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Abstract

Procedural text, which describes entities and
their interactions as they undergo some pro-
cess, depicts entities in a uniquely nuanced
way. First, each entity may have some ob-
servable discrete attributes, such as its state
or location; modeling these involves impos-
ing global structure and enforcing consistency.
Second, an entity may have properties which
are not made explicit but can be effectively in-
duced and tracked by neural networks. In this
paper, we propose a structured neural archi-
tecture that reflects this dual nature of entity
evolution. The model tracks each entity recur-
rently, updating its hidden continuous repre-
sentation at each step to contain relevant state
information. The global discrete state struc-
ture is explicitly modelled with a neural CRF
over the changing hidden representation of the
entity. This CRF can explicitly capture con-
straints on entity states over time, enforcing
that, for example, an entity cannot move to
a location after it is destroyed. We evaluate
the performance of our proposed model on QA
tasks over process paragraphs in the PROPARA
dataset (Dalvi et al., 2018) and find that our
model achieves state-of-the-art results.

1 Introduction

Many reading comprehension question answering
tasks (Richardson et al., 2013; Rajpurkar et al.,
2016; Joshi et al., 2017) require looking at primar-
ily one point in the passage to answer each ques-
tion, or sometimes two or three (Yang et al., 2018;
Welbl et al., 2018). As a result, modeling surface-
level correspondences can work well (Seo et al.,
2017) and holistic passage comprehension is not
necessary. However, certain QA settings require
deeper analysis by focusing specifically on enti-
ties, asking questions about their states over time
(Weston et al., 2015; Long et al., 2016), combina-

tion in recipes (Bosselut et al., 2018), and partic-
ipation in scientific processes (Dalvi et al., 2018).
These settings then suggest more highly structured
models as a way of dealing with the more highly
structured tasks. One crucial aspect of such texts is
the way an entity’s state evolves with both discrete
(observable state and location changes) and con-
tinuous (changes in unobserved hidden attributes)
phenomena going on. Additionally, the discrete
changes unfold in a way that maintains the state
consistency: an entity can not be destroyed before
it even starts to exist.

In this work, we present a model which both re-
currently tracks the entity in a continuous space
while imposing discrete constraints using a condi-
tional random field (CRF). We focus on the sci-
entific process understanding setting introduced in
Dalvi et al. (2018). For each entity, we instantiate
a sentence-level LSTM to distill continuous state
information from each of that entity’s mentions.
Separate LSTMs integrate entity-location infor-
mation into this process. These continuous com-
ponents then produce potentials for a sequential
CRF tagging layer, which predicts discrete entity
states. The CRF’s problem-specific tag scheme,
along with transition constraints, ensures that the
model’s predictions of these observed entity prop-
erties are structurally coherent. For example, in
procedural texts, this involves ensuring existence
before destruction and unique creation and de-
struction points. Because we use global inference,
identifying implicit event creation or destruction
is made easier, since the model resolves conflicts
among competing time steps and chooses the best
time step for these events during sequence predic-
tion.

Past approaches in the literature have typically
been end-to-end continuous task specific frame-
works (Henaff et al., 2017; Bosselut et al., 2018),
sometimes for tasks that are simpler and more syn-
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Figure 1: Task and our proposed model. Top: raw text descriptions are annotated with entity-state change informa-
tion; we modify this in a rule-based way for our model. Bottom: our model. Entity mention and verb information
is aggregated in per-entity LSTMs (right). A CRF layer then predicts entity state. A separate sentence-level LSTM
(left) tracks each entity-location pair using the combined entity and location mention information.

thetic (Weston et al., 2015), or continuous entity-
centric neural language models (Clark et al., 2018;
Ji et al., 2017). For process understanding specifi-
cally, past work has effectively captured global in-
formation (Dalvi et al., 2018) and temporal char-
acteristics (Das et al., 2019). However, these mod-
els do not leverage the structure constraints of the
problem, or only handle them heuristically (Tan-
don et al., 2018). We find that our model out-
performs these past approaches on the PROPARA

dataset of Dalvi et al. (2018) with a significant
boost in questions concerning entity state, regard-
less of the location.

2 Model

We propose a structured neural model for the pro-
cess paragraph comprehension task of Dalvi et al.
(2018). An example from their dataset is shown in
Figure 1. It consists of annotation over a process
paragraph w = {wi}Pi=1 of P tokens described by
a sequence of T sentences s = {st}Tt=1. A pre-
specified set of entities E = {ek}mk=1 is given as
well. For each entity, gold annotation is provided
consisting of the state (EXISTS, MOVES, etc.) and
location (soil, leaf ) after each sentence. From this
information, a set of questions about the process
can be answered deterministically as outlined in
Tandon et al. (2018).

Our model, as depicted in Fig. 1, consists of
two core modules: (i) state tracking, and (ii) lo-
cation tracking. We follow past work on neural
CRFs (Collobert et al., 2011; Durrett and Klein,
2015; Lample et al., 2016), leveraging continuous
LSTMs to distill information and a discrete CRF
layer for prediction.

2.1 State Tracking

This part of the model is charged with modeling
each entity’s state over time. Our model places a
distribution over state sequences y given a passage
w and an entity e: P (y|w, e).

Contextual Embeddings Our model first com-
putes contextual embeddings for each word in
the paragraph using a single layered bidirectional
LSTM. Each token word wi is encoded as a vec-
tor xi = [emb(wi); vi] which serves as input to
the LSTM. Here, emb(wi) ∈ Rd1 is an embed-
ding for the word produced by either pre-trained
GloVe (Pennington et al., 2014) or ELMo (Peters
et al., 2018) embeddings and vi is a scalar binary
indicator if the current word is a verb. We denote
by hi = LSTM([xi]) the LSTM’s output for the
ith token in w.

Entity Tracking LSTM To track entities across
sentences for state changes, we use another task
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specific bidirectional LSTM on top of the base
LSTM which operates at the sentence level. The
aim of this BiLSTM is to get a continuous rep-
resentation of the entity’s state at each time step,
since not all time steps mention that entity. This
representation can capture long-range information
about the entity’s state which may not be summa-
rized in the discrete representation.

For a fixed entity e and each sentence st in the
paragraph, the input to the entity tracking LSTM
is the contextual embedding of the mention loca-
tion1 of the entity e in st, or a mask vector when
the entity isn’t present in st. Let xe

t denote the
representation of entity e in sentence t. Then

xe
t =

{
[he

t ;h
v
t ], if e ∈ st

zero vector, otherwise
(1)

where he
t and hv

t denote the contextual embed-
dings of the entity and the associated verb, respec-
tively, from the base BiLSTM. In case of multiple
tokens, a mean pooling over the token represen-
tations is used. Here, the information about verb
is extracted using POS tags from an off-the-shelf
POS tagger. The entity tracking LSTM then pro-
duces representations h̃e

t = LSTM([xe
t ]).

Neural CRF We use the output of the entity
tracking BiLSTM to generate emission potentials
for each tag in our possible tag set at each time
step t:

φ(yt, t,w, e) = WT
yth̃

e
t (2)

where W is a learnable parameter matrix. For the
specific case of entity tracking, we propose a 6 tag
scheme where the tags are as follows:

Tags Description

OB , OA None state before and after existence, resp.
C,D Creation and destruction event for entity, resp.
E Exists in the process without any state change
M Entity moves from loca to locb

Table 1: Proposed tag scheme for the neural CRF
based model for entity tracking.

Additionally, we train a transition matrix to get
transition potentials between tags which we de-
note byψ(yi−1, yi) and two extra tags: 〈START〉
and 〈STOP〉. Finally, for a tag sequence y, we

1We use mention location to differentiate these from the
physical entity locations present in this QA domain.

get the probability as:

P (y|w, e)∝exp
( T∑

i=0

φi(yi,w, e)+ψ(yi−1, yi)
)

(3)

2.2 Location Tracking

To complement entity’s state changes with the
change in physical location of the entity, we use
a separate recurrent module to predict the loca-
tions. Given a set of potential locations L =
(l1, l2, . . . , ln), where each lj ∈ L is a continuous
span in w, the location predictor outputs a distri-
bution for a passage w and entity e, at a given time
step t as P (l|w, e, t).

Identifying potential locations Instead of con-
sidering all the spans of text as candidates for po-
tential locations, we systematically reduce the set
of locations by utilizing the part of speech (POS)
tags of the tokens, whereby extracting all the max-
imal noun and noun + adjective spans as potential
physical location spans. Thus, using an off-the-
shelf POS tagger, we get a set L = (l1, l2, . . . , ln)
of potential locations for each w. These heuristics
lead to a 85% recall classifier for locations which
are not null or unk.2

Location Tracking LSTM For a given location
l and an entity e, we take the mean of the hid-
den representations of tokens in the span of l in st
(or else a mask vector) analogous to the input for
entity state tracking LSTM, concatenating it with
the mention location of the entity e in st, as input
for time-step t for the tracking this entity-location
pair with h̃e,l

t = LSTM
(
[xe,l

t ]
)

. Fig. 1 shows
an example where we instantiate location tracking
LSTMs for each pair of entity e and potential loca-
tion l. In the example, e ∈ {water, CO2, sugar}
and l ∈ {soil, leaf}.

Softmax over Location Potentials The output
of the location tracking LSTM is then used to gen-
erate potentials by for each entity e and location
l pair for a time step t. Taking softmax over the
potentials gives us a probability distribution over
the locations l at that time step t for that entity e:
pe,lt = softmax(wT

loch̃
e,l
t )

2Major non-matching cases include long phrases like
“deep in the earth”, “side of the fault line”, and “area of high
elevation” where the heuristics picks “earth”, “fault line”, and
“area”, respectively.
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Model Task-1 Task-2

Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg Precision Recall F1

EntNet (Henaff et al., 2017) 51.62 18.83 7.77 26.07 25.96 50.2 33.5 40.2
QRN (Seo et al., 2017) 52.37 15.51 10.92 26.26 26.49 55.5 31.3 40.0

ProGlobal (Dalvi et al., 2018) 62.95 36.39 35.90 45.08 45.37 46.7 52.4 49.4
ProStruct (Tandon et al., 2018) - - - - - 74.2 42.1 53.75

KG-MRC (Das et al., 2019) 62.86 40.00 38.23 47.03 46.62 64.52 50.68 56.77

This work: NCET 70.55 44.57 41.34 52.15 52.31 64.2 53.9 58.6
This work: NCET + ELMo 73.68 47.09 41.03 53.93 53.97 67.1 58.5 62.5

Table 2: Results on the sentence-level (Task-1) and document-level (Task-2) evaluation task of the PROPARA
dataset on the test set. Our proposed CRF-based model achieves state of the art results on both the tasks compared
to the previous work in (Das et al., 2019). Incorporating ELMo further improves the performance for the state
tracking module, as we see from the gains in Cat-1 and Cat-2.

2.3 Learning and Inference

The full model is trained end-to-end by minimiz-
ing the negative log likelihood of the gold state
tag sequence for each entity and process paragraph
pair. The location predictor is only trained to make
predictions when the gold location is defined for
that entity in the dataset (i.e., the entity exists).

At inference time, we perform a global state
change inference coupled with location prediction
in a pipelined fashion. First, we use the state track-
ing module of the proposed model to predict the
state change sequence with the maximum score
using Viterbi decoding. Subsequently, we predict
locations where the predicted tag is either create
or move, which is sufficient to identify the object’s
location at all times since these are the only points
where it can change.

3 Experiments

We evaluate the performance of the proposed
model on the two comprehension tasks of the
PROPARA dataset (Dalvi et al., 2018). This dataset
consists of 488 crowdsourced real world process
paragraphs about 183 distinct topics in the science
genre. The names of the participating entities and
their existence spans are identified by expert an-
notators. Finally, crowd workers label locations
of participant entities at each time step (sentence).
The final data consists of 3.3k sentence with an av-
erage of 6.7 sentences and 4.17 entities per process
paragraph. We compare our model, the Neural
CRF Entity Tracking (NCET) model, with bench-
mark systems from past work.

3.1 Task 1: Sentence Level

This comprehension task concerns answering 10
fine grained sentence level templated questions

grouped into three categories: (Cat-1) Is e Cre-
ated (Moved, Destroyed) in the process (yes/no for
each)? (Cat-2) When was e Created (Moved, De-
stroyed)? (Cat-3) Where was e Created, (Moved
from/to, Destroyed)? The ground truth for these
questions were extracted by the application of sim-
ple rules to the annotated location state data. Note
that Cat-1 and Cat-2 can be answered from our
state-tracking model alone, and only Cat-3 in-
volves location.

As shown in Table 2, our model using GloVe
achieves state of the art performance on the test
set. The performance gain is attributed to the gains
in Cat-1 and Cat-2 (7.69% and 4.57% absolute),
owing to the structural constraints imposed by the
CRF layer. The gain in Cat-3 is relatively lower as
it is the only sub-task involving location tracking.
Additionally, using the frozen ELMo embedding
the performance further improves with major im-
provements in Cat-1 and Cat-2.

3.2 Task 2: Document Level

The document level evaluation tries to capture a
more global context where the templated3 ques-
tions set forth concern about the whole paragraph
structure: (i) What are the inputs to the process?
(ii) What are the outputs of the process? (iii)
What conversions occur, when and where? (iv)
What movements occur, when and where? Table 2
shows the performance of the model on this task.
We achieve state of the art results with a F1 of
58.6.

3Inputs refer to the entities which existed prior to the pro-
cess and are destroyed during it. Outputs refer to the entities
which get created in the process without subsequent destruc-
tion. Conversion refers to the simultaneous event which in-
volves creation of some entities coupled with destruction of
others.
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Model C-1 C-2 C-3 Mac. Mic.

NCET 72.27 46.08 40.82 53.06 53.13

Tag Set 1 71.53 41.89 41.42 51.61 51.94
Tag Set 2 71.97 41.85 39.71 51.18 51.43
No trans. 71.68 44.22 40.38 52.09 52.24

No verb 73.16 42.58 41.85 52.53 52.85
Attn. 61.69 22.80 36.44 40.31 41.38

Table 3: Ablation studies for the proposed architecture.

3.3 Model Ablations

We now examine the performance of the model by
comparing its variants along two different dimen-
sions: (i) modifying the structural constraints for
the CRF layer, and (ii) making changes to the con-
tinuous entity tracking.

Discrete Structural Constraints We experi-
ment with two new tag schemes: (i) tag1 : OA =
OB , and (ii) tag2 : OA = E = OB . As shown
in Table 3, the proposed 6 tag scheme outperforms
the simpler tag schemes indicating that the model
is able to gain more from a better structural anno-
tation. Additionally, we experiment with remov-
ing the transition features from our CRF layer,
though we still use structural constraints. Taken
together, these results show that carefully captur-
ing the domain constraints in how entities change
over time is an important factor in our model.

Continuous Entity Tracking To evaluate the
importance of different modules in our continu-
ous entity tracking model, we experiment with
(i) removing the verb information, and (ii) taking
attention-based input for the entity tracking LSTM
instead of the entity-mention information. This
way instead of giving a hard attention by focus-
ing exactly on the entity, we let the model learn
soft attention across the tokens for each time-step.
The model can now learn to look anywhere in a
sentence for entity information, but is not given
prior knowledge of how to do so. As shown, using
attention-based input for entity tracking performs
substantially worse, indicating the structural im-
portance of passing the mask vector.

4 Conclusion

In this paper, we present a structured architecture
for entity tracking which leverages both the dis-
crete and continuous characterization of the en-
tity evolution. We use a neural CRF approach to

model our discrete constraints while tracking enti-
ties and locations recurrently. Our model achieves
state of the art results on the PROPARA dataset.
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