
Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 496–503
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64053

The RWTH Aachen University Supervised
Machine Translation Systems for WMT 2018

Julian Schamper, Jan Rosendahl, Parnia Bahar,
Yunsu Kim, Arne Nix and Hermann Ney

Human Language Technology and Pattern Recognition Group
Computer Science Department

RWTH Aachen University
D-52056 Aachen, Germany

<surname>@i6.informatik.rwth-aachen.de

Abstract

This paper describes the statistical machine
translation systems developed at RWTH
Aachen University for the German→English,
English→Turkish and Chinese→English
translation tasks of the EMNLP 2018
Third Conference on Machine Translation
(WMT 2018). We use ensembles of neural
machine translation systems based on the
Transformer architecture. Our main focus
is on the German→English task where we
scored first with respect to all automatic
metrics provided by the organizers. We
identify data selection, fine-tuning, batch size
and model dimension as important hyperpa-
rameters. In total we improve by 6.8% BLEU
over our last year’s submission and by 4.8%
BLEU over the winning system of the 2017
German→English task. In English→Turkish
task, we show 3.6% BLEU improvement over
the last year’s winning system. We further
report results on the Chinese→English task
where we improve 2.2% BLEU on average
over our baseline systems but stay behind the
2018 winning systems.

1 Introduction

In this paper we describe the supervised statis-
tical machine translation (SMT) systems devel-
oped by RWTH Aachen University for the news
translation task of the EMNLP 2018 Third Con-
ference on Machine Translation (WMT 2018).
We use ensembles of neural machine translation
systems to participate in the German→English,
English→Turkish and Chinese→English tasks of
the WMT 2018 evaluation campaign.

For this year’s WMT we switch towards the
Transformer architecture (Vaswani et al., 2017)
implemented in Sockeye (Hieber et al., 2017).
We experiment with different selections from the
training data and various model configurations.

This paper is organized as follows: In Section 2
we describe our data preprocessing. Our trans-
lation software and baseline setups are explained
in Section 3. The results of the experiments for
the various language pairs are summarized in Sec-
tion 4.

2 Preprocessing

For all our experiments on German, English and
Turkish we utilize a simple preprocessing pipeline
which consists of minor text normalization steps
(e.g. removal of some special UTF-8 charac-
ters) followed by tokenization from Moses (Koehn
et al., 2007) and frequent casing from the Jane
toolkit (Vilar et al., 2010). The Chinese side is
segmented using the Jieba4 segmenter 1 except
for the Books 1-10 and data2011 data sets
which were already segmented as mentioned in
(Sennrich et al., 2017).

We apply byte-pair encoding (BPE) to segment
words into subword units for all language pairs
(Sennrich et al., 2016b). Our BPE models are
trained jointly for the source and the target lan-
guage with the exception of the Chinese→English
task. For every language pair we use the paral-
lel data to train the BPE operations, excluding any
synthetic data and the ParaCrawl corpus of the
German→English task. To reduce the number of
rare events we apply a vocabulary threshold of 50
as described in (Sennrich et al., 2017) in all our
German→English systems. We end up with vo-
cabulary sizes of 45k and 34k for German and En-
glish respectively if 50k joint merge operations are
used.

3 MT Systems

All systems submitted by RWTH Aachen are
based on the Transformer architecture imple-

1https://github.com/fxsjy/jieba

496

https://doi.org/10.18653/v1/W18-64053


mented in the Sockeye sequence-to-sequence
framework for Neural Machine Translation. Sock-
eye is built on the Python API of MXNet (Chen
et al., 2015).

In the Transformer architecture both encoder
and decoder consist of stacked layers. A layer in
the encoder consists of two sub-layers: a multi-
head self-attention layer followed by a feed for-
ward layer. The decoder contains an additional
multi-head attention layer that connects encoder
and decoder. Before and after each of these sub-
layers preprocessing respectively postprocessing
operations are applied. In our setup layer nor-
malization (Ba et al., 2016) is applied as prepro-
cessing operation while the postprocessing oper-
ation is chosen to be dropout (Srivastava et al.,
2014) followed by a residual connection (He et al.,
2016).2 For our experiments we use 6 layers in
both encoder and decoder and vary the size of their
internal dimension. We set the number of heads
in the multi-head attention to 8 and apply label
smoothing (Pereyra et al., 2017) of 0.1 throughout
training.

We train our models using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0001 (for En→Tr and Zh→En) respectively
0.0003 (for De→En). A warmup period with con-
stant or increasing learning rate was not used. We
employ an annealing scheme that scales down the
learning rate if no improvement in perplexity on
the development set is seen for several consecutive
evaluation checkpoints. During training we apply
dropout ranging from 0.1 to 0.3. All batch sizes
are specified on the token level and are chosen to
be as big as the memory of the GPUs allows. In
case of the utilization of multiple GPUs we use
synchronized training, i.e. we increase the effec-
tive batch size, which seems to have better conver-
gence properties (Popel and Bojar, 2018).

The weights of embedding matrices and the pro-
jection layer prior to the softmax layer are not
shared in our architecture and for all translation
runs a beam size of 12 is used.

4 Experimental Evaluation

In this section we present our results on the three
tasks we participated in, with the primary focus on

2Note that this is by now also the default behavior of the
Tensor2Tensor implementation https://github.com/
tensorflow/tensor2tensor, differing from the orig-
inal paper.

Data Resource # lines
WMT 2018 (standard parallel data) 5.9M
ParaCrawl (filtered 50%) 18.2M
NewsCrawl 2015 (UEDIN WMT16) 4.2M
NewsCrawl 2017 (random 50%) 13.4M
newstest2008–2014 (for fine-tuning) 19.1k

Table 1: Number of parallel sentence pairs or monolin-
gual sentences of our different training data resources
(De→En). Our strongest systems from Table 3 use all
these resources.

building a strong system for the German→English
system.

For evaluation we use mteval-v13a from the
Moses toolkit (Koehn et al., 2007) and TERCom3

to score our systems on the BLEU (Papineni et al.,
2002) respectively TER (Snover et al., 2006) mea-
sures. In addition we report CTER scores4 (Wang
et al.). All reported scores are given in percentage
and the specific options of the tools are set to be
consistent with the calculations of the organizers.

4.1 German→English

In most experiments for the German→English
task we use a subset of the data resources listed
in Table 1. All models use the Transformer ar-
chitecture as described in Section 3. Our baseline
model is very similar to the ”base” Transformer
of the original paper (Vaswani et al., 2017), e.g.
dmodel = 512 and dff = 2048, however we do not
use weight-tying.

Throughout our experiments we analyze vari-
ous aspects of our experimental setup (e.g. sev-
eral data conditions or the model size). We evalu-
ate our models every 20k iterations and select the
best checkpoint based on BLEU calculated on our
development set newstest2015 afterwards. To
handle all different variations in a well organized
way, we use the workflow manager Sisyphus (Pe-
ter et al., 2018).

In Table 2 we carefully analyze different data
conditions. We can see that the Transformer model
with 20k BPE merging operation already beats our
last year’s final submission by 1.4% BLEU. The
Transformer model was trained using the standard
parallel WMT 2018 data sets (namely Europarl,
CommonCrawl, NewsCommentary and Rapid, in
total 5.9M sentence pairs) as well as the 4.2M sen-

3http://www.cs.umd.edu/˜snover/tercom/
4https://github.com/rwth-i6/CharacTER

497



newstest2015 (dev)
Systems BPE BLEU TER CTER

1 RWTH WMT 2017 32.0 - -
2 Transformer 20k 33.4 52.7 48.4
3 + ParaCrawl 20k 30.3 57.8 51.9
4 Transformer 50k 33.9 52.5 47.9
5 + ParaCrawl 50k 31.3 56.5 50.7
6 + Oversample 50k 31.6 56.3 50.5
7 + Filtering 50k 34.7 51.7 46.9

Table 2: Baseline results and analysis of data condi-
tions (De→En). Our baseline starts of with the stan-
dard WMT 2018 training data excluding ParaCrawl
but including already backtranslated NewsCrawl 2015.
”Filtering” refers to filtering ParaCrawl only (50% LM
driven).

tence pairs of synthetic data created in (Sennrich
et al., 2016a). Last year’s submission is an en-
semble of several carefully crafted models using
an RNN-encoder and decoder which was trained
on the same data plus 6.9M additional synthetic
sentences (Peter et al., 2017).

We try 20k and 50k merging operations for BPE
and find that 50k performs better by 0.5% to 1.0%
BLEU. Hence, we use this for all further exper-
iments. As Table 2 shows, just adding the new
ParaCrawl corpus to the existing data hurts the per-
formance by up to 3.1% BLEU.

To counter this effect we oversample Com-
monCrawl, Europarl and NewsCommentary with
a factor of two. Rapid and the synthetic news
data are not oversampled. As we can observe in
Row 6 of Table 2 this gives a minor improve-
ment, but is not enough to counter the negative
effects from adding ParaCrawl. Therefore we
train a 3-gram language model on the monolin-
gual English NewsCrawl2007-2017 data sets us-
ing KenLM (Heafield, 2011) to rank the corpus
and select the best 50% of sentence pairs. To-
gether with oversampling this yields an improve-
ment of 3.4% BLEU over the naive concatenation
of all training data and 0.8% BLEU over the cor-
responding system that does not use ParaCrawl at
all.

Using the best data configuration described we
start to use multiple GPUs instead of one and in-
crease the model size. Each GPU handles a share
of the data and the update steps are synchronized,
such that the effective batch size is increased. As
before we choose the batch size on word level in
such a way that the memory of all GPUs is fully
used. Note that due to time constraints and the size

of the models the reported results are taken from
models which did not yet fully converge. Each
model in Table 3 is trained using 4 GPUs for close
to 8 days.

First we double the dimension of the model
to dmodel = 1024. As can be seen from Ta-
ble 3, together with the increased batch size, this
yields a major improvement of 1.2% BLEU on
newstest2015.

Using a basic English→German system
we backtranslate 26.9M sentences from the
NewsCrawl 2017 monolingual corpus. This
system uses the same transformer configuration
as used for the baseline De→En system and
is trained on the standard parallel WMT 2018
dataset (5.9M sentence pairs). It achieves 28.7%
BLEU and 38.9% BLEU on newstest2015
and newstest2018 respectively. After exper-
imenting with several thresholds we added half
of the backtranslated data (randomly selected)
to our training data which gave us 0.5% BLEU

extra on the development set. Even though
the system is trained on 17.6M synthetic news
sentences from NewsCrawl 2015 (4.2M) and
NewsCrawl 2017 (13.4M), fine-tuning on old
test sets (newstest2008 to newstest2014)
improves it by 0.6% BLEU on newstest2015
and 1.0% BLEU on newstest2017. We set
the checkpoint frequency down to 50 updates
only and select the best out of 14 fine-tuned
checkpoints (selected on newstest2015).
Overall we find it beneficial to match the learning
conditions which are present for the checkpoint
which is fine-tuned: Especially important seems
to be the usage of a similar learning rate in
contrast to using the comparably high initial
learning rate (0.0003).

Adding an extra layer to encoder and decoder
did not change the performance of the system sig-
nificantly. However the model was helpful in the
final ensemble. Similarly increasing the dimen-
sion of the hidden size of the feed forward layers
to 4096 and setting the number of attention heads
to 16 barely changed the performance of the sys-
tem. It turns out to be helpful if we double the
batch size of the model. Because the GPUs avail-
able to us can not handle bigger batches we in-
creased the effective batch size further by accumu-
lating gradient updates before applying them. The
resulting system shown in Table 3 Row 7 is the
best single system provided by RWTH Aachen for

498



newstest2015 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 Baseline (Table 2 Row 7) 34.7 51.7 46.9 36.4 50.7 47.1 44.5 41.4 39.6
2 + dmodel =1k + 4GPUs 35.9 50.9 46.2 37.6 49.6 45.9 46.1 40.4 38.5
3 + NewsCrawl17 (50%) 36.4 50.1 45.7 38.3 49.2 46.3 46.8 39.6 38.2
4 + fine-tuning 37.0 49.5 45.5 39.3 48.1 45.2 47.5 38.9 37.7
5 + 7th layer 37.2 49.6 45.3 39.3 48.0 45.0 47.5 39.0 37.8
6 + dff =4k + 16 heads 37.0 49.8 45.6 39.0 48.4 45.1 47.5 38.8 37.6
7 + GradAcc=2 37.1 49.2 45.3 39.5 48.0 45.0 47.6 38.8 37.6
8 Ensemble [4,5,7] 37.5 49.1 44.9 39.9 47.6 44.6 48.4 38.1 36.9

Table 3: Main results for the German→English task (Rows 7 and 8 show the submitted system). Note that using
multiple GPUs does not only result in a higher data throughput but also multiplies the effective batch size and
therefore affects the convergence. However if only one GPU is available the results could be still reproduced by
using just gradient accumulation.

nt2015 nt2017
Systems BLEU BLEU TER CTER

Winner 2017 - 35.1 52.4 48.9
RWTH 2017 32.0 33.1 54.2 -
RWTH 2018 37.5 39.9 47.6 44.6

Table 4: Comparison with last years’ submissions on
newstest2015+2017 (De→En). The winning sys-
tem of 2017 was submitted by UEDIN. Missing scores
are due to inconsistent calculations or unavailability.

the German→English task.
Because checkpoint averaging helped in the

past we tried several versions based on last or best
checkpoints of different distances but no version
turned out to be helpful in our case.

Finally model ensembling brought perfor-
mance up to 37.5% BLEU and 39.9% BLEU on
newstest2015 and newstest2017. Overall
we achieved an improvement of 2.8% and 3.5%
BLEU over our baseline.

Table 4 shows that we improved our
system by 6.2% BLEU on average on
newstest2015+2017 since previous year
and by 4.8% BLEU on newstest2017 over the
winning system of 2017 (Sennrich et al., 2017).

4.2 English→Turkish
The English→Turkish task is in a low-resource
setting where the given parallel data consists
of only around 200k sentences. We therefore
apply dropout to various parts of our Trans-
former model: attention/activation of each layer,
pre/post-processing between the layers, and also
embedding—with a dropout probability of 0.3.
This gives a strong regularization and yields 2.6%

BLEU improvement compared to the baseline in
newstest2018 (Row 2 of Table 5).

Although the English and Turkish languages
are from different linguistic roots, we find that
the performance is better by 4.5% BLEU in
newstest2018 when sharing their vocabularies
by tying the embedding matrices (Row 3 of Ta-
ble 5). They are also tied with the transpose of
the output layer projection as done in (Vaswani
et al., 2017). We accordingly use BPE tokens
jointly learned for both languages (20k merge op-
erations). Since the training signals are weak from
the given data, we argue that this kind of parameter
sharing helps to avoid overfitting and copy proper
nouns correctly.

Checkpoint frequency is set to 4k. Other model
parameters and training hyperparameters are the
same as described in Section 3.

Table 5 also shows results with back-translated
data from Turkish News Crawl 2017 (Row 4,
+3.8% BLEU in newstest2018). Using more
than 1M sentences of back-translations does not
help, which might be due to the low quality of
back-translations generated with a weak model
(trained only with 200k parallel sentences). Note
that we oversample the given parallel data to make
the ratio of the parallel/synthetic data 1:1. An
ensemble of this setup with four different ran-
dom seeds shows a slight improvement up to 0.2%
BLEU (Row 4 vs. 6).

Finally, we fine-tune the models with
newstest2016+2017 sets to adapt to the
news domain. We set the learning rate ten times
lower (0.00001) and the checkpoint frequency
to 100. Dropout rate is reduced to 0.1 for a fast
adaptation. This provides an additional boost of

499



newsdev2016 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 Baseline 6.8 93.0 71.4 7.4 91.6 76.7 7.1 92.1 73.0
2 + dropout 0.3 9.3 84.9 67.0 10.3 83.4 73.4 9.7 84.5 68.0
3 + weight tying 14.2 76.9 59.7 15.8 74.5 61.6 14.2 77.3 62.1
4 + BT 1M sents 16.7 72.3 56.3 20.0 68.0 56.8 17.0 72.3 58.5
5 + fine-tuning 17.6 71.2 56.6 25.0 62.1 53.7 17.7 71.3 58.5
6 Ensemble 4x [4] 16.7 71.8 56.1 20.1 67.7 56.7 17.2 72.0 58.3
7 Ensemble 4x [5] 17.7 70.6 55.8 25.1 62.1 53.1 18.0 71.0 58.0

Table 5: English→Turkish results. Row 6 is the submitted system.

0.7% BLEU for the single model (Row 4 vs. 5)
and 0.8% BLEU for the ensemble (Row 6 vs. 7) in
newstest2018.

4.3 Chinese→English

We use all available parallel data totaling 24.7M
sentence pairs with 620M English and 547M
Chinese words and follow the preprocessing de-
scribed in Section 2. We then learn BPE with
50k merge operations on each side separately.
newsdev2017 and newstest2017 contain-
ing 2002 and 2001 sentences are used as our de-
velopment and test sets respectively. We also re-
port results on newstest2018 with 3981 sam-
ples. We remove sentences longer than 80 sub-
words. We save and evaluate the checkpoints ac-
cording to the BLEU score on the development set
every 10k iterations.

In order to augment our training data, we back-
translate the NewsCrawl2017 monolingual cor-
pus consisting of approximately 25M samples us-
ing a En→Zh NMT system resulting in a total
of 49.5 sentence pairs for training. The En→Zh
NMT model is based on the RNN with attention
encoder-decoder architecture (Bahdanau et al.,
2014) implemented in Returnn5 (Zeyer et al.,
2018). The network is similar to (Bahar et al.,
2017) with 4-layer of bidirectional encoders using
long-short term memory cells (LSTM) (Hochre-
iter and Schmidhuber, 1997). We apply a layer-
wise pre-training scheme that leads to both better
convergence and faster training speed during the
initial pre-train epochs (Zeyer et al., 2018). We
start using only the first layer in the encoder of
the model and add new layers during the train-
ing progress. We apply a learning rate schedul-
ing scheme, where we lower the learning rate if

5https://github.com/rwth-i6/returnn

the perplexity on the development set does not im-
prove anymore.

For Zh→En, we run different Transformer con-
figurations which differ slightly from the model
described in Section 3. Our aim is to investigate
the effect of various hyperparameters especially
the model size, the number of layers and the num-
ber of heads. According to the total number of
parameters, we call these models as below:

• Transformer base: a 6-layer multi-head at-
tention (8 heads) consisting of 512 nodes fol-
lowed by a feed forward layer equipped with
1024 nodes both in the encoder and the de-
coder. The total number of parameters is
121M. Training is done using mini-batches of
3000.

• Transformer medium: a 4-layer multi-head
attention (8 heads) consisting of 1024 nodes
followed by a feed forward layer equipped
with 4096 nodes both in the encoder and the
decoder. The total number of parameters is
271M. Training is done using mini-batches of
2000.

• Transformer large: a 6-layer multi-head at-
tention (16 heads) consisting of 1024 nodes
followed by a feed forward layer equipped
with 4096 nodes both in the encoder and the
decoder. The total number of parameters is
330M. Training is done using mini-batches of
6500 on 4 GPUs.

The results are shown in Table 6. Note that
all models are trained using bilingual plus syn-
thetic data. Comparing the Transformer base and
medium architectures shows that model size is
more important for strong performance than the
number of layers. Adding more layers with big

500



newsdev2017 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU CTER

1 Base 23.3 66.8 62.1 23.9 67.2 61.5 24.1 63.8
2 Medium 24.5 65.5 61.0 24.8 65.8 60.9 25.4 63.2
3 Large 24.6 65.2 60.7 25.3 65.6 60.5 26.0 62.8
4 Ensemble (linear) [1,2,3] 25.4 64.5 59.9 25.9 64.9 59.9 26.7 61.8
5 Ensemble (log-linear) [1,2,3] 25.4 64.4 60.1 26.1 64.8 59.4 26.4 62.0
6† Ensemble (linear) 4 checkpoints of [3] 24.4 65.4 60.9 25.6 65.2 60.1 26.7 62.1

Table 6: Results measured in BLEU [%], TER [%] and CTER [%] for Chinese→English. The TER computation on
newstest2018 fails. † indicates the submitted system which is the ensemble of 4 non-converged checkpoints
of the large Transformer.

model size and increasing the batch size up to
6500 provides an additional boost of 0.4% BLEU,
0.3% TER and 0.4% CTER on average on all sets
(see Row 2 and 3). Furthermore, we try an en-
semble of best checkpoints based on BLEU either
using various models or using different snapshots
of the large Transformer. We use both linear and
log-linear ensembling which does not make a dif-
ference in terms of BLEU as shown in the Table.
Log-linear ensembling is slightly better in terms of
TER and is a little bit worse in terms of CTER. We
also combine the 4 best checkpoints of the large
Transformer shown in Row 6 of Table 6.

5 Conclusion

This paper describes the RWTH Aachen Univer-
sity’s submission to the WMT 2018 shared news
translation task. For German→English our ex-
periments start with a strong baseline which al-
ready beats our submission to WMT 2017 by 1.4%
BLEU on newstest2015. Our final submis-
sion is an ensemble of three Transformer mod-
els which beats our and the strongest submis-
sion of last year by 6.8% BLEU respectively 4.8%
BLEU on newstest2017. It is ranked first on
newstest2018 by all automatic metrics for this
year’s news translation task6. We suspect that the
strength of our systems is especially grounded in
the usage of the recently established Transformer
architecture, the usage of filtered ParaCrawl in ad-
dition to careful experiments on data conditions,
the usage of rather big models and large batch
sizes, and effective fine-tuning on old test sets.

In English→Turkish task, we show that proper
regularization (high dropout rate, weight tying)
is crucial for the low-resource setting, yielding

6http://matrix.statmt.org/matrix/
systems_list/1880

a total of up to +7.4% BLEU. Our best system
is using 1M sentences synthetic data generated
with back-translation (+2.8% BLEU), fine-tuned
with test sets of previous year’s tasks (+0.7%
BLEU), and ensembled over four different train-
ing runs (+0.3% BLEU), leading to 18.0% BLEU

in newstest2018. Note that its CTER is better
or comparable to the top-ranked system submis-
sions7. In newstest2017, our system, even if it
is not fine-tuned, outperforms the last year’s win-
ning system by +3.6% BLEU.

For our Chinese→English system multiple
GPU training that allows for larger models and an
increased batch size results in the best preform-
ing single system. A linear ensemble of different
Transformer configurations provides 0.7% BLEU,
0.6% TER and 0.8% CTER on average on top of
the single best model.

Acknowledgements

This work has received
funding from the Euro-
pean Research Council
(ERC) (under the Euro-
pean Union’s Horizon
2020 research and in-
novation programme,
grant agreement No

694537, project ”SEQCLAS”) and the Deutsche
Forschungsgemeinschaft (DFG; grant agreement
NE 572/8-1, project ”CoreTec”). The GPU com-
puting cluster was supported by DFG (Deutsche
Forschungsgemeinschaft) under grant INST
222/1168-1 FUGG.
The work reflects only the authors’ views and
none of the funding agencies is responsible for

7http://matrix.statmt.org/matrix/
systems_list/1891

501



any use that may be made of the information it
contains.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450. Version 1.

Parnia Bahar, Jan Rosendahl, Nick Rossenbach, and
Hermann Ney. 2017. The RWTH Aachen machine
translation systems for IWSLT 2017. In 14th In-
ternational Workshop on Spoken Language Trans-
lation, pages 29–34.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. MXNet: A flex-
ible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint
arXiv:1512.01274. Version 1.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint arXiv:1712.05690. Ver-
sion 2.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980. Version 9.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Reg-
ularizing neural networks by penalizing confident
output distributions. CoRR, abs/1701.06548.

Jan-Thorsten Peter, Eugen Beck, and Hermann Ney.
2018. Sisyphus, a workflow manager designed for
machine translation and automatic speech recogni-
tion. In 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium.

Jan-Thorsten Peter, Andreas Guta, Tamer Alkhouli,
Parnia Bahar, Jan Rosendahl, Nick Rossenbach,
Miguel Graa, and Ney Hermann. 2017. The RWTH
Aachen University English-German and German-
English machine translation system for WMT 2017.
In EMNLP 2017 Second Conference on Machine
Translation, Copenhagen, Denmark.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural MT sys-
tems for WMT17. In Proceedings of the Second
Conference on Machine Translation, WMT 2017,
Copenhagen, Denmark, September 7-8, 2017, pages
389–399.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation, volume 2: Shared
Task Papers, pages 368–373, Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 1715–1725.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas, pages
223–231, Cambridge, Massachusetts, USA.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

502



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

David Vilar, Daniel Stein, Matthias Huck, and Her-
mann Ney. 2010. Jane: Open source hierarchi-
cal translation, extended with reordering and lexi-
con models. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Metric-
sMATR, pages 262–270. Association for Computa-
tional Linguistics.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl,
and Hermann Ney. CharacTer: Translation Edit
Rate on Character Level. In The 54th Annual Meet-
ing of the Association for Computational Linguistics
- proceedings of the First Conference on Machine
Translation (WMT) : August 7-12, 2016, Berlin,
Germany : ACL 2016. - Volume 2, Shared Task Pa-
pers, pages 505–510, Stroudsburg, PA. Association
for Computational Linguistics.

Albert Zeyer, Tamer Alkhouli, and Hermann Ney.
2018. RETURNN as a generic flexible neural toolkit
with application to translation and speech recogni-
tion. In Proceedings of ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, System Demonstrations,
pages 128–133.

6 Appendix

For our very first experiments with Sockeye a con-
figuration8 from the Sockeye git repository pro-
vided a good starting point.

For our strongest single De→En model (Ta-
ble 3, Row 7) we ended up with the following op-
tions:

--num-layers 6:6

--encoder transformer

--decoder transformer

--num-embed 1024:1024

--transformer-model-size 1024

--transformer-feed-forward

-num-hidden 4096

--transformer-attention-heads 16

--transformer-positional

-embedding-type fixed

--transformer-preprocess n

--transformer-postprocess dr

--embed-dropout 0:0

--transformer-dropout-prepost 0.1

--transformer-dropout-act 0.1

8https://github.com/awslabs/sockeye/
blob/arxiv_1217/arxiv/code/transformer/
sockeye/train-transformer.sh

--transformer-dropout

-attention 0.1

--label-smoothing 0.1

--learning-rate-reduce-num

-not-improved 3

--checkpoint-frequency 20000

--batch-type word

--batch-size 5000

--device-ids -4

--grad-accumulation 2 # see∗

∗ Note that the --grad-accumulation op-
tion is introduced by us and is not provided by the
official Sockeye version. It refers to the accumula-
tion of gradients, described in Section 4.1, which
increases the effective batch-size: In the provided
config the effective batch size is 10000.

For our vocabulary sizes (45k and 34k for Ger-
man and English) the listed configuration results
in a Transformer network with 291M trainable pa-
rameters.

503


