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Abstract

This paper describes the Neural Machine
Translation (NMT) system of TencentFmRD
for Chinese↔English news translation tasks of
WMT 2018. Our systems are neural machine
translation systems trained with our original
system TenTrans. TenTrans is an improved
NMT system based on Transformer self-
attention mechanism. In addition to the ba-
sic settings of Transformer training, TenTrans
uses multi-model fusion techniques, multi-
ple features reranking, different segmentation
models and joint learning. Finally, we adopt
some data selection strategies to fine-tune the
trained system and achieve a stable perfor-
mance improvement. Our Chinese→English
system achieved the second best BLEU scores
and fourth best cased BLEU scores among all
WMT18 submitted systems.

1 Introduction

End-to-end neural machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015) based on self-attention mecha-
nism (Vaswani et al., 2017), the Transformer, has
become promising paradigm in field of machine
translation academia and industry. Experiments
show Transformer, which does not rely on any
convolutional or recurrent networks, to be superior
in translation performance while being more par-
allelizable and requiring significantly less time to
train. The training part of this paper is an improve-
ment on the tensor2tensor1 open source project
based on the Transformer architecture, and the in-
ference part is completely original, and we called
this system TenTrans. We participated in two di-
rections of translation tasks: English→Chinese
and Chinese→English.

We divide TenTrans system into three parts to
introduce in this paper. First, we introduce how

1https://github.com/tensorflow/tensor2tensor

to train better translation model, that is, the train-
ing phase. Second, we describe how good mod-
els can generate better translation candidates, that
is, the inference phase. Finally, we describe N -
best rescoring phase, which ensures that transla-
tion results which are closer to the expression typ-
ically produced by users are chosen. Our exper-
imental setup is based on recent promising tech-
niques in NMT, including using Byte Pair En-
coding (BPE) (Sennrich et al., 2016b) and mixed
word/character segmentation rather than words as
modeling units to achieve open-vocabulary trans-
lation (Luong and Manning, 2016), using back-
translation (Sennrich et al., 2016a) method and
joint training (Zhang et al., 2018) applied to make
use of monolingual data to enhance training data.
And we also improve the performance using an
ensemble based on six variants of the same net-
work, which are trained with different parameter
settings.

In addition, we design multi-dimensional fea-
tures for strategic integration to select the best can-
didate from n-best translation lists. Then we per-
form minimum error rate training (MERT) (Och,
2003) on validation set to give different features
corresponding reasonable weights. And we pro-
cess named entities, such as person name, loca-
tion name and organization name into generaliza-
tion types in order to improve the performance of
unknown named entity translation (Wang et al.,
2017). Finally, we adopt some data selection
strategies (Li et al., 2016) to fine-tune the trained
system and achieve a stable performance improve-
ment.

Our Chinese→English system achieved the sec-
ond best BLEU (Papineni et al., 2002) scores and
fourth best cased BLEU scores among all WMT18
submitted systems. The remainder of this paper
is organized as follows: Section 2 describes the
system architecture of TenTrans. Section 3 states
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all experimental techniques used in WMT18 news
translation tasks. Sections 4 shows designed fea-
tures for reranking n-best lists. Section 5 shows
experimental settings and results. Finally, we con-
clude in section 6.

2 System Architecture of TenTrans

In this work, TenTrans has the same overall archi-
tecture as the Transformer: that is, it uses stacked
self-attention and point-wise, fully connected lay-
ers for both the encoder and decoder. The encoder
and decoder both are composed of a stack of N =
6 identical layers. Each layer has two sub-layers,
multi-head self-attention mechanism and position-
wise connected feed-forward network. We add a
residual connection (He et al., 2016) around each
of the two sub-layers, followed by layer normal-
ization (Ba et al., 2016). The left part of training
phase in Figure 1 describes the structure of the ba-
sic sub-layer in the encoder and decoder. In ad-
dition to the two sub-layers in each encoder layer,
the decoder inserts a third sub-layer, which per-
forms multi-head attention over the output of the
encoder stack. In this work we employ multi-
head = 16 heads, that is, parallel attention layers.

For all our models, we adopt Adam (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.98, ε = 10−9)
as optimizer. We use model hidden state dimen-
sion 1024, the same as input embedding dimen-
sion and output embedding dimension. We lin-
early increase the learning rate whose initial value
is 0.1 in the first warmup = 6000 training steps,
and then anneal with the same way as Transformer.
We use synchronous mini-batch SGD (Dean et al.,
2012) training with batch size = 6144 and data
parallelism on 8 NVIDIA Tesla P40 GPUs. We
clip the gradient norm to 1.0 (Pascanu et al., 2013).
We apply residual dropout (Zaremba et al., 2014;
Srivastava et al., 2014) with Prd = 0.3 to avoid
overfitting. In training, we don’t just focus on
the word with highest probability score, but let
the likelihood calculation be smoother, so apply-
ing label smoothing (Szegedy et al., 2016) with
εls = 0.1. All weight parameters are initialized
according to uniform distribution in the interval
[−0.08, 0.08]. We will early stop training (Sen-
nrich et al., 2017) when there is no new maximum
value of the validation BLEU for 10 consecutive
save-points (saving every 10000 updates) and se-
lect the model with the highest BLEU score on the
validation set.

We mainly optimize TenTrans system through
three parts. First, through the first part of Fig-
ure 1, multiple models are trained, and then the
data selection method is used to continue to fine
tune the system. Then, through the second part of
Figure 1, the combination of best multiple models
is used to decode the monolingual corpus to gen-
erate pseudo-bilingual data, and then the pseudo-
bilingual data is proportionally added to the train-
ing set to continue the training of the first stage,
and these two phases are continuously iterated un-
til convergence. Finally, the third stage, N -best
rescoring phase, finds the best translation result
among the translation candidates by designed mul-
tiple sets of features. In order to learn the corre-
sponding weights of multiple sets of features, the
optimization is carried out through minimum error
rate training (MERT).

3 Experimental Techniques

This section mainly introduces the techniques
used in training and inference phase.

3.1 Multi-model Fusion Technology

For multi-model fusion, we try three strategies:
Checkpoint ensembles (CE), refers to the last

N checkpoints saved during a single model train-
ing, where N is set to 10. In addition, we add
the best 10 models saved during the early stopping
training.

Independent parameter ensembles (IPE),
refers to firstly training N models with different
initialization parameters, and then weighting the
average probability distribution of multiple mod-
els when softmax layer is calculated. Here we set
N to 6, and we make better models have relatively
higher weights, and poorer models have relatively
lower weights.

Independent model ensembles (IME). An in-
dependent model ensemble is a set of models, each
of which has been assigned a weight. It is not nec-
essary to perform calculating the probability dis-
tribution in the inference process. Our experimen-
tal results show that this method performs slightly
lower than IPE method, but the advantage is that
the decoding speed is the same as the single model
decoding.

In this work, we use the checkpoint ensemble
method to initially integrate each single model,
and then use the independent parameter ensemble
method to perform multi-model integration in the
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Figure 1: An illustration of system architecture of TenTrans. θ indicates model parameters being trained, and
s indicates a training sample containing a source language x and a target language y. ω are the feature weight
parameters being tuned by MERT. Ridiculous results mainly refer to translation results that are extremely long or
short and clearly inconsistent with the source language.

stage of generating the final result of the system.
The independent model ensemble method is used
to decode monolingual corpus to generate pseudo-
bilingual data during joint training.

3.2 Fine-tune System with Data Selection
Method

In mainstream machine translation systems, net-
work parameters are fixed after the training is fin-
ished. The same model will be applied to various
test sentences. A very important problem with this
approach is that it is difficult for a model to self-
adapt to different sentences, especially when there
is a big difference between the test set field and
training set field. To alleviate this problem, (Li
et al., 2016) proposed to search similar sentences
in the training data using the test sentence as a
query, and then fine tune the NMT model us-
ing the retrieved training sentences for translating
the test sentence. We follow the strategy of (Li
et al., 2016). This method firstly learns the gen-
eral model from the entire training corpus. Then,
for each test sentence, we extract a small subset
from the training data, consisting of sentence pairs
whose source sides are similar to the testing sen-

tence. The subset is used to fine tune the general
model and get a specific model for every sentence.
To calculate similarity between two sentences, we
adopt Levenshtein distance, which calculates the
minimum steps for converting a string to another
string using insertion, deletion and substitution
these operations. We firstly filter the training cor-
pus by only considering those which have com-
mon words with the testing sentence, and then
compute similarity with the filtered set. In order
to speed up the calculation, we use the inverted in-
dex method.

3.3 Joint Training

This work uses the monolingual corpus to en-
hance the training set by joint training. Joint
training refers to the use of the corresponding ad-
ditional target side and source side monolingual
data at the source-to-target (S2T) and the target-
to-source (T2S) translation model, and jointly op-
timizing the two translation models through an it-
erative process. In each iteration, T2S model is
used to generate pseudo bilingual data for S2T
with target-side monolingual data, and S2T model
is used to generate pseudo bilingual data for T2S

412



Algorithm 1 Joint Training Algorithm in TenTrans System
Input: original bilingual data B, source monolingual data Xm, target monolingual data Ym
Output: trained S2T models M i

s2t(i = 1 · · · 6) and T2S models M i
t2s(i = 1 · · · 6)

1: Train 6M i
s2t(i = 1 · · · 6) and 6M i

t2s(i = 1 · · · 6) with different parameters
2: n⇐ 1
3: while Not Converged do
4: Integrate 6 M i

s2t(i = 1 · · · 6) to generate M ens
s2t with IME method

5: Integrate 6 M i
t2s(i = 1 · · · 6) to generate M ens

t2s with IME method
6: Use M ens

t2s to generate pseudo-training data Ft2s by translating Ym
7: Use M ens

s2t to generate pseudo-training data Fs2t by translating Xm

8: New corpus to train M i
s2t(i = 1 · · · 6), Cs2t ⇐ n×B + Ft2s

9: New corpus to train M i
t2s(i = 1 · · · 6), Ct2s ⇐ n×B + Fs2t

10: n⇐ n+ 1

11: Train M i
s2t with L(θs2t) =

S∑
s=1

logP (y(s)|x(s)) +
T∑
t=1

logP (y(t)|x(t))P ′
(x(t)|y(t)) using Cs2t

2

12: Train M i
t2s with L(θt2s) =

S∑
s=1

logP (x(s)|y(s)) +
T∑
t=1

logP (x(t)|y(t))P ′
(y(t)|x(t)) using Ct2s

2

13: end while

with source-side monolingual data. This joint op-
timization approach enables the translation model
in both directions to be improved, and generat-
ing better pseudo-training data to be added to the
training set. Therefore, in the next iteration, it
can train better T2S model and S2T model, so
on and so forth. The right part of the decoding
phase of Figure 1 outlines the iterative process
of joint training. In addition, in order to solve
the problem that back-translation often generates
pseudo data with poor translation quality and thus
affects model training, the generated training sen-
tence pairs are weighted so that the negative im-
pact of noisy translations can be minimized in
joint training. Original bilingual sentence pairs
are all weighted as 1, while the synthetic sen-
tence pairs are weighted as the normalized corre-
sponding model output probability. For the spe-
cific practice of joint training in this paper, see Al-
gorithm 1.2

3.4 Different Modeling Units
We use BPE3 with 50K operations in both source
side and target side of Chinese→English trans-
lation. In English→Chinese translation task, we

2Here P
′
(x(t)|y(t)) refers to translation probability of

Mens
t2s translating monolingual sentence y(t) to generate

x(t), P
′
(y(t)|x(t)) refers to translation probability of Mens

s2t

translating monolingual sentence x(t) to generate y(t),
P (y(s)|x(s)) denotes translation probability of x(s) → y(s)

during training S2T model, and P (x(s)|y(s)) denotes trans-
lation probability of y(s) → x(s) during training T2S model.

3https://github.com/rsennrich/subword-nmt

use BPE with 50K operations in English source
side, and use mixed word/character segmentation
in Chinese target side. We keep the most fre-
quent 60K Chinese words and split other words
into characters. In post-processing step, we sim-
ply remove all the spaces.

3.5 NER Generalization Method
To alleviate poor translation performance of
named entities, we first use the pre-defined tags
to replace named entities in training set to train a
tagged NMT system, for example, use $number
for numbers, $time for time, $date for date, $psn
for person name, $loc for location name, $org for
organization name. Then the key to the problem
is how to identity these entities and classify them
into corresponding types accurately. In order to
solve this problem, we classify these entities into
two types, one type that can be identified by rules,
and the other type that can be identified by classi-
fication models. To decide whether an entity is a
time, a number, or a date, we use finite automata
(FA) (Thatcher and Wright, 1968). Aiming at the
names of people, location names, and organization
names, we first use biLSTM-CRF4 (Lample et al.,
2016; Huang et al., 2015) to train a Chinese se-
quence tagging model on ”People’s Daily 1998”
data set and an English sequence tagging model
on CoNLL2003 data set, and then identify named
entities at the source and target language side of
the training set.

4https://github.com/guillaumegenthial/sequence tagging
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In the test phase, we first convert these enti-
ties in the test sentences into corresponding pre-
defined tags, and then directly using the tagged
NMT system to translate the sentences. When a
tag is generated at target side, we select the cor-
responding translation of the word in the source
language side that has the highest alignment prob-
ability based attention probability with the same
as tag type in target side. If the source side does
not have the same type of tag, delete the current
tag directly. In order to obtain the correspond-
ing translation of each entity vocabulary, we ob-
tain it in the phrase extraction stage in statistical
machine translation (SMT) (Koehn, 2009). We
extract a phrase pair with one source word num-
ber from phrase table, and then use target side of
the phrase pair with highest frequency of occur-
rence as the translation of the word to construct
a bilingual translation dictionary. Although this
method has not greatly improved the BLEU evalu-
ation metric, it is of great benefit to the readability
of the translation result for human. We use UNK
to represent out-of-vocabulary (OOV) words, and
translate it in the same way as above.

4 Experimental Features

This section focuses on the features designed to
help choose translation results which are closer to
the way normal user expressions - that is, it fo-
cuses on the N -best rescoring phase. Several fea-
tures designed in this work can be seen in the left
part of third phase in Figure 1.

4.1 Right to Left (R2L) Model

Since the current translation models all carry out
modeling from left to right, there is a tendency
for the prefix part of translation candidates to be
of higher quality than the suffix part (Liu et al.,
2016). In order to alleviate this problem of transla-
tion imbalance, we adopt a right-to-left translation
modeling method. Two R2L modeling method
are used in this work: the first is that only the
target data is inversed, and the second is that
both the target data and the source data are in-
versed. Then, two models, R2L model and R2L-
both model were trained. Finally, we also re-
verse the n-best lists and calculate the likelihood
probability of each translation candidate given the
source sentence using these two models. Each
model mentioned above is integrated by training
6 models with different parameters.

4.2 Target to Source Model

Neural machine translation models often have the
phenomena of missing translation, repeated trans-
lation, and obvious translation deviation (Tu et al.,
2017). In order to alleviate this problem, we use
the target-to-source translation system to recon-
struct the source-to-target translation results to the
source sentence. This approach can make it very
difficult to reproduce poor translation results to the
source sentence, and the corresponding probabil-
ity score will be low. Similarly, these models are
all integrated by multiple models.

4.3 Alignment Probability

In order to express the degree of mutual transla-
tion between the translation candidate and source
sentence at the lexical level, the lexical alignment
probability feature is adopted. This paper uses two
kinds of alignment probabilities, forward align-
ment probability and backward alignment proba-
bility. The forward alignment probability indicates
the degree of alignment of source language vocab-
ulary to the target language vocabulary, while the
backward alignment probability indicates the de-
gree of alignment of target language vocabulary
to the source language vocabulary. We obtain the
alignment score by fast-align toolkit5 (Dyer et al.,
2013).

4.4 Length Ratio and Length Difference

In order to reflect the length ratio between
source sentence and translation candidates, we
designed the length ratio feature Rlen =
Len(source)/Len(candidate) and the length
difference feature Dlen = Len(source) −
Len(candidate).

4.5 Translation Coverage

To reflect whether words in the source language
sentences have been translated, we introduce
translation coverage feature. This feature is cal-
culated by adding one to the feature value if the
source language words has been translated. We
use the fast-align toolkit to count the top 50 tar-
get words with highest probability of aligning each
source language word as the translation set of this
source word.

5https://github.com/clab/fast align
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System C2E E2C
baseline 23.32 33.06
+CE (checkpoint ensemble) 24.06 33.84
+IPE 25.98 35.58
+back-translation 26.49 36.0
+joint training 26.96 36.51
+fine-tune 27.63 37.29
+NER gereralization 27.74 37.43
+reranking (beam size 12) 29.72 39.03
+reranking (beam size 100) 30.13 39.49
submitted system 30.21 39.61

Table 1: Chinese↔English BLEU results on WMT18
validation set. The ”C” and ”E” denotes Chinese and
English respectively.

4.6 N -gram Language Model

For English, the word-level 5-gram language
model is trained on the mixing corpus of ”News
Crawl: articles from 2016” selected by news-
dev2018 and English side of the training data.
For Chinese, the character-level 5-gram language
model is trained on the XMU. This work uses
KenLM6 toolkit (Heafield, 2011) to train n-gram
language model.

4.7 Minimum Error Rate Training (MERT)

Obviously, some of the above features may be very
powerful, while some of the effects are not partic-
ularly obvious. Therefore, we need to give each
feature a corresponding weight. Our optimization
goal is to find a set of feature weights that make
the model score of translation candidates higher
and the corresponding BLEU score higher. There-
fore, we use minimum error rate training method
to learn the feature weights

ω∗ = argmin
ω

Error(E∗, R)

= argmin
ω

(1−BLEU(E∗, R))

= argmax
ω

BLEU(E∗, R)

(1)

where ω∗ indicates tuned weights, E∗ indicates
the best translation candidate for the source lan-
guage and R represents the corresponding refer-
ence translation.

6https://github.com/kpu/kenlm

5 Experimental Settings and Results

In all experiments, we report case-sensitive and
detokenized BLEU using the NIST BLEU scorer.
For Chinese output, we split to characters us-
ing the script supplied for WMT18 before run-
ning BLEU. In training and decoding phase,
the Chinese sentences are segmented using Niu-
Trans (Xiao et al., 2012) Segmenter. For English
sentences, we use the Moses (Koehn et al., 2007)
tokenizer7.

We used all the training data of WMT2018
Chinese↔English Translation tasks, firstly filter-
ing out bilingual sentences with unrecognizable
code, large length ratio difference, duplications
and wrong language coding, then filtering out
bilingual sentences with poor mutual translation
rate by using fast-align toolkit. After data clean-
ing, 18.5 million sentence pairs remained. We
used beam search with a beam size of 12, length
penalty α = 0.8 for Chinese→English system
and length penalty α = 1.0 for English→Chinese
system. In order to recover the case informa-
tion, we use Moses toolkit to train SMT-based
recaser on English corpus. In addition, we also
use some simple rules to restore the case informa-
tion of the results. The size of the Chinese vo-
cabulary and English vocabulary is 64k and 50k
respectively after BPE operation. Table 1 shows
the Chinese↔English translation results on de-
velopment set of WMT2018. Wherein reranking
refers to multi-feature based rescore method men-
tioned above. The submitted system in Table 1 has
slightly better performance than is seen in the pre-
vious experiment because we have manually writ-
ten some rules. As can be seen from the Table 1,
when we increase the size of n-best from 12 to
100, the performance is improved by 0.41 BLEU
after reranking based on multiple features.

6 Conclusion

In training phase of TenTrans, we report five ex-
perimental techniques. In the rescoring phase, we
designed multiple features to ensure that candi-
dates which are more likely to be produced by
users are as close as possible to the top of n-
best lists. Finally, our Chinese→English system
achieved the second best BLEU scores among all
WMT18 submitted systems.

7https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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