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Abstract

This paper describes the submission of RWTH
Aachen University for the De→En parallel
corpus filtering task of the EMNLP 2018 Third
Conference on Machine Translation (WMT
2018). We use several rule-based, heuristic
methods to preselect sentence pairs. These
sentence pairs are scored with count-based
and neural systems as language and translation
models. In addition to single sentence-pair
scoring, we further implement a simple redun-
dancy removing heuristic. Our best perform-
ing corpus filtering system relies on recurrent
neural language models and translation mod-
els based on the transformer architecture. A
model trained on 10M randomly sampled to-
kens reaches a performance of 9.2% BLEU on
newstest2018. Using our filtering and ranking
techniques we achieve 34.8% BLEU.

1 Introduction

In this work we describe the corpus filtering sys-
tem of the RWTH Aachen University for the
WMT 2018 parallel corpus filtering task.

We decided to rank the data using a two-stage
process. During the first stage, we reduce the num-
ber of parallel sentences by applying basic rule-
based heuristics each of whom can reject a sen-
tence as described in Section 3. Afterward, we
apply a variety of models on the remaining sen-
tences to assign a score to each sentence pair. The
details of those models, namely language models
and translation models, can be found in Section 4.

Our final submission consists of three differ-
ent systems on top of rule-based filtering: Two
of them are based on scoring each sentence pair
independently using either only count-based mod-
els or only neural models. The third submission
extends on the neural network-based submission
by removing redundancies before ranking the sen-
tences.

We compare the behavior of neural network
based models to count-based models and find that
the performance differs by more than 1.0 % BLEU

on average across all test sets. In total our best
system reaches a performance of 34.8 % BLEU

compared to 9.2 % BLEU using random sampling
on newstest2018 of the news translation task with
10M token subsampled training data. We report
our findings and results in detail in Section 6.

2 Preprocessing

As a first step, we normalize the data by removing
soft-hyphen and zero-width space symbols. Fur-
thermore, we replace all hash symbols (#) because
we use them as separation symbol. A language
specific tokenizer from Moses (Koehn et al., 2007)
is applied to both sides of the corpus. We later
found out that this language specific splitting can
cause some issues if equal patterns are not split the
same way on source and target side (see Section
3.6).

After tokenization, we search for and replace
any escaped characters with the corresponding
symbol and squeeze repeating whitespaces. We
true-case our words by applying a frequent cas-
ing model from the Jane toolkit (Vilar et al., 2010)
based on the parallel corpora.

If data is used to train the count-based mod-
els or if we apply the count-based models on a
sentence pair, numbers are replaced by a category
symbol. For the neural models, we generate joint
BPE merge operations on the parallel training data
with 20k merge operations (Sennrich et al., 2016).
For the training of the neural scoring models, we
create BPE vocabularies based on the clean paral-
lel data of the WMT news task1, and use a vocabu-
lary threshold of 50. For evaluation of the subsam-
pled data, we did not use a vocabulary threshold.

1CommonCrawl, Europarl, NewsCommentary, Rapid
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3 Rule-based Filtering

As the scoring of 104 million sentence pairs is
hardly feasible with computationally expensive
models like a transformer model (Vaswani et al.,
2017), we need to preselect a smaller subset of
the data. We do this by applying several rule-
based heuristics as a first stage of our data clean-
ing pipeline. A sentence pair is removed from the
corpus if its source side or target side fail to obey
any of these rules. Note that none of these rules
is language specific to either German or English
and that they place only very mild assumptions on
what ‘good data’ should look like.

Besides reducing the amount of data, some of
the heuristic filtering methods can deal with as-
pects that can not be captured with language mod-
els and are hard to cover by translation models (see
Subsection 6.4).

Table 1 shows the amount of remaining sen-
tence pairs and tokens after applying each heuris-
tic in sequential order.

3.1 Minimum Words

Our first heuristic filter ensures that every sentence
contains at least a certain number of words. To do
so, we count the number of tokens (i.e. character
sequence between two spaces) that contain at least
one letter from the alphabet of the language. Thus
numbers or punctuation symbols are not counted
as words according to this definition. A sentence is
only valid if this number reaches a certain thresh-
old (which we set to 3 for all our experiments).

3.2 Average Word Length

In the next step of the filtering process, we remove
long chains of characters and sequences where
only single characters appear. This aims in par-
ticular for lines which consist mainly of a single,
very long URL. Although we did not expect a lot
of sentence pairs to have an average word length
lower than 2 or bigger than 20 characters, we re-
moved about 1% of the sentence pairs with this
procedure.

3.3 Length Ratio

Judging sentence pairs by the ratio of source sen-
tence vs. target sentence length is a very simple
but effective criterion. We limited this length ratio
to be not greater than 1.7. Because of tokeniza-
tion, all punctuation symbols are counted as single
words. To smooth the ratio for shorter sentences,

we always add 1 to the token count, i.e. we reject
the sentence if:

J + 1

I + 1
> 1.7 ∨ I + 1

J + 1
> 1.7

where I is the target and J the source sequence
length.

3.4 Maximum Sentence Length

Because many translation systems have an upper
bound for the sentence length during training and
to reduce the computational cost of our scoring
models, we limited the maximum number of to-
kens to 50.

3.5 Maximum Subword-Token Length

As scoring with Sockeye (Hieber et al., 2017)
transformer model requires a maximum sequence
length as fixed parameter, we enforce a limit on
the number of subword units. The subword merge
operations are computed on the parallel WMT
2018 news training data, excluding the filtered
ParaCrawl data. We limited each sentence to con-
sist of a maximum of 100 subword tokens.

3.6 Levenshtein Distance

In our experiments we observe that the trans-
former model tends to assign a very high score
to sentence pairs in which source and target share
a great number of words. This happens even if
neither the given source nor the given target sen-
tence are in the correct language. It seems that the
model regards copying as a valid form of transla-
tion. To detect sentences where source and target
are too similar, we compute the word-level Lev-
enshtein distance D (Levenshtein, 1966) between
the lowercased sentences . We also take into ac-
count a length normalized Levenshtein distance
D̄ = D

I+J . A sentence is rejected if:

D ≤ 1 ∨ D̄ ≤ 0.15

These values were determined by visually looking
at 100k random examples ranked by D̄ and ensur-
ing that no valid looking sentence gets removed.
The language specific tokenizers sometimes split
the same sequence differently depending on the
language, which increases the distance e.g.:

the do ’ s and don ’ ts of the audience .
the do ’s and don ’ts of the audience .
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Method pairs de tok. en tok. del.% del. total
Original Data 104.0M 1,520M 1,562M
Min. Words (3.1) 61.9M 1,276M 1,313M 40.45% 42.0M
Avg. Word Length (3.2) 61.3M 1,262M 1,298M 0.94% 0.6M
Length Ratio (3.3) 50.6M 1,072M 1,092M 17.60% 10.8M
Max. Seq. Length (3.4) 46.0M 625M 642M 8.91% 4.5M
Max. Seq. Length (BPE) (3.5) 46.0M 622M 638M 0.20% 0.1M
Levenshtein (3.6) 36.6M 512M 528M 20.26% 9.3M
Word Token Ratio (3.7) 28.1M 398M 412M 23.38% 8.6M
Redundancy (3.8) 13.0M 227M 236M 53.84% 15.1M

Table 1: Sizes of datasets after applying the heuristic filtering methods. Sizes are given in sentence pairs, tokens
on German side and tokens on English side. Every heuristic is applied on top of the preceding heuristic. The
last two columns show the percentage (with respect to its input not the original corpus) respectively the absolute
number of lines removed by a heuristic.

Thus, the Levenshtein heuristic sometimes
misses some sentence pairs that should have been
removed.

3.7 Word Token Ratio

We extend the idea of minimum word filtering
from Section 3.1 to scale with sentence length. We
count the number of tokens that contain at least
one character that is a standard alphabet letter. If
this count is less than 60% of the total sentence
length, we reject the sentence. This can be helpful
to remove sentences from languages with different
alphabets or lines which simply consist of a time
and date. Also, sentences with more than 60%
numbers and punctuation symbols are removed.

3.8 Redundancy

To increase the amount of information in the sub-
sampled data, we wanted to remove redundant in-
formation. Checking the redundancy of a sen-
tence in the context of a big corpus is challeng-
ing, as trivial algorithms need to do C2

2 compar-
isons for corpus size C which is not feasible for
large datasets. One simple solution for removing
identical sentences in linear time is to compute a
hash value2 for each sentence, and check for exist-
ing hashes in a set. We extended this approach to
detect ‘similar’ sentences by removing each word
individually and store the hash of the remaining
sentence. By doing this we also remove sentences
that have a word edit distance of one compared
to any previously added sentence. We do not dis-
tinguish between source or target side sentences,

2We use the python3 default hash() function

both are stored in the same set. A simple pseudo-
code description is shown in Algorithm 1.

Algorithm 1: Duplicate checking

hm← empty hashmap()
for each sentence sN1 do

sent hm← empty hashmap()
for each position i ∈ [1, N ] do

h← hash([si−1
1 , sNi+1])

if h ∈ hm then
reject sN1
break

else
sent hm.add(h)

if sN1 not rejected then
hm.add(sent hm)

4 Model-based Scoring

In the second stage of our filtering pipeline we
score each sentence using different kinds of lan-
guage and translation models. Every model as-
signs a probability to each sentence. These scores
are used afterward to rank the corpus and select
the top sentences.

4.1 Count-Based Language Model
To score the remaining sentences, we start by
applying count based language models on each
side of the parallel sentences. The language
models used are 5-gram KenLM (Heafield et al.,
2013) models with singleton tri-gram pruning
and trained with modified interpolated kneser-ney
smoothing (Chen and Goodman, 1996). They
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are trained on the NewsCrawl 2016, Europarl,
NewsCommentary and Rapid corpora from the
WMT 2018 German→ English task. Adding
NewsCrawl 2012-2015 as further monolingual
training sets does not achieve better results.

We apply the preprocessing mentioned in Sec-
tion 2 and we remove any sentence from the train-
ing data that contains token repetitions of length
three or more. This is done to get rid of phe-
nomenons like chains of exclamation marks. For
more details about the data selection see Sec-
tion 6.2.

4.2 IBM1 Dictionary Model

IBM1 models are a simple approach to model the
dependency p(eI1|fJ

1 ), as they assume a uniform
alignment. We train the model with the GIZA++
toolkit (Och and Ney, 2003) on the parallel data
to create an IBM1 table. IBM model 1 scores are
computed as in (Brown et al., 1993):

p(eI1|fJ
1 ) =

1

(J + 1)I

I∏

i=1

J∑

j=0

p(ei|fj) (1)

where I and J are the length of the target re-
spectively source sentence, and f0 is a null to-
ken. We train IBM1 models for both directions
(s2t and t2s) using the bilingual data from the
WMT 2018 German↔English task namely the
Europarl, CommonCrawl, NewsCommentary and
Rapid corpus.

4.3 Neural Network Language Model

We modified the RWTH Aachen translation sys-
tem as described in (Peter et al., 2017) based on the
Blocks framework (van Merriënboer et al., 2015)
and Theano (Theano Development Team, 2016)
to also work as a recurrent language model. The
training data is chosen to be equivalent to the one
used in the training of the count-based models.
The language model has an embedding size of 250
and two LSTM layers (Hochreiter and Schmidhu-
ber, 1997) with a hidden size of 1000. As it is
default in Blocks, it also includes a maxout layer
of factor 2 (Goodfellow et al., 2013) between the
second LSTM and the output softmax. The system
was trained using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001 for
300k iterations with a batch size of 100 sentences
and a dropout (Srivastava et al., 2014) of 0.2.

4.4 Transformer Translation Model

As neural network-based translation model we use
the transformer architecture (Vaswani et al., 2017)
implemented in the Sockeye toolkit (Hieber et al.,
2017) which is build on top of MXNet (Chen
et al., 2015). Encoder and decoder each consist
of 6 layers. The hidden and embedding size is
set to be 512 and the feed forward layer size is
2048. The number of attention heads is 8. A
dropout of 0.1 is applied, except for the embed-
ding layer. We use an initial learning rate of
0.0002. We save checkpoints every 20k itera-
tions, and reduce the learning rate by factor 0.7
after each non-improving checkpoint (measured
by means of perplexity on newstest2015). The
network is trained on the bilingual data from the
WMT 2018 German↔English task namely the
Europarl, CommonCrawl, NewsCommentary and
Rapid corpus.

5 Evaluation Model

To check the quality of a filtering approach, we
train a transformer model on the top 10M respec-
tively top 100M subwords of the scored training
data. We mainly focus on the 10M-subsampling
results, as this scenario shows clearer differ-
ences in performance between different meth-
ods. Like in Section 4.4 we use the Sockeye
implementation of the transformer architecture
but we train smaller models for evaluation pur-
poses. The decision to use small transformer net-
works was made as they give strong results in a
much shorter amount of time (1 day compared
to 5 days). To verify the generality of the ap-
proach we cross-checked several experiments us-
ing recurrent neural network-based (RNN-based)
translation systems from the Marian framework
(Junczys-Dowmunt et al., 2018) and found their
training behavior to be correlated.

We apply the provided subsampling script on
the filtered data to extract training data. Due to
an error in our filtering setup the input data is tok-
enized and subworded. Since both procedures in-
crease the number of tokens per sentence, we ex-
tract less sentence pairs than intended.

Note that because of these two effects (trans-
former and lower subsampling rate) BLEU scores
reported in this submission can vary in compari-
son to other submissions, if RNN-based systems
are used.

For the transformer model used for evaluation,
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we use only 3 layers in encoder and decoder and
increase the batch size to 8,000 words. We train
for 100k updates evaluating a checkpoint every
10k updates for the 10M word experiments. In the
case of 100M words of training data, 200k update
steps are performed with a checkpoint being writ-
ten every 20k updates. The best checkpoint is se-
lected by computing BLEU (Papineni et al., 2002)
on newstest2015. The beam-size for translation is
12. We report BLEU scores using mteval from the
Moses toolkit (Koehn et al., 2007) and TER scores
(Snover et al., 2006) using TERcom.

During system building most of our design de-
cisions are based on results for the 10M-word-
version of the task, however, we observe very sim-
ilar trends for the 100M-word subsampling. For
brevity we report most results only on the smaller
subsamples.

6 Experimental Evaluation

In this section we report the results of our filter-
ing experiments. We use newstest2015 and new-
stest2017 as development sets and report the re-
sults on newstest2018. For brevity, we shorten the
names of newstestX to tstX in the header of sev-
eral tables.

All BLEU and TER scores reported in this sec-
tions are obtained by using the system under
consideration as filtering system and training the
transformer system described in Section 5 on the
resulting training data. All processing steps and
experiments are organized with Sisyphus (Peter
et al., 2018) as workflow manager.

6.1 Rule-based Filtering

The purpose of the rule-based heuristics is not to
select perfect training data, but rather to reduce the
original 104M lines of the ParaCrawl corpus down
to an amount that can be handled by stronger,
computationally more complex, methods. Table 2
and Table 3 show the evaluation results for differ-
ent levels of heuristic cleaning for 10M subsam-
pling and 100M subsampling respectively. Since
there is no score-based ranking yet, we sample
the desired amount of data randomly from the fil-
tered corpus. Although a big part of the corpus
is removed (58M sentences or 60% of the origi-
nal corpus), the first 5 heuristic steps (3.1)-(3.5)
have nearly no impact on the data quality. Apply-
ing the Levenshtein distance heuristic (see Section
3.6) resulted in a strong increase of data quality to

Filtering tst15 tst17 tst18
10M BLEU TER BLEU TER BLEU TER

Unfiltered 8.3 87 8.3 87.3 9.2 85
(3.1) - (3.5) 8.4 82.1 8.7 82.1 10.2 79.4
(3.1) - (3.6) 18.7 64.4 19.1 65.1 22.8 59.0
(3.1) - (3.7) 20.1 61.5 20.0 62.7 25.0 56.0
(3.1) - (3.8) 23.3 56.7 23.5 57.3 28.9 50.6

Table 2: Model evaluation of 10M random sampling
from the datasets created by rule-based heuristic filter-
ing.

Filtering tst15 tst17 tst18
100M BLEU TER BLEU TER BLEU TER

Unfiltered 9.1 84.7 8.6 85.2 10.6 80.9
(3.1) - (3.5) 10.8 78.2 10.3 79.5 12.6 75.5
(3.1) - (3.6) 23.2 59.0 23.2 60.8 29.1 52.4
(3.1) - (3.7) 23.8 57.9 23.8 59.4 30.0 50.8
(3.1) - (3.8) 27.2 53.1 27.3 53.5 33.8 45.8

Table 3: Model evaluation of 100M random sampling
from the datasets created by rule-based heuristic filter-
ing.

an average of 20.2% BLEU. This increase occures
despite removing only 20% of the sentence pairs.
Applying the word-token-ratio-heuristic (see Sec-
tion 3.7) has a lesser impact, but still increases the
evaluation scores by about 1.0% BLEU for 10M
and about 0.6% BLEU for 100M subsampled data.
Checking for redundant sentences increases the
scores by up to 3.9% BLEU. This is not supris-
ing, because as more than 50% of the sentences are
removed, we replace 50% of the random selected
data by potentially more informative examples.

6.2 Model-based Scoring

While the heuristics alone already result in quite
satisfying cleaning results, the scoring models are
used to create a ranking of the remaining sen-
tences.

We use the corpus cleaned by the heuris-
tics (3.1)-(3.6) as starting point for the following
experiments.

In our first experiments we test the behavior
of the models presented in Section 4 in isolation.
Note that all our language model experiments al-
ways rely on a source and a target side language
model each scoring the corresponding part of the
sentence pair. All experiments with IBM1 or
transformer models use a combination of a source-
to-target and a target-to-source model. We average
the log probabilities of the models to get a single
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System (10M) newstest15 newstest17 newstest18
BLEU TER BLEU TER BLEU TER

#1 (3.1)-(3.6) random sampling 18.7 64.4 19.1 65.1 22.8 59.0

#2 KenLM 21.3 62.1 21.2 63.6 25.8 56.5
#3 BlocksLM 23.3 59.6 23.2 60.9 28.1 54.6
#4 IBM 24.7 55.2 25.2 55.3 31.3 47.7
#5 Transformer 24.2 55.8 24.2 56.3 30.2 48.7

#6 KenLM + IBM 26.8 53.8 26.9 54.3 33.0 46.7
#7 + Word Token Ratio (3.7) 26.6 53.9 27.0 54.0 33.1 46.2
#8 + Redundancy (3.8) 27.2 53.5 27.1 53.9 33.4 46.2
#9 + IBM retraining1 27.2 53.3 27.6 53.4 33.4 46.1

#10 BlocksLM + IBM 27.2 53.6 27.4 53.7 33.5 46.1
#11 BlocksLM + Transformer 28.1 52.4 28.4 52.4 34.6 45.0
#12 + Word Token Ratio (3.7)2 28.0 52.6 28.3 52.6 34.4 45.1
#13 + Redundancy (3.8)3 28.1 52.3 28.3 52.3 34.8 44.8

#14 KenLM + IBM + BlocksLM + Trans. 27.5 53.0 27.8 53.7 33.5 46.0

Table 4: Results for 10M word subsampling when applying different scoring models on already filtered data.
All models are scoring the data that was filtered with methods described in Section 3.1 to 3.6. For model-based
filtering, both source and target sides are scored.
1: Submission 1 with name rwth-count
2: Submission 2 with name rwth-nn
3: Submission 3 with name rwth-nn-redundant

score, where 0 is the best and all other scores are
negative. For our submission, we added a score of
-1000 for rejected sentence pairs.

From Table 4 we can see that all 4 trained mod-
els improve the heuristic filtering by more than
2.0% BLEU. Note that BlocksLM achieves bet-
ter filtering results than the count-based KenLM
system. However neural systems provide weaker
cleaning when it comes to translation models.
We are not sure why transformer performs up to
1.1% BLEU and 1.0% TER worse than IBM1 mod-
els in standalone comparison. A possible expla-
nation is that the transformer model prefers very
short sentences when not combined with a lan-
guage model. For 10M subsampling, the IBM1
model ranks sentences with an average sentence
length of 20 as best, while for the transformer
model it is only 10.6. Combined with a langauage
model, this value increases to 17.6. As can be
seen from Table 4 Row #10 vs #11 this effect
disappears when both systems are extended with
the same language model. In this case the purely
neural-network-based system has a consistent lead
of roughly 1.0 % BLEU.

From Table 4 we observe that language models
generally perform worse in cleaning than transla-

tion models. This could be due to the fact that
many kinds of noise, which can be detected by
only looking at either the source or the target sen-
tence, are already removed by the heuristics.

Combining KenLM with an IBM1 model im-
proves the BLEU score by 1.8% on average over
IBM1 models and by 6.1% BLEU over KenLM.
Adding the word to token ratio (3.7) does not af-
fect the system performance. Note that word to
token ratio was quite effective when only heuris-
tic filtering is used (Table 2). This underlines
the assumption that our heuristics remove sentence
pairs, which would be sorted out by trained mod-
els anyhow. To close the gap between the count-
based and neural-network-based filtering, we re-
train the IBM model using its original training data
plus the top 500k sentences selected from the to-
be-cleaned ParaCrawl corpus, which was filtered
using transformer. This improves the system by
up to 0.6% BLEU but the results are still more than
0.7% BLEU behind a similar neural-network based
filtering system (see Table 4 Row #9 vs. Row
#12).

We achieve the best performance by combin-
ing the BlocksLM with the transformer translation
systems plus the word token ratio and redundancy
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System perplexity tst17 eval
de en BLEU TER

KenLM 282.2 150.5 26.9* 54.3*
+ CommonCrawl 277.6 146.6 25.8* 55.6*
BlocksLM 111.07 120.62 27.4* 53.7*
+ CommonCrawl 110.55 117.7 26.4* 54.5*

Table 5: Comparison of language model perplexity
with its performance as data cleaning system as well
as the effect of CommonCrawl on LMs.
* For KenLM filtering results we combine the corre-
sponding LM scores of source, target and two fixed
IBM1 scores.

heuristic. The resulting system uses heuristics to
filter a corpus of 104M lines down to 13M sen-
tence pairs without the need to apply any complex
model. This part of the pipeline is cheap and fast,
and already gives a performance of 23.3 % BLEU

on newstest2015 (see Table 2). Applying strong
translation and language models yields an addi-
tional improvement of 4.8% BLEU as is shown in
Table 4.

6.3 Noisy Data Effect

To investigate the effect of noisy training data for
the scoring models, we add the CommonCrawl
corpus to the language model training data. Al-
though the perplexity on the dev set improves
slightly for both model architectures (see Table 5),
the evaluation results for the subsampled data drop
by about 1.0 % BLEU. This indicates that the mod-
els are required to not only recognize good sen-
tences well, but also to give low scores to bad sen-
tences. If the training data contains more noisy
data, a model will give higher scores to bad sen-
tences. While this is usually a smaller problem for
translation models, in terms of sentence ranking it
is an important issue.

6.4 Levenshtein Distance

Table 6 shows the effect of the Levenshtein
heuristic on count-based and neural scoring mod-
els. While removing sentence pairs with simi-
lar source and target does not change the perfor-
mance when ranking with count-based models, it
increases the performance of neural models by up
to 1.0% BLEU. This confirms the assumption from
Section 3.6 that transformer-based models assign
high scores when copying sentences. We regard
Levenshtein-based filtering as a crucial heuristic
when ranking sentence pairs with neural models.

6.5 Submission Results
Table 7 shows the official evaluation results of our
submitted rankings compared to the best submis-
sion from Microsoft. While slightly exceeding
on the SMT 10M evaluation, we are 0.8% BLEU

behind the leading submission on NMT 100M.
For NMT 10M, we have the best results on new-
stest2018, iwslt2017 and Acquis, but perform a
lot weaker on KDE, thus being worse on average.
This might be due to some unavoidable domain
adaptation when training language models with
mono-lingual news data.

7 Conclusion

This paper describes the RWTH Aachen Univer-
sity data-filtering and ranking methods for the
WMT 2018 parallel corpus filtering task. We de-
scribe various rule-based heuristic filtering meth-
ods to reduce the amount of data to be scored,
and to tackle some of the weak spots of neural
language and translation models. We describe 4
different ranking models, two language model ar-
chitectures and 2 translation models, count-based
and neural. Our results indicate that even with-
out ranking the sentence pairs with model scores,
a high quality subset can be extracted.

Among the submissions our best models works
very well for the small data condition, ranking
first on the 10M-subsampled SMT translation and
second on the 10M-subsampled NMT translation.
Also with the 100M-subsampled data condition,
we perform above average, with a gap of 0.7% av-
erage BLEU to the leading submission for NMT
translation.
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System (10M) newstest15 newstest17 newstest18
BLEU TER BLEU TER BLEU TER

(3.1-5) + KenLM + IBM 26.8 53.9 27.0 54.3 32.5 46.9
(3.1-5) + KenLM + IBM + Lev.Sht. 26.8 53.8 26.9 54.3 33.0 46.7
(3.1-5) + BlocksLM + Transformer 27.3 53.2 27.4 53.5 33.6 46.1
(3.1-5) + BlocksLM + Transformer + Lev.Sht. 28.1 52.4 28.4 52.4 34.6 45.0

Table 6: Effect of using the Levenshtein distance heuristic (3.6) on count-based and neural scoring.

Submission System SMT 10M SMT 100M NMT 10M NMT 100M
(3.1)-(3.7) + KenLM + retrained IBM11 23.85 25.91 26.65 31.05
(3.1)-(3.7) + BlocksLM + Transfomer2 24.53 26.18 28.00 31.20
+ Redundancy Heuristic3 24.58 26.21 28.01 31.29

Microsoft 24.45 26.50 28.62 32.06

Table 7: Official submission result for each evaluation method. The scores report the average BLEU % across all
6 test sets.
1: Submission 1 with name rwth-count
2: Submission 2 with name rwth-nn
3: Submission 3 with name rwth-nn-redundant

none of the funding agencies is responsible for
any use that may be made of the information it
contains.
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