
On Evaluating the Generalization of LSTM Models in Formal Languages

Mirac Suzgun Yonatan Belinkov Stuart M. Shieber

John A. Paulson School of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138, USA
{msuzgun@college,belinkov@seas,shieber@seas}.harvard.edu

Abstract

Recurrent Neural Networks (RNNs) are the-
oretically Turing-complete and established
themselves as a dominant model for language
processing. Yet, there still remains an uncer-
tainty regarding their language learning capa-
bilities. In this paper, we empirically evalu-
ate the inductive learning capabilities of Long
Short-Term Memory networks, a popular ex-
tension of simple RNNs, to learn simple for-
mal languages, in particular anbn, anbncn,
and anbncndn. We investigate the influence
of various aspects of learning, such as train-
ing data regimes and model capacity, on the
generalization to unobserved samples. We find
striking differences in model performances un-
der different training settings and highlight the
need for careful analysis and assessment when
making claims about the learning capabilities
of neural network models.1

1 Introduction

Recurrent Neural Networks (RNNs) are power-
ful machine learning models that can capture and
exploit sequential data. They have become stan-
dard in important natural language processing
tasks such as machine translation (Sutskever et al.,
2014; Bahdanau et al., 2014) and speech recogni-
tion (Sak et al., 2014). Despite the ubiquity of var-
ious RNN architectures in natural language pro-
cessing, there still lies an unanswered fundamen-
tal question: What classes of languages can, em-
pirically or theoretically, be learned by neural net-
works? This question has drawn much attention
in the study of formal languages, with previous re-
sults on both the theoretical (Siegelmann and Son-
tag, 1992; Siegelmann, 1995) and empirical capa-
bilities of RNNs, showing that different RNN ar-
chitectures can learn certain regular (Giles et al.,

1Our code is available at https://github.com/
suzgunmirac/lstm-eval.

1992; Casey, 1996), context-free (Elman, 1991;
Das et al., 1992), and context-sensitive languages
(Gers and Schmidhuber, 2001).

In a common experimental setup for investi-
gating whether a neural network can learn a for-
mal language, one formulates a supervised learn-
ing problem where the network is presented one
character at a time and predicts the next possi-
ble character(s). The performance of the network
can then be evaluated based on its ability to rec-
ognize sequences shown in the training set and
– more importantly – to generalize to unseen se-
quences. There are, however, various methods of
evaluation in a language learning task. In order to
define the generalization of a network, one may
consider the length of the shortest sequence in a
language whose output was incorrectly produced
by the network, or the size of the largest accepted
test set, or the accuracy on a fixed test set (Ro-
driguez et al., 1999; Bodén and Wiles, 2000; Gers
and Schmidhuber, 2001; Rodriguez, 2001). These
formulations follow narrow and bounded evalua-
tion schemes though: They often define a length
threshold in the test set and report the performance
of the model on this fixed set.

We acknowledge three unsettling issues with
these formulations. First, the sequences in the
training set are usually assumed to be uniformly or
geometrically distributed, with little regard to the
nature and complexity of the language. This as-
sumption may undermine any conclusions drawn
from empirical investigations, especially given
that natural language is not uniformly distributed,
an aspect that is known to affect learning in mod-
ern RNN architectures (Liu et al., 2018). Sec-
ond, in a test set where the sequences are enu-
merated by their lengths, if a network makes an
error on a sequence of, say, length 7, but cor-
rectly recognizes longer sequences of length up
to 1000, would we consider the model’s gener-

277
Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pages 277-286.

New York City, New York, January 3-6, 2019

alization as good or bad? In a setting where we
monitor only the shortest sequence that was in-
correctly predicted by the network, this scheme
clearly misses the potential success of the model
after witnessing a failure, thereby misportraying
the capabilities of the network. Third, the test sets
are often bounded in these formulations, making
it challenging to compare and contrast the perfor-
mance of models if they attain full accuracy on
their fixed test sets.

In the present work, we address these limita-
tions by providing a more nuanced evaluation of
the learning capabilities of RNNs. In particular,
we investigate the effects of three different aspects
of a network’s generalization: data distribution,
length-window, and network capacity. We define
an informative protocol for assessing the perfor-
mance of RNNs: Instead of training a single net-
work until it has learned its training set and then
evaluating it on its test set, as Gers and Schmid-
huber do in their study, we monitor and test the
network’s performance at each epoch during the
entire course of training. This approach allows us
to study the stability of the solutions reached by
the network. Furthermore, we do not restrict our-
selves to a test set of sequences of fixed lengths
during testing. Rather, we exhaustively enumer-
ate all the sequences in a language by their lengths
and then go through the sequences in the test set
one by one until our network errs k times, thereby
providing a more fine-grained evaluation criterion
of its generalization capabilities.

Our experimental evaluation is focused on
the Long Short-Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997), a particu-
larly popular RNN variant. We consider three
formal languages, namely anbn, anbncn, and
anbncndn, and investigate how LSTM networks
learn these languages under different training
regimes. Our investigation leads to the following
insights: (1) The data distribution has a significant
effect on generalization capability, with discrete
uniform and U-shaped distributions often leading
to the best generalization amongst all the four dis-
tributions in consideration. (2) Widening the train-
ing length-window, naturally, enables LSTM mod-
els to generalize better to longer sequences, and
interestingly, the networks seem to learn to gen-
eralize to shorter sequences when trained on long
sequences. (3) Higher model capacity – having
more hidden units – leads to better stability, but not

necessarily better generalization levels. In other
words, over-parameterized models are more sta-
ble than models with theoretically sufficient but far
fewer parameters. We explain this phenomenon by
conjecturing that a collaborative counting mecha-
nism arises in over-parameterized networks.

2 Related Work

It has been shown that RNNs with a finite number
of states can process regular languages by acting
like a finite-state automaton using different units
in their hidden layers (Giles et al., 1992; Casey,
1996). RNNs, however, are not limited to rec-
ognizing only regular languages. Siegelmann and
Sontag (1992) and Siegelmann (1995) showed that
first-order RNNs (with rational state weights and
infinite numeric precision) can simulate a push-
down automaton with two-stacks, thereby demon-
strating that RNNs are Turing-complete. In theory,
RNNs with infinite numeric precision are capable
of expressing recursively enumerable languages.
Yet, in practice, modern machine architectures do
not contain computational structures that support
infinite numeric precision. Thus, the computa-
tional power of RNNs with finite precision may
not necessarily be the same as that of RNNs with
infinite precision.

Elman (1991) investigated the learning capabil-
ities of simple RNNs to process and formalize a
context-free grammar containing hierarchical (re-
cursively embedded) dependencies: He observed
that distinct parts of the networks were able to
learn some complex representations to encode cer-
tain grammatical structures and dependencies of
the context-free grammar. Later, Das et al. (1992)
introduced an RNN with an external stack mem-
ory to learn simple context-free languages, such
as anbm, anbncbmam, and an+mbncm. Similar
studies (Kwasny and Kalman, 1995; Wiles and
Elman, 1995; Steijvers and Grünwald, 1996; Ro-
driguez et al., 1999; Bodén and Wiles, 2000) have
explored the existence of stable counting mecha-
nisms in simple RNNs, which would enable them
to learn various context-free and context-sensitive
languages, but none of the RNN architectures pro-
posed in the early days were able to generalize the
training set to longer (or more complex) test sam-
ples with substantially high accuracy.

Gers and Schmidhuber (2001), on the other
hand, proposed a variant of Long Short-Term

278

Sample a2b2 a2b2c2 a2b2c2d2

Input a a b b a a b b c c a a b b c c d d
Output a/b a/b b a a/b a/b b c c a a/b a/b b c c d d a

Table 1: Example input-output pairs for each language under the sequence prediction formulation.

Memory (LSTM) networks2 to learn two context-
free languages, anbn, anbmBmAn, and one
strictly context-sensitive language, anbncn. Given
only a small fraction of samples in a formal lan-
guage, with values of n (and m) ranging from
1 to a certain training threshold N , they trained
an LSTM model until its full convergence on the
training set and then tested it on a more general-
ized set. They showed that their LSTM model out-
performed the previous approaches in capturing
and generalizing the aforementioned formal lan-
guages. By analyzing the cell states and the acti-
vations of the gates in their LSTM model, they fur-
ther demonstrated that the network learns how to
count up and down at certain places in the sample
sequences to encode information about the under-
lying structure of each of these formal languages.

Following this approach, Bodén and Wiles
(2002) and Chalup and Blair (2003) studied
the stability of the LSTM networks in learning
context-free and context-sensitive languages and
examined the processing mechanism developed by
the hidden states during the training phase. They
observed that the weight initialization of the hid-
den states in the LSTM network had a significant
effect on the inductive capabilities of the model
and that the solutions were often unstable in the
sense that the numbers up to which the LSTM
models were able to generalize using the training
dataset sporadically oscillated.

3 The Sequence Prediction Task

Following the traditional approach adopted by El-
man (1991); Rodriguez (2001); Gers and Schmid-
huber (2001) and many other studies, we train our
neural network as follows. At each time step, we
present one input character to our model and then
ask it to predict the set of next possible charac-
ters, based on the current character and the prior
hidden states.3 Given a vocabulary V(i) of size

2For a comprehensive investigation of the LSTM architec-
tures, we invite the reader to refer to the following two papers:
(Hochreiter and Schmidhuber, 1997; Greff et al., 2017).

3Unlike Gers and Schmidhuber (2001), we do not start
each input sequence with a start symbol, since we observed

d, we use a one-hot representation to encode the
input values; therefore, all the input vectors are d-
dimensional binary vectors. The output values are
(d+1)-dimensional though, since they may further
contain the termination symbol a, in addition to
the symbols in V(i). The output values are not al-
ways one-hot encoded, because there can be mul-
tiple possibilities for the next character in the se-
quence, therefore we instead use a k-hot represen-
tation to encode the output values. Our objective
is to minimize the mean-squared error (MSE) of
the sequence predictions. During testing, we use
an output threshold criterion of 0.5 for the sigmoid
output layer to indicate which characters were pre-
dicted by the model. We then turn this prediction
task into a classification task by accepting a sam-
ple if our model predicts all of its output values
correctly and rejecting it otherwise.4

3.1 Languages

We consider the following three formal languages
in our predictions tasks: anbn, anbncn, and
anbncndn, where n � 1. Of these three languages,
the first one is a context-free language and the last
two are strictly context-sensitive languages. Ta-
ble 1 provides example input-output pairs for these
languages under the sequence prediction task. In
the rest of this section, we formulate the sequence
prediction task for each language in more detail.

CFL anbn: The input vocabulary V(i) for anbn

consists of a and b. The output vocabulary V(o)

is the union of V(i) and {a}. Therefore, the in-
put vectors are 2-dimensional, and the output vec-
tors are 3-dimensional. Before the occurrence of
the first b in a sequence, the model always pre-
dicts a or b (which we notate a/b) whenever it

that having a start symbol in the sequence does not affect the
learning capabilities of the model. However, we still use a
termination symbol a to encode the end of the sequence in
our output samples.

4We note that we only present positive samples from a
given language to our model, but this approach is still con-
sistent with Gold’s Theorem about the inductive interference
of formal languages only from positive samples (Angluin,
1980), because we give feedback to our model during training
whenever it makes an error about its predictions.

279

sees an a. However, after it encounters the first
b, the rest of the sequence becomes entirely deter-
ministic: Assuming that the model observes n a’s
in a sequence, it outputs (n � 1) b’s for the next
(n � 1) b’s and the terminal symbol a for the last
b in the sequence. Summarizing, we define the
input-target scheme for anbn as follows:

anbn) (a/b)nbn�1 a (1)

CSL anbncn: The input vocabulary V(i) for
anbncn consists of three characters: a, b, and c.
The output vocabulary V(o) is V(i) [{a}. The in-
put and output vectors are 3- and 4-dimensional,
respectively. The input-target scheme for anbncn

is:
anbncn) (a/b)nbn�1cn a (2)

CSL anbncndn: The vocabulary V(i) for the last
language anbncndn consists of a, b, c, and d. The
input vectors are 4-dimensional, and the output
vectors are 5-dimensional. As in the case of the
previous two languages, a sequence becomes en-
tirely deterministic after the observance of the first
b, hence the input-target scheme for anbncndn is:

anbncndn) (a/b)nbn�1cndn a (3)

3.2 The LSTM Model
We use a single-layer LSTM model to perform
the sequence prediction task, followed by a linear
layer that maps to the output vocabulary size. The
linear layer is followed by a sigmoid unit layer.
The loss is the sum of the mean squared error
between the prediction and the correct output at
each character. See Figure 1 for an illustration. In
our implementation, we used the standard LSTM
module in PyTorch (Paszke et al., 2017) and ini-
tialized the initial hidden and cell states, h0 and
c0, to zero.

4 Experimental Setup

4.1 Training and Testing
Training and testing are done in alternating steps:
In each epoch, for training, we first present to an
LSTM network 1000 samples in a given language,
which are generated according to a certain discrete
probability distribution supported on a closed fi-
nite interval.5 We then freeze all the weights in our
model, exhaustively enumerate all the sequences
in the language by their lengths, and determine

5The strings are presented to the model in a random order.

Figure 1: Our LSTM architecture

the first k shortest sequences whose outputs the
model produces inaccurately.6 We remark, for the
sake of clarity, that our test design is slightly dif-
ferent from the traditional testing approaches used
by Rodriguez et al. (1999); Gers and Schmidhuber
(2001); Rodriguez (2001), since we do not con-
sider the shortest sequence in a language whose
output was incorrectly predicted by the model, or
the largest accepted test set, or the accuracy of the
model on a fixed test set.

Our testing approach, as we will see shortly in
the following subsections, gives more information
about the inductive capabilities of our LSTM net-
works than the previous techniques and proves it-
self to be useful especially in the cases where the
distribution of the length of our training dataset is
skewed towards one of the boundaries of the dis-
tribution’s support. For instance, LSTM models
sometimes fail to capture some of the short se-
quences in a language during the testing phase7,
but they then predict a large number of long se-
quences correctly.8 If we were to report only the
shortest sequence whose output our model incor-
rectly predicts, we would then be unable to capture
the model’s inductive capabilities. Furthermore,
we test and report the performance of the model
after each full pass of the training set. Finally,
in all our investigations, we repeated each experi-
ment ten times. In each trial, we only changed the

6In all our experiments, we decided to choose k to be 5.
7This phenomenon is usually observed in distributions

where the training set is skewed towards having more long
sequences than short sequences.

8We note that correctly predicting the outputs for the sam-
ples ab, abc, and abcd in the languages anbn, anbncn, and
anbncndn, respectively, is a hard task, because the output
sequences for these samples are a a, ac a, and acd a, in
this given order. While they never contain the symbol b in
their outputs, the rest of the sequences in their corresponding
languages do contain at least one b in their outputs.

280

Figure 2: Distributions from Left to Right: Uniform Distribution with N = 50, (U-Shaped) Beta-Binomial Distri-
bution with ↵ = 0.25,� = 0.25, N = 49, (Right-Tailed) Beta-Binomial Distribution with ↵ = 1,� = 5, N = 49,
and (Left-Tailed) Beta-Binomial Distribution with ↵ = 5,� = 1, N = 49.

weights of the hidden states of the model – all the
other parameters were kept the same.

4.2 Length Distributions
Previous studies have examined various length
distribution models to generate appropriate train-
ing sets for each formal language: Wiles and
Elman (1995); Bodén and Wiles (2000); Ro-
driguez (2001), for instance, used length distri-
butions that were skewed towards having more
short sequences than long sequences given a train-
ing length-window, whereas Gers and Schmid-
huber (2001) used a uniform distribution scheme
to generate their training sets. The latter briefly
comment that the distribution of lengths of se-
quences in the training set does influence the gen-
eralization ability and convergence speed9 of neu-
ral networks, and mention that training sets con-
taining abundant numbers of both short and long
sequences are learned by networks much more
quickly than uniformly distributed regimes. Nev-
ertheless, they do not systematically compare or
explicitly report their findings. To study the ef-
fect of various length distributions on the learning
capability and speed of LSTM models, we experi-
mented with four discrete probability distributions
supported on bounded intervals (Figure 2) to sam-
ple the lengths of sequences for the languages. We
briefly recall the probability distribution functions
for discrete uniform and Beta-Binomial distribu-
tions used in our data generation procedure.

Discrete Uniform Distribution: Given N 2 N,
if a random variable X ⇠ U(1, N), then the prob-
ability distribution function of X is given as fol-
lows:

P (x) =

(
1
N if x 2 {1, . . . , N}
0 otherwise.

9We define convergence (learning) speed as the speed at
which a sequence of numbers, the e1 or e5 values in our cases,
converge to its stationary value.

To generate training data with uniformly dis-
tributed lengths, we simply draw n from U(1, N)
as defined above.

Beta-Binomial Distribution: Similarly, given
N 2 Z�0 and two parameters ↵ and � 2 R>0,
if a random variable X ⇠ BetaBin(N,↵,�), then
the probability distribution function of X is given
as follows:

P (x) =

(�
N
x

�B(x+↵,N�x+�)
B(↵,�) if x 2 {0, . . . , N}

0 otherwise.

where B(↵,�) is the Beta function. We set differ-
ent values of ↵ and � as such in order to generate
the following distributions:

U-shaped (↵ = 0.25, � = 0.25): The prob-
abilities of having short and long sequences are
equally high, but the probability of having an
average-length sequence is low.

Right-tailed (↵ = 1, � = 5): Short sequences
are more probable than long sequences.

Left-tailed (↵ = 5, � = 1): Long sequences
are more probable than short sequences.

4.3 Length Windows

Most of the previous studies trained networks on
sequences of lengths n 2 [1, N], where typical N
values were between 10 and 50 (Bodén and Wiles,
2000; Gers and Schmidhuber, 2001), and more re-
cently 100 (Weiss et al., 2018). To determine the
impact of the choice of training length-window
on the stability and inductive capabilities of the
LSTM networks, we experimented with three dif-
ferent length-windows for n: [1, 30], [1, 50], and
[50, 100]. In the third window setting [50, 100],
we further wanted to see whether LSTM are ca-
pable of generalizing to short sequences that are
contained in the window range [1, 50], as well as to
sequences that are longer than the sequences seen
in the training set.

281

Figure 3: Generalization graphs showing the average performance of LSTMs trained under different probability
distribution regimes for each language. The top plots show the e1 values, whereas the bottom ones the e5 values.
The light blue horizontal lines indicate the training length window [1, 50].

4.4 Model Capacity

It has been shown by Gers and Schmidhuber
(2001) that LSTMs can learn anbn and anbncn

with 1 and 2 hidden units, respectively. Similarly,
Hölldobler et al. (1997) demonstrated that a sim-
ple RNN architecture containing a single hidden
unit with carefully tuned parameters can develop a
canonical linear counting mechanism to recognize
the simple context-free language anbn, for n
250. We wanted to explore whether the stability
of the networks would improve with an increase
in capacity of the LSTM model. We, therefore,
varied the number of hidden units in our LSTM
models as follows. We experimented with 1, 2, 3,
and 36 hidden units for anbn; 2, 3, 4, and 36 hid-
den units for anbncn; and 3, 4, 5, and 36 hidden
units for anbncndn. The 36 hidden unit case rep-
resents an over-parameterized network with more
than enough theoretical capacity to recognize all
these languages.

5 Results

5.1 Length Distributions

Figure 3 exhibits the generalization graphs for the
three formal languages trained with LSTM models
under different length distribution regimes. Each
single-color sequence in a generalization graph
shows the average performance of ten LSTMs

trained under the same settings but with different
weight initializations. In all these experiments, the
training sets had the same length-window [1, 50].
On the other hand, we used 2, 3, and 4 hidden
units in our LSTM architectures for the languages
anbn, anbncn, and anbncndn, respectively.10 The
top three plots show the average lengths of the
shortest sequences (e1) whose outputs were in-
correctly predicted by the model at test time,
whereas the bottom plots show the fifth such short-
est lengths (e5). We note that the models trained
on uniformly distributed samples seem to perform
the best amongst all the four distributions in all
the three languages. Furthermore, for the lan-
guages anbncn and anbncndn, the U-shaped Beta-
Binomial distribution appears to help the LSTM
models generalize better than the left- and right-
tailed Beta Binomial distributions, in which the
lengths of the samples are intentionally skewed to-
wards one end of the training length-window.

When we look at the plots for the e1 values,
we observe that all the distribution regimes seem
to facilitate learning at least up to the longest
sequences in their respective training datasets,
drawn by the light blue horizontal lines on the
plots, except for the left-tailed Beta-Binomial dis-
tribution for which we see errors at lengths shorter

10The results with other configurations were qualitatively
similar.

282

Figure 4: Generalization graphs showing the average performance of LSTMs trained under different training
length-windows for each language. The top plots show the e1 values, whereas the bottom ones the e5 values.

than the training length threshold in the languages
anbncn and anbncndn. For instance, if we were
to consider only the e1 values in our analysis,
it would be tempting to argue that the model
trained under the left-tailed Beta-Binomial distri-
bution regime did not learn to recognize the lan-
guage anbncndn. By looking at the e5 values,
in addition to the e1 values, we however realize
that the model was actually learning many of the
sequences in the language, but it was just strug-
gling to recognize and correctly predict the out-
puts of some of the short sequences in the lan-
guage. This phenomenon can be explained by
the under-representation of short sequences in left-
tailed Beta-Binomial distributions. Our observa-
tion clearly emphasizes the significance of looking
beyond e1, the shortest error length at test time,
in order to obtain a more complete picture of the
model’s generalizing capabilities.

5.2 Training Length Windows

Figure 4 shows the generalization graphs for the
three formal languages trained with LSTM mod-
els under different training windows. We note
that enlarging the training length-window, natu-
rally, enables an LSTM model to generalize far be-
yond its training length threshold. Besides, we see
that the models with the training length-window of
[50, 100] performed slightly better than the other
two window ranges in the case of anbncn (green

line, bottom middle plot). Moreover, we ac-
knowledge the capability of LSTMs to recognize
longer sequences, as well as shorter sequences.
For instance, when trained on the training length-
window [50, 100], our models learned to recognize
not only the longer sequences but also the shorter
sequences not presented in the training sets for the
languages anbn and anbncn.

Finally, we highlight the importance of the e5

values once again: If we were to consider only
the e1 values, for instance, we would not have
captured the inductive learning capabilities of the
models trained with a length-window of [50, 100]
in the case of anbncn, since the models always
failed at recognizing the shortest sequence ab in
the language. Yet, considering e5 values helped
us evaluate the performance of the LSTM models
more accurately.

5.3 Number of Hidden Units
There seems to be a positive correlation between
the number of hidden units in an LSTM network
and its stability while learning a formal language.
As Figure 5 demonstrates, increasing the num-
ber of hidden units in an LSTM network both in-
creases the network’s stability and also leads to
faster convergence. However, it does not necessar-
ily result in a better generalization.11 We conjec-

11The results shown in the plot are for models that were
trained on datasets with uniform length distributions with a

283

Figure 5: Generalization graphs showing the average performance of LSTM models with a different number of
hidden units for each language. The top plots show the e1 values, whereas the bottom ones the e5 values. The light
blue horizontal lines indicate the training length window [1, 50].

ture that, with more hidden units, we simply offer
more resources to our LSTM models to regulate
their hidden states to learn these languages. The
next section supports this hypothesis by visualiz-
ing the hidden state activations during sequence
processing.

6 Discussion

In addition to the analysis of our empirical re-
sults in the previous section, we would like to
touch upon two important characteristics of LSTM
models when they learn formal languages, namely
the convergence issue and counting behavior of
LSTM models.

Convergence: We note that our experiments in-
dicate that LSTM models often do not general-
ize to the same value in a given experiment set-
ting. Figure 6, for instance, displays the gener-
alization and loss graphs of LSTM models which
were trained to recognize the language anbncn un-
der a uniform distribution regime with a training
window of [1, 50]. The figure shows the results of
10 trials with different random weight initializa-
tions. While all runs appear to converge to a sim-
ilar loss value, they have different generalization
values (that is, their e1 values are all different).

length window of [1, 50]. We observed similar trends with
other configurations.

This pattern is fairly common in our experiments,
suggesting a disconnection between loss conver-
gence and generalization capability. This result
again highlights the importance of performing a
fine-grained evaluation of generalization capabil-
ity, rather than reporting a single number. Our
argument is also consistent with those of Bodén
and Wiles (2002) and Chalup and Blair (2003),
for they also found that the weight initialization
affects the inductive capabilities of an LSTM.

Counting Behavior: Here we look at the acti-
vation dynamics of the hidden states of the model
when processing specific sequences. Figure 7
demonstrates that an LSTM network organizes its
hidden state structure in such a way that certain
hidden state units learn how to count up and down
upon the subsequent encounter of some characters.
In the case of a100b100c100d100, we observe, for in-
stance, that certain units get activated at time steps
100, 200, and 300. In fact, some units appear to
cooperate together to count.

On the other hand, when we visualized the ac-
tivation dynamics of a model which was trained
to learn the language anbn using 36 hidden units,
we observed on the testing of a1000b1000 that the
model still uses some of its hidden units to count
up and down for all the a’s and b’s seen by the
model, respectively, although it rejects this sam-

284

Figure 6: Generalization graph (left) and loss graph (right) with different random weight initializations.

Figure 7: Hidden state dynamics in a four-unit LSTM
model. We note that certain units in the LSTM model
get activated at time steps 100, 200, and 300.

ple. It simply outputs (a/b)1000b996 a4, instead of
(a/b)1000b999 a. Our results corroborate and re-
fine the findings of Gers and Schmidhuber (2001)
and Weiss et al. (2018), who noted the existence
of a counting mechanisms for simpler languages,
while we also observe a collaborative counting be-
havior in over-parameterized networks.

7 Conclusion

In this paper, we have addressed the influ-
ence of various length distribution regimes and
length-window sizes on the generalizing ability of
LSTMs to learn simple context-free and context-
sensitive languages, namely anbn, anbncn, and
anbncndn. Furthermore, we have discussed the ef-
fect of the number of hidden units in LSTM mod-
els on the stability of a representation learned by
the network: We show that increasing the num-
ber of hidden units in an LSTM model improves
the stability of the network, but not necessarily the

inductive power. Finally, we have exhibited the
importance of weight initialization to the conver-
gence of the network: Our results indicate that dif-
ferent hidden weight initializations can yield dif-
ferent convergence values, given that all the other
parameters are unchanged. Throughout our anal-
ysis, we emphasized the importance of a fine-
grained evaluation, considering generalization be-
yond the first error and during training. We there-
fore concluded that there are an abundant number
of parameters that can influence the inductive abil-
ity of an LSTM to learn a formal language and that
the notion of learning, from a neural network’s
perspective, should be treated carefully.

8 Acknowledgment

The first author gratefully acknowledges the sup-
port of the Harvard College Research Program
(HCRP) and the Harvard Center for Research on
Computation and Society Research Fellowship for
Undergraduate Students. The second author was
supported by the Harvard Mind, Brain, and Be-
havior Initiative. The authors also thank Sebastian
Gehrmann for his helpful comments and discus-
sion at the beginning of the project. The computa-
tions in this paper were run on the Odyssey clus-
ter supported by the FAS Division of Science, Re-
search Computing Group at Harvard University.

285

References
Dana Angluin. 1980. Inductive inference of formal

languages from positive data. Information and con-
trol, 45(2):117–135.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Mikael Bodén and Janet Wiles. 2000. Context-free and
context-sensitive dynamics in recurrent neural net-
works. Connection Science, 12(3-4):197–210.

Mikael Bodén and Janet Wiles. 2002. On learning
context-free and context-sensitive languages. IEEE
Transactions on Neural Networks, 13(2):491–493.

Mike Casey. 1996. The dynamics of discrete-time
computation, with application to recurrent neural
networks and finite state machine extraction. Neu-
ral computation, 8(6):1135–1178.

Stephan K Chalup and Alan D Blair. 2003. Incremen-
tal training of first order recurrent neural networks
to predict a context-sensitive language. Neural Net-
works, 16(7):955–972.

Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. 1992.
Learning context-free grammars: Capabilities and
limitations of a recurrent neural network with an ex-
ternal stack memory. In Proceedings of The Four-
teenth Annual Conference of Cognitive Science So-
ciety. Indiana University, page 14.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning, 7(2-3):195–225.

Felix A Gers and E Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

C Lee Giles, Clifford B Miller, Dong Chen, Hsing-
Hen Chen, Guo-Zheng Sun, and Yee-Chun Lee.
1992. Learning and extracting finite state automata
with second-order recurrent neural networks. Neu-
ral Computation, 4(3):393–405.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k,
Bas R Steunebrink, and Jürgen Schmidhuber. 2017.
LSTM: A search space odyssey. IEEE transac-
tions on neural networks and learning systems,
28(10):2222–2232.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Steffen Hölldobler, Yvonne Kalinke, and Helko
Lehmann. 1997. Designing a counter: Another case
study of dynamics and activation landscapes in re-
current networks. In Annual Conference on Artifi-
cial Intelligence, pages 313–324. Springer.

Stan C Kwasny and Barry L Kalman. 1995. Tail-
recursive distributed representations and simple re-
current networks. Connection Science, 7(1):61–80.

Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao
Tan, and Noah A. Smith. 2018. LSTMs Exploit
Linguistic Attributes of Data. In Proceedings of
the Third Workshop on Representation Learning for
NLP.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS-W.

Paul Rodriguez. 2001. Simple recurrent networks
learn context-free and context-sensitive languages
by counting. Neural computation, 13(9):2093–
2118.

Paul Rodriguez, Janet Wiles, and Jeffrey L. Elman.
1999. A Recurrent Neural Network that learns to
count. Connection Science, 11(1):5–40.

Hasim Sak, Andrew W. Senior, and Françoise Bea-
ufays. 2014. Long short-term memory recurrent
neural network architectures for large scale acoustic
modeling. In 15th Annual Conference of the Inter-
national Speech Communication Association (Inter-
speech), pages 338–342.

Hava T Siegelmann. 1995. Computation beyond the
Turing limit. Science, 268(5210):545–548.

Hava T Siegelmann and Eduardo D Sontag. 1992. On
the computational power of neural nets. In Proceed-
ings of the fifth annual workshop on Computational
learning theory, pages 440–449. ACM.

Mark Steijvers and Peter Grünwald. 1996. A recurrent
network that performs a context-sensitive prediction
task. In Proceedings of the 18th annual conference
of the cognitive science society, pages 335–339.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
rnns for language recognition. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
740–745. Association for Computational Linguis-
tics.

Janet Wiles and Jeff Elman. 1995. Learning to count
without a counter: A case study of dynamics and
activation landscapes in recurrent networks. In Pro-
ceedings of the seventeenth annual conference of the
cognitive science society, s 482, page 487. Erlbaum
Hillsdale, NJ.

286

