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Abstract

Naming and titling have been discussed in so-
ciolinguistics as markers of status or solidarity.
However, these functions have not been stud-
ied on a larger scale or for social media data.
We collect a corpus of tweets mentioning pres-
idents of six G20 countries by various naming
forms. We show that naming variation relates
to stance towards the president in a way that
is suggestive of a framing effect mediated by
respectfulness. This confirms sociolinguistic
theory of naming and titling as markers of sta-
tus.

1 Introduction

Framing is a field of research in communication
theory and political science investigating how in-
formation is presented to audiences, especially in
news media. According to a common definition, to
frame is to “to select some aspects of a perceived
reality and make them more salient in a commu-
nication text, in such a way as to promote a par-
ticular problem definition, causal interpretation,
moral evaluation, and/or treatment recommenda-
tion” (Entman, 1993, p. 52). Most work on fram-
ing has focused on issues and events, rather than
entities (Card et al., 2015; Fulgoni et al., 2016;
Field et al., 2018).

We therefore introduce entity framing, which
we define as a presentation of an entity which in-
tentionally or unintentionally promotes a particu-
lar viewpoint towards that entity. We focus on the
framing of political figures on social media, in or-
der to better understand computer-mediated civil
political discourse.

Online political discussion has been said to have
an increasing influence on the democratic process,
including on the tone and civility of political de-
bates (Persily, 2017; Ott, 2017). Tweets on politi-
cal themes are indeed retweeted more often when
their content is emotionally charged, and espe-

cially when they contain negative appraisals of po-
litical parties and figures (Dang-Xuan et al., 2013).

We explore one way in which respect or soli-
darity can be expressed towards political figures:
the use of their names and titles. Sociolinguistic
studies have suggested that names and titles con-
vey status or solidarity (Allerton, 1996; Dickey,
1997). Of these functions we confirm the status-
indicating function on a larger scale than in so-
ciolinguistic studies and on social media data, by
demonstrating that formality in naming is posi-
tively related to the stance of tweets towards the
presidents.

We thus contribute:

• a corpus of stance-annotated tweets mention-
ing presidents of six G20 countries, which we
make publicly available.1

• quantitative evidence of the status-indicating
function of names and titles on Twitter

2 Related work

According to sociolinguists, names and titles re-
flect two aspects of relationships: difference in
status (based on e.g. age or professional role) and
degree of solidarity (also referred to as intimacy
or group membership) (Brown and Gilman, 1960;
Allerton, 1996; Dickey, 1997).2 Studies have
also observed that naming patterns are context-
specific and may be violated to achieve a spe-
cific communicative purpose (Ervin-Tripp, 1972;
Dickey, 1997). These studies have been quali-
tative and/or based on real-time observations or

1https://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/TwitterTitlingCorpus/twitles.shtml
To follow Twitter usage guidelines, we provide tweet ids
rather than tweet texts.

2These observations were made for spoken language,
where names are used either as a form of address to refer
to the conversation partner or as a form of reference to refer
to a third party. For reasons described in Section 5, we do not
make this distinction.

https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/TwitterTitlingCorpus/twitles.shtml
https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/TwitterTitlingCorpus/twitles.shtml
https://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/TwitterTitlingCorpus/twitles.shtml
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interviews, whereas our work examines naming
quantitatively and on social media data.

The concept of framing has been applied to a
variety of issues and events (Card et al., 2015;
Tsur et al., 2015; Fulgoni et al., 2016; Field et al.,
2018), and in one case to the framing of entities
(Card et al., 2016), but not previously on social
media data. Use of social media to express polit-
ical opinions has instead been studied to forecast
elections (Burnap et al., 2016), political mobilisa-
tion (Weeks et al., 2017), and assess political po-
larization (Bail et al., 2018).

A prominent area of NLP that focuses on ex-
pressions of favour is stance detection, the detec-
tion of sentiment towards a specified target. Most
systems focus on stance towards products, compa-
nies and abstract topics rather than persons (So-
masundaran and Wiebe, 2010; Meng et al., 2012;
Jiang et al., 2011; Mohammad et al., 2016).

The datasets for SemEval 2017 (Task A and B)
(Rosenthal et al., 2017) and RepLab (Amigó et al.,
2012, 2013, 2014) as well as the dataset created by
(Taddy, 2013) do include a variety of person enti-
ties, but no stance detection work has investigated
the influence of naming on stance.

3 Data

To study how names and titles affect stance to-
wards political figures in social media, we cre-
ated a corpus of 4002 English-language tweets that
mention presidents by different naming forms and
which are annotated for stance.

3.1 Collection and cleaning

We focused on leaders of G20 countries with a
presidential system whose names followed the or-
der first-name last-name. We collected tweets be-
tween 18 June 2017 and 30 August 2017 using
three query types: last-name, #first-name and first-
name + (last-name/country).3 After removing du-
plicates, we reduced the number of headlines in
the data, as headlines are bound by journalistic
style conventions with respect to naming (Siegal
and Connolly, 1999). We defined as a news tweet
any tweet from an account with the string news in
the username or description. From country subsets
with an above average number of news tweets we
removed the excess number.

3For example, the queries for France were macron, #em-
manuel, and emmanuel AND (macron OR france).

Subcorpus FE worker agr. Expert agr.
France 0.77 0.78
Indonesia 0.80 0.91
Russia 0.77 0.72
South Africa 0.77 0.87
Turkey 0.44 0.65
United States 0.65 0.78

Table 1: Inter-annotator agreement for the on-target/off-
target task (Krippendorff alpha): agreement among FE work-
ers and agreement between two experts adjudicating tweets
where FE worker judgment was not unanimous.

Subcorpus Adj. tweets Diff. w/ expert 1 Diff. w/ expert 2
France 281 0.07% 0.05%
Indonesia 290 0.04% 0.03%
Russia 121 0.06% 0.06%
South-Africa 227 0.04% 0.04%
Turkey 128 0.05% 0.04%
United States 192 0.07% 0.06%

Table 2: Adjudication for the on-target/off-target task of
tweets where FE worker judgment was not unanimous: num-
ber of adjudicated tweets and percentage of tweets given a
different label by either expert 1 or 2 than to the FE majority
vote.

Manual inspection of 50 tweets per country sub-
set revealed that one subset consisted of very ho-
mogenous tweets, and two others contained many
tweets that did not refer to the intended target.
These subsets were omitted from the data.

The tweets for the remaining six subsets -
France, Indonesia, Russia, South Africa, Turkey
and the United States - were then automatically
labeled for their naming forms. Possible labels
were: first name only (FN), last name only (LN),
full name (FNLN), title and full name (TFNLN)
and title and last name (TLN). Oversampling rarer
naming forms, we sampled 1000 tweets per coun-
try.

To remove tweets that refer to a namesake rather
than the intended target, we crowd-sourced three
on-target/off-target judgments per tweet via Fig-
ure Eight (FE)4. If workers could not unanimously
agree whether a tweet was on-target, we collected
two additional judgments from the authors (Ta-
ble 1). We compared the expert judgments to the
majority vote from the FE annotations and found
very few differences (Table 2). We thus consider
the majority vote reliable. Off-target tweets were
removed from the dataset, leaving 4002 tweets.

3.2 Stance annotation

Stance-annotations of the 4002 on-target tweets
were collected via Amazon Mechanical Turk

4https://www.figure-eight.com
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Subcorpus Tweets Workers Agreement
France 638 39 0.55
Indonesia 477 27 0.58
Russia 754 66 0.49
South Africa 698 82 0.51
Turkey 692 53 0.62
United States 743 43 0.64
Overall 4002 204 0.58

Table 3: Statistics on stance annotation after removing least
reliable annotators: number of tweets, number of workers and
agreement among workers (Krippendorff’s alpha)

(AMT).5 Workers were required to pass an En-
glish proficiency and instruction comprehension
test. They had to have a minimum number of com-
pleted HITs (500), a minimum HIT approval rate
(97%) and a task-internal 97% accuracy rate based
on gold questions making up roughly 4% of the
data. Their compensation was $0.02 per HIT for
approximately 7 HITs per minute.

Each tweet was labeled by seven annotators. In-
spired by the finding in Joseph et al. (2017) that
political stance annotation on Twitter suffers when
too little context is shown, we provided annota-
tors with the tweet location, user photo, user name
and user description. If the tweet was a response
to another tweet, that tweet was shown also. The
prompt was: How would a supporter of President
X feel about this tweet? Possible answers were:
positive (+1), neither positive nor negative (0),
negative (-1) and cannot read / understand.

Our prompt is based on the reader-perspective
elicitation prompt in Buechel and Hahn (2017).
We expect it to better capture differences between
tweets which are neutral in tone but reflect dif-
ferently on the president, such as ‘Trump trail-
ing in primaries’ vs ‘Jobs market improving under
Trump’. Crucially, the prompt also allows annota-
tors to give different ratings to ‘President Trump
visits France’ and ‘Trump visits France’. As in
Card et al. (2015), the perspective is anchored to
that of a proponent of the target in order to combat
the lower reliability of reader-perspective prompts
(Buechel and Hahn, 2017).

After annotation we used Multi-Annotator
Competence Estimation (MACE) (Hovy et al.,
2013) to identify and remove the least reliable an-
notators. We collected an additional two judg-

5We chose AMT over FE for this task so we could in-
clude a questionnaire asking for country of residence, native
language, age, gender, education level, and familiarity with
twitter. A study of how annotator demographic impacts an-
notation is planned but goes beyond this paper.

ments per tweet for the country subsets with low-
est agreement (Russia and South Africa). Table 3
shows the agreement scores. The data’s gold stan-
dard was obtained using MACE, which has been
shown to retrieve reliable gold labels even under
very unfavourable conditions.6

4 Framing through naming

We now examine the relation between the use of
names and titles for presidents and stance towards
them in the collected tweets. Sociolinguistic work
suggests that naming expresses status or solidarity.
Lower status and high solidarity are both signalled
with less formal naming forms such as FN, while
higher status and low solidarity are both signalled
with more formal naming forms like TLN (Brown
and Ford, 1961; Allerton, 1996; Dickey, 1997).

This dual social function gives rise to two possi-
ble main relations between naming and stance cor-
responding to the following hypotheses:

H0 Variation in naming and stance are not related.

H1 Naming primarily downplays or emphasises
the president’s status. Therefore, formality
of naming is positively related to stance.

H2 Naming primarily conveys the degree of soli-
darity with the president. Therefore, formal-
ity of naming is negatively related to stance.

Table 4 gives examples of tweets which can be in-
terpreted to support either H1 or H2, or to support
the existence of alternative, context-specific func-
tions of naming, such as sarcasm.

We group tweets country-independently by
naming form and perform a Kruskal-Wallis test
of the difference in average stance. This re-
veals a statistically significant difference between
the stance of tweets with different naming forms
(χ2(4)=424.67, p<0.001). A post-hoc Dunn’s
test with Bonferroni correction shows statistically
significant differences between all naming forms
(p<0.001) except for LN and FN, possibly due to
the small size of the FN group. We reject the null-
hypothesis that naming and stance are not related.

To examine which alternative hypothesis is
more likely between H1 and H2, we rank
the naming forms according to their formality:

6We conducted experiments with synthetic data to verify
that MACE was likely to obtain a reliable gold standard from
our data.
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Function Stance Form Tweet text
status pos TFNLN Dear President Joko Widodo, Happy Birthday. God bless you @jokowi
status neg FN That’s the truth!!! Double-standard #Donald at it again
solidarity pos LN Duterte & Widodo are truly public servants. Saving their countries fr the menace of society.
solidarity neg TLN President Trump probably won’t like next week’s newsstands
sarcasm neg TLN Of course, I know, everything is sweetness & light in the wonderful democratic Paradise of

President Erdogan!

Table 4: Possible examples of a status or solidarity function of naming forms in tweets, as well as of an alternative function.

Subcorpus FN LN FNLN TLN TFNLN
France 0.00 (10) -0.29 (377) -0.08 (117) -0.04 (80) 0.04 (54)
Indonesia -0.60 (15) -0.03 (134) 0.14 (167) 0.08 (50) 0.37 (111)
Russia -0.56 (54) -0.71 (442) -0.31 (122) -0.26 (74) 0.24 (62)
South Africa -0.50 (6) -0.53 (405) -0.40 (109) -0.08 (106) 0.18 (72)
Turkey -0.75 (4) -0.67 (440) -0.23 (124) 0.06 (82) -0.17 (42)
United States -0.80 (59) -0.53 (363) -0.50 (141) 0.15 (94) 0.03 (86)
Overall -0.63 (148) -0.52 (2161) -0.21 (780) -0.02 (486) 0.14 (427)

Table 5: Average stance and in brackets the absolute number of tweets containing naming forms from least to most formal.

FN<LN<FNLN<TLN<TFNLN.7 Table 5 shows
that the average stance of tweets increases with
each increase in formality. A Spearman’s rank-
order correlation test confirms a statistically sig-
nificant positive correlation between naming for-
mality and stance (rs(4002) = .32, p = .001).

Furthermore, a chi-square test shows that the
difference between the stance of tweets with and
without a title in them (Table 6) is significant for
each of the six subcorpora (p<0.05).

These findings support the status hypothesis:
due to naming mainly indicating status, status-
indicating function of names, formality in naming
is positively related to stance.

5 Discussion

Although we show a clear framing effect of nam-
ing and titling, our study has several limitations.
First, we do not distinguish between address and
reference. Our data contains both names used
as forms of address (e.g. ‘Making things ”Great
Again” huh #Donald?’) and as forms of reference
(e.g. ‘#Donald just cant handle competing for the
title.’). Studying these types separately would re-
quire additional manual annotation. In addition,
this distinction is not as clear for Twitter data as
for face-to-face conversations, as many tweets mix
both functions.

Second, some of the naming forms occur only
rarely, particularly FN. This hinders the finding of

7Based on the following criteria:
1) Naming with title is more formal than without title.
2) Longer names are more formal than shorter names.
3) Last names are more formal than first names.

significant differences between each of the naming
forms for each individual country subset. Never-
theless, a significant difference in stance could be
observed between tweets with and without titles in
each subcorpus.

Third, we consider tweets from a limited time
span. This means the content of the tweets and
therefore the naming used in them may be influ-
enced by the occurrence of specific events (e.g.
Joko Widodo’s birthday).

Fourth, we only consider English tweets.
Tweets about presidents which are not well-known
to native English speakers may be unrepresenta-
tive of local ways of referring to the president.
They may also be more neutral in tone and may
use (T)FNLN to be informative rather than re-
spectful.

These limitations as well as certain social
media/Twitter-specific properties (the character
limit, the often unspecified audience) increased
the chance that any primary function of naming
would be lost among noise. It is therefore interest-
ing to still see the clear trend across country sub-
sets that informal naming of presidents co-occurs
with perceived hostility, while formal naming co-
occurs with perceived supportiveness of a tweet.
This suggests that in tweets on politicians naming
primarily emphasises status and conveys respect.

6 Conclusions and future work

We present an analysis of the way political figures
are named in social media and how this naming
relates to stance in a corpus of stance-annotated
tweets mentioning presidents of six G20 countries.
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Subcorpus Without title With title
France -0.24 (504) -0.01 (134)
Indonesia 0.03 (316) 0.28 (161)
Russia -0.62 (618) -0.03 (136)
South Africa -0.50 (520) 0.03 (178)
Turkey -0.58 (568) -0.02 (124)
United States -0.55 (563) 0.09 (180)
Overall -0.45 (3089) 0.05 (913)

Table 6: Average stance and in brackets the absolute number of tweets without or with a title in their naming form.

Our analysis reveals a relation between the formal-
ity of names and the stance of tweets. More formal
forms are significantly more frequent among pos-
itive tweets than less formal ones.

We thus confirm sociolinguistic claims that
naming marks status and expresses respect that
had not previously been investigated in a large,
quantitative study, nor for social media texts. This
study also represents the first approach to entity
framing by providing evidence for a framing ef-
fect of naming.

Future work should investigate whether naming
forms in address vs. reference impact stance dif-
ferently, whether naming form usage differs de-
pending on demographics and whether the nam-
ing trends found across the time span of our tweets
can also be found across a longer time span. Also
valuable would be a study of this effect in other
languages and on different politician subgroups,
such as female politicians. Studies such as Uscin-
ski and Goren (2011) suggest that titles of female
politicians are omitted more frequently and with
different effect.

NLP work can use our corpus as further data
for stance detection. Experiments in Mohammad
et al. (2016) show that cross-target stance detec-
tion is very challenging. Our corpus can provide
further training and testing data both for in-target
and cross-target classification.
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