generate
sentences that, if judged individually, are similar
to human-generated ones, they often fail to cap-
ture the local and global dependencies among sen-
tences, resulting in a text that is neither coherent
nor cohesive. For example, neural language mod-
els based on Recurrent Neural Networks (RNNs)
are widely applied to response generation for dia-
logue (Vinyals and Le, 2015; Shang et al., 2015;
Sordoni et al., 2015; Li et al., 2015). Although
the responses by themselves look reasonable, they
are detached from the whole dialogue session. See
Gao et al. (2018) for a comprehensive survey.

In this paper, we address the challenge in a prin-
cipled manner, employing a pair of discriminators
to score whether and to what extent a text is co-
herent or cohesive. The coherence discriminator
measures the compatibility among all sentences
in a paragraph. The cohesion discriminator mea-
sures the compatibility of each pair of consecutive
sentences. These models, given a conditional in-
put text and multiple candidate output texts, are
learned to score the candidates with respect to the
criterion. The scores are used as reward signals to
train an RNN-based language model to generate
(more) coherent and cohesive texts.

Contributions. Our main contributions are: (1)
we propose two neural discriminators for mod-
eling coherence and cohesion of a text for long-
form text generation; (2) we present a simple yet
effective training mechanism to encode these lin-
guistic properties; (3) we propose negative-critical
sequence training, a policy gradient method that
uses negative samples to estimate its reward base-
line and therefore eliminates the need for a sepa-
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rate critic function; and (4) we develop a new neu-
ral language model that generates more coherent
and cohesive long-form texts, and empirically val-
idate its effectiveness using the TripAdvisor and
Yelp English reviews datasets.

2 Related work

Coherence and cohesion. Coherence and cohe-
sion have been extensively studied in the compu-
tational linguistics community, particularly in the
‘pre-deep-learning’ era. Lack of formal specifi-
cations for coherence and cohesion (Mani et al.,
1998), resulted in many different formalisms,
such as Rhetorical Structure Theory (Mann and
Thompson, 1988), and other forms of coherence
and cohesion relations and their quantification
(Mani et al., 1998; Hobbs, 1985; Hovy, 1988;
McKeown, 1985; Cohen and Levesque, 1985;
Hovy, 1991; Cristea et al., 1998; Halliday and
Hasan, 1996; Liddy, 1991; Van Dijk, 2013; Ed-
mundson, 1969; Barzilay and Lapata, 2008). This
list is not exhaustive. However, prior work jointly
exploring coherence and cohesion using neural
models in the context of long-form text generation
has not come to our attention.

Reinforcement learning for text generation.
The text generation task can be framed as a rein-
forcement learning (RL) problem (Daumé et al.,
2009), in which the generator G is acting as a
policy π, with parameters θπ, and each generated
word at time t,wt, can be viewed as an action to be
chosen by the policy from a large discrete space,
or vocabulary, conditioned on state st−1 = w≤t−1.

Let rt be the reward for a partially generated
text sequence w≤t. We define the long-term ex-
pected reward J (π) = Es0∼q,π[

∑∞
t=1 γ

t−1rt],
where q is the initial distribution of conditional in-
put texts. Following Sutton et al. (1999), the gra-
dient of J with respect to θπ is

∇θπJ = Es∼ρπ ,a∼π(·|s)[Qπ(s, a)∇θπ log πθπ(a|s)]

where ρπ is the stationary distribution and
Qπ(s, a) is the expected return from state s and
taking action a, both following policy π. For
brevity, we omit the derivation. In this work, we
formulate text generation as an episodic RL prob-
lem with episode lengthL, rewards rL being avail-
able only at the end of episode and γ = 1.

There are many works on training neural lan-
guage models using rewards, such as Ranzato

et al. (2015) and Paulus et al. (2017). These
works directly optimize for specific metrics, such
as BLEU (Papineni et al., 2002) or ROUGE (Lin
and Hovy, 2003), using REINFORCE (Williams,
1992). However, these metrics do not give a com-
plete picture of the text generation quality. Only
recently have there been efforts to provide more
relevant objectives, such as consistency and repe-
tition in a text (Li et al., 2015, 2016a; Holtzman
et al., 2018). But these works use the objectives
to re-rank candidate outputs, not to reward or pe-
nalize them. Li et al. (2016b) constructed a set
of reward models for the dialogue task, such as
information flow and semantic coherence, to tune
the generator, yet they do not provide an ablation
study on the relative contribution of these reward
models individually. It is not clear that these re-
ward models can be generalized to other tasks, in
particular, long-form text generation tasks.

The most relevant to our work is Bosselut et al.
(2018), which promotes text generation in the cor-
rect order, and discourages in its reverse order us-
ing rewards. However, this may not be sufficient
in capturing coherence since there are many nega-
tive orderings given a paragraph. From this pool,
we assess the relative quality of generations. Fur-
thermore, we model cohesion between consecu-
tive sentence pairs using word-level features.

GANs for text generation. Another line of re-
search involves the use of Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014)
to incorporate feedback signals for text generation
(Yu et al., 2017; Lin et al., 2017; Zhang et al.,
2017; Guo et al., 2017; Fedus et al., 2018; Zhang
et al., 2018). The discriminators in these works
are trained to distinguish real texts from gener-
ated ones, operating as a black-box than providing
feedback on linguistic aspects. Yang et al. (2018)
partially addressed this issue by using a trained
language model as the discriminator. Although the
discriminator provides a fine-grained feedback at
the word level, it does not model linguistic prop-
erties, such as cohesion and coherence.

Many text generator models are inadequate for
generating a cohesive and coherent long-form text
that span multiple sentences. As a result, human
readers can easily distinguish the generated texts
from real ones. In this paper, we argue that the
primary reason is the lack of an effective mech-
anism to measure and control for the local and
global consistency in model-generated texts.

2



3 Coherence and Cohesion Models

We assume that global coherence of a text depends
to a large degree upon how its individual sentences
with different meanings are organized. Therefore,
we focus our evaluation of coherence solely based
on the sentence-level features. If the sentences are
not organized properly, the intention of the para-
graph as a whole is obscure, regardless of seamless
local connectivity between consecutive sentences.

This is not to say that local connections between
any two neighboring sentences can be overlooked.
One can easily distinguish a generated sentence
from a real one by judging whether it is seman-
tically cohesive with its neighboring sentences.

We strive to embody these two different yet im-
portant concepts by developing coherence and co-
hesion discriminators, operating on the sentence
level and word level, respectively. Our design of
these two discriminators is inspired by the Deep
Structured Semantic Model (DSSM) which was
originally developed to measure the semantic sim-
ilarity between two texts (Huang et al., 2013; Gao
et al., 2014; Palangi et al., 2016; Xu et al., 2017).
In this study, we extend ‘semantic similarity’ to
coherence and cohesion in a long-form text.

3.1 Coherence discriminator: Dcoherence

The coherence discriminator models the coher-
ence score, which measures how likely two text
chunks add up to a single coherent paragraph.
Let S := [s1, s2, ..., sn] be the source text chunk
that consists of n sentences, T := [t1, t2, ..., tm]
be the real target text chunk that consists of m
sentences, and T̃ :=

[
t̃1, t̃2, ..., t̃m̃

]
be the arti-

ficially constructed incoherent target text chunk
that consists of m̃ sentences. Dcoherence is de-
signed to distinguish a positive (coherent) pair
(S, T ) from a negative (incoherent) pair (S, T̃ ) by
assigning different scores, i.e., Dcoherence(S, T ) >
Dcoherence(S, T̃ ).

Model architecture. The model takes a form
of dual encoder. Given source text chunk S and
target text chunk T , the coherence discriminator
Dcoherence computes the coherence score in three
steps, as illustrated in Figure 1 (upper). First, each
sentence is encoded by the bag-of-words (BOW)
embedding, i.e., the average of its word vectors
from a pre-trained word embedding (Pennington
et al., 2014). Secondly, an encoder which can be
implemented using a convolutional neural network

Figure 1: Illustration of coherence and cohesion dis-
criminators. Dcoherence takes in bag-of-words sentence
embeddings as inputs, and Dcohesion takes in the raw
word embeddings of consecutive sentences as inputs.
The source encoder f (or u) is different from the target
encoder g (or v).

(CNN)1 or RNN2, denoted as f , takes as input the
BOW vectors of the source text chunk S and en-
codes it into a single vector f(S). Similarly, g en-
codes the target text chunk T into g(T ). The two
encoders f(·) and g(·) share the same architecture
but do not share parameters, i.e., θf 6= θg, and
thus Dcoherence(S, T ) is not symmetric. Thirdly,
Dcoherence(S, T ) is computed as the cosine similar-
ity of the two vectors f(S) and g(T ). The score is
a real value between −1 and 1, where 1 indicates
maximal coherence, and −1 minimal coherence.

Note that we use the simple BOW vectors to
encode sentences in the coherence discriminator,
which is different from the CNN sentence embed-
ding scheme in the cohesion discriminator that we
introduce in Section 3.2. Although the BOW vec-
tor ignores the word-order information in the sen-
tence, it is empirically shown to be effective in pre-
serving the high-level semantic information in the
sentences and achieves success in sentence simi-
larity and entailment tasks (Wieting et al., 2016;
Arora et al., 2017). Because high-level semantic
information of sentences is sufficient to determine
whether a paragraph is coherent, we choose to use
BOW vectors to encode sentences in Dcoherence.

The parameters of Dcoherence, θf and θg are op-
timized using a pairwise ranking loss. To this end,
we need both positive and negative pairs. While
the positive (coherent) pairs come from the train-

1We explored with deeper networks. However, the perfor-
mance difference was marginal. For simplicity, we decided to
use a 1-layer convolutional network architecture (Kim, 2014;
Collobert et al., 2011).

2For clarity in our model description, we omit RNN here-
after. We present results using both CNN and RNN encoders
in Table 2.
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ing data, negative (incoherent) pairs need to be ar-
tificially constructed. The next section describes
the way these negative pairs are generated.

Constructing negative (incoherent) pairs.
Given a training minibatch {(Si, Ti)}Bi=1, we con-
struct 2∗B−1 negative pairs {(Si, T̃i,j)}2B−1j=1 for
every positive pair (Si, Ti) using three different
methods, inspired by Wieting et al. (2016). For
notation simplicity, we omit the minibatch index
i in the rest of this section. For each positive pair
(S, T ) in the minibatch:
• We rotate T with S fixed, and thus obtain all
B−1 mismatched pairs {(S, T̃j)}B−1j=1 as neg-
ative pairs.
• We shuffle the sentence order in T once,

known as a derangement, to break its coher-
ence. This yields one negative pair (S, T̃ ).
• We combine the previous two methods, that

is, we rotate T in the minibatch and shuffle
sentences within the target chunk, yielding
another B − 1 negative pairs {(S, T̃j)}B−1j=1 .

These 2B−1 negative pairs and a single positive
pair, in total, pose a challenge for the discriminator
in learning to retrieve the correct pair.

Training using a pairwise ranking loss. The
parameters of f(·) and g(·) are optimized in
such a way that a positive pair scores higher
than its negative pairs, i.e., Dcoherence(S, T ) >
Dcoherence(S, T̃j) for any j. To achieve this, we
propose to minimize the following pairwise rank-
ing loss (Gong et al., 2013) with margin δ:

Lcoherence(θf , θg) := max
(
0, δ −Dcoherence(S, T )

+ AVGλ
(
{Dcoherence(S, T̃j)}2B−1j=1

))
.

(1)

where AVGλ({xj}Nj=1) =
∑N

j=1wjxj and wj =

eλxj/
∑

k e
λxk .

Notice that AVGλ is the mean operator when
λ = 0 and approaches the max operator when λ→
∞. These two extreme cases correspond to rank-
ing against the average of all negative pairs and
ranking against the single most challenging neg-
ative pair, respectively. Empirically, training the
models using the weighted average (0 < λ�∞),
which assigns larger weights to more challenging
negative pairs, stabilizes the training and expedites
the convergence.

3.2 Cohesion discriminator: Dcohesion

The cohesion discriminator models the cohesion
score, which measures how likely two sentences

form a cohesive pair of consecutive sentences. Let
sk :=

[
s1k, s

2
k, ..., s

n
k

]
be the kth sentence that con-

sists of n words, sk+1 :=
[
s1k+1, s

2
k+1, ..., s

m
k+1

]

be the real next sentence that consists of m
words, and s̃k+1 :=

[
s̃1k+1, s̃

2
k+1, ..., s̃

m̃
k+1

]
be

the artificially constructed incohesive next sen-
tence that consists of m̃ words. Dcohesion is
designed to distinguish a positive (cohesive)
pair (sk, sk+1) from a negative (incohesive) pair
(sk, s̃k+1) by assigning them with different scores,
i.e., Dcohesion(sk, sk+1) > Dcohesion(sk, s̃k+1).

Model architecture. Like the coherence dis-
criminator, this model also takes a form of dual
encoder. Given (sk, sk+1), Dcohesion computes the
cohesion score in three steps, as illustrated in Fig-
ure 1 (lower). The first step is to obtain two se-
quences of word embedding to represent the two
sentences. Then, a pair of source network u(·)
and target network v(·) are utilized to encode both
sk and sk+1 into two low-dimensional continuous
vectors. The two encoders u(·) and v(·) share the
same architecture but do not share parameters, i.e.,
θu 6= θv, and thus the Dcohesion (sk, sk+1) is not
symmetric. Finally, Dcohesion (sk, sk+1) is com-
puted as the cosine similarity of the two vectors.

Note that we use CNNs or RNNs to embed sen-
tences inDcohesion, which takes the word order in a
sentence into consideration. This is different from
the BOW embedding in the Dcoherence where the
word order does not matter, because the word or-
der indeed matters when determining the cohesion
of two consecutive sentences. As an example from
Table 1, for the source sentence “Once you get
there you are greeted by the staff.”, “They explain
everything to you.” is a cohesive follow-up while
“You explain everything to them.” is not.

The parameters of Dcohesion, θu and θv are opti-
mized using the same pairwise ranking loss. The
positive pairs (a training minibatch) for Dcohesion
is obtained from (1) decomposing each paragraph
(S, T ) in {(Si, Ti)}Bi=1 into pairs of consecutive
sentences and (2) randomly selecting B pairs as
the positive (cohesive) pairs {(sk, sk+1)i}Bi=1. We
construct negative (incohesive) pairs using the
same methods as in the coherence discriminator.

Constructing negative (incohesive) pairs.
We construct 2 ∗ B − 1 negative pairs
{(sk, s̃k+1,j)i}2B−1j=1 for every positive pair
(sk, sk+1)i using three different methods and omit
the minibatch index i hereafter. For each positive
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pair (sk, sk+1) in the minibatch:
• We mismatch sentence pairs to obtain
{(sk, s̃k+1,j)}B−1j=1 .
• We shuffle words in sk+1 to obtain s̃k+1.
• We combine the previous two methods and

obtain additional pairs {(sk, s̃k+1,j)}B−1j=1 .
In total, we obtain 2B − 1 negative pairs for each
positive pair in the minibatch.

Training using a pairwise ranking loss. The
parameters of u(·) and v(·) are optimized such that
Dcohesion(sk, sk+1) > Dcohesion(sk, s̃k+1,j) for any
j. To achieve this, we propose to minimize the fol-
lowing pairwise ranking loss with margin δ:

Lcohesion(θu, θv) := max
(
0, δ −Dcohesion(sk, sk+1)

+ AVGλ
(
{Dcohesion(sk, s̃k+1,j)}2B−1j=1

))
.

(2)

We leave the training details and hyper-
parameter configurations to Section 5.2.

4 Negative-Critical Sequence Training
for Long-form Text Generation

4.1 Long-form text generator: G

The generator G is an attention-based bidirec-
tional sequence-to-sequence model (Bahdanau
et al., 2014) and is pre-trained by maximizing the
log likelihood on training data, which we denote
as GMLE. However, long-form texts generated us-
ing GMLE often do not meet our high coherence
and cohesion standards.

We propose to use the two pre-trained discrimi-
nators, Dcoherence and Dcohesion, to modify the text
generation behavior of GMLE. The scores from
the discriminators are used as reward (or penalty)
signals to adjust the parameters of GMLE using a
variant of policy gradient, called negative-critical
sequence training, which we propose for our task
and describe in details in the next subsection.

4.2 Negative-critical sequence training

For an arbitrary pair of S and Tgen, where Tgen is
the generator’s output conditioned on S, we com-
pute the coherence and cohesion scores by calling
Dcoherence and Dcohesion. Since each generated text
consists of multiple sentences, the overall cohe-
sion score is computed as the mean of all the con-
secutive sentence pairs, (sk, sk+1) ⊂ [S−1, Tgen],
where S−1 is the last sentence from the source.

These scalar scores, however, are not inter-
pretable since the discriminators are trained by op-

timizing a pairwise ranking loss. Instead, the dif-
ferences between positive pair scores and the max-
imal or average negative pair scores provide in-
sights of how well the models distinguish between
the positive and the negative pairs.

This difference relates to reward with baseline
in actor-critic methods (Barto et al., 1983; Witten,
1977; Williams, 1992; Sutton et al., 1999) that typ-
ically require a separate critic function as a base-
line. In NLP, we have observed similar practices
by Ranzato et al. (2015), Bahdanau et al. (2016),
and Nguyen et al. (2017). Rennie et al. (2017)
proposed a method that avoids learning a sepa-
rate critic. Similarly, our method does not require
learning a separate critic since this margin is a
form of reward minus baseline. Specifically, we
define the reward functions with baselines as:

Rcoherence(S, Tgen) := Dcoherence(S, Tgen)

− E
T̃

[
Dcoherence(S, T̃ )

] (3)

Rcohesion([S−1, Tgen]) :=
1

|Tgen|
∑

(sk,sk+1)
⊂[S−1,Tgen]

Dcohesion(sk, sk+1)

− E
s̃k+1

∣∣∣∣
(sk,sk+1)
⊂[S,T ]

[
Dcohesion(sk, s̃k+1)

]
(4)

where |Tgen| denotes the number of sentences in
Tgen, and E

T̃
( and Es̃k+1

) are computed by aver-
aging over an ensemble of negative pairs.

Notice that this reward resembles the ranking
loss we use to train our discriminators, except
that our baseline is the mean score (instead of
the weighted mean) over negative pairs. The ra-
tionale for this difference is that: because the
best artificially constructed negative sample may
be a formidably good sample, the maximal or the
weighted mean can in fact be noisy as a baseline
and thus introduce noise in rewards. To alleviate
such noise, we use the mean discriminator score
of negative pairs as the baseline, and this turns out
to be an empirically better alternative. Then we
use policy gradient to maximize a weighted sum
of the coherence and cohesion rewards.

5 Experiments

In this section, we detail the training and
evaluation of Dcoherence, Dcohesion, the base-
line generator GMLE, and the RL-tuned gen-
erators GMLE+RL(cohesion), GMLE+RL(coherence), and
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source cohesion coherence
this hotel was unbelievably overpriced . 0.0002
we were looking for something cheaper but thought we would at least
be staying in a decent hotel having paid that much when booking .

0.0411

it wasn t clear when booking that we would have to share a bathroom . 0.0084
there was one shower for the whole floor which was tiny and unclean . 0.0054
the room was old and lacking in facilities .

target
the beds were very uncomfortable and the linen was very old . 0.0768
breakfast was ok , but the staff were incompetent . 0.0591
on our last day they were too lazy to clean our table and never bothered taking our order . -0.0097
we had to leave having had no breakfast , as we ran out of time . 0.0457
they saw us get up and leave and didn t even apologise for the appalling lack of service .

+0.3735

negative target
the staff recommended great restaurants with very reasonable prices within walking distance . 0.0514
the paris hop on bus stops nearby . 0.0798
the gare l est is within 3 blocks . -0.0156
we paid 75 euro per nite excluding breakfast but paid for breakfast one day and found it very
good and reasonably priced .

0.0082

the rooms are clean and bathrooms ensuite .

-0.2001

more examples of cohesion
once you get there you are greeted by the staff .
they explain everything to you , and in english , not the best , but good enough .

0.1004

the coffee was even good for a coffee snob like myself .
the hotel is much smaller than i thought and only has six floors .

-0.1103

the only negative was the curtain in the bathroom .
it was very shear and we felt that people in the building across the street could look
right in at night .

0.0787

the beer at the lobby bar was stale .
there are many friendly cats on the grounds .

-0.0830

Table 1: Coherence and cohesion rewards on test data. The cohesion reward at the end of each line is computed
with its next sentence. This is an example of contradiction and inconsistent sentiment, suggestive of incoherence.
We append more examples with extreme cohesion rewards.

TripAdvisor Target Sentences Retrieval Yelp Target Sentences Retrieval

Discriminators Encoding R@1 R@5 R@10 Discriminators Encoding R@1 R@5 R@10

Dcoherence
Conv5122,3,4,5 0.18 0.43 0.60

Dcoherence
Conv5122,3,4,5 0.33 0.61 0.74

GRU1024
1-layer, bi-dir. 0.26 0.50 0.65 GRU1024

1-layer, bi-dir. 0.39 0.68 0.81

Dcohesion
Conv5123,4,5,6 0.12 0.28 0.43

Dcohesion
Conv5123,4,5,6 0.14 0.33 0.47

GRU1024
1-layer, bi-dir. 0.11 0.21 0.33 GRU1024

1-layer, bi-dir. 0.11 0.26 0.39

Table 2: Retrieval ratios for coherence and cohesion discriminators from a collection of 100 negative candidates
from the test data. The reported numbers are the averages over 20 evaluations. Notations: Conv512

2,3,4,5 is a convo-
lutional input encoder with filter sizes 2, 3, 4, and 5, and there are 512 filters for each filter size. GRU1024

1-layer, bi-dir.
is a 1-layered bi-directional GRU input encoder with hidden size 1024. We experimented different configurations
for both encoder types, and selected the best performing models for the negative-critical sequence training step.

GMLE+RL(coherence, cohesion). We show that, by using
feedback from the discriminators, the quality of
the generated texts is significantly improved. See
Table 3 for a sample comparison.

5.1 Dataset

We use the TripAdvisor hotel English reviews
dataset collected by Wang et al. (2010) and the
Yelp English reviews dataset3. We use only the

3https://www.yelp.com/dataset
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source sentences
the hotel inglaterra delivered as promised . the staff was welcoming and spoke good english . the cleaning staff did a
very good job every day . the rooms were spotless and very modern . the bathroom was large and had a very nice shower
, and there were two generously sized bath towels that were twice the size of normal towels .

GMLE

the breakfast in the morning was delicious and very good . it was the only hotel where i slept very well . the staff was
very helpful in late afternoon or late times . the breakfast was adequate , with a decent range of cereals , fruit , and
fruits . there is also free use of the coffee in the reception area .

GMLE+RL(coherence, cohesion)

the breakfast was plentiful including fresh breads and cooked to order . the location was fantastic . it is in the north
of the marina and in a very short distance . the marina has a small swimming pool with sitting area and a small gym .
they are very popular and guests have an evening reception which is very nice .

Table 3: Sample generations from our MLE-trained baseline model, GMLE, and our discriminator-guided model
GMLE+RL(coherence, cohesion). The red texts highlight a common problem in GMLE - it exhibits a repetition, and an
inconsistent opinion as a review. In contrast, our discriminator-guided model is able to generate a more interesting,
and sentiment-consistent continuation.

TripAdvisor

Model NLL PPL BLEU-3 BLEU-4 BLEU-5 intra-
unique-1

intra-
unique-2

inter-
unique-2

inter-
unique-3

length
ratio

GMLE (baseline) 0.86 2.36 0.38 0.19 0.08 0.66 0.93 0.40 0.72 1.08
GMLE +RL(cohesion) 0.77 2.18 0.46 0.27 0.14 0.64 0.94 0.38 0.71 0.97
GMLE+RL(coherence) 0.80 2.24 0.44 0.25 0.12 0.64 0.94 0.39 0.72 1.06
GMLE+RL(coherence, cohesion) 0.80 2.25 0.44 0.24 0.12 0.65 0.94 0.40 0.72 1.02

Yelp

Model NLL PPL BLEU-3 BLEU-4 BLEU-5 intra-
unique-1

intra-
unique-2

inter-
unique-2

inter-
unique-3

length
ratio

GMLE (baseline) 1.32 3.84 0.37 0.17 0.07 0.68 0.95 0.54 0.86 1.07
GMLE+RL(cohesion) 1.26 3.65 0.45 0.23 0.11 0.68 0.95 0.53 0.85 1.05
GMLE+RL(coherence) 1.24 3.56 0.45 0.23 0.11 0.69 0.95 0.55 0.87 1.00
GMLE+RL(coherence, cohesion) 1.25 3.59 0.43 0.22 0.11 0.69 0.95 0.56 0.88 1.05

Table 4: An ablation study with automated evaluation metric scores: NLL, PPL, BLEU-n, intra/inter-unique-n,
along with the length ratio with the length of corresponding true target sentences as 1. Significant numbers are
highlighted in bold before rounding.

subsets of the two datasets that satisfy the follow-
ing two conditions: (1) a review must have at least
10 sentences, and (2) each sentence has from 5 to
30 words. This yields roughly 60,000 TripAdvi-
sor reviews and 220,000 Yelp reviews, split into
[0.8, 0.1, 0.1] ratio for train/dev/test sets.

We merge the source and target vocabularies,
and limit it to the top 50,000 frequent words, ex-
cluding special tokens. For each review, we use
the first five sentences as the input S to G, and the
next five sentences as the target output T from G.

5.2 Implementation details

BaselineGMLE. GMLE takes individual words as
inputs and embeds into a pre-trained GloVe 300-
dimensional word vectors. This embedding layer
is fixed throughout training. GMLE uses a two-
layered GRU and hidden size of 1024 for both
encoder and decoder. During optimization using
Adam (Kingma and Ba, 2014), we set the learn-
ing rate to 2e-4 and clip the gradient’s L2-norm to
1.0. We initially train GMLE for 60 epochs on the
TripAdvisor data and 30 epochs on the Yelp data.

Discriminators. For the CNN-based encoder,
the convolutional layer consists of filters of sizes

2, 3, 4, and 5 for Dcoherence (3, 4, 5, and 6 for
Dcohesion), each with 512 filters. Each convolution
filter is followed by a tanh activation. Then, we
max-pool in time and append a fully connected
layer to generate a feature vector of dimension
512, followed by a batch normalization layer and
a tanh activation. For the RNN-based encoder, we
use a 1-layered bi-directional GRU, concatenate
the final hidden states at both ends, and append
the same remaining layers.

Both discriminators use the pre-trained GloVe
word embedding vectors4, which are fixed during
the training. We use an Adam optimizer with a
learning rate of 1e-5. We fix λ = 2 and δ = 0.2 in
equations (1) and (2).5 We train both discrimina-
tors for 50 epochs and choose the models with the
best R@1 scores on the validation dataset.

Model GMLE+RL. In the fine-tuning stage, we
use the negative-critical sequence training method,

4The vector dimension can be different from that of G.
The differences were marginal for sizes 50, 100, and 300.
For results shown in this paper, we used the same dimension
of size 300.

5We performed a coarse grid search over the values of λ
and δ and these values for the hyper-parameters pair resulted
in fast convergence to high recall scores on the dev dataset.
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Cohesion Coherence

Human judges preferred: Human judges preferred:

Our Method Neutral Comparison Our Method Neutral Comparison

GMLE+RL 36.41% 33.57% 30.50% GMLE GMLE+RL 37.23% 31.44% 31.80% GMLE
GMLE+RL 29.91% 30.85% 39.24% Human GMLE+RL 28.96% 31.32% 39.72% Human

Table 5: Results of Human Evaluation showing preferences (%) for our model GMLE+RL(coherence, cohesion) vis-a-vis
the baselineGMLE after adjustment for spamming. GMLE+RL(coherence, cohesion) is preferred overGMLE. For simplicity,
the 5-point Likert scale has been collapsed to a 3-point scale. See the Appendix for further details of distributions.

as described in Section 4, up to 5 epochs, with a
learning rate of 1e-5. We equally weight the coher-
ence and cohesion rewards, 1

2Rcoherence(S, Tgen)+
1
2Rcohesion([S−1, Tgen]). We also continue the su-
pervised learning of G to constrain the policy
search within a space that represents the sentences
that are likely to be grammatically plausible, simi-
lar to Paulus et al. (2017); Wu et al. (2016); Lewis
et al. (2017). For all the generations from GMLE
and GMLE+RL, we use the simple greedy decoding
method because we do not observe any significant
difference when switching to beam search.

5.3 Results

Evaluating Dcoherence and Dcohesion. Since
the discriminators are implemented as pairwise
rankers, we employ the metrics commonly used
in information retrieval for evaluation, i.e., recall
at K (R@K), which is defined as the fraction
of correctly identifying an item in the TOP-K
retrieved list (Baeza-Yates and Ribeiro-Neto,
1999). We present the retrieval results in Table 2.
To help readers understand the roles of Dcoherence
and Dcohesion, we present examples of positive and
negative pairs and their rewards in Table 1.

Automatic evaluation of G. It is widely known
that there is no perfect automated metric to eval-
uate text generators. Nevertheless, we report the
scores of widely used metrics, including negative
log-likelihood (NLL), perplexity (PPL), BLEU
and the proportion of unique n-grams within a sin-
gle generation (intra-unique-n), and across gener-
ations (inter-unique-n), as in Gu et al. (2018). Re-
sults in Table 4 show that our discriminators sig-
nificantly improve BLEU scores, NLL and PPL,
with marginal difference in diversity.

Human evaluation of G. Coherence and co-
hesion of a text cannot be easily measured us-
ing standard automated metrics. Thus, we per-
form crowd-sourced human evaluation. We ran-

domly selected 200 samples from the TripAd-
visor dataset, including corresponding generated
output from the baseline GMLE and our model
GMLE+RL. For comparison, we pair systems as
(Human↔ GMLE+RL) and (GMLE+RL ↔ GMLE).

The outputs of these system pairs are presented
in random order and each is ranked in terms of
coherence and cohesion using a five-point Likert
scale by human judges. Initially, we hired 7 judges
to judge each pair. We identified a group of poor
judges (probable spammers) who chooseGMLE+RL
over the Human more than 40% of the time, and
eliminated them from the judge pool. Table 5 re-
ports the final scores in terms of percentages of the
total remaining judgments.

6 Conclusion

This paper proposes a neural approach to explic-
itly modeling cross-sentence linguistic properties,
coherence and cohesion, for long-form text gen-
eration. The coherence discriminator Dcoherence
provides a macro-level view on structuring a para-
graph. The cohesion discriminator Dcohesion pro-
vides a micro-level view on local connectivity be-
tween neighboring sentences. The pre-trained dis-
criminators are used to score the generated texts
and artificially constructed negative pair scores are
used to form baselines for the policy gradient,
which we call negative-critical sequence training,
to train neural language models.

On two long-form text generation tasks, hu-
man evaluation results are consistent with auto-
matic evaluation results, which together demon-
strate that our proposed method generates more lo-
cally and globally consistent texts with the help of
the discriminators.

Despite the encouraging initial results, we only
scratched the surface of the problem. The pro-
posed method is yet to be significantly improved
to meet the ultimate goal of generating meaning-
ful and logical long-form texts.
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Hal Daumé, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. CoRR,
abs/0907.0786.

Harold P Edmundson. 1969. New methods in au-
tomatic extracting. Journal of the ACM (JACM),
16(2):264–285.

William Fedus, Ian Goodfellow, and Andrew Dai.
2018. MaskGAN: Better text generation via filling
in the ˙˙˙˙. In ICLR.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational AI. arXiv
preprint arXiv:1809.08267.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xi-
aodong He, and Li Deng. 2014. Modeling interest-
ingness with deep neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2–
13.

Yunchao Gong, Yangqing Jia, Thomas Leung, Alexan-
der Toshev, and Sergey Ioffe. 2013. Deep con-
volutional ranking for multilabel image annotation.
arXiv preprint arXiv:1312.4894.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems 27, pages 2672–2680.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Xiaodong Gu, Kyunghyun Cho, JungWoo Ha, and
Sunghun Kim. 2018. DialogWAE: Multimodal
response generation with conditional wasserstein
auto-encoder. CoRR, abs/1805.12352.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2017. Long text generation via
adversarial training with leaked information. arXiv
preprint arXiv:1709.08624.

M Halliday and Ruqaiya Hasan. 1996. Cohesion in
text.

Jerry R Hobbs. 1985. On the coherence and structure
of discourse.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the Association for Computational
Linguistics.

Eduard H Hovy. 1988. Planning coherent multisenten-
tial text. In Proceedings of the 26th annual meet-
ing on Association for Computational Linguistics,
pages 163–169. Association for Computational Lin-
guistics.

Eduard H Hovy. 1991. Approaches to the planning of
coherent text. In Natural language generation in
artificial intelligence and computational linguistics,
pages 83–102. Springer.

9



Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry P. Heck. 2013. Learning
deep structured semantic models for web search us-
ing clickthrough data. In CIKM.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi
Parikh, and Dhruv Batra. 2017. Deal or no deal?
end-to-end learning for negotiation dialogues. arXiv
preprint arXiv:1706.05125.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P
Spithourakis, Jianfeng Gao, and Bill Dolan. 2016a.
A persona-based neural conversation model. arXiv
preprint arXiv:1603.06155.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016b. Deep re-
inforcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
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Abstract
Characters are a key element of narrative and
so character identification plays an important
role in automatic narrative understanding. Un-
fortunately, most prior work that incorporates
character identification is not built upon a
clear, theoretically grounded concept of char-
acter. They either take character identifica-
tion for granted (e.g., using simple heuristics
on referring expressions), or rely on simplified
definitions that do not capture important dis-
tinctions between characters and other refer-
ents in the story. Prior approaches have also
been rather complicated, relying, for example,
on predefined case bases or ontologies. In this
paper we propose a narratologically grounded
definition of character for discussion at the
workshop, and also demonstrate a preliminary
yet straightforward supervised machine learn-
ing model with a small set of features that per-
forms well on two corpora. The most impor-
tant of the two corpora is a set of 46 Russian
folktales, on which the model achieves an F1

of 0.81. Error analysis suggests that features
relevant to the plot will be necessary for fur-
ther improvements in performance.

Characters are critical to most of definition of
narrative. As an example, Monika Fludernik de-
fines a narrative as “a representation of a possible
world . . . at whose centre there are one or several
protagonists of an anthropomorphic nature . . . who
(mostly) perform goal-directed actions . . . ” (Flud-
ernik, 2009, p.6; emphasis ours). Therefore, if
we wish to advance the field of automatic narra-
tive understanding, we must be able to identify the
characters in a story.

Numerous prior approaches have incorporated
character identification in one way or another.
Some approaches, e.g., examining charaters’ so-
cial networks (e.g., Sack, 2013), take character
identification for granted, implementing heuristic-
driven identification approaches over named enti-

ties or coreference chains that are not examined
for their efficacy. Other approaches have sought
to solve the character identification task specifi-
cally, but have relied on domain-specific ontolo-
gies (e.g., Declerck et al., 2012) or complicated
case bases (e.g., Valls-Vargas et al., 2014). Oth-
ers have taken supervised machine learning ap-
proaches (Calix et al., 2013). Regardless, all of
the prior work has, unfortunately, had a relatively
impoverished view of what a character is, from a
narratological point of view. In particular, a key
aspect of any character is that it contributes to
the plot; characters are not just any animate en-
tity in the narrative. We outline this idea first, be-
fore describing how we constructed two annotated
datasets reflecting this narratologically grounded
view oharacter. Then we demonstrate a straight-
forward supervised machine learning model that
performs reasonably well on this data. This paper
is just a first proposal on this approach, as much
remains be done.

The paper proceeds as follows. First we discuss
a definition of character drawn from narratology,
contrasting this concept with those used in prior
computational work (§1). We then describe our
data sources and annotation procedures (§2). Next
we discuss the experimental setup including the
features and classification model (§3). We present
the results and analyze the error patterns of the
system, discussing various aspects, which leads us
to a discussion of future work (§4). Although we
have discussed prior work briefly in the introduc-
tion, we summarize work related to this study (§5)
before we conclude by enumerating our contribu-
tions (§6).

1 What is a Character?

All prior works that we have found which incor-
porate character identification in narrative did not
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provide a clear definition of character. So far the
work that reports the best performance is by Valls-
Vargas et al. (2014), where they mentioned differ-
ent types of characters such as humans, animals
(e.g., a talking mouse), anthropomorphic objects
(e.g., a magical oven, a talking river), fantastical
creatures (e.g., goblins), and characters specific to
the folklore (e.g., the Russian characters Morozko
and Baba Yaga). Despite this relatively compre-
hensive list of character examples, they did not
provide any properties that distinguish characters
from other animate entities.

Consider the follow example. Let’s assume we
have a story about Mary, a little girl who has a dog
named Fido. Mary plays with Fido when she feels
lonely. Also, Fido helps Mary in her daily chores
and brings letters for Mary from the post office.
One day Mary and Fido are walking through town
observing the local color. They see a crowd gath-
ered around a fruit vendor; an ugly man crosses the
path in front of them; another dog barks at Fido.
Many narratologists and lay people would agree
that the story has at least two characters, Mary and
Fido. Depending on how the story is told, either
Mary or Fido may be the protagonist. But what
about the other entities mentioned in the story?
What about the unnamed man who crosses their
path? Is he a character? What about the formless
crowd? Is the crowd itself a character, or perhaps
its constituent people? What about the fruit ven-
dor, who is hawking his wares? And what about
the barking dog? Where do we draw the line?

To clarify these cases, our first goal was to find
an appropriate definition of character grounded in
narrative theory. We studied different books and
literature reviews on narratology that provided dif-
ferent definitions of character. Helpfully, Sey-
mour Chatman, in his classic book “Story and Dis-
course: Narrative Structure in Fiction and Film”
(1986), collected a number of view on charac-
ter across multiple narratological traditions. Sev-
eral of the definitions were complex and would
be quite difficult to model computationally. Oth-
ers were too vague to inform computational ap-
proaches. However, one definition provided a rea-
sonable target:

The view of the Formalists and (some)
structuralists resemble Aristotle’s in a
striking way. They too ague that char-
acters are products of plots, that their
status is “functional,” that they are, in

short, participants or actants rather than
personnages, that it is erroneous to con-
sider them as real beings. Narrative
theory, they say, must avoid psycho-
logical essences; aspects of character
can only be “functions.” They wish to
analyze only what characters do in a
story, not what they are—that is, “are”
by some outside psychological or moral
measure. Further, they maintain that the
“spheres of action” in which a character
moves are “comparatively small in num-
ber, typical and classable.” (Chatman,
1986, p.111)

Here, an actant is something that plays any of
a set of active roles in a narrative and plot de-
notes the main events of a story. This definition,
then, though presented via somewhat obscure nar-
ratological terminology, gives a fairly conceptu-
ally concise definition of a character: A character
is an animate being that is important to the plot.
By this measure then, we are justified in identify-
ing Mary and Fido as characters, but not the vari-
ous entities they casually encounter in their stroll
through town.

2 Data

Armed with this refined definition of character,
we proceeded to generate preliminary data that
could be used to explore this idea and demon-
strate the feasibility of training a supervised ma-
chine learning system for this concept of character.
We sought to explore how easily computable fea-
tures, like those used in prior work, could capture
this slightly refined concept of character. We be-
gan with the fact that characters and other entities
are expressed in texts as coreference chains made
up of referring expressions (Jurafsky and Martin,
2007). Thus any labeling of character must apply
to coreference chains. We generated character an-
notations on two corpora, one with 46 texts (the
extended ProppLearning corpus) and other with
94 texts (a subset of the InScript corpus), for a to-
tal of 1,147 characters and 127,680 words.

The ProppLearner corpus was constructed for
other work on learning plot functions (Finlayson,
2017). The corpus that was reported in that pa-
per comprised only 15 Russian folktales, but we
obtained the extended set of 46 tales from the
authors. These tales were originally collected in
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Coreference Chains
Texts Tokens Total Anim. Inanim. Char. Non-Char.

ProppLearner (Ext.) 46 109,120 4,950 2,004 2,946 1,047 1,361
Inscript (Subset) 94 18,568 615 105 510 94 521

Total 140 127,680 5,565 2,098 3,467 1,141 1,882

Table 1: Counts across coreference chains of different categories, as well as texts and tokens.

Coreference Chain Head Class Explanation

Nikita, tsar Character People who perform as a character
he, she, her Character Animate pronouns that perform as a character
walking stove, talking tree Character Inanimate entities that perform as a character
a bird, insects Non Character Animate entities that does not perform as a character

Table 2: Examples of annotation of characters in coreference chain level.

Russian in the late 1800’s but translated into En-
glish within the past 70 years. All of the texts
in the corpus already had gold-standard annota-
tions for major characters, congruent with our
proposed definition. Usefully, the corpus also
has gold-standard annotations for referring expres-
sions, coreference chains, and animacy.

We also investigated the InScript corpus (Modi
et al., 2017). InScript contains 1,000 stories com-
prising approximately 200,000 words, where each
story describes some stereotypical human activity
such as going to a restaurant or visiting a doctor.
We selected a subset (94 stories, approximately
19k tokens) of the corpus that describes activity
of taking a bath. It has referring expressions and
coreference chains already annotated.

The first author manually annotated both of
these corpora as to whether each coreference chain
acted as a character in the story. According to the
definition mentioned above, we marked a chain as
character if it is animate and participates in the plot
of the story. Because this is a preliminary study,
we have not yet done double annotation; this will
done as be future work. According to our defi-
nition, characters must be animate; thus, because
the ProppLearner corpus provides gold-standard
animacy markings, on that corpus we only as-
sessed whether animate chains represented char-
acters. The InScript corpus did not come with an-
imacy markings, and so we assessed every coref-
erence chain. The stories in the InScript corpus
are fairly simple, and usually only involve a single
protagonist, alone in the story. Because of this,
every single animate chain in that data was also

a character, and both automatic animacy detection
and character detection worked extremely well; as
we will discuss later, this is rather uniformative.
Table 1 shows the total number of texts and to-
kens in each corpus, as well as a breakdown of
various categories of coreference chain: animate,
inanimate, character, and non-character. Table 2
gives some examples of character annotations.

3 Approach

Because to be a character a referent must actively
involved in the plot, characters are necessarily an-
imate, although clearly not all animate things are
necessarily characters. Animacy is the character-
istic of independently carrying out actions in the
story world (e.g., movement or communication)
(Jahan et al., 2018). Therefore detecting the an-
imacy of coreference chains will immediately nar-
row the set of possibilities for character detection.
Our character identification system thus consists
of two stages: first, we detect animate chains from
the coreference chains using an existing animacy
detector (§3.1); second, we apply a supervised ma-
chine learning model that identifies which of those
chains qualify as characters (§3.2).

3.1 Animate Chain Detection
Our first step was to identify animate chains. In
order to do that we used a coreference animacy de-
tector described in prior work (Jahan et al., 2018).
This model is a hybrid system incorporating both
supervised machine learning and hand-built rules,
and achieves state-of-the-art performance. The ex-
tended ProppLearner corpus came with animacy
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Inanimate Animate
Corpus Acc. κ Prec. Rec. F1 κ Prec. Rec. F1

ProppLearner 85% 0.72 0.93 0.82 0.87 0.72 0.78 0.92 0.84
InScript 99% 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3: Performance of the animacy model on the corpora.

Non Character Character
Corpus Feature Set Acc. κ Prec. Rec. F1 κ Prec. Rec. F1

Propp-
Learner

Baseline MFC 56% 0.0 0.57 1.0 0.72 0.0 0.0 0.0 0.0
SS, WN, NE 80% 0.82 1.0 0.87 0.93 0.64 0.75 0.80 0.77
WN, CL 80% 0.82 1.0 0.87 0.92 0.64 0.75 0.80 0.78
CL, SS, WN 84% 0.78 1.0 0.84 0.92 0.66 0.75 0.84 0.79
CL, WN, NE 82% 0.81 0.86 0.92 0.92 0.64 0.82 0.77 0.80
CL, SS, WN 84% 0.78 1.0 0.84 0.92 0.66 0.75 0.84 0.79
CL, SS, WN, NE 85% 0.78 1.0 0.85 0.91 0.66 0.88 0.76 0.81

InScript CL, SS, WN, NE 99% 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 4: Performance of different features sets for identifying characters. MFC = most frequent class. κ = Cohen’s
kappa (Cohen, 1960)

already marked; the InScript corpus already has
gold standard coreference chains, and so we used
those coreference annotations as input to the ani-
macy model to generate animacy markings. The
performance of the animacy model on both cor-
pora is shown in Table 3.

3.2 Feature Selection for Character
Identification

We used four different features for our character
identification model.

1. Coreference Chain Length (CL): We com-
puted the length of a coreference chain as an in-
teger feature. This feature explicitly captures the
tendency of the long chains to be characters, as
discussed in prior work (Eisenberg and Finlayson,
2017).

2. Semantic Subject (SS): We also com-
puted whether or not the head of a coreference
chain appeared as a semantic subject (ARG0) to
a verb, and encoded this as a boolean feature.
We used the semantic role labeler associated with
the Story Workbench annotation tool (Finlayson,
2008, 2011) to compute semantic roles for all the
verbs in the stories.

3. Named Entity (NE): We computed whether
or not the head of a coreference chain appeared
was a named entity with the category PERSON,
and encoded this as a boolean feature. The named

entities were computed using the classic API of
the Stanford dependency parse (Manning et al.,
2014, v3.7.0).

4. WordNet (WN): We checked if the head of
a coreference chain is a descendant of person in
WordNet, and encoded this as a boolean feature.

3.3 Classification Model

Our classification model is straightforward super-
vised machine learning, in which we explored
different combinations of our features. We im-
plemented our model using an SVM (Chang and
Lin, 2011) with a Radial Basis Function Kernel1.
We tested different combinations of features on
the ProppLearner corpus, and their relative perfor-
mances are shown in Table 4. The best performing
feature set was using all four features, and we also
tested this model on the InScript data. We trained
each model using ten-fold cross validation, and re-
port macroaverages across the performance on the
test folds.

4 Results, Error Analysis, & Discussion

The best model, using all four features, achieves
an F1 of 0.81 on the ProppLearner data, and an F1

of 0.99 on the InScript data. The result on the In-
Script data is misleadingly high and deserves some

1SVM parameters were set at γ = 1, C = 0.5 and p = 1.
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discussion. The InScript stories are quite simple,
only told in the first person, and usually featuring
only a single animate referent who is also the pro-
tagonist. Therefore the almost exclusive reference
to characters in these stories was the personal pro-
noun I. Thus both the animacy detector and the
character identifier had much higher performance
than one would expect on more complicated sto-
ries.

A detailed error analysis of the results on the
ProppLearner data revealed at least three major
problems for the character identification model.

First, the character model relied on the output
of the animacy model, and so if a character was not
marked animate, the character model also missed
it. Conversely, sometimes inanimate chains are in-
correctly marked animate, providing an additional
opportunity for the character model to err. Thus,
in order to improve the performance of our char-
acter model, we have to improve the performance
of the animacy model.

Second, it is hard to detect a character chain
with a very few mentions. To solve this problem
we could possibly add some new features related
to events of the story because event patterns can
be helpful to find a character.

Third, some non-character animate entities
were incorrectly identified as characters, because
there is strong correlation between animacy and
character. To solve this problem we need more
analysis of the plot structure and to find features
that more specific to character vis-a-vis animacy.

The last point is critical. Although it seems that
features related to how animate and prevalent a
referent is are quite useful for identifying charac-
ters, they still fall somewhat short. We hypoth-
esize that features related to encoding aspects of
the plot, to determine if a referent is contributing
to the plot in a meaningful way, will be critical
to substantially improving character identification
performance. We plan to explore this idea in fu-
ture work.

5 Related Work

The most relevant prior work is a case based
reasoning (CBR) system called Voz (Valls-Vargas
et al., 2014). Voz could identify characters in
unannotated narrative text and achieved an accu-
racy of 93.5%. The system relied on 193 differ-
ent features. They also proposed a new similar-
ity measure called Continuous Jaccard to measure

the similarity between a given entity and those in
the case base. Although quite useful, this system
does not give a theoretically grounded definition
of character, and the CBR system is quite compli-
cated.

Calix et al. (2013) developed a model to de-
tect sentient actors in spoken stories. This is akin
to animacy detection. They implemented a SVM
classifier using 4 categories of features: syntactic,
knowledge-based, relation to pronouns, and gen-
eral context based. Their model achieved 0.86 F1

score, but, because they are focusing on animacy,
they are only detecting a set of entities that contain
the characters, not the characters themselves.

Declerck et al. (2012) used an ontology-based
method to detect characters in folktales. Their on-
tology consists of family relations as well as el-
ements of folktales such as supernatural entities.
After looking at the heads of noun phrases and
comparing them with labels in the ontology, they
added the noun phrase to the ontology as a poten-
tial character if a match was found. Then, they ap-
plied inference rules to the candidate characters in
order to find two strings in the text that refer to the
same character. They discarded strings that were
related only once to a potential character and were
not involved in an action. They obtained an accu-
racy of 79%, a precision of 0.88, a recall 0.73, and
an F1 of 0.80. Their implicit definition character is
most similar to ours, but their ontology based ap-
proach is domain specific. As with most domain
specific approaches, it would likely not generalize
easily to other domains.

Goh et al. (2012) implemented a rule-based
system using verbs and WordNet in order to de-
termine the protagonists in fairy tales (where pro-
tagonists must by necessity be animate). This is
a related task, but not exactly the same as full
character identification. They used the Stanford
parser’s phrase structure trees to obtain the sub-
jects and objects of the verbs and used the depen-
dency structure to obtain the head noun of com-
pound phrases. Additionally, they used Word-
Net’s derivationally related relation to find verbs
associated with a particular nominal action. They
achieved a precision of 0.69, a recall of 0.75, and
an F1 of 0.67.

Mamede and Chaleira (2004) developed a sys-
tem to identify which entities were responsible for
the direct and indirect discourses found in children
stories. Again, this is a related task but not the
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same as character identification. They achieved
an accuracy of 84.8% on the training corpus, and
65.7% on the test corpus. Similarly, Zhang et al.
(2003) developed a system to identify speakers of
the children’s story for speech synthesis. In this
system they automatically identified quoted texts
and assigned speaker to each quote. They did not
report the exact performance of their system.

Bamman et al. (2014) developed a hierarchical
Bayesian approach to infer latent character types
automatically in a collection of 15,099 English
novels published between 1700 and 1899. First,
they implemented character clustering and then
generated related texts to a character to decide
which persona a particular character embodies.

Vala et al. (2015) implemented an eight stage
pipeline incorporating NER, coreference chains, a
series of name variation rules, and WordNet senses
to identify characters in literary texts, achieving an
an F1 of 0.76.

6 Contribution

This paper makes three contributions. First, we
proposed a more appropriate definition for char-
acter in narrative, in contrast to prior computa-
tional works which did not provide a theoretically
grounded definition.

Second, we singly annotated 46 Russian folk-
tales and 94 InScript stories for character. The In-
Script stories are unfortunately not as interesting
because they contained only a single protagonist
each, only ever referred to in the first person.

Finally, we have demonstrated a supervised ma-
chine learning classifier for identifying characters,
achieving performance of 0.81 F1, which shows
that the task is feasible but allows for further im-
provement.
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Abstract

Early proposals for the deep understanding of
natural language text advocated an approach of
“interpretation as abduction,” where the mean-
ing of a text was derived as an explanation
that logically entailed the input words, given a
knowledge base of lexical and commonsense
axioms. While most subsequent NLP research
has instead pursued statistical and data-driven
methods, the approach of interpretation as ab-
duction has seen steady advancements in both
theory and software implementations. In this
paper, we summarize advances in deriving the
logical form of the text, encoding common-
sense knowledge, and technologies for scal-
able abductive reasoning. We then explore
the application of these advancements to the
deep understanding of a paragraph of news
text, where the subtle meaning of words and
phrases are resolved by backward chaining on
a knowledge base of 80 hand-authored axioms.

Introduction

Typical natural language applications today do
an excellent job of performing relatively shal-
low tasks, such as determining whether a text ex-
presses a predominantly positive or negative senti-
ment, or doing a fairly direct translation of a string
from one language to another. But when people
read a text, they construct a much richer model of
it than is evident in the output of these applica-
tions. In the project described in this paper, we
have attempted to explicate all the inferences that
people draw in comprehending one 4-sentence,
75-word paragraph from business news, encode
the necessary knowledge in first-order logic, and
then use an abductive theorem-prover to identify
the correct interpretation for the entire paragraph.
The knowledge base we constructed for this task
consisted of only those axioms needed for the tar-
get interpretation, but were written in a general

style that did not cater to the requirements of this
specific text. Our goal was to explore the scope
of the axioms that were required, and to determine
whether we could derive the correct interpretation
of the whole paragraph using recent advances in
incremental abductive reasoning.

The paragraph we used for this exploration was
as follows:

Uber’s innovations reflect the changing
ways companies are managing workers
amid the rise of the freelance-based “gig
economy.” Its drivers are officially in-
dependent business owners rather than
traditional employees with set sched-
ules. This allows Uber to minimize la-
bor costs, but means it cannot compel
drivers to show up at a specific place and
time. And this lack of control can wreak
havoc on a service whose goal is to
seamlessly transport passengers when-
ever and wherever they want.

Among the problems this text poses are the fol-
lowing:

1. What are the relations between Uber and
“companies”, and between “innovations” and
“changing ways”, as indicated by the verb
“reflect”? What does “reflect” mean here?

2. What causal information is provided by the
preposition “amid”?

3. What is the relation between gigs and the
economy in “gig economy” and how does
that relate to “freelance-based”?

4. What are the relations among “workers”,
“drivers”, “employees”, and “labor”?
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5. What are the relations among “managing
workers”, “independent”, “set schedules”,
“cannot compel”, and “lack of control”?

6. What are the relations among “schedules”, “a
specific place and time” and “whenever and
wherever”?

7. Can we automatically recognize the dis-
course structure of this paragraph? That is,
can we verify the contrast relation between
the two clauses of Sentence 3, the causal re-
lation between Sentence 2 and Sentence 3,
and the causal relation between Sentences 2-
3 and Sentence 4?

8. In the first sentence of the next paragraph
there is the referring expression “this fun-
damental problem”. Can we resolve this to
Uber’s lack of control of its workers? Why is
the lack of control a problem?

In this project we were able to address all these
problems and enhance the abductive theorem-
prover to the point where the proof graph it pro-
duced correctly encoded the answers to all these
questions. Obviously scaling up will require much
more knowledge and more ways of dealing with
the combinatorial explosion that this will trigger.
But this small-scale exploration has already led
to solutions to significant problems and points the
way toward larger-scale experiments.

Interpretation as Abduction

Hobbs et al. (1993) presented an approach to lan-
guage interpretation that rooted in the logical rea-
soning approach of abduction, or inference to the
best explanation. The approach, interpretation as
abduction, provided an integrated account of syn-
tax, semantics, and pragmatics as a type of search
problem, where the aim was to find a set of as-
sumptions that would logically entail the observ-
able words of a text, given a knowledge base of
linguistic and commonsense axioms. Among the
worked-out examples provided in this paper, the
interpretation of a short sentence (“The Boston of-
fice called.”) is disambiguated by assuming un-
mentioned entities and relations that connect the
words to our commonsense understanding of the
world (a person in the office located in Boston
made the call). Given sufficiently rich knowl-
edge bases, logical abduction produces many can-
didate solutions, necessitating a means of favoring

some interpretations over others. Here Hobbs et
al. describe a scheme of weighted abduction, im-
plemented in the TACITUS system, where literals
in knowledge base axioms are annotated with nu-
merical weights that transfer and scale costs asso-
ciated with the input text to terms in the solutions,
where the least-cost set of assumptions becomes
the preferred interpretation.

Although hugely influential at the time, the pro-
posal of Hobbs et al. (1993) left many challenges
that needed to be overcome in order to apply the
approach to unconstrained natural language text,
including:

1. What commonsense knowledge is necessary,
and how should it be obtained?

2. How should knowledge base axioms be an-
notated with weights?

3. What algorithm would allow logical abduc-
tion to scale to large documents and knowl-
edge bases?

In the decades since the publication of this early
work, research in natural language processing has
followed a radically difference course, beginning
first with the data-driven approaches of statistical
NLP, leading then to contemporary deep learning
approaches that treat syntax, semantics, and prag-
matics as implicit, latent encodings of neural net-
work activations. Despite these changing trends,
the intervening years has seen enormous progress
on addressing the three challenges listed above.

Parsing the Logical Form of the Text
Hobbs et al.’s (1993) proposal viewed the problem
of syntax as the conversion of a sequence of words
into the logical form of the text, where individ-
ual morphemes in the text were reified as literals
whose arguments encoded their syntactic relation-
ship to other elements, following Hobbs (1985). In
their original proposal, this form was abductively
derived via a knowledge base of syntactic axioms.
However, the emergence of high-accuracy statisti-
cal parsers makes this a less than optimal approach
to syntactic analysis.

Beginning first with systems that generated the
logical form of the text from constituency parsers
(Rathod, 2005), recent interpretation pipelines
have opted to generate these forms using the out-
put of English Slot Grammar parsers, Combina-
tory Categorical Grammar parsers, or syntactic
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dependency parsers, e.g., (Ovchinnikova et al.,
2014b,a).

In the current exploration we first used the
Boxer system (Bos, 2008) to parse the text and
translate it into logical form. This achieved about
80% accuracy, where the two types of mistakes
were the usual attachment ambiguities and mis-
alignments between Boxer’s output and the logi-
cal representation we required. Fixing the latter
would have been tedious and unenlightening, and
the former was one class of problems we expected
to solve with inferencing. So for the rest of this
exploration we began with a manually constructed
logical form for the text. This enabled us to focus
on the less well-understood issues around seman-
tics and pragmatics.

Encodings of Commonsense Knowledge
Spurred by promising results on open-domain
question-answering (Moldovan et al., 2003), re-
cent interpretation pipelines have relied on broad-
coverage knowledge bases of axioms derived from
lexical resources, e.g., using the relations and the
glosses in WordNet (Fellbaum, 1998). Ovchin-
nikova (2012) typifies this approach, where ax-
ioms automatically derived from lexical resources
are used in abductive reasoning applied to the
tasks of recognizing textual entailment, semantic
role labeling, and the interpretation of noun de-
pendencies.

Complementing these automatically-derived
approaches has been continued progress on the
large-scale manual formalization of commonsense
knowledge, most notably in the area of com-
monsense psychology (Gordon and Hobbs, 2017).
While the hand-authoring of commonsense do-
main theories affords a certain level of precision
that is not readily obtained using automatic meth-
ods, it requires an additional set of so-called lex-
ical axioms to bridge the semantic gap between
words and the literals used these theories. Mon-
tazeri (2014) demonstrates how many of these lex-
ical axioms can be semi-automatically derived by
annotating smaller sets of words from large-scale
lexical resources.

Probability-ordered Abduction
A frequent critique of Hobbs et al.’s (1993) pro-
posal for weighted abduction was that the weights
assigned to knowledge base literals seem arbitrary,
lacking a connection to more commonly used nu-
merics such as probability. Indeed, Ovchinnikova

et al. (2013) showed that the weights used in
weighted abduction cannot be interpreted as prob-
abilities. These concerns have led several re-
searchers to pursue different abductive reason-
ing frameworks that are more solidly grounded in
probability theory, e.g., Blythe et al’s. (2011) and
Kate and Mooney’s (2009) implementations of ab-
duction using Markov Logic Networks.

A more recent advance has been Gordon’s
(2016) Etcetera Abduction, which builds on ear-
lier work by Poole (1991) on estimating the prob-
ability of solutions in Horn-clause abduction. Gor-
don noted that these solutions could be expressed
as conjunctions of so-called etcetera literals that
reified the uncertainty in a defeasible axiom, fol-
lowing Hobbs et al’s (1993) variant of McCarthy’s
(1986) ¬abnormal literal, and showed that their
probabilities could be readily interpreted as prior
and conditional probabilities.

Scalable Abductive Reasoning

Implementations of abductive reasoning must
carefully manage the combinatorial search process
in order to process long passages of text with suf-
ficient depth, as naive implementations will fail
to scale when presented with more than a hand-
ful of words. In recent years, several researchers
have explored the application of optimized solvers
to abductive reasoning, aiming to find solutions
for increasingly larger input texts. Inoue and
Inui (2013) describe an approach that formulates
a weighted abduction problem as a set of lin-
ear equations that can be passed to a contempo-
rary integer linear programming solver. Kazeto et
al. (2015) further this approach by pre-estimating
the relatedness between predicates, and implement
their solution in a robust software library called
Phillip1. Inoue and Gordon (2017) pursue a simi-
lar approach within the framework of Etcetera Ab-
duction.

Although the use of optimized solvers allows
for substantially longer input, the combinatorial
nature of the search problem ultimately limits the
scalability of these approaches. An alternative ap-
proach to scalable Etcetera Abduction is pursued
in Gordon (2018), in which arbitrarily long in-
put sequences are interpreted incrementally, us-
ing the best interpretations of previous segments
as contexts for the interpretation of the current in-
put window. Given finite window sizes and a finite

1https://github.com/kazeto/phillip
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beam of running hypotheses, incremental Etcetera
Abduction can fail to find the overall best (most-
probable) solution, particularly when supporting
evidence appears over long distances in the input
stream. However, Gordon demonstrated that even
with modest window and beam sizes, the available
implementation2 can find near-optimal solutions
for interpretation problems with several dozen in-
put literals.

Interpretation of a Paragraph of News
Text

To explore the application of contemporary in-
cremental abductive reasoning engines to the in-
terpretation of naturalistic texts, we attempted
to use Gordon’s (2018) implementation of incre-
mental Etcetera Abduction to interpret a passage
of news text. We chose a paragraph from the
New York Times article “How Uber Uses Psy-
chological Tricks to Push Its Drivers’ Buttons” by
Noam Scheiber, which appeared online on April
2, 2017,3 (presented in the introduction of this pa-
per). The passage explains how the company has
undertaken an extraordinary experiment in behav-
ioral science to subtly entice an independent work
force to maximize its growth. It starts with ex-
plaining how Uber has changed the ways of man-
aging workforce by making them feel more inde-
pendent, and then it explains the contrast between
how its strategy is good in minimizing labor cost
but also bad because it can no longer compel its
drivers. Finally, it explains how this lack of control
is damaging services provided by Uber, which is
the fundamental problem they are trying to solve.
Our overall conception of the coherence structure
of this passage is depicted in Figure 1.

Our aim in this exploration was to determine if
we could hand-author a set of first-order axioms
(definite clauses) such that the deep meaning of
this passage could be automatically recovered fol-
lowing the “interpretation as abduction” approach.

Logical Form of the Text

We began our exploration by applying a contem-
porary CCG parser (Bos, 2008) to generate the
logical form of the text. After some preliminary
work with the resulting output, we judged that the
automatically-generated logical form of the text

2https://github.com/asgordon/EtcAbductionPy
3https://www.nytimes.com/interactive/2017/04/02/

technology/uber-drivers-psychological-tricks.html

Summary 

Problem-Solution 

Cause 

Cause 

Contrast 

“changing” 

“independent” 
“minimize costs” 

“not compel” 

“wreak havoc” 

… 

Figure 1: Overall coherence structure of the text

contained too many errors to serve as the starting
point for our current investigation. For this reason,
we instead opted to hand-author the logical form
of the text for each of the four sentences in the
passage. The first sentence, “Uber’s innovations
reflect the changing ways companies are manag-
ing workers amid the rise of the freelance-based
gig economy,” was encoded as follows:

(uber u) (poss u x13)

(innovation x13 u x12 x14)

(reflect x13 w11)

(changeIn x15 w11)

(prog x15) (way’ e11 w11 e12)

(plural w11 s11)

(company u) (plural u s12)

(manage’ e12 u w12) (prog e12)

(pres e12) (workFor w12 u)

(amid w11 r11) (rise r11 x11)

(of r11 x11) (freelance x16)

(base x11 x16) (gig t11 w12 u)

(nn t11 x11) (economy x11)

Knowledge Base and Interpretations
To derive the target interpretation for this text pas-
sage, we hand-authored a set of 80 axioms (def-
inite clauses) consisting of only those needed as
part of the abductive proof structure. While re-
quired for this particular text, these axioms were
written in a general style so as to better assess the
feasibility of the approach on general textual input.
Each axiom was assigned an arbitrary probability,
reified as an etcetera literal as required by Etcetera
Abduction, which will become more relevant as
the size of the knowledge base increases. The fol-
lowing are two examples of 80 axioms authored
during the course of this exploration.

;; failure of u to control is bad for u

(if (and (cannot’ e35 e37)
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(control’ e37 u d)

(etc1 badFor 0.9 e35 u))

(badFor e35 u))

;; meaning of allow

(if (and (causallyInvolved e31 e32 e33)

(etc1 allow’ 0.9 e31 e32 e33))

(allow’ e31 e32 e33))

The following items, depicted in Figure 2, illus-
trate the kind of knowledge we encoded and the
subtleties of text meaning we are capturing in the
proof graphs that represent the interpretations.

Meaning of “reflect”

The word “reflect” in this text has deep semantics
that expresses why innovation done by Uber is a
reflection of changing ways of managing workers.
In general terms, an event reflects another event
when the former causes knowing the later (Figure
2a).

Meaning of “amid”

To understand the causal force of the preposition
“amid” we see first a change in managing as one
instance of a change in the economy, since man-
aging is one task in producing goods and ser-
vices, which is the sort of activity that economies
are made up of. Second, we see a change in a
whole defeasibly causing change in its parts. As
a by-product of explaining “amid” in this way,
we resolve the attachment of “amid” to “changing
ways” rather than “reflect”, “managing” or “work-
ers” (Figure 2b).

Meaning of “rather than”

“Rather than” indicates a contrast, so the interpre-
tation should say what that contrast is. Owners
contrast with employees in that the former are not
managed by any company, and employees that are
managed with some schedule set by the company
they work for (Figure 2c).

Contrast between clauses “minimize cost but
cannot compel”

Minimized labor cost is good for Uber. However,
the inability to compel drivers to show up at spe-
cific schedule is not good for them. This contrast
between things that are good and bad for Uber ex-
plains the presence of the “but” in the sentence
(Figure 2d).

Meaning of “This. . . means”
The coherence relation between sentence 2 and
sentence 3 is the predicate-argument relation
where “means” is the predicate and the argument
is the drivers’ independence in sentence 2. The im-
plicational meaning of “mean” is justified by the
implicational relation between independence and
lack of control.

Causal relationship between sentences 2, 3,
and 4
The occurrence of “wreaking havoc” is due to
Uber’s lack of control (sentence 4), because they
cannot compel drivers (sentence 3, which in turn is
caused by drivers being independent, sentence 2).
Therefore, there is a causal coherence relationship
between “wreaking havoc” and “cannot control”
(Figure 2f).

“The fundamental problem”
The first sentence of the paragraph that follows
this one contains the referring expression “this
fundamental problem”. We are able to resolve
its referent as follows: the lack of control causes
damage to the transportation services provided by
Uber, which is bad for Uber because it is not able
to achieve its goal. And hence, this damage to the
service is the fundamental problem for Uber (Fig-
ure 2f).

Figure 2 shows how the axioms in our knowl-
edge base resolve each of the challenges listed
above, where each of the six graphs are subgraphs
of the final interpretation derived for this para-
graph of news text.

Over-unification of Literals

In using incremental Etcetera Abduction to derive
the target interpretation for this paragraph, we en-
countered problems that required changes to the
available implementation of the reasoning algo-
rithm.

The principal problem we faced was the over-
merging of assumptions. In the abductive frame-
work most coreference problems are resolved
by inferring implicit redundancies from different
parts of the text. That is, entities are identified with
each other because they share a property. The dif-
ficulty is that if not carefully controlled, this pro-
cess can identify entities that are not coreferential.
We implemented two heuristics that virtually elim-
inated this problem.
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a) innovations reflect the changing ways 

innovation(e1,u,p1,p2) 

way(e1,p1) 

cause(e6,e5) 

cause(e1,e5) 

Plural(w,s1) way’(e8,w,e3) reflect(e1,w) 

Instance(e1,w) 

know’(e6,x2,e1) know’(e5,x2,w) 

dset(s1,w,e8) 

People can do 
induction 

Strengthen 
Plural to 
Forall 

If knowing  
e1 causes e5, 
e1 causes e5 

Processes get 
innovated 

Meaning of 
“reflect” 

changeIn(e2,w) 

task(w,c) 

cause(r,e2) 

amid(e2,r) 

economy(s) rise(r,s) amid(w,r) 

part(w,s) 

produceGS(e2,c) 

A way to manage 
is a task 

Causal sense 
of “amid” 

Coerce 1st arg 
of “amid” 

Partial  
meaning of 

“rise” 

way’(e8,w,e3) manage’(e3,c,x) 

changeIn(r,s) 

part(w,e2) part(e2,s) 

subevent(w,e2) member(e2,s) 

Economy 
is a set of 

producings 

Change in whole 
causes 

change in part 

Producing consists of tasks 

“Part” is 
transitive: 

b) changing ways…managing…amid the  
    rise of the…economy 

Independent’(e5,x,u) 

owner(x,z) 

notManage(u,x) 

Meaning of 
“independent” 

ratherThan(x,y) Schedule’(s,u,y) 

manage(u,y) 

employee(y,u) Owners aren’t 
managed 

If you manage, 
you schedule 

Meaning of 
“rather than” Employees 

are managed 

nn(x,z) 

set(u,s) with(y,s) 

c) independent business owners rather than 
    traditional employees with set schedules 

allow’(e1,e5,e3) 

low’(e6,c) 

cause’(e3,u,e6) 

goodFor(e1,u) 

causallyInvolved(e1,e5,e3) 

minimize’(e3,u,c) labor(s1) but(e1,e0) 

badFor(e0,u) 

minimum’(e6,c) 
control’(e2,u,d) cannot’(e0,e2) 

cost(s1,u,c) 
Contrast between 

good and bad 

Meaning 
of ”bad” 

Minimizing cost 
is good 

Meaning 
of “allow” 

Meaning of  
“minimize” 

Meaning of  
“minimum” 

not’(e0,e3) can’(e3,u,e2) 

d) allows Uber to minimize labor costs, but means 

compel’(e2,u,d,e9) 

arg(e5,e8) 

control’(e2,u,d) 

Meaning of 
“compel” 

CoRel(e5,e8,e8) 

mean’(e8,e5,e0) 

imply’(e8,e5,e0) 

cannot’(e0,e2) 

not’(e0,e3) independent’(e5,x,u) can’(e3,u,e2) 

Predicate-argument 
coherence relation 

Sentence 2 

Sentence 3b 

One sense of “mean” 

Pred-arg structure of “mean” 

Meaning of 
“independent” 

Sentence 3 

e) independent business owners…This..means 
    that it cannot compel 

cannot’(e1,c) 

not’(e2,g) 

lack(e1,u,c) 

cause(e1,e2,e2) 

badForGoal(e2,s) 

problem(e2,s) 

Sentence 3 

compel’(c,u,w,e8) CoRel(e1,e2,e2) 

of(e1,c) 

control’(c,u,w) wreakHavoc(e2,l,s) goal(g,s) 

on(e2,s) 

damage’(e2,l,s) 

Sentence 4 

Sentence 5 

Meaning of “problem” 

Meaning of “bad” 

Meaning of  
“wreak havoc” 

Meaning of  
“damage” 

Causal coherence relation 

No control 
causes damage 

Control → 
Compel  

 

f) cannot compel drivers…lack of control can 
   wreak havoc on a service whose goal…solve 
   this fundamental problem…  
 
 

Figure 2: Six examples of coherence relationships in a paragraph of news text

24



The first heuristic was this: Suppose we knows
animal(x), animal(y), dog(x) and cat(y).
Should we identify x and y on the basis of their
both being animals? Obviously not, because they
have other, contradictory properties—dog and cat.
The general rule schema underlying this heuristic
is

p(. . . , x, . . .) ∧ q(. . . , x, . . .) → ⊥

or equivalently,

p(. . . , x, . . .) ∧ q(. . . , y, . . .) → x 6= y

We implemented this class of constraints effi-
ciently in terms of bit matrices.

An example of the second class of constraints
is that something cannot be a part of itself. That
is, you can’t have part(x, x). The general rule
schema for this heuristic is

p(. . . , x, . . . , x, . . .) → ⊥

or equivalently,

p(. . . , x, . . . , y, . . .) → x 6= y

The two heuristics together blocked every ille-
gitimate case of merging in our data, while letting
the correct ones through. As a side-effect of this,
it greatly speeded up processing.

Depth, Window, and Beam Parameters

At the beginning of our efforts, we attempted to
use Gordon’s original implementation of Etcetera
Abduction (Gordon, 2016) to interpret each sen-
tence individually, but found that the the size of the
input was too great, leading to a combinatorial ex-
plosion in the search space. We subsequently used
the implementation of incremental Etcetera Ab-
duction (Gordon, 2018), treating the entire para-
graph as a single input sequence, ignoring sen-
tence boundaries. To achieve our target interpre-
tations, we modified the software to prevent ex-
istentially quantified variables from being turned
into constants after each increment of the interpre-
tation process.

Using our hand-authored knowledge base of 80
axioms, we were able to achieve our target inter-
pretation of this text using the modified version of
incremental Etcetera Abduction. We found that
this interpretation could be found using a mod-
est window parameter of only four literals, and a

very small beam of two running hypotheses. How-
ever, a large depth parameter of seven backward-
chaining steps was required given our formaliza-
tion of the requisite semantic knowledge, which is
substantially larger than required for previous non-
linguistic interpretation problems (Gordon, 2016,
2018). The final abductive proof graph consisted
of 32 assumptions of prior probabilities and 71 as-
sumptions of conditional probabilities in order to
logically entail the logical form of this passage of
text given our knowledge base.

Conclusions

In the end we were able to run the entire 75-word
paragraph and produce the correct interpretation
(proof graph). No incorrect identifications of en-
tities were made. This interpretation included the
correct coherence structure and the correct resolu-
tion of the definite noun phrase “this fundamental
problem” to the lack of control referenced several
places in the paragraph. Our success in achieving
the target interpretation using incremental logical
abduction demonstrates that recent technological
advances constitute real progress toward practical
implementations.

As encouraging as this result is, there are sev-
eral obvious questions. First, how will it do on the
next paragraph, and the next? How large a knowl-
edge base will be needed before previously un-
seen texts can be processed and understood? How
should that knowledge base be constructed? Given
that large knowledge base, can the combinatorial
explosion be contained for realistically long and
complex texts? What further techniques will be re-
quired beyond the incremental processing we em-
ployed here?

This work does offer insight into how a knowl-
edge base can be devised to best address subtleties
that are prevalent in real-world text. About a third
of the axioms we encoded were essentially lexi-
cal knowledge, of the sort that standard lexical re-
sources can be expected to provide, such as the
implicational sense of “means” and the relation
between “workers” and “labor”. Another third of
the axioms were rules we had already encoded in
core commonsense theories (Gordon and Hobbs,
2017), such as the transitivity of “part” in the the-
ory of composite entities, and the axiom in the
theory of knowledge management that says peo-
ple can do induction, i.e., draw general conclu-
sions from specific instances. On the other hand,
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we also had to encode axioms to coerce or shuffle
arguments around, such as coercing from a causal
relation to the effect, in order to get the predicate-
argument relations right. These rules had a very ad
hoc feel, and it would be good to develop a more
general approach to this class of problems.

Our analysis of this one paragraph also helped
gauge the utility of current technologies for iden-
tifying the logical form of the text, where we see
the need for further improvement. Likewise, our
efforts identified a number of problems with the
available implementation of incremental Etcetera
Abduction, which we addressed by making mod-
ifications to this software. Our expectation is that
we would have faced these problems regardless of
the passage selected for our analysis, and that fu-
ture analyses of a similar sort would uncover ad-
ditional problems to address. In this respect, we
see a path forward in this line of research that ana-
lyzes different and longer passages of text, uncov-
ering and solving new technical problems and fur-
ther characterizing the scope of the knowledge en-
gineering requirements. As the software architec-
ture becomes more robust and the knowledge base
becomes well-understood, efforts can be increas-
ingly directed toward the automatic acquisition of
the axioms required for the deep understanding of
arbitrary news text.

The results of this exploration have been good
enough to encourage us to continue this line of re-
search, but at best, it has so far given us only a
partial proof of possibility of abductive interpreta-
tion of complex real-world discourse.
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Abstract

In this paper, we advocate the use of Mes-
sage Sequence Chart (MSC) as a knowledge
representation to capture and visualize multi-
actor interactions and their temporal ordering.
We propose algorithms to automatically ex-
tract an MSC from a history narrative. For a
given narrative, we first identify verbs which
indicate interactions and then use dependency
parsing and Semantic Role Labelling based
approaches to identify senders (initiating ac-
tors) and receivers (other actors involved) for
these interaction verbs. As a final step in
MSC extraction, we employ a state-of-the art
algorithm to temporally re-order these inter-
actions. Our evaluation on multiple publicly
available narratives shows improvements over
four baselines.

1 Introduction

Narrative texts, particularly in history, contain rich
knowledge about actors and interactions among
them along with their temporal and spatial de-
tails. For such texts, it is often useful to ex-
tract and visualize these interactions through a
set of inter-related timelines, one for each ac-
tor, where the timeline of an actor specifies the
temporal order of interactions in which that ac-
tor has participated. Message Sequence Chart
(MSC) is an intuitive visual notation with rigor-
ous mathematical semantics that can help to pre-
cisely represent and analyze (Alur et al., 1996)
such scenarios. Feijs (2000), and Li (2000) pro-
pose techniques to convert software requirements
to MSC. Event timeline construction is a related
task about inferring the temporal ordering among
events, but where events are not necessarily inter-
actions among actors (Do et al., 2012). Another
related line of research is storyline or plot gen-
eration from narrative texts such as news stories
or fiction (Chambers and Jurafsky, 2009; Vossen

et al., 2015, 2016; Goyal et al., 2010; Kim et al.,
2018), which uses different narratological out-
put representations (not MSC), such as event se-
quences or story curves.

In this paper, we extract actors and their in-
teractions from the given input history narrative
text, and map them to actors and messages in
the basic MSC notation. We generalize the pre-
vious work along several dimensions, and pro-
pose an unsupervised approach enriched with lin-
guistic knowledge. MSC extracted from the
given history text can be analyzed for consis-
tency, similarity, causality and used for applica-
tions such as question-answering. For example,
from the example in Table 1 we extract the MSC
as shown in Figure 1, which can be used to answer
questions like "Whom did Napoleon defend the

National Convention from?". To the best of
our knowledge, this is the first work that uses MSC
to represent knowledge about actors and their in-
teractions in narrative history text. Our approach
is general, and can represent interactions among
actors in any narrative text (e.g., news, fiction
and screenplays). We propose unsupervised ap-
proaches using dependency parsing and Semantic
Role Labelling for extracting interactions and cor-
responding senders/receivers. We use a state-of-
the-art tense based technique (Laparra et al., 2015)
to temporally order the interactions to create the
MSC.

2 Problem Definition

The input is a document D containing narrative
text, and the desired output is an MSC depicting
the interactions among the actors. No informa-
tion about the actors or interactions is given as in-
put; they need to be identified. For history narra-
tives, we define an actor as an entity of type Per-
son, Organization (ORG) or Location (LOC),
which actively participates in various interactions
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Figure 1: MSC for the example history text.

1. Napoleon Bonaparte was born in 1769 on the
island of Corsica.
2. When he was 9 years old, his parents sent him to
a military school.
3. He finished school in 1785 before starting in
the artillery department.
4. When the new government was formed , Napoleon
joined its army.
5. When royalist rebels marched on the National
Convention in October 1795,

the young officer defended it.
6. The rebels then ran away in panic.
7. Three months earlier, Napoleon had raided the
rebels.

Table 1: Sample narrative text. Implicit and explicit
temporal expressions are underlined.

with other actors. The reason for including LOC
entities as actors is that locations are important
in history, and a timeline of events at a partic-
ular location provides an interesting perspective.
Further, we also need to identify all coreferences
of an actor and use a canonical (i.e., a standard-
ized, normalized) mention for each; e.g., In Ta-
ble 1, the actor mentions, Napoleon Bonaparte,
Napoleon, he and the young officer refer to
the actor Napoleon Bonaparte.

An interaction among actors is either (i) any
deliberate (intentional) physical action, which is
typically initiated by one or more actors and the
remaining actors involved in it are affected by it
in some way (e.g. attacked, joined), or (ii)
communication, which results in passing of infor-
mation or control among them (e.g. announced,
talked).

We focus on interactions involving one or two
actors. An interaction with itself involves only

one actor; e.g., the attackers fled. When
more than two actors are involved in an interac-
tion (e.g., Napoleon’s parents sent him to a

military school.), we break it into several pair-
wise interactions, if possible. On the other hand,
if the sender or receiver in an interaction are miss-
ing, we use a dummy actor environment (denoted
by ENV) as the corresponding sender or receiver.
For instance, in the sentence "The rebels ran

away in panic", there is no explicit receiver. So,
as shown in Fig. 1, we use ENV as the receiver
for the message, i.e., we create the message (The

rebels; ran; ENV).

Since we represent an interaction as a message
in an MSC, the direction of the interaction is im-
portant. We assume the direction to be from the
initiator of the interaction to the actor affected by
it. However, some interactions can be direction-
less; e.g., met, married. In such cases, we show
the subject of the sentence as sender of the mes-
sage in MSC. Though our notion of an interac-
tion is similar to an event, a key difference be-
tween them is that there is explicit and intentional
involvement of actors in an interaction; e.g., an

earthquake is an event but it is not an interaction.

Temporal ordering of messages is the impor-
tant and culminating step in the overall process
of automated MSC extraction from narrative text.
We need to exploit temporal clues available in the
input narrative text to derive the temporal order
among the messages in the MSC.
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2.1 Scope
In this paper, we focus on interactions expressed
using verbs because most of the action events in
a language are expressed using verbs. We con-
sider interactions expressed using nouns as part of
future work. Not all interactions in history nar-
ratives are important for creating an MSC. E.g.,
mental actions, such as felt cheated, came to

know, assumed, considered, envisioned, are
not considered as interactions. Copula verbs and
verbs denoting a state of an object or actor also do
not trigger an interaction and hence, such verbs are
ignored.

3 MSC Extraction

3.1 Actor Identification
We first make one pass through the text and iden-
tify all the actors who are involved in one or more
interactions. We group all co-referring mentions
of an actor into a set, and choose one canonical
mention as a representative on the MSC. One com-
plication can occur due to complex actors, which
is an actor that contains multiple actors, one of
which is independent and the others are depen-
dent and serve to elaborate on the independent ac-
tor; e.g., his parents, military school, the

army of the new government. We need to iden-
tify a complex actor as a whole, and not its con-
stituent actors separately. We use the algorithm
in (Patil et al., 2018) to identify an actor and all its
coreferents.

3.2 Interaction Identification
Typically the input text mentions many different
interactions, and identifying each verbal interac-
tion is required, omitting non-interactions as dis-
cussed in Section 2.1. A simple algorithm clas-
sifies each verb in the given sentence as an ac-
tion verb or a communication verb (and ignores
other types of verbs) using WordNet hypernyms
of the verb itself or its nominal forms. For ex-
ample, for the verb defended, one of its nominal
forms, defence, has the category act in its hyper-
nym tree; so it is classified as an action verb.

Since we are focusing on interactions that
have already occurred, we focus on verbs in
the past tense. In some cases, a verb not in the
past tense, should also be considered as hav-
ing past tense; e.g., in Growing up in rural

Hunan, Mao described his father as a

stern disciplinarian, “Growing” should be

considered to be in the past tense. To achieve
this, we systematically propagate the past tense to
other verbs using linguistic rules. To detect verbs
in past tense, we traverse the dependency parse
tree of the input sentence in breadth-first-search
(BFS) manner. A verb having POS tag of VBD is
definitely in the past tense. A verb with VBG or
VBN POS tag is considered to be in past tense if:
(i) it is a child of another verb tagged with VBD;
or (ii) it is the parent of an auxiliary verb tagged
with VBD. An infinitive verb is deemed to be in
past tense if it has a governor in the dependency
tree with dependency relation either advcl:to or
xcomp and the governor is tagged with VBD. In
the above sentence, described is tagged with
VBD and hence it is in past tense; Growing is
tagged with VBG and is child of described in the
dependency parse tree; hence, it is also considered
to be in the past tense.

3.3 Message Creation
We need to map each identified interaction to one
or more messages in the output MSC. We also
need to identify the sender (initiator of the inter-
action) and receiver (other actors involved in the
interaction) for each message. We have developed
several approaches for identifying a set of senders
(SX) and a set of receivers (RX) for each valid
interaction verb. If SX and RX are both empty,
we ignore that interaction. If only one of them is
empty, we add a special actor Environment (ENV)
to that set. Once such sets are identified, a mes-
sage is created for each unique combination of a
sender and a receiver for a particular interaction
verb.
Dependency parsing-based Approaches: We
developed two approaches for message creation
based on dependency parsing output: i) Baseline
B1 which directly maps the dependencies output
to messages and ii) Approach M1 (Algorithm 1)
which builds on the dependencies output by apply-
ing additional linguistic knowledge. We use Stan-
ford CoreNLP (Manning et al., 2014) for depen-
dency parsing.

Baseline B1 simply maps each interaction verb
in the dependency tree to a set of messages. Actors
directly connected to an interaction verb with cer-
tain dependency relations (nsubj, nmod:agent)
are identified as senders whereas actors directly
connected to the verb with certain other depen-
dency relations (dobj, nsubjpass, xcomp, iobj,
advcl:to, nmod:∗) are identified as receivers.
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Approach M1 improves upon this baseline by
generalizing connections between the verb and po-
tential senders and receivers. Rather than consid-
ering only direct connections in dependency tree,
M1 identifies certain actors as senders which are
connected to the verb with a set of allowable de-
pendency paths such as nmod:poss → nsubj
or nsubj → advcl (lines 3-9 in Algorithm 1).
E.g., consider the sentence Bravery of Rajputs

pushed the Mughals back. Here, Rajputs is
not directly connected to pushed in the depen-
dency tree. Still, M1 would be able to identify
Rajputs as sender because its dependency path
to the verb pushed is nmod:of → nsubj. Sim-
ilarly, M1 identifies certain actors as receivers
which are descendants of the verb in the depen-
dency tree and the dependency paths connect-
ing them to the verb satisfy certain properties
such as “no other verb is allowed on the path”
(lines 10-13 in Algorithm 1). Presence of an-
other intermediate verb on such dependency path
is a strong indicator that the receiver is an ar-
gument for the intermediate verb. For example,
in the sentence Crossing the Alps, Napoleon

attacked Italy., “the Alps” is not a valid re-
ceiver for the verb attacked because another verb
Crossing occurs on the dependency path connect-
ing the Alps to attacked.

SRL-based Approaches: We developed two ap-
proaches for message creation based on SRL: i)
Baseline B2 which directly maps the SRL out-
put to messages and ii) Approach M2 (Algo-
rithm 2) which builds on the SRL output by
applying additional linguistic knowledge. We
use MatePlus (Roth and Lapata, 2015) for SRL
which produces predicate-argument structures as
per PropBank (Kingsbury and Palmer, 2002). The
baseline B2 simply maps each verbal predicate
corresponding to an interaction verb to a set of
messages. Actors corresponding to A0 arguments
of a verbal predicate are identified as senders
whereas actors corresponding to other arguments
are identified as receivers.

Approach M2 improves upon this baseline by
using VerbNet (Schuler, 2005) roles (the func-
tion vnrole) associated with PropBank argu-
ments. Certain selectional preferences are used
on these VerbNet roles, so as to qualify them
as valid senders or receivers. These preferences
are based on the linguistic knowledge and the
details are described in the Algorithm 2. E.g.,

consider the sentence Peter described John as

very polite. Here, for the communication verb
describe, vnrole (describe.01.A1) = theme.
As per our linguistic rule, even if any actor is part
of theme of a communication verb, that actor does
not qualify to be a receiver, as it is not directly
participating in the interaction. Line 18 in Algo-
rithm 2 encodes this rule, thereby not allowing any
actor which is part of a theme to be a receiver.
Hence, in this example sentence, John will not be
a receiver for describe.

Algorithm 2 also handles a special case about
Ergative verbs which lie in between the spectrum
of transitive and intransitive verbs. Their most
distinguishing property is that when an ergative
verb does not have a direct grammatical object,
its grammatical subject plays an object-like role.
E.g., consider following two sentences containing
an ergative verb move:
S1: Mao’s father moved him to a hostel.

S2: Mao moved to Beijing.

In S1, moved has an object but in S2, it does not
have any direct object. Semantic Role Labelling
would assign the role A1 (thing moving) to Mao in
S2 and hence it can not be a sender. But as S2
indicates that the actor (Mao) is willingly perform-
ing the action of moving, we expect Mao to be a
sender. Hence, for an ergative verb, even if the
SRL assigns A1 role to an actor, we consider such
an actor for being sender if no A0 role is assigned
for the ergative verb by the SRL (lines 9-13 in Al-
gorithm 2).

Combined SRL and Dependency parsing based
Approach (M3): SRL tools are useful to identify
senders and receivers of a message, but they do
have a few important limitations. E.g. (i) SRL tool
may fail to identify any A0 even when it is present
or when it assumes the verb does not require A0 in
the sentence; (ii) the identified A0 may be wrong
or cannot be considered as a sender; (iii) SRL tool
may fail to identify any A1/A2 even when it is
present; (iv) the identified A1/A2 may be wrong
or cannot be considered as a receiver.

We call this combined approach as M3 which
corrects the output of SRL-based approach
M2 by using output of the dependencies based
approach B1. The intuition, here is that B1
uses only high-precision rules for identifying
senders and receivers. Hence, B1’s output can
be used to correct a few errors introduced in the
M2’s output. E.g., in He was accorded a very
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Algorithm 1: create messages M1
input : s (sentence), A (set of known actors with

coreferents), v (interaction verb),
DPOSS = {nmod : poss, nmod : of},
DS = {nsubj, nmod : agent}, DR =
{dobj, iobj, nmod∗, xcomp, nsubjpass,
advcl:to}, DI = {advcl:to, xcomp}

output : SX = set of senders, RX = set of receivers
1 SX,RX := ∅
2 Ed := GetDependencyTree(s)
// Ed is set of tuples of the form

(a, b, dr) where a is governor of b
with dependency relation dr

3 foreach actor a ∈ A s.t. a has mention in s do
4 if (v, a, ds) ∈ Ed ∧ ds ∈ DS then

SX := SX ∪ {a} ; continue
5 if (v, a, nmod:∗with) ∈ Ed then

SX := SX ∪ {a} ; continue
6 if ∃u s.t.(u, v, advcl∗) ∈ Ed ∧ (u, a, ds) ∈

Ed ∧ ds ∈ DS then
7 SX := SX ∪ {a} ; continue
8 if ∃u s.t.(v, u, ds) ∈ Ed ∧ ds ∈ DS ∧ u.ner =

OTHER ∧ (u, a, dp) ∈ Ed ∧ dp ∈ DPOSS
then SX := SX ∪ {a} ; continue

9 if ∃b s.t. b ∈ SX ∧ (b, a, nmod:∗with) ∈ Ed

then SX := SX ∪ {a} ; continue
10 foreach actor b ∈ A \ SXs.t. b has a mention in s and
∃ path P from v to b in G using Ed do

11 if ∃u 6= v s.t. u.POS = V B ∗ ∧ u ∈
P ∧ (v, u, dr) ∈ Ed ∧ dr /∈ DI then
continue

12 if ∃u 6= v s.t. u.POS = V B ∗ ∧ u ∈
P ∧ (v, u, ∗) /∈ Ed then continue

13 if ∃x in Ps.t.(x, b, dr) ∈ Ed ∧ dr ∈ DR then
RX := RX ∪ {b}

14 return (SX,RX)

cordial reception and was loaded with

gifts., MatePlus (in M2) identifies He as A0 for
accorded, which is wrong because He is not the
initiator of this interation; He should be A1 for
accord. We correct this by using the fact that
B1 (dependencies based approach) detects the
nsubjpass dependency between accorded and He

and identifies He as receiver. As another example,
for His father united him in an arranged

marriage to Luo Yigu, thereby uniting

their land-owning families., MatePlus does
not identify any A0 for uniting, where the true
A0 is His father, which we correct using the de-
pendency parse in which His father is connected
to uniting through the path nsubj → advcl.

3.4 Message Label Generation
We propose a simple algorithm for generating
a clear and intuitive label for each message,
covering various scenarios. For a verbal event, the
label includes the main verb (joined), followed
by a particle if present (set up), a preposition

Algorithm 2: create messages M2
input : s (sentence), A (set of known actors with

coreferents), v (interaction verb),
B0 = {agent, theme, cause},
B1 = {experiencer},
B2 = {AMLOC,AMDIR},
B3 = {asset, cause, extent, instrument,
stimulus, time, topic, theme, predicate},
B4 = {theme}, B5 = {agent, theme}

output: SX = set of senders, RX = set of receivers
1 H := MateP lus(S); // output of MatePlus

2 SX,RX := ∅;
3 if v /∈ H∨ is copula like(v) then return(SX,RX)
4 if H.v has argument A0 then
5 x := H.v.A0.phrase;
6 if x contains an actor from A then
7 if vnrole(H.v.A0) ∈ B0 ∨ (is comm(H.v) ∧

vnrole(H.v.A0) ∈ B1) then
8 SX := SX ∪ {get actor(x,A)};

9 else if is ergative(v)∧H.v has argument A1 then
10 x := H.v.A1.phrase;
11 if x contains an actor from A then
12 if vnrole(H.v.A1) ∈ B5 then
13 SX := SX ∪ {get actor(x,A)};

14 foreach argument Ai (i > 0) in H.v do
15 x := H.v.Ai.phrase;
16 if x contains no actor from A \ SX then continue
17
18 if H.v.Ai ∈ B2 ∨ vnrole(H.v.Ai) /∈

B3 ∨ (is action(H.v) ∧H.v.Ai ∈ B4) then
19 RX := RX ∪ {get actor(x,A)};
20 if H.v has another predicate v′ as argument then
21 SX ′, RX ′ := create messages M2(S,A, v′);
22 RX := RX ∪RX ′;
23 return(SX,RX)

if present (cut off from), a negation if present
(not cut off from), a secondary verb if present
(infinitive, gerund or past participle), which also
may be followed by a particle and/or prepo-
sition (set up to defend, helped organize,

set up for taking away from). The general
syntax of our message label is given by the
regex: NEG? MAIN VERB PARTICLE? (PREP|to)?

(NEG? SECONDARY VERB PARTICLE? PREP?)?.
We do not include adverbs, nor any nominal ob-
jects and arguments as part of the message label.
We also do not include any auxiliary or modal
verbs; e.g., from had fled, was elected we
get the message labels fled, elected. Syntactic
verbal structures such as could have helped

indicate interactions that may not have taken
place; so no messages are created for them.

3.5 Temporal Ordering of Messages

Temporal ordering of messages in a MSC is the fi-
nal step and an important sub-problem of the over-
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all high-level goal of automated MSC extraction.
To order the messages, it is important to assign a
temporal anchor to each message. A temporal an-
chor is a point in time (such as 1795-10-01), at
which an interaction has happened. The granular-
ity of the temporal anchor is defined at the level
of a year (1795), a month (1795-10) or a day
(1795-10-01), but not lower.

We can observe sentences in a narrative which
contain explicit time expressions (timex). Explicit
timex are date points which are self-contained
(e.g., October 1795) or can be resolved based
on previously occurring dates (e.g., Three months

earlier). Temporal anchors of messages in such
sentences can be assigned normalized values of
the explicit timex. To achieve this, we first iden-
tify these explicit timex and normalize them using
the Heideltime timex recognizer and normaliza-
tion system (Strötgen and Gertz, 2015). Secondly,
the normalized explicit timex is assigned as the
temporal anchor of the message which is present
in the sentence. In case of sentences with multi-
ple message verbs, the normalized explicit timex
is assigned as the temporal anchor of the message
which has its main verb nearest to the timex in the
sentence’s dependency tree.

However, it is important to note that messages
may be in sentences without any explicit timex. In
order to find the temporal anchor of such messages
we employ the “document level time-anchoring
(DLT)” algorithm proposed by (Laparra et al.,
2015). The algorithm takes a list of messages
(as per the text order) and document creation time
(DCT) as inputs. The key assumption behind the
algorithm is that all the messages of exactly same
tense tend to occur in the text order, unless stated
explicitly. In other words, the author will men-
tion an explicit timex for the current message with
tense t, only if its temporal anchor is different
from the anchor of the last message of tense t.

The algorithm proceeds as follows: If a mes-
sage m has a time anchor t obtained from an ex-
plicit timex, then t is stored in a tense-to-anchor
map as the last seen anchor associated with the
tense of m. However, if m does not have a tem-
poral anchor assigned, then the last seen anchor
of the message’s tense is obtained from the tense-
to-anchor map and set as m’s temporal anchor. If
the tense-to-anchor map does not have a mapping
for m’s tense then the provided DCT is set as m’s
temporal anchor.

Once all messages are assigned some temporal
anchor, a simple sorting algorithm is used to order
the messages based on their anchors. While sort-
ing it is taken care that the assumption of ordering
messages with the same temporal anchor by their
text order is maintained.

4 Experimental Evaluation

4.1 Datasets

We evaluate our approach on history narratives
as they are replete with multiple actors, spatio-
temporal details and have varied forms of interac-
tions. We choose public narratives of varying lin-
guistic complexity to cover a spectrum of history:
(i) famous personalities: Napoleon (Nap) (Littel,
2008), and Mao Zedong (Mao) (Wikipedia, 2018),
(ii) a key event: Battle of Haldighati (BoH) (Chan-
dra, 2007), and (iii) a major phenomenon: Fascism
(Fas) (Littel, 2008).

We also use a subset of the Facebook’s bAbI
QA dataset (Weston et al., 2015) which is a text
understanding and reasoning benchmark. Our
bAbI dataset includes 10 instances from the time-
reasoning subset of the bAbI QA dataset. Each
instance consists of two interleaved sets of infor-
mation: a set of sentences describing an event
and its time for e.g. Mary went to the cinema

yesterday., and a set of temporal reasoning ques-
tions which need to be answered based on the sen-
tences seen till that instant. We remove the ques-
tions from each instance keeping only the event
description sentences as input to the approach.

We manually annotated these datasets for in-
dependent actor mentions, their aliases (canonical
mentions), interaction verbs, complete messages
and temporal ordering of the messages. Number
of sentences and messages for the datasets are:
Nap (106, 99), Fas (117, 115), BoH (77, 133),
Mao (58, 135) and bAbI (118, 118).

4.2 Evaluation

We give highest priority to the message label and
hence senders / receivers of a message are deemed
to be correct only if the corresponding message
label has been identified correctly. As one of the
evaluation measures, we report the F-measure for
identifying only the message labels, ignoring the
corresponding senders / receivers.

We further evaluate message identification per-
formance of the proposed approaches at two lev-
els: i) complete messages with actor mentions

33



(denoted as L1 level) and ii) complete messages
with canonical mentions of the actors (L2 level).
As described in Section 3.1, each actor mention
has a canonical mention associated with it, which
represents a group of corefering actor mentions.
At L1 level, a predicted message is counted as a
true positive if the combination of the predicted
sender mention, receiver mention and message
label (i.e., the complete message) is present in
the gold-standard messages for the same sentence.
False positives and false negatives are computed
on similar lines and overall F-measures are com-
puted for identifying complete messages, at the ac-
tor mention level. Similarly, the corresponding F-
measures at L2 (canonical mention) level are also
computed by considering canonical senders / re-
ceivers instead of their mentions.

We conduct the experiments in two different
settings: i) Setting S1: using gold-standard in-
formation about actor mentions, canonical men-
tions and interaction verbs ii) Setting S2: using
predicted actors and interaction verbs. We use the
approach proposed by Patil et al. (2018) for pre-
dicting actor mentions and identifying canonical
mentions; and a simple algorithm for predicting
interaction verbs. For evaluating our temporal or-
dering approach, we use Kendall’s τ rank corre-
lation coefficient (Kendall, 1938) to compare pre-
dicted and gold time-lines of a key actor in each
dataset (e.g., Mao Zedong in the Mao dataset).

As goal of Kof’s work (Kof, 2007) is same
as our work on message extraction, we use it as
one of the baselines (B-Kof). We also use Ope-
nIE (Mausam et al., 2012) as another baseline (B-
OIE). To avoid unnecessarily penalizing B-OIE,
we consider only those extractions where relations
fit our definition of interaction verbs and argu-
ments fit our definition of actors. We compare
our temporal ordering approach with the default
text order based baseline (Text-Order). Table 2
shows comparative performance of the proposed
approaches for message extraction and temporal
ordering.

4.3 Analysis of Results
It can be observed in Table 2 that our proposed ap-
proaches M1 and M2 are consistently outperform-
ing their corresponding baselines for all datasets
in Setting S1. Also, the approach M3 outperforms
all other approaches in Setting S1 when consider-
ing actor mentions for the complete message.

F1-measures in the setting S2 get reduced con-

siderably as compared to S1. Our approach is a
pipeline-based approach where output of actor and
interaction verb identification are provided as in-
put for the message creation algorithms. So, the
errors in these earlier stages are propagated to the
message creation stage, resulting in lower perfor-
mance for the overall pipeline. Especially, identi-
fying coreferences of actor mentions to determine
canonical mentions, is a hard problem (Ng, 2017).
Hence, in the setting S2, we see a significant drop
in F1-measure when we go from L1 level mes-
sages to the L2 level where identification of cor-
rect canonical sender / receiver is important.

History narratives tend to describe interactions
mostly in the order in which they happen. Hence,
we can observe that performance of the DLT based
approach and Text-Order baseline is almost sim-
ilar for the History datasets. In some instances,
DLT based approach performs poorly as the de-
fault fall back for any previously unobserved tense
is the DCT. This can be incorrect if a message
with its verb in past participle is anchored at DCT
even after observing multiple previous messages
in past tense anchored at an earlier time point. For
datasets like bAbI in which text order of interac-
tions differs significantly from the actual temporal
order, the performance of the DLT based temporal
ordering approach is better than the baseline.

5 Related Work

Though there has been some work in applying
MSC for Software Engineering domain, less atten-
tion is given to the automatic construction of MSC
using NLP. Feijs (2000) proposed an “object-
oriented” approach to automatically construct an
MSC from a narrative. The approach makes use
of a set of generative rules in the form of a
grammar. Kof (2007) proposed an approach to
construct MSC for modelling scenarios from re-
quirement analysis documents. Kof’s approach is
based on the situation stack based notion of hu-
man attention in a discourse (Grosz et al., 1995).
However, the approach makes naive assumptions
while finding senders, receivers and action verbs.
For example, a sentence contains only one ac-
tion verb, actors can be found in a pre-defined
list and so on. As history narratives include mul-
tiple senders/receivers/action verbs and the ac-
tors are not pre-specified in a sentence Kof’s ap-
proach (Kof, 2007) is less suitable.

Our work is close to the work by Chambers and
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Message Complete Message Temporal Ordering
Label Actor Mentions Canonical Mentions Text-Order DLT

Dataset Approach S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

B-OIE 0.54 0.42 0.38 0.18 0.38 0.18
B-Kof 0.32 0.25 0.17 0.08 0.17 0.08

B1 0.92 0.67 0.49 0.28 0.49 0.32
Nap B2 0.94 0.70 0.64 0.32 0.62 0.34

M1 0.95 0.68 0.51 0.26 0.51 0.31 0.99 0.99 0.95 0.99
M2 0.94 0.71 0.65 0.29 0.64 0.29 0.99 0.99 0.99 0.99
M3 0.94 0.71 0.66 0.32 0.64 0.33 0.99 0.99 0.93 0.93

B-OIE 0.56 0.51 0.44 0.28 0.43 0.19
B-Kof 0.41 0.29 0.22 0.12 0.22 0.07

B1 0.93 0.63 0.58 0.31 0.58 0.25
Fas B2 0.92 0.62 0.59 0.29 0.59 0.22

M1 0.94 0.60 0.59 0.29 0.59 0.23 0.99 1.0 0.96 0.9
M2 0.92 0.63 0.64 0.28 0.64 0.22 0.99 0.99 0.96 0.89
M3 0.92 0.63 0.69 0.33 0.69 0.26 0.97 0.99 0.94 0.89

B-OIE 0.48 0.50 0.34 0.24 0.35 0.19
B-Kof 0.28 0.29 0.12 0.07 0.12 0.07

B1 0.86 0.72 0.40 0.31 0.41 0.21
Mao B2 0.93 0.74 0.61 0.31 0.63 0.18

M1 0.93 0.76 0.44 0.31 0.45 0.22 0.88 0.88 0.84 0.84
M2 0.93 0.73 0.65 0.34 0.67 0.20 0.90 0.88 0.86 0.88
M3 0.93 0.73 0.65 0.33 0.66 0.21 0.90 0.88 0.86 0.88

B-OIE 0.39 0.40 0.28 0.19 0.28 0.04
B-Kof 0.25 0.22 0.09 0.06 0.09 0.02

B1 0.91 0.79 0.58 0.50 0.51 0.21
BoH B2 0.96 0.80 0.63 0.43 0.59 0.21

M1 0.96 0.81 0.64 0.47 0.56 0.22 0.96 0.96 0.84 0.81
M2 0.96 0.79 0.65 0.46 0.61 0.21 0.96 0.96 0.84 0.81
M3 0.96 0.79 0.71 0.52 0.65 0.22 0.96 0.96 0.84 0.81

B-OIE 1.00 1.00 1.00 0.81 1.00 0.81
B-Kof 0.83 0.67 0.83 0.67 0.83 0.67

B1 1.00 1.00 0.95 0.77 0.95 0.77
bAbI B2 1.00 1.00 0.46 0.39 0.46 0.39

M1 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0
M2 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0
M3 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0

Table 2: F1-measures for following approaches- B-OIE: OpenIE baseline, B-Kof: Kof (2007), B1: Base-
line using only dependencies, B2: Baseline using only SRL, M1: create messages M1 (Algorithm 1), M2:
create messages M2 (Algorithm 2), M3: Combined approach using SRL and dependencies. Setting S1 corre-
sponds to using gold actors and interaction verbs, Setting S2 uses predicted actors and interaction verbs

Jurafsky (2009) on modelling of narrative schemas
and their participants. They need a corpus of nar-
ratives to identify prototypical schemas which try
to capture common sequence of events. We ad-
dress a different problem of extracting MSC from
a single narrative and do not need a corpus. MSC
has been proposed as a knowledge representation
for a narrative text in (Bedi et al., 2017). We ex-
tend their work to automatically construct MSC.

Open Information Extraction (OpenIE) systems
aim to extract tuples consisting of relation phrases
and their multiple associated argument phrases
from an input sentence (Mausam et al., 2012). The
predicate-argument structures in OpenIE seem
similar to SRL and dependency parsing. How-
ever, in dependency parsing the relations are fixed,
while SRL systems require deeper semantic anal-
ysis of a sentence and hence they depend on lex-

ical resources like PropBank and FrameNet. On
the other hand, the predicate-argument structures
in OpenIE are not restricted to any pre-specified
or fixed list of relations and arguments.

6 Conclusions
Message Sequence Charts (MSC) is an important
knowledge representation to summarize and visu-
alize narratives such as historical texts. We pro-
posed algorithms to automatically extract MSC
from history narratives. We observed that the
state-of-the-art systems of dependency parsing
and SRL can not be used as-is for the task. Com-
bining dependency parsing, SRL and linguistic
knowledge achieves the best performance on dif-
ferent narratives. We also report results on tempo-
ral ordering of messages in the MSC using a tense
based temporal anchoring approach.
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Abstract

Story infilling involves predicting words to go
into a missing span from a story. This chal-
lenging task has the potential to transform in-
teractive tools for creative writing. However,
state-of-the-art conditional language models
have trouble balancing fluency and coherence
with novelty and diversity. We address this
limitation with a hierarchical model which first
selects a set of rare words and then generates
text conditioned on that set. By relegating the
high entropy task of picking rare words to a
word-sampling model, the second-stage model
conditioned on those words can achieve high
fluency and coherence by searching for likely
sentences, without sacrificing diversity.

1 Introduction

Recent advances in language modeling have made
considerable progress towards the automatic gen-
eration of fluent text (Jozefowicz et al., 2016;
Baevski and Auli, 2019; Radford et al., 2019).
This evolution has sparked the development of
tools to assist human writers. For instance, Fan
et al. (2018b) suggest generating short stories from
high-level prompts, Clark et al. (2018b) study the
interaction of human and language models for cre-
ative writing, and Peng et al. (2018) propose an in-
teractive control of story lines. In addition, prod-
ucts such as Grammarly offer suggestions to im-
prove grammar and wording (Hoover et al., 2015).

Our work is concerned with story infilling. We
envision this task as a step towards a suggestion
tool to help writers interactively replace text spans.
Text infilling, a form of cloze task (Taylor, 1953),
involves removing sequences of words from text
and asking for a replacement. Compared to tradi-
tional left-to-right language modeling, automatic
infilling interacts well with human text revision

∗Work performed while a Google Student Researcher.
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Figure 1: In the one stage baseline, the missing span is
predicted given the context and the target length. In the
two stage method, words that should go in the span are
predicted in inverse frequency order. For visualization,
the left and right contexts have been truncated.

processes, which are rarely purely left-to-right. In
the context of story generation, infilling should en-
sure (i) text fluency, (ii) coherence with the story
line, and (iii) text which is not generic or obvious
to a human. These three objectives require a del-
icate balance for modeling since fluency and co-
herence suggest preferring likely sequences, while
novelty suggests preferring less likely sequences.

We observe that recent conditional neural se-
quence to sequence models (Vaswani et al., 2017)
have difficulty with this balance. As a solution, we
propose to structure our cloze task in a hierarchi-
cal manner. In contrast to Fan et al. (2018b), we
do not assume access to a supervised signal de-
scribing a hierarchy. We instead decompose our
generation task by first randomly sampling from
the high entropy part of the signal before generat-
ing the lower entropy part conditioned on the for-
mer. This decomposition is simple, yet powerful.
The first model chooses rare words through ran-
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dom sampling and the second model then uses a
search algorithm to generate likely sequences con-
ditioned on these words. Beam search in the sec-
ond step allows better fluency (i) and coherence
(ii), while conditioning with sampled words pre-
vents novelty (iii) from being compromised.

We evaluate our proposal in the context of in-
filling passages from children’s books and fairy
tales. We compare vanilla transformer models
with hierarchical alternatives, both through auto-
mated metrics and a human study. Our hierarchi-
cal method results in greater diversity in the gen-
erated text, without sacrificing quality. When we
control for diversity, our method strongly outper-
forms the non-hierarchical baseline.

2 Related Work

Automatic Story Generation Computer-aided
story generation has been a source of interest since
the early days of NLP. Classical AI algorithms re-
lied on symbolic and logical planning and graph
construction (Klein et al., 1973; Meehan, 1977;
Turner, 1993; Riedl and Young, 2006). Statisti-
cal methods have also been proposed (McIntyre
and Lapata, 2009; Li and Riedl, 2015; Gatt and
Krahmer, 2018). Recently, the field has been in-
fluenced by the success of (conditional) neural lan-
guage models (Bengio et al., 2003; Schwenk and
Gauvain, 2004; Bahdanau et al., 2015; Nallapati
et al., 2016). Story generation with neural models
include (Chourdakis and Reiss, 2017; Peng et al.,
2018; Radford et al., 2019).

We build upon recent work that improves co-
herence in story generation by using hierarchical
neural methods. These approaches allow reason-
ing at a higher level than words by considering
a two-level hierarchy where a structuring repre-
sentation conditions text generation. Martin et al.
(2018) use sequences of events to structure gener-
ation while Jain et al. (2017) relies on sequences
of short descriptions. Fan et al. (2018b) rely on
writing prompts. Closer to our work, Clark et al.
(2018a) condition on entity mentions. The train-
ing of these methods requires the availability of
structuring labels which are either present in the
training set (Fan et al., 2018b) or extracted by a
separate system (Martin et al., 2018; Clark et al.,
2018a). In our case, we avoid this step by consid-
ering rare words as the structuring signal.
Infilling Task Rather than generating an entire
novel story, our goal is to replace text spans in an

existing story to make progress towards interac-
tive assistance for creative writers. Text infilling
is known in linguistics as the cloze task (Taylor,
1953) and involves removing words or sequences
of words from a text and asking a computer or a
human to predict them. Existing work has used
the masking of random words to build language
models (Fedus et al., 2018) as well as contextual-
ized word embeddings (Collobert et al., 2011; De-
vlin et al., 2018). Infilling of longer spans has been
considered in work that explores bi-directional de-
coding for image captioning (Sun et al., 2017) .

3 Method

Our method predicts a variable length text
span given a fixed length context from either
side. We rely on the self-attentive Transformer
model (Vaswani et al., 2017) with learned position
embeddings, where the encoder takes the context
as input and the decoder predicts the missing span.
Architecture details and training parameters are
in the Appendix. We use the subword tokenizer
from (Vaswani et al., 2017), but report all statis-
tics except perplexity in term of proper words. In
addition to the context, we also condition our base
model on the desired output length. We append to
the input sequence a marker token denoting one of
5 possible length bins Fan et al. (2018a). Length
conditioning lets us compare different models and
decoding strategies with the same average genera-
tion length, thus avoiding length preference biases
in human evaluation.

In our proposed approach, we decompose the
generation task hierarchically, sampling a set of
words desired for generation, before generating
text that includes these words.
Word Prediction For each infilling instance, our
model ingests the context data and predicts a se-
quence of subwords in frequency order, starting
with rare subwords first. The word prediction
model is a standard Transformer, for which we
prepare the training data such that the target sub-
words are reordered by increasing frequency.

Our motivation for frequency ordering is two-
fold. Conceptually, rare words have a denser
information content in an information-theoretic
sense (Sparck Jones, 1972; Shannon, 1948), i.e., it
is easier to predict the presence of common words
given nearby rare words than the opposite. Practi-
cally, predicting rare words first allows us to inter-
rupt decoding after a fixed number of steps, then
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LC were filled with anger, and de-
cided not to go fishing again, but
to wait for the next appearance
of the fire. But after many days
had passed without their seeing
the fire, they went fishing again,
and behold, there was the fire!

hand he held an iron club,
which he dragged after him
with its end on the ground; and,
as it trailed along, it tore up a
track as deep as the furrow a
farmer ploughs with a team of
oxen. The horse he

cave, whose mouth is beneath the sea.
Here was a broad, dry space with a
lofty, salt-icicled roof. The green,
translucent sea, as it rolled back and
forth at their feet, gave to their brown
faces a

GT And so they were continually tan-
talized. Only when they were out
fishing would the fire appear, and
when they

led was even larger in propor-
tion than the giant himself, and
quite as ugly. His great carcass
was covered all over

ghastly white glare. The scavenger
crabs scrambled away over the dank
and dripping stones, and the loath-
some biting eel, slowly reached

HIER-
3

and there was a shout of joy from
all the people who went fishing
thither, but when they

rode was a lazy ox. He was a
very ugly man. He was a man

faint intake of breath, whence it rose
and curled, as it were, into the sea.
And now it stretched

HIER-
max

and thither they gathered together
at a strong pace, for it was useless
to go fishing at home, and when
another shout

was missing stood in lazy work.
You could see that he was a big,
ugly ox,

shining intake of air, whence the
black bear curled up on the surface of
the water, and turned its head to look

BASE
beam10

and they could not find it. They
could not find it, and when the fire
was

rode was a man of about thirty-
five years of age. He was a tall
man,

look of horror and horror. It seemed
as if it would burst into a flood, and
burst upon them, and burst

BASE
sam-
pling10

and the fire, which had been so
long gone that many had not been
in it for years, and when the fire

had driven was a little man of
about the size of a man, with
shaggy mane, and

deep, almost awful, impression, like
that which was seen on a rock on a
rocky beach. But the kangaroo did
not stretch

BASE
sam-
pling

and at last there was a fierce fire!
And at last Rosetta had an arrow,
and when Oui

wheeled in without pausing to
speak to me was a grotesque
specimen of some repulsive an-
imal. He was short of stature,

flood of radiance, sufficient to kill
them utterly. [Illustration: It certainly
had not a fairy named Serpent] The
monster had cast

RC returned they could not find it.
This was the way of it. The curly-
tailed alae knew that Maui and
Hina had only these four sons, and
if any of them stayed on shore
to watch the fire while the others
were out

with tangled scraggy hair, of a
sooty black; you could count
his ribs and all the points of his
big bones through his hide; his
legs were crooked and knotty;
his neck was twisted; and as for
his jaws, they were

out its well-toothed, wide-gaping jaw
to tear the tender feet that roused it
from its horrid lair, where the dread
sea god dwelt. The poor hapless girl
sank down upon this gloomy shore
and cried, clinging to the kan

Table 1: Two qualitative examples with context extracted from fairytales. Left context (LC), right context (RC),
ground truth center (GT), and the outputs from several methods are shown.

delegate the prediction of more common words to
our second-stage model.
Word-Conditioned Generation The second-
stage model, also a Transformer, is responsible for
generating a text span given the surrounding con-
text, a desired length marker, and a list of words
predicted by the first-stage model. It takes as in-
put the concatenation of these three signals.

At training time, we select a list of k words
from the missing span to condition on, where k is
sampled uniformly between 0 and half the target
length. At inference, this model takes condition-
ing words from the word generation model intro-
duced above. Interestingly, such a word list could
be edited interactively by writers, which we defer
to future work.

Training with a variable number of condition-
ing words allows us to choose the number of pro-
vided words at inference time. We observe that
this choice needs to balance sufficient information
to influence coherence and novelty in generated

spans, while preserving some headroom for the
second stage model to suggest its own common
words and produce fluent text. Some examples of
the unusual wording choices made when the sec-
ond stage model is conditioned on all predicted
words (HIER-max) can be seen in Table 1.

4 Experiments & Results

Experimental Setup We train on the Toronto
Book Corpus (TBC) concatenated with Project
Gutenberg, for a total of over 1.2 billion words af-
ter filtering our exact duplicate books. We with-
held 5% of all books for validation and test.

Training examples consist of a 5 to 50 token-
long target sequence, with 50 tokens of context on
each side. We experimented with longer context
windows but did not observe strong improvement
on automated metrics. We do not force any align-
ment along linguistic boundaries, so context win-
dows and gaps may start or end in the middle of a
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Model Decoding Diversity ROUGE-1 PPL % Votes p-value
dist-1 dist-2 F1 against HIER-3

BASE beam10 .057 .218 0.29 16.61 48.75 0.82
BASE sampling10 .058 .304 0.26 16.61 56.67 0.30
BASE sampling .101 .477 0.23 16.61 27.78 0.000025
HIER-max sampling+beam10 .107 .442 0.24 4.22 28.33 0.00079
HIER-3 sampling+beam10 .104 .347 0.27 6.62 – –

Table 2: Automated and human evaluation for our method (Hier) against baseline (base). Human evaluation reports
A/B testing against Hier-3, along with chi-square test p-values.

sentence or even word.
Evaluation Automatic evaluation is performed on
10,000 spans of length 15-30 from our validation
set. We report the sub-token perplexity of the ref-
erence and evaluate generation diversity with dist-
k, the total number of distinct k-grams, divided by
the total number of tokens produced over all ex-
amples in the validation set.

Three children’s books were chosen from the
validation set for human evaluation (Scott, 1921;
Barrow, 1863; Vandercook, 1912). We hoped
that the more concise prose in children’s literature
would make it easier for evaluators to quickly spot
mistakes. We selected paragraphs of length 50 to
130 subwords, and randomly replaced a span of 15
to 30 subwords from anywhere in the paragraph.

Human raters were shown two instances of each
paragraph, identical except for the selected span,
which may have come from one model or an-
other. The modified span was highlighted in each
paragraph, and evaluators were asked which high-
lighted excerpt seemed better (more on-topic, ex-
citing, and/or coherent) given the context. Further
details about the task are in the the Appendix.
Results As our motivation is to generate diverse
text without compromising on coherence and flu-
ency, we evaluate the baseline non-hierarchical ap-
proach at different level of diversity by consid-
ering different decoding strategies. Conditional
language models generate text word-by-word, ei-
ther through beam search, i.e. approximating the
maximum-a-posteriori sequence (Sutskever et al.,
2014), or through sampling. Beam search often
leads to repetitive, “safe” outputs, while random
sampling results in more diverse outputs that mat
suffer from fluency and coherence issues. While
some work has incorporated a temperature pa-
rameter during random sampling to control the
tradeoff between diversity and quality, we instead
consider restricting sampling to the top-10 next
words (sampling10) (Fan et al., 2018a) as prelim-
inary experiments indicated this method produces

higher quality outputs for equivalent levels of di-
versity.

Table 2 shows that as expected, sampling re-
sults in the richest diversity, beam search the poor-
est, and sampling10 falls between the two. In hu-
man evaluation, sampling10 and beam outperform
or perform equivalently to our Hier-3 method, but
have lower diversity. Unrestricted sampling per-
forms much worse.

In our hierarchical approach (HIER), we achieve
both diverse and fluent generation by using ran-
dom sampling for the word prediction model,
where diversity is more critical than fluency, and
beam search for the second-stage model.

Table 2 evaluates HIER in two settings, con-
ditioning on all words from the word prediction
model or conditioned only on the first three pre-
dicted words. Human raters strongly prefer the
model conditioned on only three words. We
also show that humans rate generation of HIER-3
comparably to BASE/sampling10 while our model
achieves much higher diversity (dist-1 and dist-2).
Our model therefore achieves its goal of diverse
and fluent outputs for story infilling.

5 Conclusions and Future Work

We show that taking a hierarchical approach to
story infilling is an effective strategy for balancing
fluent and coherent generated text with the diver-
sity and interestingness necessary to build a useful
tool for writers. Ultimately, we envision a fully
collaborative system, where writers can upload a
story and then solicit ideas from the computer on
ways to rewrite specific parts. Writers will be able
to choose between guiding generation by manu-
ally specifying words or concepts to be used, or
taking suggestions made by the system.

Future work could investigate insertion-based
architectures better suited to the infilling task
(Stern et al., 2019), and the use of n-gram phrases
instead of independent subwords as conditioning.
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6 Appendix

7 Amazon Mechanical Turk Task

Our evaluation set consisted of 280 paragraphs se-
lected from the evaluation dataset. For each ques-
tion, evaluators were shown the same paragraph
twice, with a highlighted span possibly altered by
a model (Figure 2).

In our initial experiments, these questions were
split into 20 HITs of 11 questions each. Ten of
these questions compared generated text from the
two methods of interest, while one other question
was a honeypot, where one of the method outputs
was replaced by the ground truth. However, af-
ter running multiple trial HITs, we found that the
task was too hard for the average Turker, and per-
formance on the honeypot question was close to
random guessing.

We instead recruited two expert annotators fa-
miliar with reading antiquated English and with
common language model mistakes to complete the
HITs. In total we collected 60+ annotations per
comparison task.

8 Model Parameters

All experiments were done with Transformer
models implemented in the Tensor2Tensor frame-
work (Vaswani et al., 2018). Important hyperpa-
rameters are shown below. All other hyperparam-
eters were left at the Tensor2Tensor default.

{
"attention_dropout": 0.1,
"batch_size": 4096,
"dropout": 0.2,
"ffn_layer": "dense_relu_dense",
"filter_size": 2048,
"hidden_size": 512,
"kernel_height": 3,
"kernel_width": 1,
"label_smoothing": 0.0,
"learning_rate": 0.2,
"learning_rate_constant": 2.0,
"learning_rate_decay_rate": 1.0,
"learning_rate_decay_scheme": "noam",
"learning_rate_decay_steps": 5000,
"learning_rate_warmup_steps": 8000,
"num_heads": 8,
"num_hidden_layers": 6,
"optimizer": "Adam",
"optimizer_adam_beta1": 0.9,
"optimizer_adam_beta2": 0.997,
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Figure 2: User interface for Amazon Mechanical Turk task.

"optimizer_adam_epsilon": 1e-09,
"pos": "emb",
"self_attention_type": "dot_product",
"train_steps": 1000000,

}
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Abstract

As with many text generation tasks, the fo-
cus of recent progress on story generation has
been in producing texts that are perceived to
“make sense” as a whole. There are few au-
tomated metrics that address this dimension of
story quality even on a shallow lexical level.
To initiate investigation into such metrics, we
apply a simple approach to identifying word
relations that contribute to the ‘narrative sense’
of a story. We use this approach to compara-
tively analyze the output of a few notable story
generation systems in terms of these relations.
We characterize differences in the distributions
of relations according to their strength within
each story.

1 Introduction

Current text generation systems are frequently
able to produce output that is linguistically well-
formed with regard to sentence-level syntactic and
lexical dependencies. Still, when people perceive
the generated text as a whole, it often doesn’t ap-
pear to “make sense”. There are many dimen-
sions to what qualifies a text as sensible. Recent
work has focused on trying to model common-
sense knowledge and reasoning via the domain
of narrative. From the perspective of this work,
stories encode the rich set of coherence relations
between entities and events by which people in-
terpret their experiences. This has led to frame-
works that evaluate automated commonsense rea-
soning through story modeling tasks like predict-
ing what happens next in a story (Mostafazadeh
et al., 2016). Accordingly, the challenge of story
generation systems is to express the same com-
monsense relations that establish the coherence of
human-authored stories. One barrier to address-
ing this challenge is how to quantify the presence
of these relations in a text. People can readily
provide intuitive judgments about whether a story

makes sense, but there has been little exploration
of cues for these judgments that can be modeled
by current NLP analyses, even relatively shallow
ones. We address this in this work by examining a
simple approach to detecting lexical relations that
contribute to the coherence (or what we call ‘nar-
rative sense’) of a story. We apply this approach to
compare the output of a few different story gener-
ation systems according to these relations.

Evaluation in general is an ongoing challenge
in text generation research, and particularly for
open-ended content like stories. Some work has
borrowed automated metrics used for evaluation
in other generation tasks (e.g. BLEU for ma-
chine translation). However, such metrics expect
that there is a fixed set of gold standard refer-
ences to which output should be compared, which
is not a fitting assumption for many story gen-
eration frameworks. If the task is to generate a
story about a particular topic or to generate a story
given an opening sentence, there is no finite set
of “correct” stories that meet the objective. For
this reason, most work relies on human judgment
for evaluation (e.g. Fan et al., 2018; Holtzman
et al., 2018; Roemmele and Gordon, 2018), often
through a quantitative rating or ranking scheme
for selected quality dimensions (e.g. asking “how
coherent is this story?” or “which story is more
coherent?” among a set of candidates). While
these judgments are a reliable indicator of the rel-
ative impact of different generation models, they
are costly in that they must be repeated for each
new set of generated output. Moreover, relying on
holistic ratings/rankings of quality does not pro-
vide insight into the text-level features that influ-
ence these judgments. Qualitative feedback is use-
ful for this, but it can be difficult for people to pre-
cisely verbalize their intuition about what makes
a generated text sound good or bad. Fully mod-
eling this judgment may require sophisticated nat-
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ural language understanding capabilities, but we
can still investigate whether shallow indicators of
this judgment are available.

As more text generation systems are being de-
ployed, comparative evaluations between them
are becoming increasingly important. Many re-
searchers have released story generation models
trained through their own particular experiments,
including those described in Section 2. These
already-trained models can be readily used by
other NLP practitioners, but re-training them can
often require significant time and resources due
to their complexity. In some cases (e.g. the
GPT-2 system described below), the procedure
for training the model is not publicly available.
Still, this does not mean any comparative evalua-
tion between systems trained on different datasets
is fruitless. Such evaluations may not be able
to completely disentangle the contribution of a
particular algorithmic approach versus that of the
dataset itself, but they can still illuminate the rel-
ative impact of each model in the stories it pro-
duces. Moreover, they can also help scrutinize any
qualitative claims made about the performance of
a particular system, since sometimes such claims
are based on a handful of carefully selected exam-
ples. Our vision is to move towards frameworks
that can analyze the characteristics of story gen-
eration models even when they are presented as
black boxes, simply by observing the stories they
generate.

In this work, we analyze stories in terms of word
relations in order to investigate whether such rela-
tions can be examined as an indicator of narrative
sense. As outlined in Section 3, to capture word
relations we use a generic NLP technique of cal-
culating statistical word co-occurences in a corpus
of stories, in particular by using the Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990)
statistic. The use of statistical word association
measures in narrative modeling tasks is familiar.
There is work on using these measures to evaluate
coherence in news stories (Shahaf and Guestrin,
2010). Other work has used word co-occurrence
statistics to predict commonsense cause-effect re-
lations between sentences (Gordon et al., 2011;
Luo et al., 2016; Riaz and Girju, 2013; Sasaki
et al., 2017). A related line of research has focused
on modeling pairs of verb-argument units in narra-
tive text in order to induce story event sequences
(Chambers and Jurafsky, 2008; McIntyre and La-

pata, 2009; Rudinger et al., 2015). Other relevant
tasks like emotional framing of narrative (Juraf-
sky et al., 2014), sentence completion based on
reading comprehension (Woods, 2016), and cre-
ative language generation (Toivanen et al., 2014)
have also been addressed using lexical association
measures. Most relevant to generation evaluation,
Sagarkar et al. (2018) demonstrated that quality
ratings of generated stories correlated significantly
with the average PMI score of their component
word pairs found in a story corpus. Our work takes
a look at the distribution of word pair PMI scores
in stories generated by alternative approaches that
have not yet been directly compared.

2 Generation Task

We examined four models that have specifically
been applied to story generation and which gener-
ate stories based on a seed input text. We used
15,138 items from the test set of the English-
language Reddit WritingPrompts dataset1 (Fan
et al., 2018) as these seed inputs. This dataset
is derived from the /r/WritingPrompts subreddit,
where users write and share fiction stories in re-
sponse to a story premise (the prompt). Each item
in this dataset consists of a prompt and a human-
authored story. For each prompt, we generated a
story with each of the models described below. We
did not train our own version of these models but
instead used the already-trained models provided
by the respective authors on their linked GitHub
repositories.

CREATIVEHELP2 (Roemmele and Gordon,
2018): An RNN language model trained on a sub-
set of 11,000 self-published fiction books in the
Toronto BookCorpus3.

GPT-24 (Radford et al., 2019): A transformer-
based language model trained on several million
webpages in the WebText corpus. The full model
advertised in the paper is not publicly available, so
we used the ‘small’ version of the model. While
GPT-2 has been presented as a generic text gen-
eration system as opposed to one specifically for
story generation, the examples presented by the
authors include narrative text.

HIERARCHICAL5 (Fan et al., 2018): A con-
volutional sequence-to-sequence model with self-

1See github.com/pytorch/fairseq for link to dataset
2github.com/roemmele/narrative-prediction
3yknzhu.wixsite.com/mbweb
4github.com/openai/gpt-2
5github.com/pytorch/fairseq
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Prompt
On your way to Mars on the first voyage ever , you discover that you and the countless others on the ship are intended
ritual sacrifices by Elon Musk . You now must avoid reaching Mars at all costs .

CREATIVEHELP Your all - sister , state - and - seek , is exactly what you believed was William , WP thought , and
agreed with the program . Elon Musk and Jett moved into their strong chamber . At the group of Ryan
over from Tumblr , the third was fallen and a wise top dancer and a united East Africans . Here was a
light , and I felt really fear or make out William . My heart leapt to my throat ; I ’d trapped Riley in
no life between her But Anna was afraid . The real baby boy was doing something for me had led me
out of his room . From the fire , it closed and connected with him . Elon Musk looked down at her
hands and said , “ not just you ! ” She looked at me , then shrugged and

GPT-2 But if they can , do so . On Your Way To Mars on the first voyage ever , you discover that you and
the countless others on the ship are intended ritual sacrifices by Elon Musk . You now must avoid
reaching Mars at all costs . But if they can , do so . Borough of Babel : On your way to Pluto
The planet currently inhabited by Jekyllands Islet and its looters bears benefit isty , albeit unable to
argue that it is indeed inhabited . Or itself is ; consider the inhabitants of Copernicus themselves , as
walking amongst them , does so represent the rarity of the copernican planet , which is understandably
deplored . 343.FIRE Required Strange preview gained ID of Wurmby , and 25705 Heat up Any an
important bounty hunter might pursue , the real tyrant looks like Javian ’s gaze .

HIERARCHICAL “ I am an old man , old man. ” “ You are the last human to be here , you are the one who will never
find us ! ” “ But I have been the one to bring you the one who will never come back ! ” A long pause
followed as a young man in a suit and helmet stepped in front of a large screen . “ I am not a human
man , but I am a man . I am the last human . I am the only human who can not be found . I have been
the last human to be taken , you will become the last human . I am the only human . I have been the
last human , and every human has been given to me . I am the last human

L2W it is your duty to make sure that you are safe . ” the two men exchanged a long look , then nodded and
left . as the door closed behind them , the door swung shut behind them . the room was silent . the
room was empty . the room was silent except for the sound of heavy breathing . the room was filled
with the sounds of shuffling and shuffling . the room was pitch black and pitch black . the walls and
floor of the room were strewn with debris and debris . the room seemed to be suspended above the
floor . there were no lights in the room . no sign of anyone else . no one was in sight . there were only
two chairs . one of them was a desk . a small desk . a desk sat on the floor

HUMAN I hid under the tiny bed of my room , terrified . I covered my mouth , trying to muffle my heavy
breathing . I heard its footsteps in the distance , dragging it ’s feet as it walked . I heard it sniff the
air , grunting , as it caught on to a scent . It started walking in a different direction , before suddenly
breaking out into a sprint . I gasped instinctively , before realizing it was moving away from me . I
lay there , in complete darkness , filled with fear . It had broken the main generators , and the backups
only provided power to the main hallways . In the distance , I heard a faint scream , which was soon
replaced by a deafening silence . I slowly moved out from under my bed . My hands were trembling ,
tears

Table 1: Example of a story generated by each model for a given prompt

attention on the decoder. The approach also uses a
fusion mechanism that further encourages condi-
tioning on the input while generating. This model
was trained on the Reddit WritingPrompts dataset,
which is the same dataset we use to seed genera-
tion in our work (we use the test set that was not
observed by this model during training).

L2W6 (Holtzman et al., 2018): An RNN lan-
guage model enhanced with discriminator mech-
anisms that promote non-repetition, semantic en-
tailment between sentences, relevance, and lexical
diversity in the generated output. As with CRE-
ATIVEHELP, this model was trained on the Book-
Corpus stories.

One detail to note is that among these mod-
els, only the HIERARCHICAL model is specifically
trained to observe the prompt as text that is in-

6github.com/ari-holtzman/l2w

dependent from the generated story itself. The
other models are designed for ‘story continuation’,
i.e. generating the next segment of an initial story.
Here, these models viewed the prompt as the ini-
tial sequence in the story which is continued by
the generated text. However, we subsequently dis-
regard the prompt in our analysis and instead fo-
cus only on the relations within the generated text
itself. These intra-story relations can still be com-
pared across models without consideration of their
relevance to the input texts.

Our analysis requires that the generated stories
be comparable in length, so we limited the length
of each story to 150 tokens. In some cases, due
to the design of each model (e.g. some models
complete generation when an end-of-story token
is generated), the resulting stories were shorter.
There were also instances in which the human-
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authored story was shorter. Consequently, we fil-
tered any set of stories associated with the same
prompt where at least one of stories contained
fewer than 150 tokens. This resulted in 13,453
stories being included in our analysis. Table 1
shows an example of a prompt and the generated
stories for that prompt alongside the correspond-
ing human-authored story (labeled HUMAN).

3 Narrative Sense Relations

In line with the discussion above, we refer to the
lexical relations examined in this work as ‘narra-
tive sense’ relations. By scoring word pairs ac-
cording to how often they appear in the same story,
higher scores will indicate pairs with a stronger re-
lation across different stories, i.e. words for which
it makes sense that they would appear in the same
story.

Though the inputs we provide to the models
come a particular genre of English-language sto-
ries (self-published internet fiction), we wanted to
examine lexical relations that span across differ-
ent types of stories. Accordingly, we derived the
narrative sense relations from four highly-utilized
story corpora described below that (to the best of
our knowledge) were not observed by the models
during training. Obviously, it is not possible to
construct a dataset which has full coverage of all
sensible pairs that could appear in a set of gener-
ated stories. We selected these four diverse cor-
pora to aim for as broad of coverage as possible
without overly biasing the dataset towards pairs
contained in the training data for any one of the
models.

ROCStories7 (Mostafazadeh et al., 2016):
97,027 five-sentence narratives authored via
crowdsourcing. Authors were specifically asked
to write stories in simple English about common
everyday scenarios.

Visual Information Storytelling (VIST)8

(Huang et al., 2016): 50,200 five-sentence stories
also authored through crowdsourcing. Authors
were prompted to write a story from a sequence of
photographs depicting a salient “storyable” event.

CMU Plots9: 58,862 book/movie plot sum-
maries extracted from Wikipedia. We truncated
each of these summaries to its first 150 tokens,
consistent with the length of generated stories.

7cs.rochester.edu/nlp/rocstories
8visionandlanguage.net/VIST
9cs.cmu.edu/˜ark/personas;

cs.cmu.edu/˜dbamman/booksummaries.html

Children’s Book Test10 (Hill et al., 2016): 98
children’s novels authored between 1850 and 1950
and freely available through Project Gutenberg
(we used the training set only of the full dataset).
We segmented each book into passages of 150 to-
kens, which resulted in 36,987 passages (we sub-
sequently treated each passage as its own story).

We tokenized all 244,216 stories in these cor-
pora and applied lemmatization to the word to-
kens11. Since our analysis targets content words,
we removed punctuation/symbols, numbers, and
all words included in an English stopword list.
We also removed proper nouns in order to reduce
story-specific relations such as entity names. We
then established a vocabulary of words occurring
in at least five stories. As mentioned above, we
calculated the PMI co-occurrence of these words.
PMI is calculated for each word pair (w1, w2)
based on how often the words appear together rel-
ative to their individual frequency:

PMI(w1, w2) =
count(w1, w2)

count(w1) ∗ count(w2) (1)

Here, a co-occurrence between two words was
counted any time they appeared in the same story,
without regard to their order. There is one ex-
ception: when the words occur within the same
trigram, they are not counted as a co-occurrence.
Our aim in doing this was to minimize relations
between words that are phrase-dependent in favor
of capturing relations that span across the story.
This, in addition to the filtering of stop words
and ignoring word order, helps to separate narra-
tive sense relations from words that are related by
grammatical dependencies, which is not what we
are targeting with this analysis.

Using this methodology, we extracted and com-
puted PMI scores for 7,829,163 word pairs con-
sisting of 23,592 lemmatized words in the given
dataset. Scores are computed in log space, as
shown in Table 3. The scores in this dataset range
from -17.25 to -2.30, with a median of -11.66.

4 Analysis of Generated Stories

For each generated story, we applied the same
processing done for the stories in the narrative
sense relations dataset, i.e. lemmatizing and re-
moving proper nouns, punctuation/symbols, and

10fb.ai/babi
11Tokenization, POS tagging, lemmatization, and stop-

word removal was done with spaCy: spacy.io
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CREATIVEHELP GPT-2 HIERARCHICAL L2W HUMAN
1. Total raw words 6943 58966 4942 3173 34401
2. Total recognized words 5008 (72.1%) 18165 (30.8%) 4617 (93.4%) 2937 (92.6%) 17068 (49.6%)
3. Mean stories per word 108.51 32.85 62.56 96.95 34.38
4. Mean words 40.39 44.35 21.46 21.17 43.62
5. Mean word pairs 832.26 1283.79 254.54 225.42 1159.00
6. Mean seen word pairs 790.59 (95.2%) 980.85 (77.1%) 242.33 (96%) 217.88 (97%) 937.72 (82.3%)

Table 2: Statistics for the number of unique words and word pairs across all 13,453 evaluated stories

stopwords. Each story is represented as a set of
unique words (disregarding their frequencies), and
all pairwise combinations between these words are
considered in the analyses.

4.1 Word Statistics

Table 2 contains some descriptive statistics for the
generated words/pairs according to each model.
Note that the term ‘word’ in this table refers to
a unique word type, since all token frequency in-
formation is disregarded. Not surprisingly, there
are words in the generated stories that are not con-
tained in the vocabulary for the narrative sense
relations dataset. Line 1 reports the total num-
ber of unique words in each set of stories after
filtering/lemmatization (raw words), while Line 2
shows the proportion of these words that also ap-
pear in the vocabulary for the narrative sense rela-
tions dataset (recognized words). There are many
unrecognized words in the GPT-2 and HUMAN

stories, but these stories also contain many more
recognized words as well (and it should be consid-
ered that several of the unrecognized words occur
very rarely in these stories, which is not conveyed
in the table). With having smaller word sets, the
majority of the words in the HIERARCHICAL and
L2W stories are recognized. All subsequent lines
in the table pertain to the recognized words. Line 3
reports the mean number of stories that each word
generated by that model appears in. This is an in-
dication of lexical diversity, where higher numbers
indicate higher redundancy of words across stories
generated by that model. For example, each of the
4,617 words among HIERARCHICAL stories oc-
curs in 62.56 HIERARCHICAL stories on average.
Consistent with the GPT-2 and HUMAN stories
featuring a much broader set of words, these sto-
ries are much more diversified in their word selec-
tion. The CREATIVEHELP and L2W stories have
more words that appear redundantly across stories,
with less redundancy in the HIERARCHICAL sto-
ries. Line 4 reports the mean number of unique
words per story. The CREATIVEHELP, GPT-2,

and HUMAN stories have far more unique words
than the HIERARCHICAL and L2W stories. This
finding is qualitatively reflected in Table 1, where
the examples for the latter models contain many
repeated words. Lines 5 and 6 show the mean
number of unique word pairs per story (where both
words are recognized) and the proportion of these
that also show up in the narrative sense relations
dataset. Naturally, there are fewer word pairs for
the HIERARCHICAL and L2W stories given that
they contain fewer words overall. There is more
coverage for these word pairs in the narrative sense
relations dataset. Most of the CREATIVEHELP

pairs are also recognized from this dataset. In con-
trast, the GPT-2 and HUMAN stories contain sev-
eral word pairs that have not been observed in this
dataset.

4.2 Distribution of Word Relations

We examined the word pairs for each model ac-
cording to their PMI scores in the narrative sense
relations dataset. All unseen word pairs were as-
signed the lowest score of the pairs in the dataset
(-17.25). Table 3 illustrates the top 10 word pairs
with the highest PMI in each of the stories from
Table 1.

Figure 1 plots the binned distribution (binned
using the Freedman-Diaconis rule (Freedman and
Diaconis, 1981)) of PMI scores for all word pairs
in the generated stories for each model. The y-
axis represents the total number of word pairs with
scores in the corresponding bin. The blue area
of the graph includes all pairs, while the orange
area represents the distribution when only the 100
highest-scoring pairs in each story are considered.
The median of each distribution is indicated by
the lines of the corresponding color. The plots
convey some of the information in Table 2, par-
ticularly with regard to the HIERARCHICAL and
L2W models generating fewer unique words and
thus fewer pairs overall. These particular models
also have a much more narrow score distribution,
and a higher median score overall relative to the
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CREATIVEHELP GPT-2 HIERARCHICAL L2W HUMAN
((chamber, leapt), -9.26) ((ship, voyage), -9.0) ((pause, step), -10.92) ((chair, shuffling), -9.04) ((scent, sniff), -8.59)
((afraid, fear), -10.47) ((inhabitant, planet), -9.29) ((pause, suit), -11.3) ((pitch, swing), -9.66) ((generator, power), -8.97)
((’d, shrug), -10.57) ((inhabit, inhabitant), -9.51) ((follow, human), -11.52) ((breathing, sound), -10.22) ((instinctively, silence), -9.45)
((chamber, throat), -10.59) ((bounty, planet), -9.55) ((come, pause), -11.55) ((silent, strew), -10.24) ((gasp, grunt), -9.53)
((’d, say), -10.65) ((inhabit, ritual), -9.68) ((helmet, man), -11.67) ((floor, strew), -10.27) ((faint, instinctively), -9.54)
((leapt, seek), -10.75) ((planet, ship), -9.69) ((old, young), -11.68) ((chair, sit), -10.47) ((mouth, muffle), -9.62)
((believe, united), -10.78) ((tyrant, voyage), -9.82) ((follow, young), -11.71) ((nod, pitch), -10.61) ((faint, scent), -9.75)
((chamber, room), -10.79) ((inhabitant, tyrant), -10.04) ((pause, screen), -11.71) ((debris, floor), -10.63) ((breathing, darkness), -9.75)
((shrug, strong), -10.83) ((consider, preview), -10.1) ((follow, man), -11.85) ((nod, shut), -10.69) ((direction, scent), -9.89)
((chamber, heart), -10.84) ((sacrifice, tyrant), -10.21) ((human, large), -11.86) ((breathing, safe), -10.72) ((faint, tremble), -9.92)

Table 3: Highest-scoring word pairs for each story from the example in Table 1

Figure 1: Distribution of word pair scores in generated stories for each model

other models. In contrast, the scores of the CRE-
ATIVEHELP, GPT-2, and HUMAN pairs are dis-
tributed across a wider range. The large number
of pairs not observed in the narrative sense rela-
tions datasets for the GPT-2 and HUMAN stories
is represented by the tall blue bar on the far left
side of each of these plots (since the score of these
pairs is set to the lowest PMI score in the narra-
tive sense relations dataset). This causes the me-
dian of the full distribution for these models to
be much lower. However, these stories also have
many more pairs with higher PMI scores, signi-
fied by the large gap between the full distribution
and the top-100 distribution, where the medians of
the latter are much higher for these models. Thus,
we can summarize that the HIERARCHICAL and
L2W models tend to consistently generate moder-
ately strong relations, but the GPT-2 and HUMAN

stories are more likely to contain very strong lex-

ical relations. Interestingly, the median score of
the GPT-2 pairs among the top-100 distribution
(-11.15) is actually slightly higher than the corre-
sponding HUMAN median (-11.24).

4.3 Distinguishing Narrative Sense Relations

Figure 1 reveals differences in the distribution of
lexical relation scores for each model, but the dis-
crepancies in their individual word distributions
make it difficult to draw conclusions about how
much narrative sense is produced by each model.
To try to further interpret the differences between
the models, we designed a prediction task that
tests whether the lexical relations in each story can
be distinguished from spurious relations. In par-
ticular, for each generated story represented as a
set of words, we artificially created a new story
with the same number of words, where the words
were randomly sampled from the set of all stories
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CREATIVEHELP GPT-2 HIERARCHICAL L2W HUMAN
5571 (41.4%) 6574 (48.9%) 6661 (49.5%) 6104 (45.4%) 7355 (54.7%)

Table 4: Total number of stories (among 13,453) exceeding narrative sense threshold for each model

generated by the corresponding model. Thus, the
scores of any relations that emerge in these sam-
ples are accounted for by overall word frequency
alone. Another way to think about this test is that
it determines how easy it is to distinguish relations
that occur within a given story to those that occur
across different stories. We compared the distri-
bution of scores for the original story to the dis-
tribution for the random story using the Wilcoxon
rank-sum statistic (Wilcoxon, 1945), which evalu-
ates the difference between two distributions. If
this test indicated the original word pair scores
were on average higher than the random scores (at
a level of statistical significance p < 0.10), we as-
signed the original story a point indicating it ex-
ceeded the narrative sense threshold. Exceeding
this threshold signifies confidence that the lexi-
cal relations between the words in the story ‘make
sense’. In this scheme, stories with high narrative
sense should contain much higher scoring word
pairs than would be expected to appear from ran-
dom combinations of the same words. If there
are never differences between these distributions,
it suggests that the generated word relations occur
largely by chance. Thus, stories with more distinct
narrative sense relations should more often exceed
the narrative sense threshold.

Table 4 shows the results of this analysis. Note
that the narrative sense threshold is quite conser-
vative due to the requirement that the difference
between the original and random pairs be statis-
tically significant. Thus, the absolute number of
stories that exceed the threshold is low for all mod-
els, but we are only concerned with their relative
difference. The CREATIVEHELP stories have the
least distinct narrative sense relations, which is no-
table given that their median word pair score is
higher than that of the HIERARCHICAL and L2W
stories. This suggests many of the relations gen-
erated by CREATIVEHELP appear simply due to
the number of combinations of words in these sto-
ries (since more combinations yields more oppor-
tunities to find high-scoring relations in the nar-
rative sense relations dataset). As expected, the
HUMAN stories exceed the narrative sense thresh-
old the most often, meaning that their lexical rela-

tions are the least likely to be predicted by just the
overall frequency of their words. This result also
distinguishes the HUMAN stories from the GPT-2
stories, which otherwise show similar score distri-
butions in Figure 1. While the GPT-2 model pro-
duces many strong narrative sense relations over-
all, from the result in Table 4 we can conclude
that a single GPT-2 story tends to have less nar-
rative sense than a HUMAN story when their re-
spective overall word distributions are taken into
account. Moreover, the HIERARCHICAL stories
also demonstrate stronger narrative sense relations
than the GPT-2 stories according to this analy-
sis, even though the former produces fewer high-
scoring pairs overall.

5 Conclusion

We demonstrated an analysis of lexical relations
in generated stories with an emphasis on identi-
fying ‘narrative sense’ relations that contribute to
perceived story coherence. This work is intended
to support the development of automated metrics
that detect whether a generated text is sensible, in
order to reduce the expense of exclusively rely-
ing on human judgment for this type of evaluation.
We extracted word relations in the generated out-
put of four published story generation systems that
have not previously been compared on the same
set of story inputs. We discovered interesting dif-
ferences in the relations produced by each model,
and presented a way to characterize these relations
according to how well they can be discriminated
from relations that appear by chance. These re-
sults indicate that the human-authored stories fea-
ture strong narrative sense relations that distin-
guish them from the generated stories. Differences
among the generated models are also apparent. As
future work, we can reproduce this analysis using
a different narrative sense relations dataset to bet-
ter determine the impact of this dataset on expos-
ing these differences.

In this work, the narrative sense of a lexical re-
lation is vouched for by its repeated appearance in
other stories, so the focus is on rewarding models
for producing these relations. An alternative anal-
ysis could instead look for relations that violate
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some aspect of commonsense knowledge. This
would shift the focus of the analysis to penalizing
models for producing relations that detract from
the coherence of the story. However, it is also im-
portant to point out that an ideal story generation
system would model human creativity in produc-
ing content that has not been observed in any ex-
isting story. Presumably many of the previously
unseen pairs appearing in the human-authored sto-
ries are reflective of this creativity while also not
necessarily violating commonsense. Future work
should examine how to evaluate the capacity of
systems to induce novel lexical relations that sup-
port story coherence.
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