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Abstract
Neural text simplification has gained increas-
ing attention in the NLP community thanks
to recent advancements in deep sequence-to-
sequence learning. Most recent efforts with
such a data-demanding paradigm have dealt
with the English language, for which sizeable
training datasets are currently available to de-
ploy competitive models. Similar improve-
ments on less resource-rich languages are con-
ditioned either to intensive manual work to
create training data, or to the design of ef-
fective automatic generation techniques to by-
pass the data acquisition bottleneck. Inspired
by the machine translation field, in which syn-
thetic parallel pairs generated from monolin-
gual data yield significant improvements to
neural models, in this paper we exploit large
amounts of heterogeneous data to automati-
cally select simple sentences, which are then
used to create synthetic simplification pairs.
We also evaluate other solutions, such as over-
sampling and the use of external word em-
beddings to be fed to the neural simplification
system. Our approach is evaluated on Italian
and Spanish, for which few thousand gold sen-
tence pairs are available. The results show that
these techniques yield performance improve-
ments over a baseline sequence-to-sequence
configuration.

1 Introduction

Text simplification aims at making a text more
readable by reducing its lexical and structural
complexity while preserving the meaning. (Chan-
drasekar and Bangalore, 1997; Carroll et al., 1998;
Vickrey and Koller, 2008; Crossley et al., 2012;
Shardlow, 2014). Neural approaches to the task
have gained increasing attention in the NLP com-
munity thanks to recent advancements of deep,

sequence-to-sequence approaches. However, all
recent improvements have dealt with English. The
main reason is that such data-hungry approaches
require large training sets (in the order of hundred
thousand instances) and sizable datasets have been
developed and made available only for this lan-
guage. Indeed, the only available datasets com-
posed of a complex and a simple version of the
same document, which are large enough to ex-
periment with deep neural systems, are Newsela
(Xu et al., 2015) and the aligned version of simple
and standard English Wikipedia (Zhu et al., 2010).
These data have become the common benchmark
for evaluating new approaches to neural text sim-
plification. These methods rely on the use of deep
reinforcement learning (Zhang and Lapata, 2017),
memory-augmented neural networks (Vu et al.,
2018), the combination of semantic parsing and
neural approaches (Sulem et al., 2018) and the per-
sonalisation to specific grade levels (Scarton and
Specia, 2018). Due to data paucity, none of them
can be tested on other languages, for which less
data-intensive, rule-based solutions have been pro-
posed (Brouwers et al., 2012; Bott et al., 2012;
Barlacchi and Tonelli, 2013). The main disad-
vantage of such solutions, however, is a reduced
portability and scalability to new scenarios, which
require the creation of new sets of rules each time
a new language (or a new domain with specific id-
iosyncrasies) has to be covered.

To alleviate the data bottleneck issue, enabling
the development of neural solutions also for lan-
guages other than English, we explore data aug-
mentation techniques for creating task-specific
training data. Our experiments range from sim-
ple oversampling techniques to weakly supervised
data augmentation methods inspired by recent
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works in other NLP tasks (Bérard et al., 2016;
Ding and Balog, 2018), in particular Machine
Translation (MT) (Sennrich et al., 2016b). In a
nutshell, taking an opposite direction to simplifi-
cation, we proceed by i) automatically selecting
simple sentences from a large pool of monolin-
gual data, and ii) synthetically creating complex
sentences. These artificially created sentences will
be then used as the “source” side of new difficult–
simple training pairs fed into an MT-like encoder-
decoder architecture.

Our hypothesis is that, though sub-optimal due
to possible errors introduced in the automatic
generation of complex sentences, these training
pairs represent useful material for building our
sequence-to-sequence text simplification models.
Under this hypothesis, any noise in the source side
of the pairs can still be treated as an approximation
of text difficulty that, paired with its correct sim-
plified counterpart, can contribute to model train-
ing.

We run our experiments on Italian and Span-
ish, two languages for which only small datasets
of manually curated simplifications are available.
The main contributions of this work are:

• We explore different approaches for aug-
menting training data for neural text simpli-
fication using weak supervision;

• We test them in under-resourced conditions
on Italian and Spanish.

2 Related work

The lack of data for training sequence-to-sequence
models is a problem that has been addressed in
several NLP tasks. In MT, for instance, syn-
thetic parallel data for low-resource settings have
been generated by automatically translating sen-
tences from the target language into the source lan-
guage (Sennrich et al., 2016b,a). In speech trans-
lation, recent works (Bérard et al., 2016; Jia et al.,
2018) have shown that end-to-end models can
be successfully trained on artificial source audio–
target text pairs built from synthesized speech
data and/or machine-translated text.

For keyword-to-question generation, small
training data have been first inverted to create a
question-to-keyword dataset and then used to ar-
tificially generate keywords given a large quantity
of questions (Ding and Balog, 2018).

In all these tasks, when added to the original
data, the synthetic sets always result in signifi-
cant improvements in performance. Even if sub-
optimal due to variable noise introduced on the
source side by automatic processing, large “silver”
data provide a valuable additional complement to
small “gold” training corpora.

Regarding neural text simplification, we are not
aware of previous work on extending small train-
ing corpora with synthetic data. Indeed, the lack
of training instances has been a major issue in the
development of such applications for languages
other than English.

3 Neural sentence simplification system

Our sentence simplification approach is based on
the attentional encoder-decoder model (Bahdanau
et al., 2014) initially proposed for MT. It takes as
input a complex sentence and outputs its simpli-
fied version (Nisioi et al., 2017). Cast as a (mono-
lingual) translation task, it provides a comprehen-
sive solution to address both lexical and structural
simplification, since the model does not only learn
single term replacements, but also more complex
structural changes. Initially, a sequence of words
is fed to the encoder, which maps it into a se-
quence of continuous representations (the hidden
states of the encoder) providing increasing lev-
els of abstraction. At each time step, based on
these continuous representations and the generated
word in the previous time step, the decoder gen-
erates the next word. This process continues un-
til the decoder generates the end-of-sentence sym-
bol. This sequence-to-sequence model is extended
by adding a pointer-generator network that allows
both copying words via pointing to the source sen-
tence, and generating words from a fixed vocab-
ulary (See et al., 2017). At each time step, the
network estimates the probability of generating a
word and uses this probability as a gate to de-
cide whether to generate or copy the word. To
apply this pointer-generator network, a shared vo-
cabulary containing all the words in the complex
and simple training sentences is used. This archi-
tecture is implemented in the OpenNMT platform
(Klein et al., 2017).

4 Data augmentation

Our experimentation starts from the availabil-
ity of a limited quantity (few tens of thousand
complex-to-simple sentence pairs) of high-quality
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gold standard data that is used to train and evaluate
our pointer-generator network baseline.

To satisfy the need of much larger training sets
required to exploit the generalization capabilities
of neural approaches,1 we explore three different
data augmentation strategies:

Oversampling: In line with the work in MT-
related tasks like automatic post-editing (Chatter-
jee et al., 2017), we increase the size of the train-
ing set by multiplying the whole original training
corpus (5 and 10 times) to maximize the use of the
few “gold” sentence pairs available.

Simple-to-simple synthetic pairs creation:
Starting from large monolingual corpora, we auto-
matically extract the simplest sentences using dif-
ferent heuristics, and then duplicate them to cre-
ate simple-to-simple pairs. These are then used
as synthetic data to train the simplification sys-
tem. The intuition behind this strategy is to add
information that can be beneficial to the creation
of better word embedding representations and to
introduce a bias in the decoder towards producing
simple outputs.

Simple-to-complex synthetic pairs creation:
We convert the gold data into a set of simple-to-
complex pairs inspired by the work in MT (Sen-
nrich et al., 2016b) and in keyword-to-question
(Ding and Balog, 2018), and then use the Open-
NMT toolkit to train a “complexifier” system.
Then, we run it on the set of simple sentences
selected to create the simple-to-simple pairs (see
above) to obtain additional simple-to-complex
pairs. Finally, we revert the pairs again and
use them as synthetic data to train the simplifi-
cation system. The intuition behind this strat-
egy is to maintain the human-generated simpli-
fied sentences in the target side of the parallel
data to improve the generation of simplified sen-
tences. This comes at the cost of accepting the
low quality of automatically “complicated” source
sentences. Due to the limited amount of training
data available, we do not expect that complicat-
ing a sentence is an easier task than making it
simpler, so the quality of the automatic complex
sentences can be limited. With this method, how-
ever, we are interested in checking if the neural
network approach is able to infer useful informa-

1In speech recognition and MT, for instance, the impres-
sive performance obtained by end-to-end systems is the re-
sult of resource-intensive training, respectively on thousands
of hours of transcribed speech (Chiu et al., 2018) and tens of
millions of parallel sentences (Hassan et al., 2018).

tion from low-quality data when dealing with few
gold-standard sentence pairs. We expect that, sim-
ilar to MT, a neural simplification model can be
trained even if the source data is not of high qual-
ity, given that the sentences on the target side are
correct.

Additionally, we explore also whether large
scale pre-trained embeddings can improve text
simplification models. A similar setting was eval-
uated on English (Nisioi et al., 2017) and did not
yield remarkable improvements. However, our
intuition is that pre-trained embeddings may be
more beneficial in low-resource conditions, pro-
viding additional information that cannot be ex-
tracted from small training corpora.

5 Experimental Setup

We run our experiments on two languages, Ital-
ian and Spanish. Below, we describe for each lan-
guage the gold standard and the simple monolin-
gual data extraction process to augment our train-
ing data.

5.1 Italian
To obtain the Italian gold standard, we merge three
available data sets, namely:

• The SIMPITIKI corpus (Tonelli et al., 2016),
a manually curated corpus with 1, 166
complex–simple pairs extracted from Italian
Wikipedia and from documents in the admin-
istrative domain;

• The corpus presented in (Brunato et al.,
2015), another manually curated corpus com-
prising 1, 690 sentence pairs from the educa-
tional domain;

• A subset of the PaCCSS-it corpus (Brunato
et al., 2016), which contains 63, 000
complex-to-simple sentence pairs automat-
ically extracted from the Web. In order
to extract only the pairs of higher quality,
we pre-processed the corpus by discarding
sentence pairs with special characters, mis-
spellings, non-matching numerals or dates,
and a cosine similarity below 0.5.

The final gold standard contains 32, 210 complex-
to-simple pairs.

The set of simple sentences used to create the
synthetic pairs is obtained from a large mono-
lingual corpus covering both formal and infor-
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Pretr. Emb. Copied Complic. ITA x1 ITA x5 ITA x10 SPA x1 SPA x5 SPA x10
- - - 44.6 48.5 48.1 28.4 27.4 27.6

- - 47.3 48.8 49.5 29.1 28.2 28.1
- - 44.4 49.4 49.1 23.1 24.3 28.6

- 44.2 49.2 49.2 24.6 25.0 27.2
- - 48.0 49.9 49.8 28.6 28.6 30.6

- 47.9 49.9 50.0 28.6 28.7 30.8
- 45.6 49.3 49.5 29.0 29.1 26.2

45.2 49.9 49.7 24.9 25.0 26.2

Table 1: Results of neural simplification experiments on Italian and Spanish data (SARI)

mal language, including Italian Opensubtitles,2

the Paisà corpus (Lyding et al., 2014), Wikipedia
and the collection of Italian laws.3 This merging
process results in around 1.3B words and 125M
sentences. We rank all sentences by readability
level according to the best features described in
(Dell’Orletta et al., 2014) and keep the 500, 000
most readable (i.e. simplest) sentences to create
the synthetic pairs. This process is needed due
to the lack of an Italian equivalent of the Sim-
ple English Wikipedia,4 which is widely used as
a source of simple monolingual data when dealing
with English text simplification (Zhu et al., 2010;
Woodsend and Lapata, 2011). From the large cor-
pus described above, before filtering only simple
sentences, we also create word embeddings with
300 dimensions using word2vec (Mikolov et al.,
2013).

5.2 Spanish
The Spanish gold standard is obtained from the
Spanish Newsela corpus,5 containing 1, 221 doc-
uments manually annotated by professionals for
different proficiency levels. We align complex–
simple pairs using the CATS-Align6 tool (Štajner
et al., 2018) and discard the pairs coupled with an
alignment accuracy below 0.5. The gold standard
contains 55, 890 complex-to-simple pairs.

The set of simple sentences used to create the
synthetic pairs is extracted from a large monolin-

2www.opensubtitles.org
3www.gazzettaufficiale.it
4simple.wikipedia.org/wiki/Simple_

English_Wikipedia.
5newsela.com/data
6The tool (github.com/neosyon/

SimpTextAlign) includes several lexical and se-
mantic text similarity methods and alignment strategies for
simplified text alignment at different text representation
levels (paragraph, sentence, and sentence with paragraph
pre-alignment).

gual corpus covering different domains, obtained
from websites written in simple Spanish for lan-
guage learners.7 The documents are then ranked
based on the Flesch-Szigriszt readability score for
Spanish (Szigriszt, 1993)8 and all sentences be-
longing to the most readable ones are included in
the set of simple monolingual data (484, 325 sim-
ple sentences in total, from a set of about 1.2M
sentences). For Spanish, we do not rank directly
the sentences because there is no specific study to
identify metrics at sentence level similar to the one
for Italian presented in (Dell’Orletta et al., 2014).

The Spanish embeddings used in the simplifi-
cation process are those obtained from the Span-
ish Billion Word Corpus, that is widely used in
NLP experiments on Spanish (Zea et al., 2016;
Quirós et al., 2016).9 To favour the extraction of
word embeddings from simple texts, we increase
the Spanish Billion Word Corpus by adding our
extracted simple Spanish texts. In total, Spanish
word embeddings are extracted from a corpus of
nearly 1.5B words.

5.3 System configuration

OpenNMT is run on a Nvidia Tesla K80 GPU
using stochastic gradient descent (Robbins and
Monro, 1951) optimization with learning rate 1.
Each run is repeated three times with different
seeds, then the average value is considered. Since
the source and target languages are the same, in

7For example www.cuentosinfantiles.net or
www.mundoprimaria.com

8This score is an adaptation of the Flesch Index (Flesch,
1946), which provides a readability measure combining word
and sentence length in a 1-100 scale (the closer the score is to
100, the easier the text is to read). The Flesch-Szigriszt adap-
tation refines the original Flesch equation by also considering
the number of syllables and phrases in the text.

9github.com/uchile-nlp/
spanish-word-embeddings

www.opensubtitles.org
www.gazzettaufficiale.it
simple.wikipedia.org/wiki/Simple_English_Wikipedia
simple.wikipedia.org/wiki/Simple_English_Wikipedia
newsela.com/data
github.com/neosyon/SimpTextAlign
github.com/neosyon/SimpTextAlign
www.cuentosinfantiles.net
www.mundoprimaria.com
github.com/uchile-nlp/spanish-word-embeddings
github.com/uchile-nlp/spanish-word-embeddings
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the preprocessing phase their vocabulary is shared.
We split data into train/dev/test with ratio 90/5/5
respectively. For Italian, this results in a split
of 29, 260/1, 475/1, 475 sentence pairs, while for
Spanish it is 50, 301/2, 794/2, 795.

6 Evaluation

We report in Table 1 the results of Italian and
Spanish text simplification using different settings
and data augmentation techniques. For each lan-
guage, we evaluate the results using the gold train-
ing set as is, and expanding it through oversam-
pling (i.e. repetition of the same sentence pairs 5
and 10 times). In addition, we evaluate the impact
of: i) adding pre-trained word embeddings built
on large monolingual corpora (Pretr.Emb), ii) us-
ing the simple-to-simple pairs for data augmenta-
tion (Copied), and iii) using, for the same purpose,
the simple-to-complex synthetic pairs (Complic.).
We also explore the addition of different combina-
tions of the aforementioned resources. The evalu-
ation is performed by computing the SARI score
(Xu et al., 2016) on the test set.

Our results show that adding only pre-trained
word embeddings trained on large monolingual
corpora achieves, in general, better performance
than the baseline (max: +2.73 SARI points for
Italian, +0.8 for Spanish). Our experiments show
also that the usefulness of simple-to-simple pairs
cannot be generalised: they are beneficial for all
results on Italian and SPAx10, while they are harm-
ful for SPAx1 and SPAx5. Our intuition is that
the copied data pushed the system in the direc-
tion of learning to copy the source sentence in the
output instead of simplifying it, which can cre-
ate some instability in the model during training.
The addition of simple-to-simple pairs and of pre-
trained word embeddings does not yield large im-
provements, confirming the idea that the copied
pairs mainly affect the quality of the word em-
bedding representations instead of the relation be-
tween complex and simple sentences (i.e. atten-
tion network).

The largest gains in performance are obtained
when using the simple-to-complex synthetic pairs.
Both in isolation and when paired with pre-trained
embeddings, they make the neural model able to
outperform the baseline up to +3.4 SARI points.
The best results for both languages are obtained by
multiplying the training data by 10 and adding the
simple-to-complex synthetic data. These config-

urations outperform the standard settings (ITAx1
and SPAx1) by +5.4 SARI points for Italian and
and +2.4 for Spanish.

When concatenating all the synthetic and real
data, and the pre-trained embeddings are used, the
performance is comparable with the one obtained
using the simple-to-complex synthetic pairs, but at
the cost of using a larger quantity of training data.

Although we cannot make a direct comparison
of the SARI scores across different languages, Ital-
ian and Spanish are typologically very similar, and
therefore we can argue that our models for neu-
ral simplification in Italian works better than the
Spanish ones. This may depend on several rea-
sons. For Italian, the selection of 500, 000 sim-
ple sentences is based on sentence-specific fea-
tures correlated with high readability, emerged
from the analysis in (Dell’Orletta et al., 2014). On
the contrary, extracting simple monolingual sen-
tences based on the readability score at document
level, as we did for Spanish, is more prone to in-
consistencies. Other differences may be due to
the quality of gold standard data: although the
Spanish gold standard is bigger than the Italian
one (55, 890 complex-simple sentence pairs vs.
32, 210 pairs respectively), its language is gener-
ally more complex, since it contains news articles,
while the Italian gold standard includes to a large
extent stories for children and textbooks. Besides,
while some of the Italian sentences were manually
aligned, the Spanish gold data were obtained by
automatically extracting complex-to-simple pairs
from the Newsela corpus, in which the alignment
had been done at document level.

As a comparison, we evaluate on the same test
set also the MUSST syntactic simplifier (Scarton
et al., 2017), a freely available system implement-
ing a set of simplification rules for Italian and
Spanish. We obtain 20.16 SARI for Italian and
21.24 for Spanish. Our results show that, despite
some issues described before, low-resource neu-
ral simplification is still a promising research di-
rection to pursue, especially with data augmenta-
tion. This is particularly true for Spanish MUSST,
which includes a richer set of rules than the Italian
version, but that achieves nevertheless -9.56 SARI
points than the best neural model for Spanish.

7 Conclusions

We presented several techniques to augment the
amount of training data for neural text simplifica-
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tion through weak supervision. Our solutions were
evaluated on Italian and Spanish using a sequence-
to-sequence approach. Our results show that us-
ing external embeddings is generally beneficial in
a low-resource setting, since they provide addi-
tional information that cannot be extracted from a
limited amount of training pairs. Another gain in
performance is achieved using complex-to-simple
synthetic pairs created with a ‘complexifier’ sys-
tem.

In the future, we plan to extend both the lan-
guages of the experiments and the data augmenta-
tion techniques, for example by applying machine
translation to increase the amount of gold sentence
pairs across languages, or by using bootstrapping
techniques.
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