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Abstract

Recent work on visually grounded language
learning has focused on broader applica-
tions of grounded representations, such as vi-
sual question answering and multimodal ma-
chine translation. In this paper we consider
grounded word sense translation, i.e. the task
of correctly translating an ambiguous source
word given the corresponding textual and vi-
sual context. Our main objective is to investi-
gate the extent to which images help improve
word-level (lexical) translation quality. We do
so by first studying the dataset for this task
to understand the scope and challenges of the
task. We then explore different data settings,
image features, and ways of grounding to in-
vestigate the gain from using images in each of
the combinations. We find that grounding on
the image is specially beneficial in weaker uni-
directional recurrent translation models. We
observe that adding structured image informa-
tion leads to stronger gains in lexical transla-
tion accuracy.

1 Introduction

The multimodal machine translation (MMT)
shared task has been conducted for the past three
years (Specia et al., 2016; Elliott et al., 2017; Bar-
rault et al., 2018) with the main goal of investi-
gating the effectiveness of information from im-
ages in machine translation (MT). However, as ac-
knowledged in Barrault et al. (2018), it has been
difficult to evaluate the impact of multimodality
(images) on the sentence-level translation quality,
since the changes incurred by having an additional
modality can be quite subtle. The MMT shared
task consists of translating English sentences that
describe an image into a target language given the
English sentence itself and the image that it de-
scribes.

Recently proposed, the multimodal lexical
translation (MLT) (Lala and Specia, 2018) is a

People walking down a trail in the woods

French labels/tags:     sentier          forêt

Figure 1: A labeled example from the dataset for mul-
timodal lexical translation. Only ambiguous words in
the sentence are labeled to their corresponding transla-
tion in the target language.

similar task but focused at the word level and only
at ambiguous words. In MLT, the objective is to
correctly translate each ambiguous word in the En-
glish source sentence into a corresponding word in
the target language given the word itself, the En-
glish sentence in which it occurs and the image
being described by that sentence. This is similar
to the task of Visual Sense Disambiguation (Gella
et al., 2016) where the objective is to disambiguate
the ambiguous verbs using text and image con-
texts. The authors of MLT proposed to define a
word in the source language to be ambiguous if
it has multiple translations in the target language
with different meanings in the dataset. However,
they did not suggest any models for that.

In this paper, we propose to treat MLT as a
sequence labeling task, as depicted by the ex-
ample in Figure 1, similar to part-of-speech tag-
ging or named entity recognition. Our approach
draws inspiration from neural sequence-based ap-
proaches to word sense disambiguation (Raganato
et al., 2017; Yuan et al., 2016; Kågebäck and Sa-
lomonsson, 2016) and approaches to ground ma-
chine translation (Caglayan et al., 2017). More
specifically, we propose and empirically evalu-
ate grounded translation disambiguation models
based on recurrent sequential units for the task of
MLT. Our primary contributions are:

• An investigation of the MLT dataset to under-
stand the scope and challenges of the task:
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Train Val Test

Sentences 29,000 1,014 1,000

Labels EnDe 49,626 1,775 1,708

Labels EnFr 41,191 1,427 1,298

Table 1: Data splits of the dataset for multimodal lexi-
cal translation, where EnDe indicates English-German,
and EnFr, English-French.

we find the task is challenging because of
the skewed distribution of translation candi-
dates in the training set and that the scope
of improvements from images is about 7.8%
for English-German and 8.6% for English-
French.

• An investigation into data settings for the
task: we find that models trained to tag all
words, irrespective of their ambiguity level,
perform better than other settings.

• A study on the effect of visual representations
for grounded recurrent models: we find that
simple unidirectional recurrent models gain
more with conditioning of visual information
than stronger bidirectional recurrent models.

• An investigation on different visual repre-
sentations for the task: we find that struc-
tured image information (in the form of ob-
jects) perform better than the popularly used
ResNet pool5 image features.

2 Dataset for MLT

Lala and Specia (2018) extract the MLT dataset
from the Multi30K (Elliott et al., 2016, 2017).
MLT was also used to compute Lexical Trans-
lation Accuracy for systems submitted to the
WMT18 multimodal translation shared task (Bar-
rault et al., 2018).

The dataset consists of 31,014 images with one
English description per image, where the ambigu-
ous words in the description, if any, are labeled to
their corresponding lexical translations in the tar-
get language conforming to the given context (see
Figure 1). The dataset is split into training, valida-
tion and test sets in the same way as in the WMT’s
MMT task in 2016 (see Table 1).

2.1 Skewed Distributions of Translations

Statistics about the dataset for MLT are shown
in Table 2. We emphasize that a key aspect of

Language Pair UA APS APHW TCPA SR WSR

EnDe 745 1.68 15.0 4.1 1.8 1.5

EnFR 661 1.39 12.5 3.0 1.6 1.3

Table 2: Some key statistics of the original dataset for
MLT. UA: Unique Ambiguous words. APS: Ambigu-
ous words Per Sentence. APHW: Ambiguous words
Per Hundred Words. TCPA: Translation Candidates
Per Ambiguous word. SR: Skewness Ratio as de-
scribed in Section 2.1. WSR: Weigthed average of SRs.

the dataset worth noting is the skewed distribu-
tion over the lexical translation candidates. For
instance, the English word woods has two possi-
ble lexical translations in French in this dataset -
forêt and bois. Ideally, we would want both these
lexical translations to occur equal number of times
(uniform distribution) but in reality the distribu-
tion is skewed - bois occurs 79 times (we call it
the Most Frequent Translation (MFT)) while forêt
occurs 16 times.

For a better understanding of the skewness of
the distributions, we define a Skewness Ratio (SR)
of a word as the ratio of count of the word to the
count of its most frequent translation. For exam-
ple, SR(woods) = count(woods)/count(bois) = 1.2.
For the whole dataset, we simply average the SRs
over all the ambiguous words1. The averaged SR
will be a number between 1 and the TCPA (the
averaged Translation Candidates Per Ambiguous
word). If it is closer to 1 this means that, in the
dataset, the distribution over lexical translations is
skewed. If it is closer to TCPA, then the distribu-
tion is more uniform.

We note, our definition of Skewness Ratio is
similar to the inverse of ‘Average Time-anchored
Relative Frequency of Usage’ metric defined in
Ilievski et al. (2016) which is used to assess po-
tential bias of meaning dominance with respect to
its temporal popularity.

The averaged Skewness Ratios for both lan-
guage pairs, mentioned in Table 2, are much closer
to 1 than to their corresponding TCPAs. This
implies that the distributions over the translations
are highly skewed and suggests that it will be ex-
tremely challenging to demonstrate improvements
over the MFT because of bias to MFT as indicated
in Postma et al. (2016).

1We also compute the weighted average of SRs, called
WSR in table 2, weighted by the frequency of the ambiguous
word in the corpus
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2.2 When Humans Find Images Useful
We extended the dataset for MLT to include the
2018 test set of MMT shared task by manually la-
beling the examples. In the process, human anno-
tators were further instructed to inform whenever
the image was useful in performing lexical trans-
lation.

2.2.1 Setup
The 2018 test set of the MMT shared task was
made available, consisting of 1071 images and
one English description per image. The ambigu-
ous words from the original MLT dataset were
searched in this test set using string matching to
identify ambiguous test instances. From these test
instances, the English description together with
the ambiguous word and the set of all lexical trans-
lation candidates of the ambiguous word were
provided to human annotators who are bilingual
speakers of both English and the target language
(German or French) under consideration. The cor-
responding images were also provided but not ex-
plicitly shown to the annotators; they had the op-
tion to look at the image if they have to and specify
when they used the image.

The objective for the annotators was to se-
lect those translation candidates they thought con-
formed both the English description and the cor-
responding image; or in other words, they had to
filter out the translation candidates that did not
conform either the English description or the im-
age, while having the option to look at the image
(if they thought the visual context was needed to
make a decision) or ignore it completely (if they
thought the visual context was not needed). If
they selected all available options (i.e. they did
not filter out any single option) then those exam-
ples were removed from the study.

2.2.2 Results and Discussion
The human annotations of this experiment can be
found together with the MLT dataset on https:
//github.com/sheffieldnlp/mlt. The
results are shown in Table 3 and discussed below.

For English-German, the extension consists of
358 instances of ambiguous words. In 111 (or
31%) of these instances the annotators opted to
look at the image. In 83 of these 111 image-aware
instances the annotator selected the lexical trans-
lation candidate which happened to be the most
frequent translation. The annotators did not know
which translation candidate was the most frequent

Language Pair Ins Img Img-MFT Img-MFT / Ins (Scope)

EnDe 358 111 28 7.8%

EnFr 407 72 35 8.6%

Table 3: Results of the Human Experiment. Ins: In-
stances with ambiguous words. Img: the Ins instances
where the Image was used. Img-MFT: the Img in-
stances where the Most Frequent Translation was not
selected (filtered out) by the annotators. Img-MFT /
Ins (Scope): the ratio of Img-MFT to Ins expressed in
percentage; and as discussed in Section 2.2.2 this re-
flects the Scope of improvement at Lexical Translation
using Images.

for the given ambiguous word in the corpus. This
leaves us with 28 instances, which is 7.8% of all
the instances, where the annotators looked at the
image and chose to filter out the most frequent
translation. Although the sample size is small,
these numbers help us understand the scope of im-
age at word-level translation task (7.8% for EnDe
and 8.6% for EnFr; i.e. around 8% on average).

Ambiguous words where humans opted to look
at the image include pool, hat, coat, field, wall,
etc., suggesting textual context is not sufficient for
such words. Ambiguous words where humans ig-
nored the image include area, fall, watch, walk,
etc., suggesting the textual context is often suffi-
cient to identify the correct translation.

3 Lexical Translation Models

We explore two neural sequence labeling architec-
tures following Graves (2012), using long short-
term memory networks (LSTMs)2:

people   walking    down         a           trail         in           the        woods  

    _             _            _            _        sentier        _            _         forêt  

Softmax

LSTM

Embeddings

Figure 2: Unidirectional long short-term memory net-
work used as a tagger for lexical translation of am-
biguous words. The remaining unambiguous words are
tagged to a common label (an underscore ‘ ’ in this
case).

2We also experimented with sequence-to-sequence ap-
proaches (Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015) and their application to word sense disambigua-
tion by Raganato et al. (2017), but these performed worse.

https://github.com/sheffieldnlp/mlt
https://github.com/sheffieldnlp/mlt
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ULSTM: This is a single layer unidirectional
LSTM network (Hochreiter and Schmidhuber,
1997). A similar setting is used in Yuan et al.
(2016) as a classifier for word sense disambigua-
tion. In our setup we use the LSTM as a tagger
(see Figure 2).

BLSTM: This is a single layer bidirectional
LSTM network (Graves and Schmidhuber, 2005)
used as a tagger. BLSTMs are used in (Kågebäck
and Salomonsson, 2016) as a classifier for word
sense disambiguation and have shown promising
results. Recent work also suggests that BLSTM-
based tagging models give state of the art perfor-
mance on multilingual sequence tagging (Plank
et al., 2016).

people   walking    down         a           trail         in           the       woods  

people   walking    down         a         sentier      in           the        forêt  

Image

ResNet-50
(pretrained)

Pool5 2048D

Linear
projection

300D

Figure 3: Multimodal-BLSTM for lexical translation
of ambiguous words. Unambiguous words are tagged
to self.

We extend these architectures to make them
multimodal, as follows:

Multimodal Tagger: Following previous work
in grounded machine translation and image cap-
tioning (Caglayan et al., 2017; Karpathy and
Fei-Fei, 2015; Vinyals et al., 2015), we propose
multimodal models that are identical to the text-
only ULSTM and BLSTM models but are con-
ditioned with image information. Specifically,
the hidden states of the LSTMs are initialized
with the image features. We used the ResNet-
50 (He et al., 2016) based image features and ex-
tract 2048-dimensional features extracted from the
pool5 layer of a pre-trained ResNet-50 model.
To match the dimensions of the hidden states of
the LSTM, we learn a linear projection. A multi-
modal BLSTM architecture, trained on a data set-
ting where we also label the unambiguous words
to itself, is depicted in Figure 2.

Object-based Grounding: Given that the ambi-
guities are associated with content words, we as-
sume that these correspond to objects and propose
a model that uses objects in the image associated

to the ambiguous words. We experiment with two
ways of incorporating object information - a) Ini-
tializing and b) Prepending.

The Initializing approach is identical to the
multimodal tagger above where instead of the
2048-dimensional ResNet-50 image features we
initialize the ULSTM and BLSTM with a binary
vector representing the presence or absence of ob-
jects in the image corresponding to its ambiguous
words. In the Prepending approach, motivated by
recent work in neural machine translation (John-
son et al., 2017), we prepend the word that repre-
sents the object category (e.g. ‘person’) associated
with the ambiguous word to the source sentence.

We extract object category information from
the images using annotations on Plummer et al.
(2015). These consist of a set of 16 object cate-
gories that abstractly depict the objects present in
the image.

3.1 Data Settings

A significant proportion of sentences in the train-
ing (16% for EnDe and 21% for EnFr) dataset
do not have any ambiguous word. Therefore at
training time we experiment in two ways a) to ig-
nore such sentences (‘ambiguous sentences’ set-
ting); or b) train on all sentences (‘all sentences’
setting). Secondly, for unambiguous words (i.e.
tokens that are not labelled), we experiment in
two settings – a) leave it unlabelled (‘ambiguous
word’ setting) or b) to label it to itself (‘all words’
setting). These choices amount to four different
data settings for training.

3.2 Training and Baselines

Training and Evaluation: For optimization, we
use the Adam (Kingma and Ba, 2014) algorithm
with a learning rate = 0.001 and batch size =
32. The LSTM hidden state dimensions and the
word embedding dimensions are set to 300 and the
dropout rate is set to 0.3. Training is stopped early
if model accuracy over the validation set does not
improve for 30 epochs and then the best perform-
ing model over the validation set is selected. These
models are implemented and trained in the Tensor-
Flow framework.

As the focus of the task is on translating am-
biguous words only, we measure the performance
of all the models in terms of accuracy of correctly
translating ambiguous words, ignoring the label-
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ing accuracy on other words3. We also measure
gains from the image, i.e. the difference (∆) be-
tween the performance of multimodal and corre-
sponding text-only baseline models.

Frequency Baselines: We consider baselines
that completely disregard the visual and the textual
contexts. The Random baseline translates an am-
biguous word by selecting a translation candidate
at random. The MFT baseline selects the most fre-
quent translation of the ambiguous word as seen
in the training data. As noted earlier, the most
frequent translation is expected to be difficult to
outperform because of the skewed distribution of
translation candidates in the dataset (Postma et al.,
2016).

Text-only and Image-only Baselines: The text-
only baselines are the ULSTM and BLSTM that
do not consider the visual contexts. The image-
only baselines are the multimodal tagger condi-
tioned on the image (either image features or ob-
ject vector) except that they do not read textual
context but only the ambiguous words in the sen-
tence, i.e. all unambiguous words are removed.

4 Results and Discussion

Results of the two text-only (ULSTM and
BLSTM) and two multimodal models (UL-
STM+image and BLSTM+image) in the four dif-
ferent data settings on the test set are shown in Ta-
ble 4.

We observe that all models perform better than
Random baseline and most models perform bet-
ter than MFT. We see that the BLSTM models al-
ways perform better than the corresponding UL-
STM models, as expected.

With ResNet-50 pool5 global image features,
the multimodal ULSTM+image models perform
better than the corresponding text-only ULSTM
models in all data settings (See Table 4). This
shows ULSTM models benefit from the ResNet-
50 image features. The same cannot be said for
BLSTM. Also, ULSTM tends to gain more from
the image as compared to the BLSTM. We posit
the lack of sufficient contextual information in
ULSTMs as the reason. The visual information

3As a sanity check we note that, for all the models we ex-
perimented with, the labeling/tagging accuracy on all words
(both ambiguous and unambiguous combined) ranges be-
tween 85% and 94% on the validation set and 85% and 91%
on the test set.

Architectures EnDe ∆ EnFr ∆

Random 24.4 - 33.6 -

MFT 65.34 - 77.73 -

all sentences + ambiguous words

ULSTM 63.99 - 73.65

ULSTM+image 66.10 2.11 75.58 1.93
BLSTM 67.56 - 76.89

BLSTM+image 68.44 0.88 77.66 0.77

ambiguous sentences + ambiguous words

ULSTM 63.58 - 74.42

ULSTM+image 66.33 2.75 76.89 2.47
BLSTM 68.15 - 78.58

BLSTM+image 68.62 0.47 79.12 0.54

all sentences + all words

ULSTM 66.63 - 76.50

ULSTM+image 66.86 0.23 77.12 0.62
BLSTM 69.03 - 78.35

BLSTM+image 68.74 -0.29 78.97 0.62

ambiguous sentences + all words

ULSTM 67.27 - 78.20

ULSTM+image 67.56 0.29 78.27 0.07

BLSTM 69.61 - 80.35

BLSTM+images 69.79 0.18 80.43 0.08

Table 4: Comparing multimodal models with their text-
only counterparts in different data settings. We observe
ULSTM benefits more from the ResNet-50 global im-
age feature as compared to BLSTM.

seems to compensate for the incomplete textual
context. We provide examples in Figure 4.

En:     a balding man wearing a red life jacket is sitting in a small life boat

Reference:                   vêtir                                                             bateau

ULSTM:                       porter                                                           bateau

ULSTM+img:                vêtir                                                             bateau

BLSTM:                        vêtir                                                             bateau

BLSTM+img:                vêtir                                                             bateau

En:                           a girl wearing a life vest floats in water

Reference:                          vêtir                    flotter      eau  
                                    
ULSTM:                             porter                                   eau                                                         

ULSTM+img:                      vêtir                     flotter      eau                                 

BLSTM:                             porter                   flotter      eau                                                            

BLSTM+img:                      vêtir                     flotter      eau                                  

Figure 4: Examples showing ULSTM tends to bene-
fit more from the ResNet-50 pool5 image features as
compared to BLSTM.

Further, we observe that models perform better
in all words data settings compared to ambigu-
ous words setting. This is surprising for sequence
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Architectures EnDe ∆ EnFr ∆

Random 24.4 - 33.6 -

MFT 65.34 - 77.73 -

all sentences + ambiguous words

ImageOnly 67.56 - 77.20

ObjectOnly 68.33 - 78.89

BLSTM 67.56 - 76.89

BLSTM+image 68.44 0.88 77.66 0.77

BLSTM+object 67.80 0.24 79.28 2.39

BLSTM+object-prepend 70.08 2.52 80.89 4.00

ambiguous sentences + ambiguous words

ImageOnly 67.92 - 78.35

ObjectOnly 68.15 - 79.74

BLSTM 68.15 - 78.58

BLSTM+image 68.62 0.47 79.12 0.54

BLSTM+object 69.03 0.88 79.43 0.85

BLSTM+object-prepend 70.44 2.29 80.20 1.62

all sentences + all words

ImageOnly 67.56 - 77.20

ObjectOnly 68.33 - 78.89

BLSTM 69.03 - 78.35

BLSTM+image 68.74 -0.29 78.97 0.62

BLSTM+object 69.85 0.82 79.89 1.54

BLSTM+object-prepend 70.90 1.87 81.97 3.62

ambiguous sentences + all words

ImageOnly 67.92 - 78.35

ObjectOnly 68.15 - 79.74

BLSTM 69.61 - 80.35

BLSTM+images 69.79 0.18 80.43 0.08

BLSTM+object 69.79 0.18 81.28 0.93

BLSTM+object-prepend 71.02 1.41 82.59 2.24

Table 5: Comparing object-based grounding BLSTM
models with other BLSTM models in different data set-
tings.

labeling since in such data settings the number of
labels are larger than the source language vocabu-
lary. Nevertheless, we observe that this data set-
ting outperforms others. We hypothesize that a
possible reason is that it forces the models to cap-
ture better context. We also note that the gains ∆
from the image are larger in the ambiguous words
data setting, especially for ULSTM. This suggests
that the image information assists the model to
learn better context representations. Models tend
to perform slightly better in the ambiguous sen-
tences setting as compared to all sentences. This
hints that more data is not necessarily better as
the unambiguous sentences are not always rele-
vant to the task. This is in line with observations
in Postma et al. (2016).

Results of our proposed object-based struc-
tured grounding models (BLSTM+object and

BLSTM+objct-prepend) together with other
BLSTM models are shown in Table 5. The
object-based structured grounding models outper-
form the multimodal models that use ResNet-50
image features in most cases. More specifically,
grounding via prepending performs the best in all
data settings with gains over the corresponding
text-only baselines ranging from 1.41% to 2.52%
for EnDe and 1.62% to 4.00% for EnFr across
different data settings. The best multimodal
model is BLSTM+object-prepend trained in the
ambiguous sentences and all words data settings
and it outperforms the best performing text-only
baseline model by 1.41% for EnDe and 2.24% for
EnFr. This suggests that region-specific informa-
tion in terms of explicit objects corresponding to
the ambiguous words in the sentences are highly
beneficial. We observe a similar trend when
comparing the ObjectOnly baseline vs ImageOnly
baseline, i.e. object information is better than
ResNet-50 global image features in absence of
textual context too.

5 Conclusions

We studied the MLT dataset and found that the dis-
tribution of translation candidates is very skewed
making the word-level translation task challeng-
ing. In a human study, we found the scope of
improvement gains from images is about 7.8%
for EnDe and 8.6% for EnFr in this task on this
dataset. We proposed grounded models for the
task of word-level translation. We found the ‘am-
biguous sentences’ and ‘all words’ data setting is
most suitable for the task. Also, we found the
ULSTM tends to benefit more from the image as
compared to the BLSTM and posit that this is be-
cause the image compensates for the weak tex-
tual information for the ULSTM. We found that
object-based grounded models, i.e. models that
have explicit information about the objects associ-
ated with the ambiguities, outperform other mod-
els including ones which use the popularly used
ResNet-50 pool5 global image features. Also,
we found that grounding by prepending performs
better than initializing.
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