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Abstract

Image captioning applied to biomedical im-
ages can assist and accelerate the diagnosis
process followed by clinicians. This article is
the first survey of biomedical image caption-
ing, discussing datasets, evaluation measures,
and state of the art methods. Additionally, we
suggest two baselines, a weak and a stronger
one; the latter outperforms all current state of
the art systems on one of the datasets.

1 Introduction

Radiologists or other physicians may need to ex-
amine many biomedical images daily, e.g. PET/CT

scans or radiology images, and write their findings
as medical reports (Figure 1b). Methods assisting
physicians to focus on interesting image regions
(Shin et al., 2016) or to describe findings (Jing
et al., 2018) can reduce medical errors (e.g., sug-
gesting findings to inexperienced physicians) and
benefit medical departments by reducing the cost
per exam (Bates et al., 2001; Lee et al., 2017).

Despite the importance of biomedical image
captioning, related resources are not easily acces-
sible, hindering the emergence of new methods.
The publicly available datasets are only three and
not always directly available.1 Also, there is cur-
rently no assessment of simple baselines to de-
termine the lower performance boundary and es-
timate the difficulty of the task. By contrast, com-
plex (typically deep learning) systems are com-
pared to other complex systems, without estab-
lishing if they surpass baselines (Zhang et al.,
2017b; Wang et al., 2018). Furthermore, cur-
rent evaluation measures are adopted directly from
generic image captioning, ignoring the more chal-
lenging nature of the biomedical domain (Cohen

1See, for example, http://peir.path.uab.edu/
library/ that requires web scrapping.

(a) General image caption.

(b) Biomedical image caption.

Figure 1: Example of a caption produced by the model
of Vinyals et al. (2015) for a non-biomedical image
(1a), and example of a radiology image with its associ-
ated caption (1b) from the Pathology Education Infor-
mational Resource (PEIR) Digital Library.

and Demner-Fushman, 2014) and thus the poten-
tial benefit from employing other measures (Kil-
ickaya et al., 2016). Addressing these limitations
is crucial for the fast development of the field.

This paper is the first overview of biomedical
image captioning methods, datasets, and evalua-
tion measures. Section 2 describes publicly avail-
able datasets. To increase accessibility and en-
sure consistent results across systems, we provide
code to download and preprocess all the datasets.
Section 3 describes biomedical image captioning

http://peir.path.uab.edu/library/
http://peir.path.uab.edu/library/
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methods and attempts to compare their results,
with the caveat that only two works use the same
dataset (Shin et al., 2016; Jing et al., 2018) and can
be directly compared. Section 4 describes evalua-
tion measures that have been used and introduces
two baselines. The first one is based on word fre-
quencies and provides a low performance bound-
ary. The second one is based on image retrieval
and the assumption that similar images have sim-
ilar diagnoses; we show that it is a strong base-
line outperforming the state of the art in at least
one dataset. Section 7 discusses related (mostly
deep learning) biomedical image processing meth-
ods for other tasks, such as image classification
and segmentation. Section 8 highlights limitations
of our work and proposes future directions.

2 Datasets

Datasets for biomedical image captioning com-
prise medical images and associated texts. Pub-
licly available datasets contain X-rays (IU X-RAY

in Table 1), clinical photographs (PEIR GROSS in
Table 1), or a mixture of X-rays and photographs
(ICLEF-CAPTION in Table 1). The associated texts
may be single sentences describing the images,
or longer medical reports based on the images
(e.g., as in Figure 1b). Current publicly avail-
able datasets are rather small (IU X-RAY, PEIR

GROSS) or noisy (e.g., IMAGE-CLEF, which is the
largest dataset, was created by automatic means
that introduced a lot of noise). We do not include
in Table 1 datasets like the one of Wang et al.
(2017), because their medical reports are not pub-
licly available.2 Furthermore, we observe that all
three publicly available biomedical image caption-
ing datasets suffer from two main shortcomings:

• There is a great class imbalance, with most
images having no reported findings.

• The wide range of diseases leads to very
scarce occurrences of disease-related terms,
making it difficult for models to generalize.

IU X-RAY

Demner-Fushman et al. (2015) presented an ap-
proach for developing a collection of radiology
examinations, including images and narrative re-
ports by radiologists. The authors suggested an

2See, for example, also https://nihcc.app.box.
com/v/ChestXray-NIHCC where only images and text-
mined disease labels are released for public use.

accurate anonymization approach for textual radi-
ology reports and provided public access to their
dataset through the Open Access Biomedical Im-
age Search Engine (OpenI).3 The images are 7,470
frontal and lateral chest X-rays, and each radiology
report consists of four sections. The ‘comparison’
section contains previous information about the
patient (e.g., preceding medical exams); the ‘indi-
cation’ section contains symptoms (e.g., hypoxia)
or reasons of examination (e.g., age); ‘findings’
lists the radiology observations; and ‘impression’
outlines the final diagnosis. A system would ide-
ally generate the ‘findings’ and ‘impression’ sec-
tions, possibly concatenated (Jing et al., 2018).

The ‘impression’ and ‘findings’ sections of the
dataset of Demner-Fushman et al. (2015) were
used to manually associate each report with a
number of tags (called manual encoding), which
were Medical Subject Heading (MESH)4 and
RadLex5 terms assigned by two trained coders.
Additionally, each report was associated with au-
tomatically extracted tags, produced by Medical
Text Indexer6 (called MTI encoding). These tags
allow systems to learn to initially generate terms
describing the image and then use the image along
with the generated terms to produce the caption.
Hence, this dataset, which is the only one in the
field with manually annotated tags, has an added
value. From our processing, we found that 104 re-
ports contained no image, 489 were missing ‘find-
ings’, 6 were missing ‘impression’, and 25 were
missing both ‘findings’ and ‘impression’; the 40
image-caption-tags triplets corresponding to the
latter 25 reports were discarded in our later exper-
iments. We shuffled the instances of the dataset
(image-text-tags triplets) and used 6,674 of them
as the training set (images from the 90% of the re-
ports), with average caption length 38 words and
vocabulary size 2,091. Only 2,745 training cap-
tions were unique, because 59% of them were the
same in more than one image (e.g., similar images
with the same condition). Table 1 provides more
information about the datasets and their splits.

PEIR GROSS

The Pathology Education Informational Resource
(PEIR) digital library is a public access image

3https://openi.nlm.nih.gov/
4 https://goo.gl/iDvwj2
5http://www.radlex.org/
6https://ii.nlm.nih.gov/MTI/

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://openi.nlm.nih.gov/
https://goo.gl/iDvwj2
http://www.radlex.org/
https://ii.nlm.nih.gov/MTI/
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Dataset Images Tags Texts
IU X-RAY 7,470 X-rays MESH & MTI extracted terms 3,955 reports
PEIR GROSS 7,443 teaching images top TF-IDF caption words 7,443 sentences
ICLEF-CAPTION 232,305 medical images UMLS concepts 232,305 sentences

Dataset Training Instances Test Instances Total
IU X-RAY 6,674 756 7,430
PEIR GROSS 6,698 745 7,443
ICLEF-CAPTION 200,074 22,231 232,305

Table 1: Biomedical image captioning publicly available datasets. Images are annotated with tags, which may be
medical terms (IU X-RAY) or words from the captions (PEIR GROSS) (Jing et al., 2018). A text may be linked to
a single image (PEIR GROSS & ICLEF-CAPTION) or multiple ones (IU X-RAY). It may comprise a single sentence
(PEIR GROSS) or multiple sentences (ICLEF-CAPTION, IU X-RAY). The lower table shows the number of training
and test instances (image-text-tags triples) in each dataset, as used in our experiments. We excluded 40 out of the
7,470 IU X-RAY instances, as discussed in the main text.

database for use in medical education.7 Jing et
al. (2018), who were the first to use images from
this database, employed 7,442 teaching images of
gross lesions (i.e., visible to the naked eye) from
21 PEIR pathology sub-categories, along with their
associated captions.8 We developed code that
downloads the images for this dataset (called PEIR

GROSS) and preprocesses their respective cap-
tions, which we release for public use.9

The dataset is split to 6,698 train and 745 test in-
stances (Table 1).10 The vocabulary size from the
train captions is 4,051 with average caption length
17 words. From the 6,698 train captions only 632
were duplicates (i.e., the same caption for more
than one images), which explains why this dataset
has a much larger vocabulary than IU X-RAY, de-
spite the fact that captions are shorter.

ICLEF-CAPTION

This dataset was released in 2017 for the Im-
age Concept Detection and Caption Prediction
(ICLEF-CAPTION) task (Eickhoff et al., 2017) of
IMAGE-CLEF (de Herrera et al., 2018). The dataset
consists of 184,614 biomedical images and their
captions, extracted from biomedical articles on
PubMed Central (PMC).11 The organizers used an
automatic method, based on a biomedical image

7http://peir.path.uab.edu/library/
8PEIR pathology contains 23 sub-categories, but only 22

contain a gross sub-collection (7,443 images in total). We
observe that one image was not included by Jing et al. (2018).

9Our code is publicly available at https://github.
com/nlpaueb/bio_image_caption.

10We used 10% of the dataset for testing, as the 1k images
used by Jing et al. for validation and testing were not released.

11https://www.ncbi.nlm.nih.gov/pmc/

type hierarchy (Müller et al., 2012), to classify the
5.8M extracted images as clinical or not and also
discard compound ones (e.g., images consisting of
multiple X-rays), but their estimation was that the
overall noise in the dataset would be as high as
10% or 20% (Eickhoff et al., 2017).

In 2018, the ICLEF-CAPTION organizers em-
ployed a Convolutional Neural Network (CNN), to
classify the same 5.8M images based on their type
and to extract the non-compound clinical ones,
leading to 232,305 images along with their respec-
tive captions (de Herrera et al., 2018). Although
they reported that compound images were re-
duced, they noted that noise still exists, with non-
clinical images present (e.g., images of maps).
Additionally, a wide diversity between the types
of the images has been reported (Liang et al.,
2017). The length of the captions varies from 1
to 816 words (Su et al., 2018; Liang et al., 2017).
Only 1.4% of the captions are duplicates (associ-
ated with more than one image), probably due to
the wide image type diversity. The average cap-
tion length is 21 words and the vocabulary size is
157,256. A further 10k instances were used for
testing in 2018, but they are not publicly available.
Hence, in our experiments we split the 235,305 in-
stances into training and test subsets ( Table 1).

For tag annotation, the organizers used QUICK-
UMLS (Soldaini and Goharian, 2016) to identify
concepts of the Unified Medical Language Sys-
tem (UMLS) in the caption text, extracting 111,155
unique concepts from the 222,305 captions. Each
image is linked to 30 UMLS concepts, on aver-
age, while fewer than 6k have one or two asso-

http://peir.path.uab.edu/library/
https://github.com/nlpaueb/bio_image_caption
https://github.com/nlpaueb/bio_image_caption
https://www.ncbi.nlm.nih.gov/pmc/
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ciated concepts and there are images associated
with even thousands of concepts. The organizers
observe the existence of noise and note that irrel-
evant concepts have been extracted, mainly due to
the fully automatic extraction process.

3 Methods

Varges et al. (2012) employed Natural Language
Generation to assist medical professionals turn
cardiological findings (e.g., from diagnostic imag-
ing procedures) into fluent and readable textual de-
scriptions. From a different perspective, Schlegl
et al. (2015) used both the image and the textual
report as input to a CNN, trained to classify im-
ages with the help of automatically extracted se-
mantic concepts from the textual report. Kisilev
et al. (2015a,b) employed a radiologist to mark
an image lesion, and a semi-automatic segmenta-
tion approach to define the boundaries of that le-
sion. Then, they used structured Support Vector
Machines (Tsochantaridis et al., 2004) to generate
semantic tags, originating from a radiology lexi-
con, for each lesion. In subsequent work they used
a CNN to rank suspicious regions of diagnostic im-
ages and, then, generate tags for the top ranked re-
gions, which can be embedded in diagnostic sen-
tence templates (Kisilev et al., 2016).

Shin et al. (2016) were the first to apply a CNN-
RNN encoder-decoder approach to generate cap-
tions from medical images. They used the IU X-
RAY dataset and a Network in Network (Lin et al.,
2013) or GoogLeNet (Szegedy et al., 2015) as
the encoder of the images, obtaining better results
with GoogLeNet. The encoder was pretrained to
predict (from the images) 17 classes, correspond-
ing to MESH terms that were frequent in the reports
and did not co-occur frequently with other MESH

terms. An LSTM (Hochreiter and Schmidhuber,
1997) or GRU (Cho et al., 2014) was used as the
RNN decoder to generate image descriptions from
the image encodings. In a second training phase,
the mean of the RNNs state vectors (obtained while
describing each image) was used as an improved
representation of each training image. The orig-
inal 17 classes that had been used to pretrain the
CNN were replaced by 57 finer classes, by apply-
ing k-means clustering to the improved vector rep-
resentations of the training images. The CNN was
then retrained to predict the 57 new classes and
this led to improved BLEU (Papineni et al., 2002)
scores for the overall CNN-RNN system. The gen-

erated descriptions, however, were not evaluated
by humans. Furthermore, the generated descrip-
tions were up to 5 words long and looked more
like bags of terms (e.g., ‘aorta thoracic, tortuous,
mild’), rather than fluent coherent reports.

Zhang et al. (2017b) were the first to employ
an attention mechanism in biomedical image to
text generation, with their MDNET.12 MDNET used
RESNET (He et al., 2016) for image encoding, but
extending its skip connections to address vanish-
ing gradients. The image representation acts as
the starting hidden state of a decoder LSTM, en-
hanced with an attention mechanism over the im-
age. (During training, this attention mechanism is
also employed to detect diagnostic labels.) The de-
coder is cloned to generate a fixed number of sen-
tences, as many as the symptom descriptions. This
model performed slightly better than a state of the
art generic image captioning model (Karpathy and
Fei-Fei, 2015) in most evaluation measures.

Jing et al. (2018) segment each image to equally
sized patches and use VGG-19 (Simonyan and Zis-
serman, 2014) to separately encode each patch
as a ‘visual’ feature vector. A Multi-Layer Per-
ceptron (MLP) is then fed with the visual feature
vectors of each image (representing its patches)
and predicts terms from a pre-determined term
vocabulary. The word embeddings of the pre-
dicted terms of each image are treated as ‘seman-
tic’ feature vectors representing the image. The
decoder, which produces the image description,
is a hierarchical RNN, consisting of a sentence-
level LSTM and a word-level LSTM. The sentence-
level LSTM produces a sequence of embeddings,
each specifying the information to be expressed
by a sentence of the image description (acting as
a topic). For each sentence embedding, the word-
level LSTM then produces the words of the cor-
responding sentence, word by word. More pre-
cisely, at each one of its time-steps, the sentence-
level LSTM of Jing et al. examines both the vi-
sual and the semantic feature vectors of the im-
age. Following previous work on image caption-
ing, that added attention to encoder-decoder ap-
proaches (Xu et al., 2015; You et al., 2016; Zhang
et al., 2017b), an attention mechanism (an MLP

fed with the current state of the sentence-level

12Zhang et al. had introduced earlier TandemNet (Zhang
et al., 2017a), which also used attention, but for biomedical
image classification. TandemNet could perform captioning,
but the authors considered this task as future work, that was
addressed with MDNET.
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LSTM and each one of the visual feature vectors
of the image) assigns attention scores to the vi-
sual feature vectors, and the weighted sum of the
visual feature vectors (weighted by their attention
scores) becomes a visual ‘context’ vector, specify-
ing which patches of the image to express by the
next sentence. Another attention mechanism (an-
other MLP) assigns attention scores to the seman-
tic feature vectors (that represent the terms of the
image), and the weighted sum of the semantic fea-
ture vectors (weighted by attention) becomes the
semantic context vector, specifying which terms
of the image to express by the next sentence. At
each time-step, the sentence-level LSTM considers
the visual and semantic context vectors, produces
a sentence embedding and updates its state, until
a stop control instructs it to stop. Given the sen-
tence embedding, the word-level LSTM produces
the words of the corresponding sentence, again un-
til a special ‘stop’ token is generated. Jing et al.
showed that their model outperforms models cre-
ated for general image captioning with visual at-
tention (Vinyals et al., 2015; Donahue et al., 2015;
Xu et al., 2015; You et al., 2016).

Wang et al. (2018) adopted an approach similar
to that of Jing et al. (2018), using a RESNET-based
CNN to encode the images and an LSTM decoder
to produce image descriptions, but their LSTM is
flat, as opposed to the hierarchical LSTM of Jing
et al. (2018). Wang et al. also demonstrated that
it is possible to extract additional image features
from the states of the LSTM, much as Jing et al.
(2018), but using a more elaborate attention-based
mechanism, combining textual and visual infor-
mation. Wang et al. experimented with the same
OpenI dataset that Shin et al. and Jing et al. used.
However, they did not provide evaluation results
on OpenI and, hence, no direct comparison can
be made against the results of Shin et al. and Jing
et al. Nevertheless, focusing on experiments that
generated paragraph-sized image descriptions, the
results of Wang et al. on the (not publicly avail-
able) CHEST X-RAY dataset (e.g., BLEU-1 0.2860,
BLEU-2 0.1597) are much worse than the OpenI
results of Jing et al. (e.g., BLEU-1 0.517, BLEU-2
0.386), possibly because of the flat (not hierarchi-
cal) LSTM decoder of Wang et al.13

ICLEF-CAPTION run successfully for two con-
secutive years (Eickhoff et al., 2017; de Herrera

13CHEST X-RAY 14 contains 112,120 X-ray images with
tags (14 disease labels) and medical reports, but only the im-
ages and tags (not the reports) are publicly available.

et al., 2018) and stopped in 2019. Participating
systems (see Table 3) used image similarity to re-
trieve images similar to the one to be described,
then aggregating the captions of the retrieved im-
ages; or they employed an encoder-decoder archi-
tecture; or they simply classified each image based
on UMLS concepts and then aggregated the re-
spective UMLS ‘semantic groups’14 to form a cap-
tion. Liang et al. (2017) used a pre-trained VG-
GNET CNN encoder and an LSTM decoder, simi-
larly to Karpathy and Fei-Fei (2015). They trained
three such models on different caption lengths and
used an SVM classifier to choose the most suit-
able decoder for the given image. Furthermore,
they used a 1-Nearest Neighbor method to retrieve
the caption of the most similar image and aggre-
gated it with the generated caption. Zhang et al.
(2018), who achieved the best results in 2018, used
the Lucene Image Retrieval software (LIRE) to re-
trieve images from the training set and then sim-
ply concatenated the captions of the top three re-
trieved images to obtain the new caption. Abacha
et al. (2017) used GoogLeNet to detect UMLS con-
cepts and returned the aggregation of their respec-
tive UMLS semantic groups as a caption. Su et al.
(2018) and Rahman (2018) also employed differ-
ent encoder-decoder architectures.

Gale et al. (2018) argued that existing biomed-
ical image captioning systems fail to produce a
satisfactory medical diagnostic report from an im-
age, and to provide evidence for a medical deci-
sion. They focused on classifying hip fractures in
pelvic X-rays, and argued that the diagnostic re-
port of such narrow medical tasks could be sim-
plified to two sentence templates; one for positive
cases, including 5 placeholders to be filled by de-
scriptive terms, and a fixed negative one. They
used DENSENET (Huang et al., 2017) to get im-
age embeddings and a two-layer LSTM, with at-
tention over the image, to generate the constrained
textual report. Their results, shown in Table 2, are
very high, but this is expected due to the extremely
simplified and standardized ground truth reports.
(Gale et al. report an improvement of more than
50 BLEU points when employing this assumption.)
The reader is also warned that the results of Ta-
ble 2 are not directly comparable, since they are
obtained from very different datasets.

14https://goo.gl/GFbx1d

https://goo.gl/GFbx1d
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Method Dataset B1 B2 B3 B4 MET ROU CID
Shin et al. (2016) IU X-RAY 78.5 14.4 4.7 0.0 - - -

Jing et al. (2018)
IU X-RAY 51.7 38.6 30.6 24.7 21.7 44.7 32.7
PEIR GROSS 30.0 21.8 16.5 11.3 14.9 27.9 32.9

Wang et al. (2018) CHEST X-RAY 14† 28.6 15.9 10.3 7.3 10.7 22.6 -
Zhang et al. (2017b) BCIDR† 91.2 82.9 75.0 67.7 39.6 70.1 2.04
Gale et al. (2018) FRONTAL PELVIC X-RAYS† 91.9 83.8 76.1 67.7 - - -

Table 2: Evaluation of biomedical image captioning methods with BLEU-1/-2/-3/-4 (B1, B2, B3, B4), METEOR
(MET), ROUGE-L (ROU), and CIDER (CID) percentage scores. Zhang et al. (2017a) and Han et al. (2018) also
performed biomedical captioning, but did not provide any evaluation results. Datasets with † are not publicly
available; BDIDR consists of 1,000 pathological bladder cancer images, each with 5 reports; FRONTAL PELVIC X-
RAYS comprises 50,363 images, each supplemented with a radiology report, but simplified to a standard template;
CHEST X-RAY 14 is publicly available, but without its medical reports.

Team Year Approach BLEU
Liang et al. 2017 ED+IR 26.00
Zhang et al. 2018 IR 25.01
Abacha et al. 2017 CLS 22.47
Su et al. 2018 ED 17.99
Rahman 2018 ED 17.25

Table 3: Top-5 participating systems at the ICLEF-
CAPTION competition, ranked based on average BLEU
(%), the official evaluation measure. Systems used an
encoder-decoder (ED), image retrieval (IR), or classi-
fied UMLS concepts (CLS). We exclude 2017 systems
employing external resources, which may have seen
test data during training (Eickhoff et al., 2017). 2018
models were limited to use only pre-trained CNNs.

4 Evaluation

The most common evaluation measures in
biomedical image captioning are BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) and METEOR

(Banerjee and Lavie, 2005), which originate from
machine translation and summarization. The more
recent CIDER measure (Vedantam et al., 2015),
which was designed for general image captioning
(Kilickaya et al., 2016), has been used in only two
biomedical image captioning works (Zhang et al.,
2017b; Jing et al., 2018). SPICE (Anderson et al.,
2016), which was also designed for general image
captioning (Kilickaya et al., 2016), has not been
used in any biomedical image captioning work we
are aware of. Below, we describe each measure
separately and discuss its advantages and limita-
tions with respect to biomedical image captioning.

BLEU is the most common measure (Papineni
et al., 2002). It measures word n-gram overlap be-
tween the generated and the ground truth caption.

A brevity penalty is added to penalize short gen-
erated captions. BLEU-1 considers unigrams (i.e.,
words), while BLEU-2, -3, -4 consider bigrams, tri-
grams, and 4-grams respectively. The average of
the four variants was used as the official measure
in ICLEF-CAPTION.

METEOR (Banerjee and Lavie, 2005) extended
BLEU-1 by employing the harmonic mean of pre-
cision and recall (F-score), biased towards recall,
and by also employing stemming (Porter stemmer)
and synonymy (WordNet). To take into account
longer subsequences, it includes a penalty of up to
50% when no common n-grams exist between the
machine-generated description and the reference.

ROUGE-L (Lin et al., 2013) is the ratio of the
length of the longest common subsequence be-
tween the machine-generated description and the
reference human description, to the size of the ref-
erence (ROUGE-L recall); or to the generated de-
scription (ROUGE-L precision); or a combination
of the two (ROUGE-L F-measure). We note that
several ROUGE variants exist, based on different n-
gram lengths, stemming, stopword removal, etc.,
but ROUGE-L is the most commonly used variant
in biomedical image captioning so far.

CIDER (Vedantam et al., 2015) measures the
cosine similarity between n-gram TF-IDF repre-
sentations of the two captions (words are also
stemmed). This is calculated for unigrams to 4-
grams and their average is returned as the final
evaluation score. The intuition behind using TF-
IDF is to reward frequent caption terms while pe-
nalizing common ones (e.g., stopwords). How-
ever, biomedical image captioning datasets con-
tain many scientific terms (e.g., disease names)
that are common across captions (or more gener-
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ally document collections), which may be mistak-
enly penalized. We also noticed that the scores
returned by the provided CIDER implementation
may exceed 100%.15 We exclude CIDER results,
since these issues need to be investigated further.

SPICE (Anderson et al., 2016) extracts tuples
from the two captions (machine-generated, refer-
ence), containing objects, attributes and/or rela-
tions; e.g., (patient), (has, pain), (male, patient).
Precision and recall are computed using WordNet
synonym matching between the two sets of tuples,
and the F1 score is returned. The creators of SPICE

report improved results over both METEOR and
CIDER, but it has been noted that results depend on
parsing quality (Kilickaya et al., 2016). When ex-
perimenting with the provided implementation16

of this measure, we noticed that it failed to parse
long texts to evaluate them. Similarly to CIDER,
we exclude SPICE from further analysis below.

Word Mover’s Distance (WMD) (Kusner et al.,
2015) computes the minimum cumulative cost re-
quired to move all word embeddings of one cap-
tion to aligned word embeddings of the other cap-
tion.17 It completely ignores, however, word or-
der, and thus readability, which is one of the
main assessment dimensions in the biomedical
field (Tsatsaronis et al., 2015). Other previously
discussed n-gram based measures also largely ig-
nore word order, but at least consider local order
(inside n-grams). WMD scores are included in Ta-
ble 4 as similarity values WMS = (1 + WMD)−1.

5 Baselines

5.1 Frequency Baseline

The first baseline we propose (FREQUENCY) uses
the frequency of words in the training captions
to always generate the same caption. The most
frequent word always becomes the first word of
the caption, the next most frequent word always
becomes the second word of the caption, etc.
The number of words in the generated caption is
the average length of training captions. Systems
should at least outperform this simplistic baseline
and its score should be low across datasets.

15We used the official evaluation server implementation
CIDER-D (Chen et al., 2015).

16https://goo.gl/bo11Bz
17We used Gensim’s implementation of WMD

(https://goo.gl/epzecP) and biomedical word2vec
embeddings (https://archive.org/details/
pubmed2018_w2v_200D.tar).

5.2 Nearest Neighbor Baseline

The second baseline (NEAREST-NEIGHBOR) is
based on the intuition that similar biomedical im-
ages have similar diagnostic captions; this would
also explain why image retrieval systems perform
well in biomedical image captioning (Table 3). We
use RESNET-1818 to encode images, and cosine
similarity to retrieve similar training images. The
caption of the most similar retrieved image is re-
turned as the generated caption of a new image.
This baseline can be improved by employing an
image encoder trained on biomedical images, such
as X-rays (Rajpurkar et al., 2017).

6 Experimental Results

As shown in Table 4, FREQUENCY scores high
when evaluated with BLEU-1 and WMS, probably
because these measures are based on unigrams.
FREQUENCY, which simply concatenates the most
common words of the training captions, is re-
warded every time the most common words appear
in the reference captions.

To our surprise, NEAREST-NEIGHBOR outper-
forms not only FREQUENCY, but also the state
of the art in PEIR GROSS, in all evaluation mea-
sures (Table 4). This could be explained by the
fact that PEIR GROSS images are phototographs of
medical conditions, not X-rays, and thus they may
be handled better by the RESNET-18 encoder of
NEAREST-NEIGHBOR. In future work, we intend
to experiment with an encoder trained on medical
images (e.g., CHEXNET).19

In IU X-RAY, NEAREST-NEIGHBOR scores low
in all measures, possibly because in this case the
images are X-rays and the RESNET-18 encoder
fails to handle them properly. Again, by exper-
imenting with a different encoder, trained on X-
rays, this baseline might be improved.

In ICLEF-CAPTION, both of our baselines per-
form poorly, and much worse than the best sys-
tem (cf. Table 3), which achieved average BLEU

26%. This is partially explained by the size of this
dataset (Section 2), which contains multiple dif-
ferent images and captions. Moreover, this dataset
was created automatically and includes noise and
a great diversity of image types (e.g., irrelevant,
generic images such as maps) and captions.

18https://goo.gl/28K1y2
19https://stanfordmlgroup.github.io/

projects/chexnet/

https://goo.gl/bo11Bz
https://goo.gl/epzecP
https://archive.org/details/pubmed2018_w2v_200D.tar
https://archive.org/details/pubmed2018_w2v_200D.tar
https://goo.gl/28K1y2
https://stanfordmlgroup.github.io/projects/chexnet/
https://stanfordmlgroup.github.io/projects/chexnet/


33

Dataset Baseline B1 B2 B3 B4 MET ROU WMS

PEIR GROSS

FREQUENCY 29.4 6.9 0.0 0.0 12.2 17.9 23.6
NEAREST-NEIGHBOR 34.6 26.2 20.6 15.6 18.1 34.7 27.5
State of the art 30.0 21.8 16.5 11.3 14.9 27.9 –

IU X-RAY

FREQUENCY 44.2 7.8 0.0 0.0 17.6 18.7 30.2
NEAREST-NEIGHBOR 28.1 15.2 9.1 5.7 12.5 20.9 26.0
State of the art 78.5 38.6 30.6 24.7 21.7 44.7 –

ICLEF-CAPTION

FREQUENCY 18.2 1.9 0.1 0.0 4.6 11.1 22.1
NEAREST-NEIGHBOR 7.5 3.0 1.7 1.2 4.1 8.6 20.7
State of the art 26.00 – – –

Table 4: Evaluation of FREQUENCY and NEAREST-NEIGHBOR on all datasets, with BLEU-1/-2/-3/-4 (B1, B2, B3,
B4), METEOR (MET), ROUGE (ROU), Word Mover’s Similarity (WMS) percent scores. Best results to date per
dataset are also included (state of the art). In ICLEF-CAPTION, only the average BLEU has been reported (26.00).

7 Related Fields

Deep learning methods have been widely applied
to biomedical images and address various biomed-
ical imaging tasks (Litjens et al., 2017). Below,
we briefly describe the tasks that are most related
to biomedical image captioning, namely biomed-
ical image classification, detection, segmentation,
retrieval, as well as general image captioning.

The most related field is image captioning for
general images. This is not a new task (Duygulu
et al., 2002), but recent work leverages big datasets
and has achieved impressive results on generating
natural language captions (Karpathy and Fei-Fei,
2015). The work of Xu et al. (2015) was the first
to incorporate attention to the encoder-decoder ar-
chitecture for image captioning. Appart from im-
proving performance, attention over images helps
visualize how the model decides to generate each
word and improves interpretability. Image cap-
tioning can also be addressed jointly with other
tasks, such as video captioning (Donahue et al.,
2015) or image tagging (Shin et al., 2016).

Biomedical image classification aims at classi-
fying a biomedical image as normal or abnormal,
or assigning multiple disease labels (Rajpurkar
et al., 2017, 2018). Also, it may refer to classi-
fying an abnormality as malignant or benign (Es-
teva et al., 2017), or assigning other labels (e.g,
labels showing the severity of a lesion). A related
task is biomedical image detection, which is used
to localize and highlight organs or wider anatomi-
cal regions (de Vos et al., 2016) as well as specific
abnormalities (Dou et al., 2016). This task is per-
formed as a first step to assist other tasks, such
as image classification or segmentation (Bi et al.,

2017; Rajpurkar et al., 2017).
Biomedical image segmentation aims to divide

a biomedical image to different regions represent-
ing organs or abnormalities, which can be used for
further medical analysis, to learn their features, or
classification. The most popular CNN-based archi-
tecture is U-NET (Ronneberger et al., 2015), a ver-
sion of the network of Long et al. (2015), altered
to produce more precise outputs. Later works (Ö.
Çiçek et al., 2016; Milletari et al., 2016) extended
U-NET for 3D image segmentation.

Biomedical image retrieval facilitates searching
images in large biomedical databases, based on
certain features like symptoms, diseases, and med-
ical cases in general (Liu et al., 2016). Related
tasks are also image registration, which performs
a spatial alignment of the images (Miao et al.,
2016; Yang et al., 2016), biomedical image gen-
eration (Bahrami et al., 2016), and resolution en-
hancement of 2D and 3D biomedical images (Ok-
tay et al., 2016).

8 Limitations and Future Work

This paper is a first step towards a more exten-
sive survey of biomedical image captioning meth-
ods. We plan to improve it in several ways.
Firstly, we hope to investigate to a larger extent
the differences between generic image captioning
and biomedical image captioning. For example,
generic image captioning aims to describe an im-
age, whereas biomedical captioning should ideally
help in diagnosis; parts of the image with no di-
agnostic interest are typically not discussed in a
medical report. This investigation may also shed
more light to the discussion of appropriate evalu-
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ation measures for biomedical image captioning,
and the extent to which evaluation measures from
generic image captioning, summarizaton, or ma-
chine translation are appropriate.

Secondly, we hope to distill key features from
current biomedical image captioning methods
(e.g., methods that first tag the images and then
generate captions from both the images and their
tags vs. methods that directly generate captions;
methods that retrieve similar images vs. methods
that do not; types of pretraining used in image
encoders and text decoders). This will allow us
to provide a more structured and coherent presen-
tation of current methods and highlight possible
choices that have not been explored so far.

Thirdly, we plan to consult physicians (e.g., ra-
diologists, nuclear doctors) to obtain a better view
of their real-life needs and the degree to which
current methods are aligned with their needs. We
would also like to contribute to a roadmap of fu-
ture activities towards integrating biomedical im-
age captioning methods in real-life diagnostic pro-
cedures and clinical diagnosis systems.
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