
Using Multi-Sense Vector Embeddings for Reverse Dictionaries

Michael A. Hedderich1, Andrew Yates2, Dietrich Klakow1 and Gerard de Melo3

1Spoken Language Systems (LSV), Saarland Informatics Campus, Saarbrücken, Germany
2Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

3Rutgers University, New Brunswick, NJ, USA
{mhedderich, dietrich.klakow}@lsv.uni-saarland.de,

ayates@mpi-inf.mpg.de, gdm@demelo.org

Abstract

Popular word embedding methods such as word2vec and GloVe assign a single vector represen-
tation to each word, even if a word has multiple distinct meanings. Multi-sense embeddings instead
provide different vectors for each sense of a word. However, they typically cannot serve as a drop-in
replacement for conventional single-sense embeddings, because the correct sense vector needs to be
selected for each word. In this work, we study the effect of multi-sense embeddings on the task of
reverse dictionaries. We propose a technique to easily integrate them into an existing neural network
architecture using an attention mechanism. Our experiments demonstrate that large improvements
can be obtained when employing multi-sense embeddings both in the input sequence as well as for the
target representation. An analysis of the sense distributions and of the learned attention is provided
as well.

1 Introduction

One problem with popular word embedding methods such as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014) is that they assign polysemic or homonymic words the same vector representa-
tion, i.e., words that share the same spelling but have different meanings obtain the same representation.
For example, the word “kiwi” can signify either a green fruit, a bird or, in informal contexts, the New
Zealand dollar, which are three semantically distinct concepts. If only a single vector representation is
used, then this representation is likely to primarily reflect the word’s most prominent sense, while ne-
glecting other meanings (see Figure 1). More generally, a word vector may be a linear superposition of
features of multiple unrelated meanings (Arora et al., 2018), resulting in incoherent vector spaces.

In recent years, several ideas have been proposed to overcome this problem. They have in common that
they obtain different vector representations for the different meanings of polysemes or homonyms. Most
prior work only evaluates these multi-sense vectors on single word benchmarks, however, and there is
comparably little evidence for the benefits of using these embeddings in other applications.

One multi-word task that suffers from the presence of polysemy and homonymy is the building of a
reverse dictionary that can take definitions of words as input and infers the corresponding words. In
this work, we present the following contributions: (1) We show that multi-sense vectors are a better
representation for the target words in this task. (2) We propose a technique to select multi-sense vec-
tor embeddings for the words in the input sequence. It is based on an attention mechanism and can be
incorporated into an existing end-to-end neural network architecture outperforming single-sense vector
representations. (3) We provide a comparison between pre-trained and task-specific multi-sense embed-
dings as well as contextual word embeddings. (4) We analyze the distribution of multi-sense words in
the data and the attention the network learns.

kiwi

fruitbanana
papaya pear

lemonguava

kiwifruit

bird
emu

tui

bellbird
kiwi chick

NZD

greenback

(a)

lender
banker

depositor

money
shoreline

riversideriverbank

streambank

creek

bank

(b)

Figure 1: 2D projections of Google News word2vec vectors using t-SNE (Maaten and Hinton, 2008).
The vector for the word kiwi is located near the embedding for the New Zealand dollar (violet) and not
near other birds (blue) or fruits (green). For bank, the vector lies in a neighborhood of financial terms
(blue), further apart from other river related terms (green).

w1

es(wi)

w2

d1 d2

w1

em(wi)

w2

d11 d12 d13 d21 d22

Figure 2: Single-sense embedding es compared to multi-sense embedding em for a sequence of input
words w1, w2.

2 Task and Architecture

In this section, we give further details on the different embeddings, the reverse dictionary task and the
corresponding architecture. We also motivate the use of multi-sense embeddings for the target and input
vectors with qualitative examples and a quantitative analysis.

2.1 Single- and Multi-Sense Word Embeddings

A single-sense word embedding es maps a word or token to an l-dimensional vector representation, i.e.
es(wi) = di ∈ Rl for a word wi. They are often pre-trained on large amounts of unlabeled text and
serve as a fundamental building block in many neural NLP models. Popular word embeddings include
word2vec, GloVe and fastText (Bojanowski et al., 2017). If a word has several meanings, these are still
mapped to just a single vector representation.

Multi-sense word embeddings em overcome this limitation by mapping each word wi to a list of sense
vectors em(wi) = (di1, ...,dik), where k is the number of senses that one considers wi to have. The
vector dij then represents one sense of the given word. This difference is visualized in Figure 2. Often,
these embeddings can also be pre-trained on unlabeled text. A discussion of different multi-sense word
embeddings is given in Section 5.

2.2 Reverse Dictionaries

A reverse dictionary is a tool for authors and writers seeking a word that is on the tip of their tongue.
Given a user-provided definition or description, a reverse dictionary attempts to return the corresponding

word (Zock and Bilac, 2004). We create a dataset for this task using the WordNet resource (Miller,
1995). For each word sense in this lexical database, we consider the provided gloss description as the
input, and the word as the target.

the size of something as given by the distance around it→ circumference

More details about the dataset are given in Section 4.1. Hill et al. (2016) presented a neural network
approach for this task and also set it in the wider context of sequence embeddings. Each instance consists
of a description, i.e. a sequence of words (w1, ..., wn), and a target vector t. Each word of the input
sequence wi is mapped with a single-sense word embedding function es (e.g. word2vec) to a vector
representation es(wi). This sequence of vectors is then transformed into a single vector

t̂ = f(es(w1), ..., es(wn)). (1)

For f , the authors use—among others—a combination of an LSTM (Hochreiter and Schmidhuber, 1997)
and a dense layer. The network is trained with the cosine loss between t and t̂. During testing or when
employed by a user, the model produces a ranking of the vocabulary words (α1, ..., α|V |) by comparing
the vector representation es(αi) of each vocabulary word αi with the prediction t̂ in terms of the cosine
similarity measure. The k most similar words are returned to the user. We choose this task and architec-
ture to show which benefits multi-sense vectors can bring to a downstream application and how they can
easily be incorporated into an existing architecture. Two major limitations of single-sense vectors in this
approach are presented in the following two subsections.

2.3 Target Vectors

The first limitation is that of the target vector, as exposed in Figure 1b. For the single-sense embedding,
the vector for bank lies in a neighborhood consisting of financial terms with words such as banker,
lender and money. Given a description of a river bank as input (the slope beside a body of water), a
model trained on single-sense vectors as targets would have to produce a vector t (red point) that resides
in a region of the semantic space that relates to financial institutions (blue points), rather than to nature
and rivers (green points) with terms such as riverside or streambank.

In Figure 3a, we observe that 68% of the target words in our training data have more than one possible
sense in WordNet. While the sense distinctions in WordNet tend to be rather fine-grained, this shows
that in general the phenomenon of encountering multiple senses for a target word is not limited to only a
few instances but affects a large portion of the data.

To cope with this, we propose to rely on multi-sense vectors for the target t. Using these, we can assign
the vector corresponding to the correct sense to each target in the training data. During testing, the correct
target sense should obviously not be known to the model. We hence use for the ranking a vocabulary that
consists of all sense vectors of all words.

2.4 Input Vectors

The second limitation of the existing architecture is the fact that it uses single-sense vectors for the input
sequence. For example, within the definition of a bluff, a high steep bank usually formed by river erosion,
the word bank refers to the phenomenon in nature. Therefore, the vector embedding for bank should also
semantically reflect this and should not reside in a semantic region relating to the dominating, financial
meaning.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920+
number of possible senses

0.00

0.05

0.10

0.15

0.20

0.25

0.30

fra
ct

io
n

in
 tr

ai
ni

ng
 d

at
a

(a) Target words

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920+
number of possible senses

0.0

0.1

0.2

0.3

0.4

fra
ct

io
n

in
 tr

ai
ni

ng
 d

at
a

(b) Description words

Figure 3: Number of possible senses, according to WordNet (see Section 4.2), of the target words (left)
and input words (rights) in the training data. Out-of-vocabulary words are listed as having 0 senses.

wi
em(wi)

di1
di2

di3
ai2

ai1

ai3

di1
di2

di3

sum vi

context

Figure 4: Visualization of the multi-sense vector selection using attention.

The analysis in Figure 3b shows that 38% of the words in the input sequence have more than one possible
sense. This is a smaller percentage than in the case of target vectors, mostly due to out-of-vocabulary
words and frequently occurring single-sense words such as stopwords. Nevertheless, this shows that
multi-sense considerations are relevant for over a third of the words in the input definitions.

In contrast to the target vectors, we cannot directly link each input word to the correct sense vector be-
cause annotating every description word with the corresponding sense would be very expensive. Instead,
we propose to provide the model with all possible sense vectors for each description input word and
to perform the selection directly within the neural network architecture in an end-to-end fashion. Our
approach to achieve this in a differentiable way, employing an attention mechanism, is given in the next
section.

3 Multi-Sense Vector Selection

The process of selecting multi-sense vectors is visualized in Figure 4. For an input sequence of words
(w1, ..., wn), first a representation of the context is computed. For this, a single-sense word embedding
function es is used and an LSTM transforms this sequence into a context vector c:

c = LSTM(es(w1), ..., es(wn))

For each word wi, the multi-sense embedding function em provides one or more sense vectors em(wi) =
(di1, ...,dik). Each sense vector dij is compared to the context by computing the raw attention

rij = f(σ(c,dij)), (2)

where σ is a similarity function (dot product or cosine similarity in our case) and f is a non-linear
function (ReLU in our experiments). The raw attention is normalized to yield attention weights

aij =
exp(rij)∑
h exp(rih)

, (3)

and we obtain a new representation

vi =
k∑

j=1

aijdij . (4)

For each input word, instead of es(wi), the vector vi is used in the task architecture. Equation 1 then
becomes

t̂ = f(v1, ...,vn). (5)

4 Experimental Evaluation

In the following, we will detail our experiments to evaluate the effect of multi-sense embeddings both
for the input description and for the target words.

4.1 Data

The dataset was created by extracting all single word lemmas from WordNet version 3.01. Each instance
consists of a lemma as the target word and its corresponding definition as the description. We make this
dataset publicly available2. When creating the data, we used an 80%/10%/10% train/dev/test split of the
WordNet synsets. The data was split along synsets and not words to avoid any leakage of information
from the test to the training data. For a fairer comparison with the single-sense baseline, we only used
instances where the target word was in the vocabulary of the single-sense embedding. This resulted
in 85,136 train, 10,521 development and 10,502 test instances. The descriptions were tokenized using
SpaCy version 2.0.11 (Honnibal and Montani, 2017). The distribution of the part-of-speech tags of the
target words is given in Table 1.

1We do not use the original dataset by Hill et al. (2016) as it contains a flaw where a substantial part of the ”unseen” test
instances are also part of the training data.

2https://github.com/uds-lsv/Multi-Sense-Embeddings-Reverse-Dictionaries

noun verb adj adv

target words by POS 59% 17% 20% 4%

target word with 1 sense 38% 6% 34% 54%
target word with 2 senses 21% 13% 26% 21%
target word with 3+ senses 41% 81% 40% 25%

Table 1: The first row shows the distribution of the part-of-speech tags (POS) of the target words in the
dataset. The rest of the table contains the distribution of the number of senses, according to WordNet,
given a specific POS.

4.2 Embeddings

In this work, we consider as our single-sense embedding es the popular 300-dimensional word2vec
vectors trained on the Google News corpus3. For the multi-sense embedding em, we chose the DeConf
embeddings by Pilehvar and Collier (2016), which reside in the same space as the word2vec embeddings.
It should be noted that DeConf uses the WordNet graph structure for the pre-training of the embeddings,
while for our reverse dictionary data we only use the WordNet glosses as definitions.

4.3 Baselines

We compare our multi-sense approach that we introduced in the previous sections to the following
baselines:

• For the single-sense baseline, we use the reverse dictionary architecture proposed by Hill et al. (2016),
which also serves as the foundation of all the multi-sense models.

• In first multi-sense, we experiment with using the first multi-sense vector for every word as a single-
sense vector, i.e. vi = di1. This is motivated by the fact that the WordNet-based multi-sense vectors
tend to be roughly ordered by frequency of occurrence (see analysis in Section 4.7).

• Random multi-sense evaluates using a randomly selected multi-sense vector.

• The model not-pretrained is based on the approach of Kartsaklis et al. (2018). They recently proposed
a method to obtain single-sense and multi-sense vector embeddings during training (in contrast to our
use of pre-trained embeddings for both). While one of their experiments also evaluates on a reverse-
dictionary setting, their results are unfortunately not directly comparable, as their targets are WordNet
synsets and not words. We, therefore, integrate their proposed technique into our architecture in two
ways: For the model not pre-trained, we use their equivalent version of vi. This means that we use
their code for the training of the single and multi-sense embeddings as well as for the creation of vi

based on the context and the multi-sense embedding. The model only es pre-trained differs from this
in that we use the pre-trained single-sense embedding instead of training it from scratch.

• The BERT model belongs to the class of contextual word embeddings. This approach has been rapidly
become popular with works by Peters et al. (2018), Radford et al. (2018), Peters et al. (2018b) and
Devlin et al. (2018). Instead of using a direct mapping of words to vector representations, these
approaches pre-train a neural language model on a large amount of text. The language model’s internal
state for each input word is then used as a corresponding word vector representation for a different
task. They can be viewed as inducing word vector representations that are specific to the surrounding
context. We compare against the current state-of-the-art model BERT (Devlin et al., 2018). For this,
the output of BERT’s last Transformer layer is used as the sequence (v1, ...,vn).

3https://code.google.com/archive/p/word2vec/

Input Vectors Target Vector MR ↓ Acc@10 ↑ Acc@100 ↑ MRR ↑

single-sense single-sense 535.5 0.115 0.301 0.067
single-sense multi-sense 135 0.203 0.458 0.131

multi-sense single-sense 481 0.121 0.315 0.069
multi-sense multi-sense 107 0.224 0.490 0.144

Table 2: Median rank, accuracy @10 and @100 and mean reciprocal rank of single- compared to multi-
sense target vectors. The first row is the model architecture proposed by Hill et al. (2016).

4.4 Hyperparameters

We follow the choices of Hill et al. (2016) with an LSTM layer size of 512, a linear dense layer that
maps to the size of the target vector and a batch size of 16. The input descriptions are clipped to a
maximum length of 20 words and the number of senses per word is limited to 20. If a word does not
exist in the multi-sense embedding, we fall back to the single-sense embedding. The pre-trained single
and multi-sense word embeddings have a dimensionality of 300 and are fixed during training. For the
embeddings created during training with the method of Kartsaklis et al., we experiment with the same
dimensionality of 300 as well as with an embedding size of 150 (as suggested in their work). Apart
from this, we follow the configuration of Kartsaklis et al. for their components. For the contextual BERT
embeddings, the authors’ pre-trained, uncased model is used in the “base” and “large” variation and the
pre-trained embeddings are again fixed. Since the BERT embeddings have a higher dimensionality (768
and 1024 respectively), the model architecture might underfit. We, therefore, experiment with different
LSTM layer sizes up to 5,120, as well as with 2 LSTM layers and with adding a layer that transforms
the embeddings to the same dimensionality of 300. For optimization, Adam (Kinga and Adam, 2015) is
used for all models except for only es pre-trained, which achieved better results using stochastic gradient
descent with a fixed learning rate of 0.01.

4.5 Metrics

For evaluation, the vocabulary is ranked according to the cosine similarity of the produced vector t̂
as explained in Section 2.2. As the vocabulary, we use the union of all target words of the training,
development, and test sets. Following Hill et al. (2016), we report the median rank as well as the mean
accuracy @10 and @100. We also computed the mean reciprocal rank, which is a common metric in
information retrieval.

4.6 Results

Table 2 shows the difference in performance between using single-sense and using multi-sense vectors
as targets t, as detailed in Section 2.3. Although the number of candidates is larger when every target
word has multiple candidate target vectors, the separation of the representation of the target words into
different vectors according to their senses clearly helps the model to produce a reasonable representation
of the input sequence. This effect is independent of whether the input is encoded using single- or multi-
sense vectors. It should be noted again that the model does not have access to the true sense during
testing and that instead all possible sense vectors are used for ranking. The pre-trained, contextual BERT
vectors perform very poorly as target vectors. This might be due to the larger vector size, the more
complex representation or the missing or uncommon context. In fact, we found that BERT obtains only
0.009 mean reciprocal rank even if we provide it with the ground truth definitions as contexts to generate
the target representations.

Input Vectors MR ↓ Acc@10 ↑ Acc@100 ↑ MRR ↑

single-sense (Hill et al., 2016) 135 0.203 0.458 0.131

first multi-sense 126 0.216 0.470 0.139
random multi-sense 137.5 0.208 0.457 0.136

not pre-trained 150 dim (Kartsaklis et al., 2018) 818 0.060 0.208 0.037
not pre-trained 300 dim (Kartsaklis et al., 2018) 574 0.087 0.260 0.053
only es pre-trained 162 0.198 0.439 0.128

BERT base LSTM 512 (Devlin et al., 2018) 253.5 0.151 0.373 0.091
BERT base LSTM 4096 (Devlin et al., 2018) 183 0.181 0.423 0.109
BERT large LSTM 512 (Devlin et al., 2018) 249 0.156 0.375 0.093
BERT large LSTM 2048 (Devlin et al., 2018) 220 0.159 0.391 0.098

multi-sense (cosine similarity) 117 0.221 0.480 0.143
multi-sense (dot product similarity) 107 0.224 0.490 0.144

Table 3: Median rank, accuracy @10 and @100 and mean reciprocal rank for the experiments with
different input vectors. The multi-sense vectors are used as target vectors.

In Table 3, we report the results for different approaches of handling the input vectors, as introduced in
Sections 2.4 and 3. As target vectors, we use multi-sense vectors. Picking a random sense vector tends
to perform slightly worse than using the single-sense vector embedding and both are outperformed by
picking the first multi-sense vector of every word. This might be due to the fact that the first sense-vector
tends to correspond to the most frequently occurring sense and that the representation of this sense is
better in the multi-sense setting because it can focus on this meaning.

Using the same LSTM size of 512, the contextual BERT embeddings do not perform well. Adding a
learnable linear or ReLU layer to transform them to a lower dimensionality or adding a second LSTM
layer does not help either. Increasing the size of the LSTM improves performance until a certain point
before it drops again. This might be due to a trade-off between the model underfitting and the learnability
of the additional parameters. In the table, we report the best configuration for the ”base” and ”large”
variation. In future work, it might also be interesting to experiment with fine-tuning the language model
component of this architecture.

The model that uses the embedding training and multi-sense vector selection of Kartsaklis et al. seems to
struggle with building good embeddings in this setting with the 300-dimensional embeddings performing
somewhat better but still not well. Providing pre-trained single-sense embeddings improves the perfor-
mance considerably. Although they are not trained task-specifically, the pre-training of the single-sense
embeddings on large amounts of unlabeled data seems to result in a very useful embedding space. This
is consistent with other works in the literature, e.g. Qi et al. (2018).

Our attention based multi-sense vector approach using pre-trained single- and multi-sense embeddings
obtains the best results with respect to all four metrics, with the dot product similarity function perform-
ing somewhat better than cosine similarity. This shows that using pre-trained multi-sense vectors and
selecting the right sense vectors can be beneficial in sequence embedding tasks.

4.7 Study of Senses and Attention

In this section, we present a small study to gain more insight into the different senses occurring in the
input sequences as well as into the learned attention. This is also intended as guidance for future work.
For a subset of the input definitions from the training data, we manually labeled to which sense from the

Model L

random multi-sense 0.25
first multi-sense 0.53
attention 0.31
attention-argmax 0.39

Table 4: Result of the analysis of the probability assigned to the true sense of multi-sense words for
different models.

multi-sense embedding each word belongs. This data is made publicly available. Out of 275 words, 157
(57%) only had one vector representation, 18 words (7%) had a sense that was not covered by the corre-
sponding multi-sense embedding entry, and 100 (37%) had one sense of the multiple possible meanings
provided by the multi-sense embedding. On the latter, we calculated similarly to data likelihood the sum
of the probabilities that different models assign to the correct sense:

L(m) =
∑
w

pm(τ(w) | w), (6)

where m is the model, w is a word and τ(w) is the true sense of the word. For random multi-sense, the
probability was the reciprocal of the number of senses of a word. For first multi-sense, the probability
was 1 if it was the first sense of a word in the multi-sense embedding and 0 otherwise. For attention, we
used the normalized attention a of the true sense. For attention-argmax, probability 1 was assigned to
the sense that had the maximum attention. The results are given in Table 4.

As mentioned earlier, the first sense of the multi-sense embedding often reflects the dominant usage,
being correct in about half of the cases. The attention approach suffers from the dilution that a soft
attention entails. Due to the use of the soft-max function, all senses get at least a small amount of the
probability mass. An attention mechanism that uses a more skewed probability distribution might be
beneficial here. From attention-argmax, we see that the attention method also does not always assign the
largest amount of attention to the correct sense. The fact that this architecture still outperforms the others
can be explained by the compositional nature of the attention mechanism. Also, some of the senses in the
DeConf multi-sense embeddings tend to be very fine-grained. This means that even if not the exact sense
is given the most attention, a similar sense might be. For future work, it would be interesting to improve
on the context creation and sense selection component, explore options to fine-tune the embeddings as
well as experiment with other multi-sense embeddings that might have a smaller number of different
senses per word.

5 Related Work

Hill et al. (2016) proposed to map dictionary definitions to vectors both for the practical application
of reverse dictionaries as well as to study representations of phrases and sequences. In this setting,
Bastos (2018) experimented with recursive neural networks and additional part-of-speech information.
Independently of Hill et al., Scheepers et al. (2018) also used dictionary definitions to evaluate ways to
compose sequences of words. They studied different single-sense word embeddings and composition
methods such as vector addition and recurrent neural networks. The work by Bosc and Vincent (2018)
improves word embeddings with an auto-encoder structure that goes from the target word embedding
back to the definition. We consider these three works complementary to ours, as they study different
single-sense architectures.

In recent years, several approaches to creating multi-sense vector embeddings have been proposed. Rothe
and Schütze (2015), Pilehvar and Collier (2016) and Dasigi et al. (2017) use an existing single-sense word
embedding and a lexical resource to induce vectors representing different senses of a word. The latter also
employ an attention-based approach for creating vectors based on the context for predicting prepositional
phrase attachments. Pilehvar et al. (2017) use the same DeConf multi-sense embedding for integrating
them in a downstream application. In contrast to our work, they require, however, a semantic network to
do the disambiguation. In Sense2Vec (Trask et al., 2015), the authors create embeddings that distinguish
between different meanings given the corresponding part-of-speech or named entity tag. They obtain
an embedding that distinguishes e.g. between the location Washington and the person with the same
name. The method requires the input data to be tagged with POS or NE tags. Athiwaratkun and Wilson
(2017) represent multiple meanings as a mixture of Gaussian distributions. The number of senses per
word is fixed globally to the number of Gaussian components. Raganato et al. (2017) and Pesaranghader
et al. (2018) use bidirectional LSTMs to learn a mapping between words and multiple senses (not sense
vectors) as a supervised sequence prediction task requiring sense-tagged text. An extensive survey on
further ideas and work regarding vector representations of meaning is given by Camacho-Collados and
Pilehvar (2018).

Tang et al. (2018) analyzed different attention mechanisms in the specific context of ambiguous words
in machine translation. They limit their approach, however, to single-sense vectors and the established
method of using attention over other parts of the sentence to improve the translation process.

6 Conclusion

In this work, we study the use of multi-sense vector embeddings for the reverse dictionary task. We show
that single-sense embeddings such as word2vec do not adequately reflect all meanings of polysemes and
homonyms and that improvements can be obtained by using multi-sense embeddings both for the target
words and for the words in the input description. For the latter, we proposed a method based on attention
that automatically selects the correct sense from a set of pre-trained multi-sense vectors depending on the
context in an end-to-end fashion. It outperforms single-sense vectors, multi-sense embeddings trained
in a task-specific way as well as pre-trained contextual embeddings. Our analysis of the sense selection
process shows avenues for interesting future work.

Acknowledgment

The authors would like to thank the reviewers for their helpful comments. Michael Hedderich thankfully
acknowledges the support by the obtained fellowship within the FITweltweit program of the German
Academic Exchange Service (DAAD). Gerard de Melo’s research is in part supported by the Defense
Advanced Research Projects Agency (DARPA) and the Army Research Office (ARO) under Contract
No. W911NF-17-C-0098. Any opinions, findings and conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the funding agencies.

References

Arora, S., Y. Li, Y. Liang, T. Ma, and A. Risteski (2018). Linear algebraic structure of word senses, with
applications to polysemy. Transactions of the Association for Computational Linguistics 6, 483–495.

Athiwaratkun, B. and A. G. Wilson (2017). Multimodal word distributions. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL).

Bastos, A. (2018). Learning sentence embeddings using recursive networks. arXiv preprint
arXiv:1810.04805.

Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov (2017). Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics 5, 135–146.

Bosc, T. and P. Vincent (2018). Auto-encoding dictionary definitions into consistent word embed-
dings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Camacho-Collados, J. and M. T. Pilehvar (2018). From word to sense embeddings: A survey on vector
representations of meaning. Journal of Artificial Intelligence Research.

Dasigi, P., W. Ammar, C. Dyer, and E. Hovy (2017). Ontology-aware token embeddings for prepositional
phrase attachment. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (ACL).

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Hill, F., K. Cho, A. Korhonen, and Y. Bengio (2016). Learning to understand phrases by embedding the
dictionary. Transactions of the Association for Computational Linguistics 4, 17–30.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural computation 9(8), 1735–
1780.

Honnibal, M. and I. Montani (2017). spacy 2: Natural language understanding with bloom embeddings,
convolutional neural networks and incremental parsing.

Kartsaklis, D., M. T. Pilehvar, and N. Collier (2018). Mapping text to knowledge graph entities using
multi-sense lstms. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Kinga, D. and J. B. Adam (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), Volume 5.

Maaten, L. v. d. and G. Hinton (2008). Visualizing data using t-sne. Journal of machine learning
research 9(Nov), 2579–2605.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM 38(11),
39–41.

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Pesaranghader, A., A. Pesaranghader, S. Matwin, and M. Sokolova (2018). One single deep bidirectional
lstm network for word sense disambiguation of text data. In E. Bagheri and J. C. Cheung (Eds.),
Advances in Artificial Intelligence, Cham, pp. 96–107. Springer International Publishing.

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer (2018). Deep
contextualized word representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT).

Peters, M., M. Neumann, L. Zettlemoyer, and W.-t. Yih (2018b). Dissecting contextual word embed-
dings: Architecture and representation. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Pilehvar, M. T., J. Camacho-Collados, R. Navigli, and N. Collier (2017). Towards a seamless integration
of word senses into downstream nlp applications. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL).

Pilehvar, M. T. and N. Collier (2016). De-conflated semantic representations. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing (EMNLP).

Qi, Y., D. Sachan, M. Felix, S. Padmanabhan, and G. Neubig (2018). When and why are pre-trained
word embeddings useful for neural machine translation? In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018). Improving language understanding
by generative pre-training. Technical report, OpenAI.

Raganato, A., C. Delli Bovi, and R. Navigli (2017). Neural sequence learning models for word sense
disambiguation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Rothe, S. and H. Schütze (2015). Autoextend: Extending word embeddings to embeddings for synsets
and lexemes. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics (ACL).

Scheepers, T., E. Kanoulas, and E. Gavves (2018). Improving word embedding compositionality using
lexicographic definitions. In Proceedings of the 2018 World Wide Web Conference (WWW).

Tang, G., M. Müller, A. Rios, and R. Sennrich (2018). Why self-attention? a targeted evaluation of neural
machine translation architectures. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Trask, A., P. Michalak, and J. Liu (2015). sense2vec-a fast and accurate method for word sense disam-
biguation in neural word embeddings. arXiv preprint arXiv:1511.06388.

Zock, M. and S. Bilac (2004). Word lookup on the basis of associations: From an idea to a roadmap.
In Proceedings of the Workshop on Enhancing and Using Electronic Dictionaries. Association for
Computational Linguistics.

