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Abstract

In this paper we describe an evaluation of the
potential of classical information extraction
methods to extract drug-related attributes, in-
cluding adverse drug events, and compare to
more recently developed neural methods. We
use the 2018 N2C2 shared task data as our gold
standard data set for training. We train support
vector machine classifiers to detect drug and
drug attribute spans, and pair these detected
entities as training instances for an SVM re-
lation classifier, with both systems using stan-
dard features. We compare to baseline neu-
ral methods that use standard contextualized
embedding representations for entity and rela-
tion extraction. The SVM-based system and a
neural system obtain comparable results, with
the SVM system doing better on concepts and
the neural system performing better on rela-
tion extraction tasks. The neural system ob-
tains surprisingly strong results compared to
the system based on years of research in de-
veloping features for information extraction.

1 Introduction

Adverse drug events (ADEs) describe undesirable
signs and symptoms that occur consequent to ad-
ministration of a medication. ADEs may be iden-
tified in randomized controlled trials (RCTs), ob-
servational studies, spontaneous reports such as
those gathered in the Food and Drug Adminis-
trations (FDAs) Adverse Event Reporting System
(FAERS), or manual chart review of data in elec-
tronic health records (EHRs). RCTs have notable
limitations for pharmacoepidemiology, including
strict inclusion and exclusion criteria that limit
their generalizability, small cohort sizes that make
them under-powered for detecting rarer ADEs,
and time-limited study periods that prevent de-
tection of ADEs that occur with longer drug ad-
ministration (Sanson-Fisher et al., 2007; Sultana

et al., 2013; McMahon and Dal Pan, 2018). Al-
though drug manufacturers are required to sub-
mit postmarket adverse event reports to the FDA,
this information is not uniformly available to clin-
icians (Maxey et al., 2013). Therefore, the 21st
Century Cures Act directs the FDA to use real-
world data (RWD) in the drug approval process.

Use of RWD is particularly important for med-
ications that are commonly used off-label, for ex-
ample, those targeted for treatment of rare dis-
eases such as pulmonary hypertension in chil-
dren (Maxey et al., 2013). Electronic health
records (EHRs) provide an opportunity to cap-
ture such data reflecting real-world use of ap-
proved medications. Most studies of pharma-
covigilance using RWD are based on health care
insurance claims—for instance, the FDAs Sen-
tinel program—because claims data contains lon-
gitudinal information about medication dispensing
and clinical diagnoses (Platt et al., 2018). How-
ever, claims data may lack sensitivity for identi-
fication of ADEs, since not all signs and symp-
toms are submitted to insurers for billing pur-
poses (Nadkarni, 2010). Reliance on claims data
may also lead to incongruous results, such as a
Mini-Sentinel study that found—contrary to data
from several large RCTs—that dabigatran was
associated with a lower risk of gastrointestinal
bleeding than warfarin (Sipahi et al., 2014).

Limiting studies using RWD to structured data
alone neglects the rich data that may be found
in the unstructured, free text portion of the EHR.
However, this data is not readily available for com-
putation. Extracting this information requires nat-
ural language processing (NLP) methods. The
NLP sub-task of information extraction is con-
cerned with finding concepts in text and the rela-
tions between them (Jurafsky and Martin, 2014).
Examples of information extraction are named en-
tity recognition (e.g., finding the names of peo-
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ple, organizations, etc.) and relation extraction
(e.g., determining whether the employment rela-
tion holds between a detected person like Tim
Cook and a detected organization like Apple). A
recent National NLP Clinical Challenge (n2c2)-
hosted shared task annotated ADEs in clinical text
in a style that is amenable to an information ex-
traction approach. Specifically, annotations for
things like drug names or drug attributes, includ-
ing dosages, routes, and adverse events are entity-
like spans, while the pairing of attributes and drugs
are naturally represented as relations to be ex-
tracted. The benefit of framing the ADE task as
an information extraction task is that decades of
research in information extraction can be brought
to bear on the task, before even considering the
specifics of the domain or the task. In this work,
we sought to evaluate a number of standard infor-
mation extraction methods, including both stan-
dard clinical NLP tools and general domain meth-
ods, with the goals of setting strong baselines,
learning how much performance is dependent on
domain knowledge, and comparing classical ma-
chine learning to new deep learning approaches.

2 Methods

2.1 Data

This work describes methods for participating
in the National NLP Clinical Challenge (n2c2)
Track 2 shared task: Adverse Drug Events and
Medication Extraction in EHRs. The data con-
sists of 500 discharge summaries from the MIMIC
(Medical Information Mart for Intensive Care) III
database (Johnson et al., 2016). The n2c2 data
was labeled with eight concept types: Drugs,
Strengths, Dosages, Durations, Forms, Routes,
Reasons, and ADEs. In addition, seven relations
are labeled, between Drug mentions and the other
seven concept types.

We participated in all three tracks of the shared
task: entity recognition, relation classification
given entities, and end-to-end relation extraction.

2.2 Methods

Our methods explore how well standard informa-
tion extraction methods perform. One of our pri-
mary motivations is the prevalence of neural net-
work methods in recent work, often motivated by
their elimination of resource-intensive manual fea-
ture engineering, and thus judged superior to clas-
sical machine learning methods even if accuracy

is similar. Unfortunately, in work comparing neu-
ral networks to classical methods, baseline clas-
sical machine learning systems can appear to be
under-developed, while one is left wondering how
much effort was actually required to engineer the
network architecture and tune hyperparameters for
the neural system. We used this dataset and task
as an opportunity to invert that dynamic. We de-
sign a comparison that uses well-engineered fea-
tures in a simple linear classifier without actually
doing the engineering ourselves – we use features
engineered over years of research in information
extraction, and packaged in open source software
such as Apache cTAKES (Savova et al., 2010) and
ClearTK (Bethard et al., 2014). We then complete
the comparison by comparing against off-the-shelf
neural network tools and architectures for infor-
mation extraction.

2.2.1 Entity extraction
To classify entities, we used a BIO tagger over to-
kens with a support vector machine classifier, with
one classifier for each entity type. These clas-
sify every token in a document as the [B]eginning,
[I]nside, or [O]utside of the entity type that classi-
fier handles. We used Apache cTAKES (Savova
et al., 2010) default pipeline to pre-process the
data and the ClearTK (Bethard et al., 2014) ma-
chine learning API to extract features and train the
models with Liblinear (Fan et al., 2008). The fea-
tures used by the classifiers are standard features
from information extraction, including:

• The previous token’s BIO classification deci-
sion

• Word identity and part of speech for the cur-
rent token

• Word identities and parts of speech in the sur-
rounding context

• Sub-word character type features

• Word semantic features

For token and token context features, we represent
features in two forms, first as bags of words within
a window and also with relative positional infor-
mation. Character type features extract the charac-
ter sequence in both the target token and the con-
text tokens to model the fact that many attributes
are typically numbers, or include numbers. This
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feature maps tokens to strings representing char-
acter types inside the token—for example, lower
case characters map to l, upper case to u, punctu-
ation to p, and digits to d, so the phrase Mar 10,
2019 would map to Ull ddp dddd. Finally, we used
semantic type information of the current token,
as extracted with the cTAKES dictionary lookup
module, to create a feature representing whether a
token is a sign/symptom, disease/disorder, proce-
dure, drug mention (as detected by cTAKES), or
anatomical site, as well as the UMLS (Bodenrei-
der, 2004) Type Unique Identifier (TUI).

During development, we manually partitioned
the data so that we could empirically optimize
the value of C in the linear SVM classifier on
held out data. We tuned a single value of C
that optimized the micro-F score on the held-out
part of the training data. It may be possible to
squeeze out slightly better performance by tuning
C separately for each classifier, but the classifiers
were pretty stable in the range we experimented
with. We compare this system to an off-the-shelf
neural network-based system called Flair (Akbik
et al., 2018). This system is pre-trained using
one billion words of text (Chelba et al., 2013)
to learn a multi-layer Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) net-
work language model. Given the pre-trained net-
work, this system passes in the tokens for an in-
put sequence, and receives back the values at the
deepest hidden layer at each index of the multi-
layer LSTM, and this sequence of vectors is called
contextual embeddings. Like regular word embed-
dings (Turian et al., 2010; Mikolov et al., 2013;
Pennington et al., 2014), there is one vector per
input token, but since they are extracted from the
output layer of the pre-trained LSTM they are ex-
pected to contain more information about the sur-
rounding sentence context.

To train an entity extractor in Flair, we again
model the task as a BIO tagging task, but instead
of using linguistic features we simply pass the
contextual embeddings for each token to a stan-
dard LSTM tagger. This LSTM has a hidden
state with 256 dimensions, and is optimized with
Adam (Kingma and Ba, 2014). We train for 50
epochs, and the model that performs best on the
held out validation set during training is used to
prevent overfitting.

2.2.2 Relation Extraction

We built relation extraction classifiers relating
each extracted attribute to drug mentions. Rela-
tion candidate pairs were extracted by comparing
all drug mentions with the relevant attribute men-
tion within the same paragraph, where paragraphs
were defined to be delimited by two newline char-
acters. We use the same feature set as previous
work extracting relations to find anatomical site
modifiers (Dligach et al., 2014). In the end-to-end
version of the task, we considered drug mentions
discovered both by the BIO tagger model and by
cTAKES’s dictionary lookup module, which in-
creased our recall. Any drug mentions discovered
by cTAKES but not used in a relation were not
output as Drug entities.

Finally, during preliminary work, we found that
ADE and Reason entities actually behave more
like relations, since they typically needed a nearby
drug argument and some trigger words to be anno-
tated. Therefore, instead of trying to detect ADE
and Reason entities directly, we first train Drug-
ADE and Drug-Reason relation classifiers, where
the candidates for ADE and Reason arguments are
all signs/symptoms and disease/disorders detected
by cTAKES. If the relation classifier classifies a
candidate pair as a Drug-ADE relation, we not
only create the Drug-ADE relation but we create
an ADE entity out of the non-Drug argument (and
the Reason entity detector works the same way).

For relation extraction with the Flair neural
model, we use a representation based on previ-
ous work on extracting temporal narrative con-
tainer relations from sentences (Dligach et al.,
2017). For each relation candidate consisting of
a (Drug, Attribute) tuple, we insert xml-like start
and stop tokens into the sentence around each
of the candidate arguments indicating their posi-
tion. For example, the sentence: He does feel
episodes of hypoglycemia if he does not eat fol-
lowing insulin becomes: He does feel episodes of
<ADE> hypoglycemia </ADE> if he does not
eat following <Drug> insulin </Drug>. This
augmented sentence representation is then passed
into the pre-trained Flair bi-directional LSTM se-
quence model, and the final states in each direction
are concatenated into a feature vector. This feature
vector is then passed through a linear layer to a
softmax function over the output space to classify
the relation.

For Track 3 (end-to-end relation extraction), the
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Track 1 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug 0.96 0.96 0.92 0.90 0.94 0.93
Strength 0.98 0.97 0.95 0.97 0.97 0.97
Duration 0.82 0.91 0.63 0.65 0.71 0.76
Route 0.96 0.95 0.91 0.83 0.94 0.89
Form 0.97 0.93 0.92 0.95 0.95 0.94
ADE 0.66 0.58 0.20 0.18 0.31 0.27
Dosage 0.94 0.92 0.88 0.92 0.91 0.92
Reason 0.78 0.71 0.38 0.56 0.51 0.63
Frequency 0.98 0.98 0.93 0.95 0.95 0.96
Average 0.95 0.94 0.86 0.87 0.91 0.90

Table 1: Results of entity recognition experiments with
SVM vs. Neural systems.

Track 2 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug-Strength 0.93 0.99 0.96 0.98 0.94 0.98
Drug-Duration 0.81 0.93 0.83 0.86 0.82 0.89
Drug-Route 0.93 0.97 0.95 0.94 0.94 0.96
Drug-Form 0.96 0.99 0.97 0.95 0.97 0.97
Drug-ADE 0.75 0.77 0.78 0.80 0.76 0.79
Drug-Dosage 0.95 0.98 0.96 0.93 0.95 0.95
Drug-Reason 0.74 0.91 0.76 0.65 0.75 0.76
Drug-Frequency 0.90 0.98 0.92 0.94 0.91 0.96
Average 0.90 0.97 0.92 0.90 0.91 0.93

Table 2: Results of relation classification experiments
(gold standard entity arguments) with SVM vs. Neural
systems.

entity pairs found by the system in Track 1 were
used to create candidate relations during training
and testing. For Track 2, we used the gold standard
entity pairs to create the candidate relations.

Results are scored with the scoring tool
distributed by the organizers of the chal-
lenge. This tool reports scores for precision
(#TruePositives

#Predictions ), recall (#TruePositives
#GoldPositives ), and F1

score (2∗precision∗recallprecision+recall ). For concepts, true pos-
itives can be strict (the system concept span must
match a gold concept spans begin and end exactly)
or lenient (a system concept span must overlap a
gold concept span). For relations, a true positive
is one where the gold set has a relation where both
arguments match, and the relation category is the
same. For both concepts and relations, we report
micro-averaged results of the lenient evaluation,
since that was the metric used to score the shared
task.

3 Evaluation

The tables show results on the concept extrac-
tion (Table 1), relation classification (Table 2),
and end-to-end relation extraction (Table 3). In

Track 3 Precision Recall F1
SVM Neural SVM Neural SVM Neural

Drug-Strength 0.92 0.96 0.91 0.94 0.91 0.95
Drug-Duration 0.73 0.83 0.51 0.57 0.60 0.67
Drug-Route 0.92 0.94 0.86 0.77 0.89 0.85
Drug-Form 0.95 0.94 0.89 0.89 0.92 0.91
Drug-ADE 0.60 0.50 0.18 0.15 0.28 0.23
Drug-Dosage 0.92 0.92 0.84 0.84 0.88 0.88
Drug-Reason 0.66 0.65 0.31 0.46 0.42 0.54
Drug-Freq 0.90 0.96 0.86 0.87 0.88 0.92
Average 0.90 0.90 0.76 0.78 0.82 0.84

Table 3: Results of relation extraction experiments
(system-generated entity arguments) with SVM vs.
Neural systems.

the concept extraction task, the systems perform
very similarly on average, with the SVM feature-
engineered approach obtaining a micro-averaged
F-score of 0.91 and the neural system scoring 0.90
(final row). By comparison, the best performing
system at the n2c2 shared task scored 0.94 on the
concept extraction task. The middle rows of Ta-
ble 1 show the performance for different concept
types. The two systems perform similarly across
concept types, except that the SVM-based system
performs much better on Route, while the neural
system is much better at extracting Reason and
Duration concepts.

For relation classification with gold standard
concepts given as input (Table 2, top), the neu-
ral system is at least as good as the SVM-based
system for every relation type, and the micro-
averaged neural system is 0.93 compared to the
0.91 for the SVM-based system. Most improve-
ment is seen in the Drug-Duration and Drug-
Frequency categories. By comparison, the best
performing system in the n2c2 challenge scored
0.96 on Track 2.

In the end-to-end relation extraction task (Ta-
ble 3, bottom), the neural system is again two
points better than the SVM in F1 score. The SVM
performs better on Drug-Route and Drug-ADE,
while the neural system performs better in Drug-
Duration and Drug-Reason. The best performing
system in the n2c2 challenge scored 0.89 on Track
3.

4 Conclusion

Despite minimal engineering effort, neural sys-
tems pre-trained on non-medical text obtain sim-
ilar performance to feature engineered systems
with features specific to clinical text. This is per-
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haps somewhat surprising, and provides some ev-
idence that standard neural architectures for se-
quence tagging and relation extraction tasks are al-
ready quite mature. One caveat to these results is
that, while our feature-based approach used stan-
dard feature sets with history of success in the lit-
erature, one could argue that to mirror the tuning
that is done with neural networks we could have
done more extensive tuning of feature hyperpa-
rameters, by, for example, testing configurations
where certain groups of features are turned on or
off.

While the performance of the neural system in
this work is impressive, one might expect them to
perform even better if they could be pre-trained
on clinical text. Future work will investigate lan-
guage model pre-training in Flair and other neu-
ral architectures on large amounts of clinical data
from electronic health record systems. The code
developed to participate in the n2c2 challenge and
run these experiments is available open source.1
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