
Proceedings of The 11th International Natural Language Generation Conference, pages 350–359,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

350

Sentence Packaging in Text Generation from Semantic Graphs as a
Community Detection Problem

Alexander Shvets
DTIC, UPF

alexander.shvets@upf.edu

Simon Mille
DTIC, UPF

simon.mille@upf.edu

Leo Wanner
ICREA and DTIC, UPF

leo.wanner@upf.edu

Abstract

An increasing amount of research tackles
the challenge of text generation from ab-
stract ontological or semantic structures,
which are in their very nature potentially
large connected graphs. These graphs
must be “packaged” into sentence-wise
subgraphs. We interpret the problem of
sentence packaging as a community de-
tection problem with post optimization.
Experiments on the texts of the Verb-
Net/FrameNet structure annotated-Penn
Treebank, which have been converted into
graphs by a coreference merge using Stan-
ford CoreNLP, show a high F1-score of
0.738.

1 Introduction

An increasing amount of research in Natural
Language Text Generation (NLTG) tackles the
challenge of generation from abstract ontological
(Bontcheva and Wilks, 2004; Sun and Mellish,
2006; Bouayad-Agha et al., 2012; Banik et al.,
2013; Franconi et al., 2014; Colin et al., 2016)
or semantic (Ratnaparkhi, 2000; Varges and Mel-
lish, 2001; Corston-Oliver et al., 2002; Kan and
McKeown, 2002; Bohnet et al., 2010; Flanigan
et al., 2016) structures. Unlike input structures
to surface generation, which are syntactic trees,
ontological and genuine semantic representations
are predominantly connected graphs or collections
of elementary statements (as, e.g., RDF-triples or
minimal predicate-argument structures) in which
re-occurring elements are duplicated (but which
can be, again, considered to be a connected graph).
In both cases, the problem of the division of the
graph into sentential subgraphs, which we will re-
fer henceforth to as “sentence packaging”, arises.
In the traditional generation task distribution, sen-

tence packaging is largely avoided. It is assumed
that the text planning module creates a text plan
from selected elementary statements (elementary
discourse units), establishing discourse relations
between them. The sentence planning module
then either aggregates the elementary statements
contained in the text plan into more complex state-
ments or keeps them as separate simple state-
ments, depending on the language, style, prefer-
ences of the targeted reader, etc. (Shaw, 1998;
Dalianis, 1999; Stone et al., 2003). Even if data-
driven, as, e.g., in (Bayyarapu, 2011), this strat-
egy may suggest itself mainly for input represen-
tations with a limited number of elementary ele-
ments and simple sentential structures as target. In
the context of scalable report (or any other narra-
tion) generation, which can be assumed to start,
for instance, from large RDF-graphs (i.e., RDF-
triples with cross-referenced elements), or from
large semantic graphs, the aggregation challenge
is incomparably more complex. In the light of this
challenge and the fact that in a narration the dis-
course structure is, as a rule, defined over senten-
tial structures rather than elementary statements,
sentence packaging on semantic representations
appears as an alternative that is worth to be ex-
plored. More recent data-driven concept-to-text
approaches to NLTG, e.g., (Konstas and Lapata,
2012), text simplification, e.g., (Narayan et al.,
2017), dialogue act realization, e.g., (Mairesse and
Young, 2014; Wen et al., 2015), deal with sentence
packaging, but, as a rule, all of them concern in-
puts of limited size, with at most 3 to 5 resulting
sentence packages, while realistic large input se-
mantic graphs may give rise to dozens. In what
follows, we present a model for sentence packag-
ing of large semantic graphs, which contain up to
75 sentences.

In general, the problem of sentence packaging
consists in the optimal decomposition of a given

351

graph into subgraphs, such that: (i) each subgraph
is in itself a connected graph; (ii) the outgoing
edges of the predicative vertices in a subgraph ful-
fil the valency conditions of these vertices (i.e.,
the obligatory arguments of a predicative vertice
must be included in the subgraph); (iii) the appear-
ance of a vertice in several subgraphs is subject to
linguistic restrictions of co-reference.1 In graph-
theoretical terms, sentence packaging can be thus
viewed as an approximation of dense subgraph de-
composition, which is a very prominent area of re-
search in graph theory. It has been also studied
in the context of numerous applications, includ-
ing biomedicine (e.g., for protein interaction net-
work (Bader and Hogue, 2003) or brain connectiv-
ity analysis (Hagmann et al., 2008)), web mining
(Sarıyuece et al., 2015), influence analysis (Ugan-
der et al., 2012), community detection (Asim et al.,
2017), etc. Our model is inspired by the work on
community detection. The model has been val-
idated in experiments on the VerbNet/FrameNet
annotated version of the Penn TreeBank (Mille
et al., 2017), in which coreferences in the indi-
vidual texts of the corpus have been identified us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014) and fused to obtain a graph representation.
The experiments show that we achieve an F1-score
of 0.738 (with a precision of 0.792 and a recall of
0.73), which means that our model is able to cope
with the problem of sentence packaging in NLTG.

The remainder of the paper is structured as fol-
lows. In Section 2, we introduce the semantic
graphs that are assumed to be decomposed and an-
alyze them. Section 3 outlines the experiments we
carried out, and Section 4 discusses the outcome of
these experiments. In Section 5, we briefly review
the work that is related to ours. In Section 6, fi-
nally, we draw some conclusions and outline pos-
sible lines of future work.

2 Semantic Graphs

2.1 Overview

We assume a semantic graph to which the problem
of sentence packaging is applied to be a labeled
graph with semantemes, i.e., word sense disam-
biguated lexical items, as vertice labels and pred-
icative argument relations as edge labels. The ver-
tice labels are furthermore assumed to be typed
in terms of semantic categories such as ‘action’,

1Many more criteria apply, including language, style,
topic, etc. In this work, we focus on formal criteria.

‘object’, ‘property’, etc. A semantic graph of
this kind can be a Abstract Meaning Representa-
tion (AMR) (Banarescu et al., 2013) obtained from
the fusion of coreference vertices across individual
sentential AMRs or a VerbNet or FrameNet struc-
ture obtained from the merge of sentential Verb-
Net respectively FrameNet structures that contain
coreferences. An RDF-triple store which is an-
notated with semantic metadata, e.g., in OWL
(https://www.w3.org/OWL/) can be equally con-
verted into such a graph (Rodriguez-Garcia and
Hoehndorf, 2018). Without loss of generality, we
will assume, in what follows, that our semantic
graphs are hybrid VerbNet / Framenet graphs in
that we use first level VerbNet type ids / FrameNet
type ids as vertice labels and VerbNet relations as
edge labels.

As already mentioned in the Introduction, we
use the VerbNet/FrameNet annotated version of
the Penn TreeBank (henceforth dataset) to which
we apply the co-reference resolution from Stan-
ford OpenCore NLP to obtain a graph represen-
tation (and which we split into a development
set and test set, with 85% and 15% texts that
contained 78% and 22% of the sentences respec-
tively). Consider the schematic representation of
the semantic graph of one of the texts from the
development set in Figure 1. It consists of two
isolated subgraphs: one of them (to the left) com-
prises three sentences and the second (to the right)
corresponds to a single sentence. The blue (dark)
nodes correspond to verbal and nominal predicate
tokens.

Figure 1: Example of a semantic graph of a text

As illustrated in Figure 2, a significant number
(to be precise: 94%) of the text graphs obtained
after the co-reference merge in the development
set contain subgraphs which combine several sen-
tences (in total, 77% of sentences were combined),

352

Figure 2: Sentence distribution in the graphs of
the VerbNet/FrameNet annotated version of the
Penn TreeBank

such that the task of sentence packaging is a nec-
essary task in the context of NLTG. Even if the
number of texts with a large number of merged
sentences is relatively small, we can observe in
Figure 2 that the line corresponding to the cumu-
lative sum has a constant slope for the majority of
texts, which implies that the number of sentences
per bin of texts of the same size is close to con-
stant. This means that each bin contributes evenly
when we evaluate the quality of obtained packag-
ing since we focus on recovering the sentences and
assessing each of them individually, without aver-
aging within a text.

2.2 Graph Analysis for Sentence Packaging
The generation information that characterizes a
graph in the context of sentence packaging con-
cerns: (i) the optimal number of sentences into
which this given graph can be divided, and (ii)
the profile (in semantic or graph theory terms) of
a typical sentence of this graph. We use this infor-
mation in the subsequent stages of sentence pack-
aging.

2.2.1 Estimation of the Number of Sentences
In order to estimate the number of sentences into
which a given semantic graph is to be decom-
posed, we built up a linear regression model with
Ridge regularization on the development set with
the features listed in the first column of Table 1.
The statistics on chosen features are shown in the
other columns, where Q2 is a median, N1 is an ab-
solute number of sentences with a non-zero value
of a parameter, and N2 is a corresponding relative
number.

The highest R2-value was reached with the
combination of all features, including FrameNet

min Q2 mean max N1 N2

tokens 2 17 17.5 95 28253 1.0
edges 1 21 21.7 130 28253 1.0
predicate nodes 0 11 11.3 67 28189 0.99
argument nodes 1 12 12.6 67 28253 1.0
roots 1 4 5 37 28253 1.0
VerbNet nodes 0 3 3.2 15 26355 0.93
Argument1 0 6 5.9 40 27794 0.98
Argument2 0 4 4.3 30 27024 0.96
Elaboration 0 2 2.2 19 22247 0.79
NonCore 0 0 0.7 8 13415 0.47
Set 0 0 1.2 26 12680 0.45

Table 1: Statistics of the features in the develop-
ment set used for building up the linear regression
model

Figure 3: Predicting the number of sentences on
the development set

and VerbNet classes of roots, which made R2-
value increase by 0.5 percentage point from 0.968
to 0.973; cf. Figure 3. The value is high, which
means that the obtained model allows an accurate
prediction of the number of sentences and can be
used as an input parameter in community detection
algorithms. We did not opt for using the number
of predicates corresponding to different types for
the regression since most of the types cover less
than 7% of sentences from the development set.

2.2.2 Sentence Profiling
In order to obtain the prototypical profiles of the
sentences in our dataset, we enriched the types of
features used for the linear regression model above
by features that play an important role in sentence
formation: the type(s) of the parent node(s) of
each node in the development set and the types
of its arguments. With these enriched features at
hand, we first built a multivariate normal distribu-
tion (MVN) of the most common non-correlated
features of sentences chosen iteratively by cross-
validation in such a way that a matrix of feature
vectors is not singular for any set of folds. We

353

Figure 4: Correspondence of the sentences to the
MVN distribution

ended up with the MVN distribution of 20 non-
correlated features chosen from the top 100 fea-
tures that appeared most frequently in sentences of
400 randomly chosen texts from the development
set.

As an alternative to an iterative selection of the
appropriate features, we applied Principal Compo-
nent Analysis (PCA) (Jolliffe, 1986) to a space of
the most common 100 features and selected prin-
cipal vectors that describe 90% of the variance for
building an MVN distribution. This step made the
matrix of values of sentence features to be invert-
ible, as required for the MVN distribution.

We assessed the proximity of the sentences of
the development set to these initially obtained
MVN distributions. As illustrated in Figure 4, the
distribution of the degrees of correspondence to
the joint distribution of 20 non-correlated features
is right-skewed, with many sentences on the left
that fit the distribution poorly. In order to remedy
this, we implemented, for cases of a weak corre-
spondence of a significant part of sentences (more
than 15%) of the development set with the joint
distribution, a clustering algorithm in a space of
selected features (K-means, k=10) and built the
distribution separately for each cluster. The prox-
imity of the profile of the sentence being packaged
has been assessed with respect to the joint distri-
bution of each of the clusters – with success, as the
results in Table 2, Subsection 3.2 below show.

3 Experiments

3.1 Background
Community detection aims to cluster a given so-
cial network (graph) into groups of tightly con-
nected or similar vertices (Asim et al., 2017). The
different algorithms which have been proposed

are often adapted to the particular characteristics
of the investigated network (Fortunato and Hric,
2016). Some algorithms take into account only the
network structure (the mutual arrangement of ver-
tices and the relationships between them) and are
aimed at maximizing the modularity value (Blon-
del et al., 2008). Other algorithms consist in clus-
tering the vertices by combining the most similar
elements in terms of their attribute values without
link analysis (Combe et al., 2015). Recently, the
tendency has been to use both relationships be-
tween vertices and their characteristics and iden-
tify overlapping groups for optimal network de-
composition (Yang et al., 2013). In our work, we
experimented so far with algorithms which oper-
ate with links between vertices and allow for fast
partitioning of huge graphs.

3.2 Setup of the Experiments
We first began to experiment with three commu-
nity detection algorithms: LOUVAIN (Blondel
et al., 2008), METIS (Karypis and Kumar, 2000),
and COPRA (Gregory, 2010). However, already
the first simple tests showed that COPRA per-
formed poorly on our data in that it decomposed
each graph into a small set of isolated subgraphs
that did not include all the vertices of the origi-
nal graph (see the exact figures below). Therefore,
we discarded COPRA from further experiments,
while LOUVAIN and METIS were taken to serve
as baselines. Since METIS requires as input the
number of communities (= sentences) into which a
given graph is to be decomposed, we use linear re-
gression presented in Subsection 2.2.1 as prepro-
cessing stage.

To improve the quality of the initial decomposi-
tion made using community detection algorithms
(i.e., our baselines) we carried out a local descent
search, adding neighbour vertices to each sub-
graph one by one and keeping them if the corre-
spondence of the subgraph to the multivariate dis-
tribution increased. The optimization is performed
as a post-processing stage as follows:

1. for each s ∈ S, with S: = set of sentence
subgraphs obtained by LOUVAIN / METIS

(a) determine the degree of correspondence
to the joint distribution (in case of sev-
eral subgraphs, choose the most appro-
priate one) that is to be optimized.

(b) apply local descent search, adding nodes
from s′ ∈ S (with s′ 6= s) iteratively

354

each time when it leads to the increase
of the optimized parameter (subgraphs
can share common nodes, i.e., overlap)

2. stop local descent search when there is no
node that improves s.

F1-score was chosen as a measure for the com-
parison of the quality of decompositions obtained
by different algorithms on the test set. It is cal-
culated for each original sentence since we con-
sider a sentence as a separate unit. Its value takes
into account which part of the original sentence
was covered by the obtained subgraph and how
many nodes that did not belong to the original sen-
tence were mistakenly appended. Each isolated
subgraph corresponds to one unit only, although
it can include several original sentences. For those
original sentences that are not captured in the ma-
jority of their nodes in any individual subgraph,
F1-score is equal to 0. The macro-F1, i.e. the av-
erage F1-score over all sentences, is a final mea-
sure.

The results are displayed in Table 2. ‘No de-
composition’ stands for the case when any graph
in the test set is considered to be a sentence
(it can be considered as an additional baseline);
‘METISLR’ for “METIS with linear regression as
a preprocessing stage”, ‘DCK’ for “descent search
with K-means”, and ‘DC¬K’ “for descent search
without K-means”.

Recall Precision F1-score
No decomposition 0.313 0.264 0.274
LOUVAIN 0.69 0.726 0.68
METISLR 0.693 0.814 0.727
LOUVAIN+DCK 0.707 0.709 0.681
LOUVAIN+DC¬K 0.705 0.704 0.678
LOUVAIN+PCA+
DCK

0.701 0.714 0.681

METISLR+DCK 0.73 0.792 0.738
METISLR+DC¬K 0.731 0.788 0.736
METISLR+PCA+
DCK

0.714 0.795 0.731

Table 2: Results of testing the obtained models

As already mentioned above, COPRA showed
a very poor performance on our data. The exact
numbers were: mean recall = 0.113, mean preci-
sion = 0.088, and mean F1-score = 0.084). There-
fore, we did not include them into Table 2 and did
not combine COPRA with other techniques.

4 Discussion

4.1 Performance Assessment
We can observe that the local descent search with
the chosen optimization function leads to an in-
crease of the mean F1-score in each case. The
use of a larger number of features with PCA leads
to slightly poorer results, but still shows an im-
provement in comparison to the baseline com-
munity detection (LOUVAIN, and METISLR).
However, METISLR is somewhat better than
our optimizations with respect to precision and
METISLR+DC¬K is the best (even if by only a
very minor margin, compared to the best F1-score
reaching METISLR+DCK).

The very low figures for ‘No Decomposition’,
i.e., the interpretation of each single graph as
a sentence, show us that the problem of sen-
tence packaging (or, in other words, decomposi-
tion of textual semantic graphs into sentential sub-
graphs) is indeed a relevant problem in large scale
semantics-to-text generation.

Carrying out the error analysis, we assessed sev-
eral obtained subgraphs in detail and identified at
least two causes of the low values of precision
and recall. The first cause lies in a suboptimal
performance of the coreference resolution related
to the merge of co-referenced nodes. For exam-
ple, for the entity ‘Mr. Peladeau’, which appeared
in a given text ten times, the module generated
a node labeled ‘Peladeau’ and ten nodes labeled
‘Mr.’, connecting the ‘Peladeau’ node to all ten
‘Mr.’ nodes. This decreased our precision. We
fixed the erroneous graphs by combining non-root
nodes that were connected to the same input and
output nodes with the same types of arguments
and recalculated the measures. Some sentences
were significantly affected by this change. For
instance, for the mentioned example, the preci-
sion increased from 0.35 to 0.44. However, the
overall mean F1-score increased only by 0.5% be-
cause this error affected a relatively small number
of subgraphs.

Another cause for poor quality of some obtained
subgraphs consisted in the creation of subgraphs
that contained subgraphs of several ground truth
sentences. This led to the low value of precision,
even if the recall was relatively high. To account
for this problem, we defined a procedure that al-
lowed us to separate such compound graphs into a
set of subgraphs. This procedure duplicates those
nodes that have two or more non-overlapping in-

355

put paths from roots which include a node with
a defined VerbNet class. Since the output paths
of duplicated nodes and the input paths without a
node from VerbNet should not be necessarily as-
signed to all the copies of a node, we remove these
paths to avoid overloading each single subgraph
with redundant information.

The application of the node duplica-
tion procedure to the graphs obtained by
LOUVAIN+PCA+DCK led to an increase of the
overall mean precision (taking into account only
covered ground truth sentences) from 0.85 to 0.96
and to a decrease of the recall from 0.86 to 0.67
since the procedure also affected some optimal
sentence subgraphs by splitting them further into
single clause subgraphs. At the same time, the
coverage of the original sentences was improved
(857 instead of 687 out of 908 were covered),
which compensated the lower recall and led to an
increase of the F1-score by 10%. The potential
values of precision and recall that could be
reached if we combine subgraphs that belong to
the same sentences are 0.91 and 0.77 respectively,
which results in an F1-score of 0.83. To tackle the
problem of combining the subgraphs of clauses,
full-text clustering could be used (Devyatkin
et al., 2015). Adding back the removed paths
linked to copied nodes will also contribute to the
increase of overall quality of sentences.

4.2 Example

For illustration, consider in Figure 5 a subgraph
obtained from a larger initial graph, which is
shown in Figure 6 (the obtained subgraph is cir-
cled). The subgraph corresponds to the ground
truth subgraph with a precision of 0.938 and a re-
call of 0.882. It might be seen that the obtained
subgraph contains enough information to generate
a sentence with a similar meaning as the original
one.

The original sentence that corresponds to the
subgraph in Figure 5 is He said the company is
experimenting with the technique on alfalfa, and
plans to include cotton and corn, among other
crops.; cf. also Figure 7 for the text (with the
corresponding sentence highlighted) captured by
the initial graph. The text comprises 755 to-
kens of 41 sentences, which formed 10 isolated
graphs after coreference resolution. The largest
graph contains 578 vertices, which correspond to
32 sentences with 18 vertices that link sentences.

Figure 5: A sample subgraph extracted from a
text graph

The LOUVAIN+PCA+DCK method applied to the
whole graph detected 31 sentences out of 41. An
additional separation of the obtained graphs by the
procedure described above led to the detection of
9 extra sentences. Thus, the 98% of the ground
truth sentences were recovered to a certain extent.

5 Related Work

A number of natural language text generators take
as input sentence structures – for instance, sen-
tence templates, as in the case of SimpleNLG gen-
erators (Gatt and Reiter, 2009), syntactic struc-
tures, as in the case of surface-oriented generators
(Belz et al., 2011; Mille et al., 2018a), or more
abstract semantic structures such as, e.g., AMRs;
cf., e.g., (May and Priyadarshi, 2017; Song et al.,
2018). For these generators, the problem of sen-
tence packaging or aggregation is obviously ob-
solete. As already mentioned in the Introduction,
in setups that start from input that is not yet cast
into sentence structures, traditional NLTG fore-
sees the task of (content) aggregation, which is
dealt with as part of sentence planning (or mi-
croplanning): the elementary content elements, as
assumed to be present in the text plan, are aggre-
gated into more complex elements; see, among
others, (Shaw, 1998; Dalianis, 1999; Stone et al.,
2003; Gardent and Perez-Beltrachini, 2017).

Our work is more in line with Konstas and La-

356

Figure 6: Example of the initial graph with one of the detected sentence subgraphs circled

Figure 7: Original plain text with the recovered sentence subgraph highlighted

357

pata (2012)’s data-driven concept-to-text model,
which creates from the input database records hy-
pergraphs that are then projected onto multiple
sentence reports. We also depart from graphs
(which we create from isolated semantic sentence
structures by establishing coreference links be-
tween coinciding elements across different struc-
tures), only that we work with graphs that are
considerably larger than those Konstas and Lap-
ata work with (up to 75 resulting sentences per
graph vs. >10 resulting sentences per graph). Fur-
thermore, while we use community detection al-
gorithms (and focus only on the problem of sen-
tence packaging), they view the entire problem of
the verbalization of a hypergraph as a graph traver-
sal problem.

The difference in the size of the input data (and
thus the number of the resulting sentences) is also
a distinctive feature of our proposal when we com-
pare it to other works that deal with sentence pack-
aging. For instance, Narayan et al. (2017) split
in their experiments on text simplification com-
plex sentences into 2 to 3 more simple sentences.
As content representation, they use the WebNLG
dataset of RDF-triples (Gardent et al., 2017). To
split a given set of RDF-triples into several sub-
sets, they learn a probabilistic model. Wen et al.
(2015) use LSTM-models to generate utterances
from a given sequence of tokens in the context of
a dialogue application.

Since for our experiments we apply coreference
resolution to create from the VerbNet/Framenet
annotated sentences of the Penn Treebank large
connected graphs, our work could be also con-
sidered to be related to the recent efforts on the
creation of datasets for NLTG; cf., e.g., (Gardent
et al., 2017; Novikova et al., 2017; Mille et al.,
2018b). However, so far, the coreference resolu-
tion has been entirely automatic, with no subse-
quent thorough validation and manual correction.
Both would be needed to ensure high quality of the
resulting dataset.

6 Conclusions and Future Work

We have presented a community detection-
based strategy for packaging semantic (Verb-
Net/FrameNet) graphs into sentential subgraphs
and tested it on a large dataset. We have shown
that, in principle, sentence packaging can be in-
terpreted as a community detection problem since
community detection algorithms aim to identify

densely connected subgraphs–which can be ex-
pected from sentential structures. The evaluation
suggests that the subgraphs obtained by commu-
nity detection can be further improved by a post-
processing stage, e.g., by descent search or PCA.

The duplication of nodes for an additional de-
composition of obtained graphs led to an increase
of the performance. To avoid the unnecessary
splitting of optimal subgraphs, as observed in
some cases, the offered procedure might be fur-
thermore restricted, for example, by duplicating
only the nodes with high centrality measures.

In the future, we plan to explore community de-
tection algorithms which will allow us to take the
attributes of the vertices into account. For this
purpose, the optimization function must be mod-
ified to take into account the mutual compatibility
of vertices rather than their similarity, since ver-
tices within one sentence usually have different
properties and do not form homogeneous commu-
nities in a general sense. Furthermore, we plan
to explore to what extent reinforcement learning-
based graph partitioning algorithms that take the
specifics of the semantic graphs into account in
terms of features are suitable for the problem of
sentence packaging.

Acknowledgments

The presented work was supported by the Eu-
ropean Commission under the contract num-
bers H2020-645012-RIA, H2020-7000024-RIA,
H2020-700475-IA, and H2020-779962-RIA and
by the Russian Foundation for Basic Research
under the contract number 18-37-00198. Many
thanks to the three anonymous reviewers, whose
insighful comments helped to improve the final
version of the paper.

References
Yousra Asim, Abdul Majeed, Rubina Ghazal, Basit

Raza, Wajeeha Naeem, and Ahmad Kamran Malik.
2017. Community detection in networks using node
attributes and modularity. Int J Adv Comput Sci Appl
8(1):382–388.

G. Bader and C. Hogue. 2003. An automated method
for finding molecular complexes in large protein in-
teraction networks. BMC Bioinformatics 4(2).

L. Banarescu, C. Bonial, S. Cai, M. Georgescu,
K. Griffitt, U. Hermjakob, K. Knight, P. Koehn,
M. Palmer, and N. Schneider. 2013. Abstract mean-
ing representation for sembanking. In Proceedings
of the Linguistic Annotation Workshop.

358

Eva Banik, Claire Gardent, and Eric Kow. 2013. The
KBGen challenge. In Proceedings of ENLG. pages
94–97.

H.S. Bayyarapu. 2011. Efficient Algorithm for Context
Sensitive Aggregation in Natural Language Genera-
tion. In Proceedings of the Recent Advances in Nat-
ural Language Processing Conference. pages 84–
89.

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011. The
First Surface Realisation Shared Task: Overview
and Evaluation Results. In Proceedings of the 13th
European Workshop on Natural Language Genera-
tion. pages 217–226.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment
2008(10):P10008.

Bernd Bohnet, Leo Wanner, Simon Mille, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level real-
izer. In Proceedings of COLING. Beijing, China,
pages 98–106.

Kalina Bontcheva and Yorick Wilks. 2004. Automatic
report generation from ontologies: the MIAKT ap-
proach. In International conference on applica-
tion of natural language to information systems.
Springer, pages 324–335.

Nadjet Bouayad-Agha, Gerard Casamayor, Simon
Mille, and Leo Wanner. 2012. Perspective-
oriented generation of football match sum-
maries: Old tasks, new challenges. ACM
Trans. Speech Lang. Process. 9(2):3:1–3:31.
https://doi.org/10.1145/2287710.2287711.

Emilie Colin, Claire Gardent, Yassine Mrabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
WebNLG challenge: Generating text from dbpedia
data. In Proceedings of INLG. pages 163–167.

David Combe, Christine Largeron, Mathias Géry, and
Előd Egyed-Zsigmond. 2015. I-louvain: An at-
tributed graph clustering method. In International
Symposium on Intelligent Data Analysis. Springer,
pages 181–192.

Simon Corston-Oliver, Michael Gamon, Eric Ringger,
and Robert Moore. 2002. An overview of Amalgam:
A machine-learned generation module. In Proceed-
ings of INLG. New-York, NY, USA, pages 33–40.

Hercules Dalianis. 1999. Aggregation in natural
language generation. Computational Intelligence
15(4):384–414.

Dmitry Devyatkin, Ilya Tikhomirov, Alexander Shvets,
Oleg Grigoriev, and Konstantin Popov. 2015. Full-
text clustering methods for current research direc-
tions detection. In DAMDID/RCDL. pages 152–
156.

Jeffrey Flanigan, Chris Dyer, Noah A Smith, and Jaime
Carbonell. 2016. Generation from abstract meaning
representation using tree transducers. In Proceed-
ings of NAACL:HLT . pages 731–739.

Santo Fortunato and Darko Hric. 2016. Community
detection in networks: A user guide. Physics Re-
ports 659:1–44.

Enrico Franconi, Claire Gardent, Ximena Juarez-
Castro, and Laura Perez-Beltrachini. 2014. Quelo
natural language interface: Generating queries and
answer descriptions. In Natural Language Inter-
faces for Web of Data.

Claire Gardent and Laura Perez-Beltrachini. 2017. A
statistical, grammar-based approach to microplan-
ning. Computational Linguistics 43(1):1–30.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating Train-
ing Corpora for NLG Micro-planning. In Proceed-
ings of ACL.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A re-
alisation engine for practical applications. In Pro-
ceedings of the 12th European Workshop on Natural
Language Generation. pages 90–93.

Steve Gregory. 2010. Finding overlapping communi-
ties in networks by label propagation. New Journal
of Physics 12(10):103018.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J.
Honey, V. J. Wedeen, and O. Sporns. 2008. Mapping
the structural core of human cerebral cortex. PLoS
Biology 6(7):888–893.

Ian T Jolliffe. 1986. Principal component analysis and
factor analysis. In Principal component analysis,
Springer, pages 115–128.

Min-Yen Kan and Kathleen McKeown. 2002. Corpus-
trained text generation for summarization. In Pro-
ceedings of INLG. New-York, NY, USA, pages 1–8.

George Karypis and Vipin Kumar. 2000. Multi-
level k-way hypergraph partitioning. VLSI design
11(3):285–300.

I. Konstas and M. Lapata. 2012. Unsupervised
concept-to-text generation with hypergraphs. In
Proceedings of NAACL. pages 752–761.

F. Mairesse and S. Young. 2014. Stochastic Language
Generation in Dialogue Using FLMs. Computa-
tional Linguistics 40(4):763–799.

C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J.
Bethard, and D. McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations. pages 55–60.

https://doi.org/10.1145/2287710.2287711
https://doi.org/10.1145/2287710.2287711
https://doi.org/10.1145/2287710.2287711
https://doi.org/10.1145/2287710.2287711

359

Jonathan May and Jay Priyadarshi. 2017. SemEval-
2017 Task 9: Abstract Meaning Representation
Parsing and Generation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tions (SemEval-2017).

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018a. The
First Multilingual Surface Realisation Shared Task
(SR ’18): Overview and Evaluation Results. In Pro-
ceedings of the First Workshop on Multilingual Sur-
face Realisation. pages 1–12.

Simon Mille, Anja Belz, Bernd Bohnet, and Leo Wan-
ner. 2018b. Underspecified Universal Dependency
Structures, as Inputs for Multilingual Surface Re-
alisation. In Proceedings of the 11th International
Conference on Natural Language Generation.

Simon Mille, Roberto Carlini, Ivan Latorre, and Leo
Wanner. 2017. UPF at EPE 2017: Transduction-
based Deep Analysis. In Shared Task on Extrin-
sic Parser Evaluation (EPE 2017). Pisa, Italy, pages
80–88.

Shashi Narayan, Claire Gardent, Shay B Cohen, and
Anastasia Shimorina. 2017. Split and rephrase.
arXiv preprint arXiv:1707.06971 .

J. Novikova, O. Dušek, and Verena Rieser. 2017. The
E2E dataset: New challenges for end-to-end gener-
ation. In Proceedings of the 18th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue (SIGDIAL).

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face Natural Language Generation. In Proceedings
of NAACL:HLT . Seattle, WA, USA, pages 194–201.

M.A. Rodriguez-Garcia and R. Hoehndorf. 2018. In-
ferring ontology graph structures using OWL rea-
soning. BMC Bioinformatics 19(7).

A.E. Sarıyuece, C. Seshadhri, A. Pinar, and Ue.V.
Çatalyuek. 2015. Finding the hierarchy of
dense subgraphs using nucleus decompositions.
arXiv:1411.3312v2 .

James Shaw. 1998. Clause Aggregation Using Linguis-
tic Knowledge. In Proceedings of INLG. pages 138–
148.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A Graph-to-Sequence Model for
AMR-to-Text Generation. In Proceedings of ACL.

Matthew Stone, Christine Doran, Bonnie L. Webber,
Tonia Bleam, and Martha Palmer. 2003. Microplan-
ning with Communicative Intentions: The SPUD
System. Computational Intelligence 19:311–381.

Xiantang Sun and Chris Mellish. 2006. Domain in-
dependent sentence generation from rdf representa-
tions for the semantic web. In Combined Workshop
on Language-Enabled Educational Technology and
Development and Evaluation of Robust Spoken Dia-
logue Systems. Riva del Garda, Italy.

J. Ugander, L. Backstrom, C. Marlow, and J. Klein-
berg. 2012. Structural diversity in social contagion.
Proceedings of the National Academy of Sciences
109(16):5962–5966.

Sebastian Varges and Chris Mellish. 2001. Instance-
based Natural Language Generation. In Proceed-
ings of NAACL. Pittsburgh, PA, USA, pages 1–8.

Tsung-Hsien Wen, Milica Gašć, Nikola Mrkšć, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically Conditioned LSTM-based Natural
Language Generation for Spoken Dialogue Systems.
In Proceedings of EMNLP. pages 1711–1721.

Jaewon Yang, Julian McAuley, and Jure Leskovec.
2013. Community detection in networks with node
attributes. In Data Mining (ICDM), 2013 IEEE 13th
international conference on. IEEE, pages 1151–
1156.

