
R-grams: Unsupervised Learning of Semantic Units

Ariel Ekgren†

RISE
ariel.ekgren@gmail.se

Amaru Cuba Gyllensten†

RISE
amaru.cuba.gyllensten@ri.se

Magnus Sahlgren
RISE

magnus.sahlgren@ri.se

Abstract

This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques.
In contrast to previous work which has primarily been focused on subword units for machine transla-
tion, we are interested in the general properties of such segments above the word level. We call these
segments r-grams, and discuss their properties and the effect they have on the token frequency distri-
bution. The proposed approach is evaluated by demonstrating its viability in embedding techniques,
both in monolingual and multilingual test settings. We also provide a number of qualitative exam-
ples of the proposed methodology, demonstrating its viability as a language-invariant segmentation
procedure.

1 Introduction

Natural Language Processing (NLP) requires data to be segmented into units. These units are normally
called words, which in itself is a somewhat vague and controversial concept (Haspelmath, 2011) that
is often operationalized as meaning something like “white-space (and punctuation) delimited string of
characters”. Of course, some languages do not use white-space delimiters, such as Chinese and Thai,
which have context-dependent notions of what constitute words without special symbols dedicated to
segmentation. As an example, the sequence 我喜欢新西兰花 can be segmented (correctly) in two
different ways (Badino, 2004):

我/喜欢/新/西兰花
I like fresh broccoli
我/喜欢/新西兰/花

I like New Zealand flowers

Even for white-space segmenting languages, it is seldom as simple as merely using white-space
delimited strings of characters as atomic units. As one example, morphologically sparse languages such
as English rely to a large extent on word order to encode grammar, which means that such languages
often form lexical multi-word units, which by all accounts function as atomic units on the same level
as white-space delimited words. As an example, “white house” and “rock and roll” are both distinct
semantic concepts that it would be beneficial to include as atomic units in an NLP application.

Of course, atomic units of language can also exist below the level of white-space delimited strings of
characters. In linguistics, morphemes are defined as the atomic units of language. For synthetic languages
such as Turkish, Finnish, or Greenlandic, where grammatical relations are encoded by morphology rather
than word order, there can be a possibly large number of morphemes within one single white-space de-
limited string of characters. The canonical example in this case tends to be Western Greenlandic, which
is a polysynthetic language that produces notoriously long white-space delimited string of characters.
As an example, the string “tusaanngitsuusaartuaannarsinnaanngivipputit” consists of 9 different mor-
phemes (“hear”|neg.|intrans.participle|“pretend”|“all the time”|“can”|neg.|“really”|2nd.sng.indicat.) and

†These authors contributed equally to the work.

means “you simply cannot pretend not to be hearing all the time”. One white-space delimited string of
characters in Western Greenlandic, eleven in English.

Similarly, compounding languages such as Swedish can form productive compounds, where a poten-
tially large number of words (and morphemes) are compounded into one single white-space delimited
string of characters. As an example, the string “forskningsinformationsförsörjningssystemet” is a com-
pound of the words for research information supply system.

The arbitrariness of segmenting units based on white space becomes especially clear when consid-
ering translations between languages. As one example, the concept of a “knife sharpener” is realized
as two white-space delimited strings of characters in English, one in Swedish (“knivslip”), and three in
Spanish (“afilador de cuchillo”).

Segmentation is thus as non-trivial as it is foundational for NLP. Consequently, there exists a large
body of work on segmentation algorithms (often driven by the need for segmenting languages other
than English). Examples include Webster and Kit (1992); Chen and Liu (1992); Saffran et al. (1996);
Beeferman et al. (1999); Kiss and Strunk (2006); Huang et al. (2007). Related areas (from the perspec-
tive of segmentation) such as multiword expressions and morphological normalization also have a rich
literature of prior art. For multiword expressions, see e.g. Sag et al. (2002); Baldwin and Kim (2010);
Constant et al. (2017), and for morphological normalization see e.g. Porter (1980); Koskenniemi (1996);
Yamashita and Matsumoto (2000).

In recent years, interest have begun to shift towards the use of character-level techniques, which by-
pass the problem of segmentation by simply operating on the raw character sequence. Much of this work
is driven by research on deep learning, and techniques inspired by neural language models (Sutskever
et al., 2011; Kim et al., 2016). In theory, such models can learn task-specific segmentations of the input
that are optimal for solving whatever task the network is trained to perform.

The approach presented in this paper is inspired by character-level modeling, but in contrast to such
techniques we seek a task-independent and objective segmentation of text. Our work is motivated by
the idea that if there exists an optimal and language-invariant segmentation of text, it should be based on
statistical properties of language rather than heuristics. We argue that such a segmentation exists, and
introduce a novel type of data-driven segmented unit: the recursion-gram or r-gram in short. The name
is inspired by the n-gram introduced by Shannon (1948), who used it to explore language modeling in the
context of information entropy, which was also introduced in the same paper. Our approach is inspired
by information theoretic concerns.

In the applications where r-grams can be used, it replaces segmentation but not necessarily normal-
ization. R-grams capture a range of semantic units from morphemes (or more generally, parts of words)
to words to compounds to multi-word units, all based on simple frequency statistics. In this paper, we
demonstrate an algorithm for computing one type of r-grams, and discuss novel observations and charac-
teristics of the statistical distribution of natural language. We then demonstrate how r-grams can be used
as basic building blocks in embeddings, and evaluate the resulting embeddings using both monolingual
and multilingual test sets. We conclude the paper with some directions for future research.

2 R-grams and compression algorithms

Given a sequence over a finite alphabet, an r-gram is a variable length subsequence, derived by a set of
well defined statistical rules, segmenting the original sequence into a set of subsequences.

2.1 A first class of r-grams

The fundamental idea of r-grams is deceptively simple. Given a sequence of discrete symbols sampled
from a finite alphabet, find the most common pair of adjacent symbols and replace all instances of the
pair with instances of a new single symbol, extending the alphabet by one, repeat until no more pairs can
be found or some other criterion is fulfilled.

Iteration Sequence Alphabet Replacement
0 s =< β, β, β, α, β, β, β, α, β, β, β > A = α, β < β, β >→ γ
1 s =< γ, β, α, γ, β, α, γ, β > A = α, β, γ < γ, β >→ δ
2 s =< δ, α, δ, α, δ > A = α, β, γ, δ

Table 1: Procedure to derive r-grams.

Table 1 illustrates an example where we have a sequence S and an alphabet A. We show the first two
iterations of the algorithm, at each step identifying the most common pair in the sequence and replacing
it by a new symbol. Two new symbols γ and δ are introduced. We observe a hierarchical structure where
δ contains γ which in turn contains symbols from the original alphabet. δ can thus be expanded into three
elements from the original alphabet δ = (β, β, β). The observant reader might notice that there are some
cases that require additional definitions. If two pairs overlap, as in the original sequence in the example,
a rule for which pair to replace first has to be defined. In this example the rule was that the first from left
to right observed pair is replaced. Another case is when there are more than one alternative for the most
common pair, when the pairs has an equal amount of observations, then a rule on which pair to prioritize
has to be defined. In the example above two r-grams were created: γ =< β, β > and δ =< β, β, β >.

If n iterations of this procedure are performed on a sequence, the sequence is compressed, but the
alphabet is expanded. Given that the compression of the sequence is larger than the expansion of the
alphabet, we end up with a more compact representation of the underlying sequence. This exact proce-
dure turns out to be an excellent compression algorithm named re-pair in the family of dictionary-based
compression (Larsson and Moffat, 2000). A remarkable property of this procedure is that, if the se-
quence is generated by an ergodic process, the segmented sequence becomes asymptotically Markov as
the procedure is continually applied (Benedetto et al., 2006).

A close relative to the re-pair algorithm is Byte Pair Encoding (BPE) (Gage, 1994), first used in
the context of segmentation by Schuster and Nakajima (2012) and recently popularized in within deep
learning by Sennrich et al. (2016). The segmentation method has primarily been used for finding subword
units for later processing in recurrent neural networks, e.g. Wu et al. (2016) Sennrich et al. (2016).

Published libraries for Byte Pair Encoding as segmentation exists in the form of, e.g. SentencePiece
Kudo and Richardson (2018), and the resulting segments are commonly referred to as either “senten-
cepieces” or “wordpieces”, the latter stressing their use as subword units. Functionally, the difference
between such segmentation procedures and the r-gram algorithm is small, if at all existent. Crucially,
however, we are interested in the properties of the segmented units (which we call r-grams) and the
grammar they form, rather than their use as a preprocessing step.

2.2 Implementation details

The naive r-gram algorithm runs in quadratic time relative to the sequence length: find the most common
pair in linear time, merge it, and repeat the process. This is prohibitively expensive. Thankfully there
exists algorithms (namely re-pair and BPE) that recalculates the pair-frequencies in an efficient way,
resulting in linear time algorithms. We have implemented a slightly modified version of the re-pair
algorithm laid out in Larsson and Moffat (2000) that allows for other stopping criteria and accounts for
document and sentence boundaries:
Stopping criterion. We define two stopping criteria for the merges of the r-grams, which we simply
call minimum frequency and maximum vocabulary. The minimum frequency criterion states that a new
r-gram can be merged if its frequency exceeds the minimum frequency threshold, and the maximum
vocabulary criterion simple states that new r-grams can be merged as long as the size of the vocabulary
does not exceed the maximum vocabulary threshold.
Sequences boundaries. In natural language there are segmentations that signal a new local context such
as sentence, paragraph or document boundaries. We generalize our statistics and alphabet collection over
these boundaries but we do not create r-grams that overlap them.

Figure 1: Ranked word and r-gram frequency distribution for the first hundred items in a subset of
English Wikipedia.

The result of the re-pair compression algorithm on sequence S is (1) a mapping from r-grams to their
constituent parts (e.g. γ → 〈β, β〉 from example 1) and (2) a compressed sequence Sc of the original
sequence S, where Sc is a sequence of r-grams rather than symbols from the original alphabet. By
applying the mapping recursively down to the terminal symbols, the original sequence can be restored.
When using r-grams as a segmentation technique, the sequence Sc is taken to be a segmentation of S.

3 Frequency distribution of data

It is a well-known fact that the vocabulary of natural languages as segmented by traditional approaches
follow a Zipfian distribution (Zipf, 1932). It is also a well-known fact that the majority of the frequency
spectrum of traditionally segmented natural language is comprised of a small number of very high-
frequent items, which are normally referred to as stop words. These high-frequent items are normally
viewed as semantically vacuous, and are therefore generally not included in NLP applications. This prac-
tice has been around since the 1950s, when Hans Peter Luhn connected the “resolving power” of words
in language to their frequency distribution (Luhn, 1958). Current methods in NLP still use basically
the same type of algorithmic compensation for the power law distribution of word tokens in written text,
whether it is the use of inverse document frequency in document processing applications, or subsampling
(Mikolov et al., 2013), mutual information (Church and Hanks, 1990), or incremental frequency weight-
ing (Sahlgren et al., 2016) in word embeddings. There is even debate whether the Zipfian distribution is
an inherent language-specific feature or an emergent phenomenon sprung from the process of drawing
and counting various-length character sequences from a finite alphabet (Piantadosi, 2014).

From an information theoretic and information entropy perspective, a uniform distribution carries
the most surprise (Shannon, 1948) and thus also the most information. The Zipfian distribution belongs
to the power law family and is highly non-uniform. Keeping both the practice of throwing away stop
words and the information entropy perspective in mind, there is reason to believe that there exists more
informative segmentations than word level segmentation for natural language.

Figure 1 shows the ranked frequency distributions for the 100 most high-frequent words and r-grams
in a subset of English Wikipedia. The r-grams are computed over an increasing number of iterations
(the r parameter), and the figure clearly shows how the frequency distribution is flattened as the number
of iterations of the r-gram algorithm is increased. This is a natural consequence of the algorithm, since
it finds common elements and reforges some of them into new elements, reducing the frequency of
common elements. In of itself this observation does not hold much value, but inspecting the r-grams
created it seems that they capture semantic regularities such as morphemes, words and multi word units.
Table 2 demonstrates the effect of applying the algorithm to a 735MB sample text drawn from English
Wikipedia. Note that after 100 iterations, the algorithm has formed the copula (“is”) and a determiner

Merges Text
10 r a n n e b er g er _ (b o r n _ 1 9 4 9) _ i s _a _ f o r m er _ u
100 r an n e b er g er_ (b or n _ 19 4 9) _ is _a_ for m er_ un it ed_
1000 ran ne ber g er_ (born _ 194 9) _is_a_ form er_ united_stat es _am
20000 ran ne berg er_(born_ 1949)_is_a_former_ united_states _ambassador
100000 ran ne berg er_(born_ 1949)_is_a_former_ united_states _ambassador_t
400000 ran neberg er_(born_ 1949)_is_a_former_ united_states_ambassador_to_

Table 2: Textual example of r-grams being merged from English Wikipedia

(“a”). After 1000 iterations, it has collapsed these into a common unit (“is a”) as well as the word “born”
and the beginning of the collocation “united states”. After 400 000 iterations, the algorithm has learned
several long sequences, such as “is a former” and “united states ambassador to”.

Note that this has been learned from the statistics of the sequence alone, with all characters being
treated as equal with no specific rules for whitespace or other special characters, with the exception for
sequence separators such as newline. The important thing to note is that the r-gram algorithm learns
units that would normally be discarded in NLP applications, since they contain (or, in the extreme case,
consist entirely of) stop words. As an example, the phrase “has yet to be” constitutes a semantically
useful unit that would be completely discarded when using standard stop word filtering.

4 Experiments

4.1 R-grams in word embeddings

The domain of NLP that focuses specifically on the semantics of units of language is called distribu-
tional semantics, where semantics is modeled using distributional vectors or word embeddings. Word
embeddings encode semantic similarity by minimizing distance between vectors in a latent space, which
is defined by co-occurrence information. Many methods for creating word embeddings have been pro-
posed (Turney and Pantel, 2010). Segmentation, as a preprocessing step, has a significant impact on
the quality of word embeddings. The standard procedure is to simply rely on the white-space heuristic,
and to remove all punctuation. This invariably leads to conflation of collocations in the distributional
representations, and to problems with out of vocabulary items.

To counter such problems, one may use preprocessing techniques to detect significant multiword
expressions (Mikolov et al., 2013) and morphological normalization (Bullinaria and Levy, 2012), or one
may try to incorporate string similarity into the distributional representation (Bojanowski et al., 2017),
or detect collocations directly from the vector properties (Sahlgren et al., 2016).

A radically different approach, suggested by Oshikiri (2017), is to produce embeddings for a subset
of all possible character n-grams. This alleviates the need for preprocessing completely, but requires
delimiting the subset with respect to the size of the n-grams, and their frequency of occurrence. Schütze
(2017) also operates of character n-grams, but uses a random segmentation of the data. R-grams is similar
in spirit to these previous approaches, but in contrast to the parameters required by Oshikiri (2017),
r-grams put no restrictions on the size of the units, or on their frequencies (except for the minimum
frequency stopping criterion).

In order to demonstrate the applicability of r-grams for building word embeddings, we use a 735MB1

subset of English Wikipedia for this experiment. The only preprocessing used before creating r-grams
is lowercasing, for embeddings we also substitute numbers 0 − 9 with N and remove leading and trail-
ing whitespaces from the r-grams. When building embeddings, we use skipgram with subword units
(Bojanowski et al., 2017), a window size of 2, and evaluate the models on standard single word En-
glish embedding benchmarks2. It is worth noting that the skipgram model uses subsampling of common

1The quality of the r-grams seem to correlate strongly to the amount of data they are derived from, more data equals better
semantic representations. Our selected data size was dependent on the available RAM on the machine used for experiments.

2https://github.com/kudkudak/word-embeddings-benchmarks

Test r-grams words
AP 0.58 0.56
BLESS 0.59 0.75
Battig 0.36 0.40
ESSLI_1a 0.73 0.75
ESSLI_2b 0.77 0.80
ESSLI_2c 0.62 0.71
MEN 0.68 0.73
MTurk 0.64 0.67
RG65 0.66 0.73

Test r-grams words
RW 0.31 0.39
SimLex999 0.36 0.39
WS353 0.60 0.67
WS353R 0.53 0.61
WS353S 0.68 0.70
Google 0.32 0.33
MSR 0.39 0.39
SemEval2012_2 0.18 0.21

Table 3: Comparison of word embeddings benchmarks using r-grams and words.

’back to the future’ Cos
1. ’who framed roger rabbit’ 0.78
2. ’dr. no’ 0.77
3. ’show boat’ 0.76
4. ’nightmare on elm street’ 0.75
5. ’apocalypse now’ 0.75

’counterintelligence’ Cos
1. ’counterterrorism’ 0.56
2. ’intelligence community’ 0.55
3. ’counter-terrorism’ 0.54
4. ’intelligence’ 0.52
5. ’advanced research project’ 0.51

’has yet to be’ Cos
1. ’has not been’ 0.69
2. ’has not yet been’ 0.68
3. ’was never’ 0.59
4. ’had not been’ 0.59
5. ’has never been’ 0.59

’psychology’ Cos
1. ’sociology’ 0.69
2. ’social psychology’ 0.66
3. ’anthropology’ 0.65
4. ’political theory’ 0.64
5. ’political science’ 0.62

Table 4: Examples of the 5 nearest neighbors to four different targets in the r-gram embedding.

words, which is an optimization introduced to compensate for the power law distribution in common
vocabularies. Also, the skipgram model controls for collocations by dampening the impact of frequent
collocations. This implies that the skipgram model might not be the optimal choice for creating em-
beddings from data driven segmentation. It was, however, the best performing model of those we tried
during initial testing.

Table 3 shows the results of the embeddings produced using r-gram segmented data in comparison
with whitespace segmented data. Note that the benchmark results in general are almost as good for the
r-gram embedding as they are for the word embedding. In particular the analogy tests (Google and MSR)
show no, or negligible, difference in the results between the r-gram embedding and the word embedding.
This is remarkable, since the r-grams have been learned directly from the character sequence, with no
preconceptions of what constitutes viable semantic units. Taken by themselves, the scores for the r-gram
embedding are competitive, and demonstrate the viability of the approach.

The benchmarks used in Table 3 only include single words. However, the r-grams range from parts
of words to multiword expressions, strictly derived from the statistical distribution of the elements in the
original sequence. In order to illustrate the qualitative properties of the r-gram embedding, Table 4 show
examples of the 10 nearest neighbors to a selected set of r-grams. Note that the r-grams may include
punctuation as in “dr. no” and “a hard day’s”, and that the embedding includes phrases such as “has
yet to be” (and all its neighbors) that would normally have been filtered out by stop word removal. The
qualitative examples use the skipgram model without subword information.

4.2 R-grams as a language agnostic segmentation technique

To test whether or not r-gram segmentation is a viable language-agnostic segmentation technique we
evaluate r-gram embeddings on the analogy test sets in (Grave et al., 2018). These consist of (unbalanced)
analogy tests for Czech, German, English, Spanish, Finnish, French, Hindi, Italian, Polish, Portuguese,

and Chinese. For each language, we use a 750MB sample of Wikipedia, r-gram segmented with a stop-
ping criteria of either minimum frequency of 4 or maximum vocabulary of 800000. As an additional pre-
processing step we remove whitespace characters from the ends of r-grams: ’example_’ → ’example’3

The resulting, slightly modified, r-gram segmentation is then used to train r-gram embeddings using the
skipgram model with subword units, as described in the previous subsection.

Despite the large variation across languages, the results in Table 5 demonstrate that r-gram seg-
mentation does indeed constitute a viable language-agnostic segmentation technique, albeit with poorer
performance in the analogy tasks compared to regular segmentation.

CS DE ES FI FR HI IT PL PT ZH Average

Score
r-gram 0.60 0.25 0.35 0.09 0.15 0.10 0.36 0.24 0.13 0.30 0.26
baseline 0.63 0.61 0.57 0.36 0.64 0.11 0.56 0.53 0.54 0.60 0.51

Coverage
r-gram 0.66 0.54 0.64 0.85 0.67 0.40 0.52 0.38 0.61 0.96 0.62
baseline 0.77 0.79 0.94 0.95 0.88 0.71 0.81 0.70 0.79 1.00 0.83

Table 5: R-gram and baseline performance and coverage on the word analogy tasks. The baseline is
taken from Grave et al. (2018)

Part of the explanation for the relatively poor performance both here and the tests in the previous
section is that the r-gram segmentation technique construct many near synonymous tokens. Table 6
shows an example of this for the analogy query “Great Britain is to the United States as Pound is to ?
“ in Finnish. The correct term according to the evaluation data set is ‘dollari‘, which is not in the top
ten candidates. However, ‘yhdysvaltain dollaria‘ (U.S. Dollar), is the second candidate. Dually, the top
candidate is ’punt’, which is a subword unit of ’punta’, ’puntaa’, ’puntin’ et.c. We believe both of these
types of near synonymous words, and their relative abundance in the r-gram vocabulary, has a detrimental
effect on the word-based evaluation benchmarks.

Going into a more qualitative view of what is represented by the r-gram embeddings in different
languages, Table 7 shows the nearest neighbors to two different acronyms (“vw” and “kgb”) in 6 different
languages. The column marked # indicates rank of the neighbor (i.e. 1 means the closest neighbor, and 7
means the seventh neighbor). The examples in Table 7 demonstrate not only that the r-gram segmentation
produces useful semantic units in all languages used in these experiments, but also that they constitute
viable data for building embeddings; associated r-grams to “vw” are terms such as “volkswagen” and
other automobile-related multiword units. The same applies to the neighbors of “kgb”; neighbors are
terms related to the secret police and security services. Again, note that all these terms were found by
the unsupervised r-gram process.

The examples in Table 7 where chosen with the intent to highlight how short r-grams can be viewed
as semantically similar neighbors to longer r-grams. Next we turn to a demonstration of how the r-gram
embeddings can be mapped across languages using a recently proposed unsupervised projection model
(MUSE) (Lample et al., 2018). Their method leverages adversarial training to learn a linear mapping
from a source to a target space, aligning embeddings trained on separate data allowing us to translate by
finding similar vectors between the embeddings. Table 8 demonstrates examples of translation between
German and Spanish. In the first case we see how a single word in German (“kürzer”, eng. “shorter”)
is mapped to relevant multiword units in Spanish. Note that the only difference between the first and
second Spanish neighbor is the comma at the end. In the second example we see how a multiword unit
in Spanish (“las ideas”, eng. “the ideas”) is mapped to relevant single word units in German.

5 Conclusions

The main contribution of this paper is its novel perspective on segmentation as a statistical process
operating on the raw character sequence. We believe that the application of this general process is not
limited to language, but that it is generally applicable to compressible sequences of categorical data in

3This step — while not strictly necessary — was performed to better match the terms in the analogy tests.

’punta’ − ’englanti’ + ’yhdysvallat’ Cos Translation
1. ’punt’ 0.53 ’Pound’
2. ’yhdysvaltain dollaria’ 0.50 ’U.S. Dollar’
3. ’kun yhdysvallat’ 0.49 ’When United States’
4. ’yhdysvaltain dollari’ 0.48 ’U.S. Dollar’
5. ’yhdysvaltain dollarin’ 0.47 ’U.S. Dollar’

Table 6: Table showing analogy query candidates for finnish. The correct term according to the evalua-
tion data set is ’dollari’ which is only found as part of larger r-grams in the returned candidates.

Lang. # ’vw’
Spanish 1. ’volkswagen passat’
German 1. ’volkswagen’
Czech 1. ’koncernu volkswagen’
Finnish 1. ’volkswagen golf’
French 7. ’volkswagen’
Polish 1. ’volkswagen’

Lang. # ’kgb’
Spanish 4. ’policía secreta’
German 1. ’geheimdienstes’
Czech 2. ’státní bezpečnosti’
Finnish 8. ’yhdysvaltain

keskustiedustelupalvelu’
French 8. ’service de renseignement’
Polish 5. ’głównego zarządu

bezpieczeństwa państwowego’

Table 7: Examples of nearest neighbors in the r-gram embeddings in different languages to two different
acronyms.

order to find units and hierarchies. The fact that an r-gram is generated from a global context compression
algorithm, and is also interpretable, is an interesting observation from the perspective of viewing AI
as a compression problem (Mahoney, 1999; Legg and Hutter, 2007), which also suggests interesting
directions for future work.

The substitution of the most common pair of types with a new type could be thought of as forming
rules in a grammar. A lot of work has been done on inferring the smallest possible grammar (which turns
out to be an NP complete problem (Charikar et al., 2005)), as well as efficient grammar construction from
local contexts (Nevill-Manning and Witten, 1997). The r-gram grammar (or graph) constitutes a very
different type of grammar that contains both context, frequent collocations and natural subword units. It
would be interesting to further investigate potential applications of this grammar; one interesting question
is how the grammars differ between languages and in what ways they can be exploited in translation tasks,
another very interesting possibility is to build embeddings directly on the grammar, since it records all
necessary contextual information. Preliminary work indicates that generating embeddings directly from
the r-gram grammar is a promising path going forward.

German to Spanish
’kürzer’ (’shorter’)
’más corto’ (’shorter’)
’más corto,’ (’shorter’)
’mucho más larg’ (’much more larg(e)’)
’muy corto’ (’very short’)
’más cortos’ (’shorter’)

Spanish to German
’las ideas’ (’the ideas’)
’überzeugungen’ (’convictions’)
’tendenzen’ (’trends’)
’gedankengänge’ (’thought processes’)
’ideologien’ (’ideologies’)
’moralvorstellungen’ (’moral values’)

Table 8: Examples of crosslingual nearest neighbors using r-gram embeddings mapped with the MUSE
algorithm. Words in parenthesis are English translation for the benefit of the reader.

References

Leonardo Badino. 2004. Chinese text word-segmentation considering semantic links among sentences.
In Proceedings of Interspeech.

Timothy Baldwin and Su Nam Kim. 2010. Multiword expressions. In Handbook of Natural Language
Processing, pages 267–292. Chapman and Hall/CRC.

Doug Beeferman, Adam Berger, and John Lafferty. 1999. Statistical models for text segmentation.
Machine Learning, 34(1):177–210.

Dario Benedetto, Emanuele Caglioti, and Davide Gabrielli. 2006. Non-sequential recursive pair
substitution: some rigorous results. Journal of Statistical Mechanics: Theory and Experiment,
2006(09):P09011.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

John Bullinaria and Joseph P. Levy. 2012. Extracting semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd. Behavior Research Methods, 44:890–907.

Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi
Shelat. 2005. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–
2576.

Keh-Jiann Chen and Shing-Huan Liu. 1992. Word identification for mandarin chinese sentences. In
Proceedings of the COLING, pages 101–107.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms, mutual information, and
lexicography. Computational Linguistics, 16(1):22–29.

Mathieu Constant, Gülşen Eryiğit, Johanna Monti, Lonneke van der Plas, Carlos Ramisch, Michael
Rosner, and Amalia Todirascu. 2017. Multiword expression processing: A survey. Computational
Linguistics, 43(4):837–892.

Philip Gage. 1994. A new algorithm for data compression. C Users J., 12(2):23–38.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of LREC.

M. Haspelmath. 2011. The indeterminacy of word segmentation and the nature of morphology and
syntax. Folia Linguistica, 45(1):31–80.

Chu-Ren Huang, Petr Šimon, Shu-Kai Hsieh, and Laurent Prévot. 2007. Rethinking chinese word seg-
mentation: Tokenization, character classification, or wordbreak identification. In Proceedings of ACL,
pages 69–72.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of AAAI, pages 2741–2749.

Tibor Kiss and Jan Strunk. 2006. Unsupervised multilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.

Kimmo Koskenniemi. 1996. Finite state morphology in information retrieval. Natural Language Engi-
neering, 2.

Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations, pages 66–71.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018. Unsupervised
machine translation using monolingual corpora only. In Proceedings of ICLR.

N Jesper Larsson and Alistair Moffat. 2000. Off-line dictionary-based compression. Proceedings of the
IEEE, 88(11):1722–1732.

Shane Legg and Marcus Hutter. 2007. Universal intelligence: A definition of machine intelligence.
Minds and Machines, 17(4):391–444.

Hans Peter Luhn. 1958. The automatic creation of literature abstracts. IBM Journal of research and
development, 2(2):159–165.

Matthew V Mahoney. 1999. Text compression as a test for artificial intelligence. In AAAI/IAAI, page
970.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their compositionality. In Proceedings of NIPS, pages 3111–3119.

Craig G Nevill-Manning and Ian H Witten. 1997. Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–82.

Takamasa Oshikiri. 2017. Segmentation-free word embedding for unsegmented languages. In Proceed-
ings of EMNLP, pages 767–772.

Steven T Piantadosi. 2014. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21(5):1112–1130.

Martin F Porter. 1980. An algorithm for suffix stripping. Program, 14(3):130–137.

Jenny R Saffran, Elissa L Newport, and Richard N Aslin. 1996. Word segmentation: The role of distri-
butional cues. Journal of memory and language, 35(4):606–621.

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for nlp. In Proceedings of CICLing, pages 1–15.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik Espinoza, Ola Hamfors, Anders Holst, Jussi Karl-
gren, Fredrik Olsson, Per Persson, and Akshay Viswanathan. 2016. The Gavagai Living Lexicon. In
Proceedings of LREC.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search. In ICASSP, pages
5149–5152.

Hinrich Schütze. 2017. Nonsymbolic text representation. In Proceedings of EACL, pages 785–796.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words
with subword units. In Proceedings of ACL, pages 1715–1725.

Claude E. Shannon. 1948. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423.

Ilya Sutskever, James Martens, and Geoffrey Hinton. 2011. Generating text with recurrent neural net-
works. In Proceedings of ICML, pages 1017–1024.

Peter D Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37:141–188.

Jonathan J. Webster and Chunyu Kit. 1992. Tokenization as the initial phase in nlp. In Proceedings of
COLING, pages 1106–1110.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Tatsuo Yamashita and Yuji Matsumoto. 2000. Language independent morphological analysis. In Pro-
ceedings of ANLC, pages 232–238.

G. K. Zipf. 1932. Selective Studies and the Principle of Relative Frequency in Language. Harvard
University Press.

