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Abstract

Most of the existing state of the art senti-

ment classification techniques involve the use

of pre-trained embeddings. This paper postu-

lates a generalized representation that collates

training on multiple datasets using a Multi-

task learning framework. We incorporate pub-

licly available, pre-trained embeddings with

Bidirectional LSTM’s to develop the multi-

task model. We validate the representations

on an independent test Irony dataset that can

contain several sentiments within each sample,

with an arbitrary distribution. Our experiments

show a significant improvement in results as

compared to the available baselines for indi-

vidual datasets on which independent models

are trained. Results also suggest superior per-

formance of the representations generated over

Irony dataset.

1 Introduction

Sentiment analysis has attracted substantial re-

search interest, especially in the field of social me-

dia, owing to the growing number of data and ac-

tive users. In addition, the research community

has gravitated towards a pragmatic characteriza-

tion of language with the division into (and quan-

tification of) specific emotions for sentiment anal-

ysis. This approach has come to prominence in

recent times as a large number of enterprises (not

just social media corporations) now rely on under-

standing customer sentiments for defining prod-

uct and marketing strategies (Pang and Lee, 2004;

Socher et al., 2012).

Beyond strategic inputs, sentiment analysis also

performs a tactical role in the age of rapid (viral)

increases and decreases in the visibility of spe-

cific events, with magnified consequences for cor-

porations and communities at large. For exam-

ple, United Airlines faced significant business im-

pact due to a single (possibly isolated) passenger-

related incident, due to its spread over Twitter1. It

is conceivable that an automated system quickly

alerting the management about the rate and depth

of negative sentiments due to the incident, would

have enabled them to produce a more amelioratory

response from the outset.

Complementary to such motivating incidents is

the recent availability of large datasets from social

media sources. Twitter has become a go-to choice

for scraping data due to its large user base and the

easy accessibility of tweets through its API. The

result is a large corpus of complex sentiments for

identification and analysis. Tweets (the messages

posted on Twitter) are limited to 140 characters,

which creates a plethora of challenges as the users

find new and innovative ways of condensing the

messages using slang, hashtags, and emojis, often

defying traditional grammatical rules of the lan-

guage. This is further complicated by the fast, lo-

calized rise and decay of popular memes, slang,

and hashtags.

Traditional sentiment analysis using dictionary-

based methods has failed to capture these nuances,

as the methods rely on grammatically correct, in-

tact syntactic and semantic structures which are

not followed in this space. Traditional senti-

ment analyzers such as (Akkaya et al., 2009; Po-

ria et al., 2014; Sharma and Bhattacharyya, 2013)

that worked well with well-written texts, face chal-

lenges at lexical, syntactic and semantic levels

when dealing with tweets as analyzed in (Liu,

2012). Bag-of-words models and naive Bayes

models are sequence-agnostic, and have therefore

failed to generalize over a diverse distribution of

sentiments, especially when multiple fine-grained

emotions are compressed into a 140 character

message. Word vectors trained on a large corpus

to represent the word in dense representations have

1https://twitter.com/i/moments/851423833160634368
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proved to be efficient in handling sentiment anal-

ysis and effective emotions. Deep learning and

specifically Recurrent Neural Networks have been

extensively used with word vectors to achieve state

of the art results on various sentiment analysis

tasks. Although there are large datasets available

on social media space, deep learning models re-

quire annotated data for supervised training. An-

notation for such a large dataset is expensive, since

multiple human annotators are required per sam-

ple for stable convergence.

A useful research question is how to leverage

resources available on social media sites to im-

prove sentiment classification across datasets by

leveraging the generic representations and han-

dling the noise present in the space. These chal-

lenges have led people to use transfer learning and

multi-task learning approaches to transfer knowl-

edge across different datasets and languages. Re-

cently, neural-network-based models for multi-

task learning have become very popular, ranging

from computer vision (Misra et al., 2016; Nam and

Han, 2016) to natural language processing (Col-

lobert et al., 2011a; Luong et al., 2015), since they

provide a convenient way of combining informa-

tion from multiple tasks.

We propose a dual Attention based deep learn-

ing model which creates representations using

Bidirectional LSTM. In particular, given an in-

put tweet, our model first uses a pair of bidirec-

tional LSTMs to learn a general representation.

This portion of the model is trained in a multi-

task framework. The general sentence representa-

tion is then mapped into a task-specific represen-

tation through an attention mechanism, so that the

most salient parts of the input are selected for each

task. We achieve significant improvement over the

baselines and obtain comparable results with the

state of the art methods without any feature engi-

neering.

We have selected datasets which classify a text

into 3 classes, along with affect dataset. Affec-

tive dimensions provide much more granular anal-

ysis over emotions that are being conveyed. Af-

fective emotions are classified along the valence,

arousal and dominance axis according to circum-

plex model of affect, a well-established system for

describing emotional states (Russell, 1980; Posner

et al., 2005). Of these states, valence can directly

be mapped to sentiment classification. These

scales represent valence (or sentiment) and arousal

(or intensity), which defines each posts position on

the circumplex of the 3 dimension

The major contributions of this paper are:

• Generating robust representation of a tweet

from three different set of pre-trained embed-

dings which can handle emoji/smileys and

out-of-vocabulary words in the dataset.

• Multi Task learning frame work using Bidi-

rectional Long short Memory Networks

(BiLSTM) and attention mechanism to ef-

fectively learn the representations across

datasets.

We evaluate the effectiveness of the model with

respect to both internal and external distribution.

The former refers to the setting where distribution

of the test data falls in one of the m training tasks,

and the latter refers to the setting where task and

data are different and we use just the representa-

tion to train the task-specific layers.

Rest of the paper is organized as follows, sec-

tion 2 discusses works related to multi-task learn-

ing along the lines of sentiment analysis. We

present our proposed approach in section 3, which

details the system architecture and its key compo-

nents. Two sets of experiments and results shown

in section 4 and 5 respectively. Finally section 6

concludes the paper with future direction.

2 Related Work

The current state of the art models for classifying

the sentiments over social media text specifically

tweets use a mixture of handcrafted features and

pre-trained embeddings. Lexicon-based features

along with neural network models to predict inten-

sity of emotions have been proposed (Mohammad

et al., 2013; Wilson et al., 2005; Ding et al., 2008;

Bravo-Marquez et al., 2016; Esuli and Sebastiani,

2007) which have proved successful. However,

these representations do not generalize well when

there is a change in the vocabulary and the distri-

bution. In addition, refining and generating hand-

crafted features is an expensive and tedious pro-

cess. Our model do not require any hand-crafted

features and can work with raw text and hence it

can generalize well.

Two most popular embeddings that are being

used are word2vec (Mikolov et al., 2013) and

Glove (Pennington et al., 2014). Although these

embeddings have improved the baselines from the
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traditional bag-of-words model, they have been

trained over large corpus in an unsupervised man-

ner, they do not encode any sentiment information

in them. The words like good and bad, due to

their similar usage in the text appear to be close in

the embedding space. To better represent the sen-

timent in the embeddings, several approaches to

refine and learn embeddings have been reported.

Learning of sentiment specific word embedding

(SSWE) is presented in (Tang et al., 2014) where,

embeddings were learned from a large corpus by

incorporating the sentiment signal in the loss func-

tion. These embeddings are then used with dif-

ferent classifier such as convolutional Neural net-

works (CNN) followed by max-pooling (Collobert

et al., 2011b; Socher et al., 2011; Mitchell and La-

pata, 2010). We have considered this as one of our

baselines.

Enriching of embedding using the distant-

supervised method to learn set of embeddings us-

ing standard word2vec (Mikolov et al., 2013) and

GLove (Pennington et al., 2014) is shown in (De-

riu et al., 2016). Although this enrichment of em-

beddings is done using a large corpus of tweets,

the basic assumption is that positive emoticons

and emoji relate to the overall positive sentiment

of the tweets create a lot of instability in the em-

bedding space (Kunneman et al., 2014). This is

due to the fact that, emoticons and emoji are used

in various context and quite often in a polar oppo-

site way to express sarcasm and irony (Poria et al.,

2014). In addition, these methods are inefficient

for more granular and fine-grained sentiment anal-

ysis.

3 Proposed Framework

In Figure 1 we present our generalized system di-

agram. Raw text is first preprocessed to normalize

noise using standard text processing techniques.

3.1 Pre-processing
Tweets are essentially short text messages that are

generated by humans to express their sentiments

and reviews, and are known to be inherently noisy

due to their condensed nature. This poses a chal-

lenge when trying to understand sentiment and af-

fect. We have used standard text processing tech-

niques with some modification to better suit the

sentiment and affect domain:

• All the letters are converted to lower case

form

• Significant amount of words are elongated

with repeated number of characters such as

”ANGRYYYYYYYYYYY”, we have lim-

ited these consequent characters to maximum

of 2

• All the hyperlinks are removed as they do not

serve the sentiment that is conveyed by the

text itself and might relate to the sentiment

pointed out by that links

• For words represented in hastags we remove

”#” symbol, and if the word is not found

in the vocabulary we try to segment it us-

ing Viterbi algorithm (Segaran and Hammer-

bacher, 2009)

• Usernames are replaced with ”mention” to-

ken

• Compacted versions of word phrases such as

”wasn’t”, ”when’s”, etc., are replaced with

corresponding expanded words

3.2 Embedding Generation
Processed text is then used to generate two sets

of embeddings. First set of embeddings are gen-

erated by using three different pre-trained embed-

dings.

• Pre-trained embeddings which are generated

from common crawl corpus have 6 Billion to-

kens which help in a better encoding of the

syntactic and semantic structure of the lan-

guage.

• Pre-trained emoji (Eisner et al., 2016) em-

beddings are used to represent the emojis and

emoticons in the text. Emojis and emoticons

are essential part of text which strongly con-

vey the sentiments.

• To handle out of vocabulary words after the

segmentations and the spelling corrections,

we use character embedding2 to generate a

representations by summing all the character

embeddings in that word. This helps in cap-

turing sentiment related signals better than

assigning it to the random tokens.

Pseudo code 1 details the process of generating

first set of embedding which uses Glove embed-

dings trained over common crawl corpus of vector

2https://github.com/minimaxir/char-embeddings
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Figure 1: System Architecture

for each word. Second set of embeddings are ex-

tracted from pre-trained embeddings over Twitter

corpus to get vectors that represents the nuances

of the Twitter platform and in general of short

and noisy text. These embeddings provide varied

vector sizes, we use 300 and 200 dimensions of

embedding for common crawl and twitter respec-

tively.

word token = Tokenize tweet

for each word in word token do
if word is in EmojiEmbb then

word vector =

get vector(EmojiEmbb,

word vector)
else if word is in Glove then

word vector = get vector(Glove,

word vector)
else if word is in CharEmbb then

word vector = get vector(charEmbb,

word vector)
else

chars = tokeinze word token into

character

n = length(chars) word vector =
∑n

1 get vector(charEmbb, chars)
end

end
Algorithm 1: Embedding Matrix generation

Embeddings are then zero padded to match the

sequence length across the datasets of different

task. We have used 90 words as the maximum se-

quence length to account for any variations in val-

idation datasets. For generalization, single sam-

ple of processed text can be represented in form of

two sets of matrix as 〈nw × dg〉 and 〈nw × dt〉,
where nw is maximum sequence length or maxi-

mum number of words present in the text and dg,

dt are the dimension of each embeddings. In this

paper nw = 90, dg = 300 and dt = 200.

These embeddings are then fed into 2 separate

BiLSTM layers for each set of embeddings.

3.3 Model Description

We use LSTM architecture that was proposed in

(Graves, 2013), which is governed by following

equations,

it = tanh(Wxixt +Whiht−1 + bi)
jt = sigm(Wxjxt +Whjht−1 + bj)
ft = sigm(Wxfxt +Whfht−1 + bf )
ot = tanh(Wxoxt +Whoht−1 + bo)

ct = ct−1 ⊕ ft + it ⊕ jt
ht = tanh(ct)⊕ ot

In these equations, the W∗ are the weight matri-

ces and b∗ are biases. The operation ⊕ denotes

the element-wise vector product. The variable ct
denotes memory of LSTM at time step t.
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Bidirectional Long Short Term memory (BiL-

STMs) are improvement over LSTM networks

where, two LSTM layers are stacked over each

other. One of the layer processes the sequence in

the forward pass and another process the seqeunce

in backward fashion. Equations for the LSTM lay-

ers remain same and training can be done using

stochastic gradient descent. So at each time step

t, we receive set of ht, one from forward pass and

one from backward pass in BiLSTM, we concate-

nate and term it as a single output ht.

As can be seen from above equation, forget

gate bias can prove to be inefficient if it is initial-

ized to random value and might introduce prob-

lem of vanishing gradient problem by a factor of

0.5 (Hochreiter and Schmidhuber, 1997; Martens

and Sutskever, 2011). This can adversely affect

the long term dependencies, to address this prob-

lem we initialize forget gate bias bf to value just

above 1 to facilitate the gradient flow as suggested

in (Gers et al., 2000; Jozefowicz et al., 2015). To

further regularize and avoid over-fitting dropout is

used.

The output of both BiLSTM layers is then fed

into the task-specific layers. Figure 1 shows the

task-specific layers, where attention is used over

the output of each BiLSTM layer. Attention was

initially proposed for Neural Machine Translation

(NMT) for encoder-decoder architecture to pro-

vide a context in terms of weights to important

words (Bahdanau et al., 2014). In our problem

where the final goal is to classify or to predict the

intensity, attention is only required at the encod-

ing level. Context vector can be computed using

for the output of RNNs are follows,

ct =
∑T

j=1 αtjhj

et = a(ht), at =
exp(et)∑T

k=1
exp(ek)

where T is the total number of time steps in the

sequence(in our case maximum sequence length)

and αtj is the weight computed for hidden state hj
at each time step t. Context vector ct are then used

to compute new sequence using previous state in

the sequence and the context vectors. This ensures

the new sequences have direct access to the entire

sequence h.

Output of the attention layer is then fed to the

fully connected layers, and the size and activation

of the final layer depends on the task at hand.

4 Experiments

In order to validate our approach we perform two

experiments. In experiment-1 we train our model

on mixture of regression and classification tasks

and access its performance over the same task by

fine tuning it for the same task. In experiment-2

we accesses the representations that are obtained

during experiment-1 on a different task.

4.1 Experiment-1: Multi-task training

We train and evaluate our model on sentiment

classification SemEval dataset obtained through

shared task and affect emotion dataset from

SemEval-2018. These tasks are based on Twitter

text and align to our objective of classifying short

and noisy text present in the social media space.

Although sentiment and affect task require a vary-

ing degree of representation where sentiment clas-

sification in positive, negative and neutral space

can be relatively easier, representations required

for this tasks are not present in the pre-trained em-

beddings.

4.1.1 Datasets
For sentiment classification dataset we use

SemEval-2017 Task 4 Subtask A dataset. It con-

tains a tweet and its respective label from pos-

itive, negative and neutral in english language.

From here on we refer to this dataset as Sem-3.

The classes presented are imbalance and negative

tweets are around 15% in training set and 32% in

test set (Rosenthal et al., 2017).

For Affective emotion, we use dataset which

was presented as in SemEval-2018 task 1 (Mo-

hammad et al., 2018) subtask EI-reg, EI-oc con-

tains tweets specific to 4 emotions namely, Anger,

fear, Joy and Sadness for english language. Sub-

task V-reg, V-oc contains the tweets for valence de-

noting range of positive to negative of sentiment.

In subtasks EI-reg and V-reg, Given a tweet and its

corresponding emotion, predict the intensity score

of that emotion between 0 to 1, 0 being lowest

and 1 being highest. Whereas, for subtasks EI-
oc and V-oc we need to classify them into prede-

fined classes, where oc means ordinal classifica-

tion. In this dataset, emotions are classified in 4

distinct labels from mildly felt emotion to strongly

felt emotion, while valence is classified into 7 dis-

tinct classes. Distribution of the datasets into the

train development and test set is presented in ta-

ble 1.
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Table 1: Data Distribution.

Train Dev Test

Anger 1701 388 1002

Fear 2252 389 986

Joy 1616 290 1105

Sadness 1533 397 975

Valence 1181 449 937

Sem-3 50334 20632 12284

Predicting intensity for emotions and valence

are considered as regression task, while classify-

ing into one of the classes is considered as clas-

sification task. We have 5 regression tasks and 6

classification tasks across these two datasets.

4.1.2 Training Procedure
The sem-3 dataset have approximately 15 time

more training samples on an average when com-

pared to all the rest of tasks assuming regression

and classification are different tasks for each emo-

tions. We define a training algorithm mentioned in

algorithm 2. We train for sem-3 task for 1 epochs

while others are trained for 15 epochs to account

for the sample imbalances. We have chosen to

keep the validation and test dataset as it is to better

compare over the baselines.

for episode in episodes do
train sem-3 for 1 epoch

list = random order of task rest of 10

classes

for task in list do
train task for 15 epochs

end
end

For classification tasks we have used categorical

crossentropy as loss function, while for regression

task we have defined a custom loss function as fol-

lows,

Loss = 0.7× (1− pearson)+ 0.3×MSE (1)

where pearson is the pearson correlation and MSE

is the mean squared error. As pearson correlation

was the official metric for the regression task and

has proven to be better representative than mean

squared error. We have taken mean squared error

into account to decrease the bias than creeps in due

to batch size while training.

For classification tasks, class weights were ap-

plied in the loss function to handle class imbal-

ances. Weights were set according to the inverse

of their frequency.

Model hyper-parameters are shown in table 2.

In addition, 0.5 and 0.35 dropout was used for

fully connected layer and BiLSTM respectively.

These parameters were chosen using grid search

over validation dataset. We have used Tanhyper-
bolic as for BiLSTM and Scaled Exponential Lin-
ear Units (selu) (Klambauer et al., 2017) for fully

connected layers as activation function. Fine tun-

ing for each task is by freezing the shared layer

weights after training to generate results for indi-

vidual tasks.

Table 2: Details of layers

Layers Classification Regression

BiLSTM Layer 1 70 70

BiLSTM Layer 2 70 70

Fully connected layer 1 100 100

Fully connected layer 2 50 50

Fully connected layer 3 3/5/7 1

4.2 Experiment 2: Validating on external
distribution

Irony detection in the social media is one such

field which is correlated with the sentiment analy-

sis. Although it requires different set of features,

sentiment and affective emotions enhances the de-

tection accuracies as reported in (Farı́as et al.,

2016; Wallace, 2015). In this experiment, we ap-

ply representations generated earlier to irony clas-

sification to access its robustness. We have used

irony detection dataset introduced in SemEval-

2018 task 3 (Van Hee et al., 2018). Dataset was

augmented and hashtags used to mine the tweets

such as ”#irony”, ”#sarcasm”, etc., were omitted

for testing. We have removed this hashtags during

training as well to keep the dataset consistent.

This task contained two subtask, namely Sub-

task A and Subtask B. Objective of Subtask A

was to classify whether a tweet contains irony or

not, while of Subtask B was to classify into verbal

irony (V-irony), situational irony (S-irony), other

types of irony (O-irony) and non-ironic. Distribu-

tion of the dataset along the training and testing is

presented in table 3.

Table 3: Distribution of Irony Dataset across train and

test
Subtask A Subtask B

Ironic Non-Ironic V-irony S-irony O-irony Non-ironic

Train 1911 1923 1390 316 205 1923

Test 311 473 164 85 62 473
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For this we extract the representations from the

model trained in experiment 1, specifically we take

output of 2 BiLSTM layers. So for each sam-

ple in this dataset we have a 2D matrix of shape

〈nw × b1〉, nw is the maximum sequence length

and b1 is the number of hidden units in the BiL-

STM layer 1. Similarly we obtain the representa-

tion from BiLSTM layer 2. We concatenate this

representation and pass it on to classification net-

work consisting of single BiLSTM layer and two

fully connected layers.

5 Results and Discussions

We ran our multi-task experiment for 10 episodes

which translates to 100 training rounds. Figure 2

shows loss vs timesteps graph. Graphs are plotted

differently to account for the different loss func-

tion scales. We can clearly observe the conver-

gence over the time steps across tasks.
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Figure 2: Upper graph shows the plot of loss vs

episodes for regression task, while lower graph shows

the corresponding plot for classification task for sem-3

task

For experiment 1, we use standard baselines as

reported for the respective subtasks. In addition,

we train a simple CNN classifier and LSTM clas-

sifier as our baselines. For EI-reg, EI-oc, V-reg
and V-oc, baseline system was developed using

wordvectors along with lexicons and support vec-

tor as final classification/regressor. We also com-

pare the results with sentiment specific word em-

beddings (Tang et al., 2014), where we use Fully

connected layers along with attention as the down-

stream model. For Sem-3 dataset we compare our

results with RCNN (Yin et al., 2017) and Siamese

network (Baziotis et al., 2017), which were top

performing teams in the task. In addition, we sepa-

rately train each task with same model parameters
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Figure 3: Plot of how intensity of the tweet changes

with the words, signifying the importance of the se-

quence

without multi-task frame work, to observe the im-

provement due to multi-task and also to access the

ability of the model architecture proposed. Results

are shown in table 4, where for emotions and va-

lence pearson correlation is reported and for sem-

3 task accuracy and F1 score(F1 score is averaged

for positive and negative class) is reported. Our

model clearly out performs the baselines, and also

provides significant increase over the recently pro-

posed model architecture. Results also shows that

separately trained model is able to beat the base-

lines, while adding the multi-task framework is

able to boost the results further.

For experiment 2, baseline is unigram tf-idf fea-

tures with Support vector classifiers. We com-

pare it with the standard CNN and BiLSTM ar-

chitectures. In addition, we also compare against

recently proposed generalized representation for

language modeling (Peters et al., 2018), which has

been a state of the art for Yelp and IMDB dataset.

These representations are available in two sets; a

weighted sum of three layers of BiLSTMs (sam-

ples size, max length, 1024) refereed as ELMO-

3D and fixed mean-pooling of all contextualized

word representations (samples size, 1024) refer-

eed as ELMO-2D. For ELMO-3D embeddings we

have used attention and fully connected layer as

the classifier and for 2 dimension embeddings, we

have used fully connected layers as classifiers. Re-

sults are shown in table 5, where F1-score is re-

ported over the classes, for multiclass subtask av-

erage of F1 score for each class has been reported,

this was the official metric of this task. We find

that our framework out-performs all the baselines
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Figure 4: Attention weights comparison of Multi-task and SSWE

Table 4: Results of Experiment 1
anger fear joy sadness valence sem-3

reg oc reg oc reg oc reg oc reg oc Acc. F1PN

Baseline 0.526 0.382 0.525 0.355 0.575 0.469 0.453 0.370 0.585 0.509 0.333 0.162

CNN 0.556 0.445 0.579 0.462 0.601 0.534 0.573 0.459 0.714 0.591 0.545 0.556

BiLSTM 0.627 0.511 0.635 0.497 0.612 0.556 0.613 0.507 0.73 0.621 0.637 0.646

SSWE 0.641 0.498 0.637 0.483 0.655 0.60 0.623 0.539 0.784 0.634 0.639 0.645

RCNN Ensemble (Yin

et al., 2017)
- - - - - - - - - - 0.664 0.658

Siamese LSTM (Baziotis

et al., 2017)
- - - - - - - - - - 0.651 0.677

Separately trained 0.697 0.551 0.696 0.527 0.689 0.629 0.685 0.597 0.804 0.667 0.642 0.64

Multitask 0.732 0.622 0.736 0.575 0.728 0.664 0.722 0.628 0.832 0.703 0.672 0.670

reported. Results are averaged across 10 runs to

reduce the variance.

Table 5: Irony Detection F1 score

Subtask A Subtask B

Baseline 0.585 0.327

CNN 0.535 0.329

BiLSTM 0.592 0.396

ELMO-2Dim 0.591 0.406

ELMO-3Dim 0.604 0.412

SSWE 0.557 0.361

Multitask Representation 0.629 0.425

A possible reason for the low performance of

pre-trained SSWE might be narrow vocabulary.

We have around 95K words in our vocabulary

whereas, SSWE had 137052 words in its pre-

trained vocabulary out of which only 33473 words

were in overlap with the dataset vocabulary. Al-

though the embeddings are refined for sentiment

words, social media space often contains words

which are not present in the formal dictionaries,

here as our model was able to generate embed-

dings of out of vocabulary words using charac-

ter embeddings. Figure 3 shows an example from

fear emotion, where plot of how the final intensity

of the sentence is changed over different model

is shown. SSWE jumps on the word ”bitter” as

the word contains highly negative sentiment as-

sociated with it, whereas the true value is low

for fear. Proposed model is able to normalize

over the sequence as the jump is not that drastic.

Figure 4 shows comparison of how our proposed

model learns to put weights to the words as com-

pared to SSWE model. We believe that adding the

sentiment context over in the embedding through

multi-task training aided in the Irony classification

dataset.

6 Conclusion

In this paper, we present an approach for gener-

ating representations using sentiment and affect

dataset in the multi-task framework. We present

our deep learning based model with a dual atten-

tion over two sets of embedding space to capture

more rich nuances of Twitter while still keeping

the semantic and syntactic structure of language.

In addition, we use emoji and character embed-

dings to help in getting better sentiment specific

signals and to mitigate the effect of out of vocabu-

lary problem. Our experiments over both internal

and external distribution of data show the effec-

tiveness of the representation. We observe that our

model perform significantly better as compared to

the baselines and the current state of the art meth-

ods for the tasks. Going further, it would be ef-

fective to devise an algorithm to modify these rep-

resentations with minimum computation and still

adapt to a different domain.
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