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Abstract

Generative models have recently experienced
a surge in popularity due to the development
of more efficient training algorithms and in-
creasing computational power. Models such as
adversarial generative networks (GANs) have
been successfully used in various areas such as
computer vision, medical imaging, style trans-
fer and natural language generation. Adver-
sarial nets were recently shown to yield results
in the image-to-text task, where given a set of
images, one has to provide their corresponding
text description. In this paper, we take a simi-
lar approach and propose a image-to-emoji ar-
chitecture, which is trained on data from so-
cial networks and can be used to score a given
picture using ideograms. We show empirical
results of our algorithm on data obtained from
the most influential Instagram accounts.

1 Introduction

The spike in the amount of user-generated visual
and textual data shared on social platforms such as
Facebook, Twitter, Instagram, Pinterest and many
others luckily coincides with the development
of efficient deep learning algorithms (Perozzi
et al., 2014; Pennacchiotti and Popescu, 2011;
Goyal et al., 2010). As humans, we can not
only share our ideas and thoughts through any
imaginable media, but also use social networks
to analyze and understand complex interpersonal
relations. Researchers have access to a rich set of
metadata (Krizhevsky, 2012; Liu et al., 2015) on
which various computer vision (CV) and natural
language processing (NLP) algorithms can be
trained.
For instance, recent work in the area of image
captioning aims to provide a short description (i.e.
caption) of a much larger document or image (Dai
et al., 2017; You et al., 2016; Pu et al., 2016). Such
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methods excel at conveying the dominant idea of
the input. On the other hand, we use ideograms,
also popular under the names of emojis or pic-
tographs as a natural amalgam between annotation
and summarization tasks. Note that, in this work,
we use the terms emoji, ideogram and pictograph
interchangeably to represent the intersection of
these three domains. Ideograms bridge together
the textual and visual spaces by representing
groups of words with a concise illustration. They
can be seen as surrogate functions which convey,
up to a degree of accuracy, reactions of social
media users. Furthermore, because each emoji has
a corresponding text description, there is a direct
mapping from ideograms onto the word space.
In this paper, we model the distribution of emojis
conditioned on an image with a deep generative
model. We use generative adversarial networks
(GANs) (Goodfellow et al., 2014), which are
notoriously known to be harder to train than
other distributional models such as variational
auto-encoders (VAEs) (Kingma and Welling,
2013) but tend to produce sharper results on
computer vision tasks.

2 Related Work and Motivation

Since the release of word2vec by Mikolov and
colleagues in 2013 (Mikolov et al., 2013), vector
representations of language entities have become
more popular than traditional encodings such as
bag-of-words (BOW) or n-grams (NG). Because
word2vec operations preserve the original seman-
tic meaning of words, concepts like word simi-
larity and synonyms are well-defined in the new
space and correspond to closest neighbors of a
point according to some metric.
The aforementionned word representation was fol-
lowed by doc2vec (Le and Mikolov, 2014). Orig-
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inally, doc2vec was meant to efficiently encode
collections of words as a whole. However, since
empirical results suggest a similar performance for
both algorithms, researchers tend to opt for the
simpler and more interpretable word2vec model.
One of the most recent and the most interest-
ing vector embeddings has been emoji2vec (Eis-
ner et al., 2016). It consists of more than 1,600
symbol-vector pairs, each associating a Unicode
character to a real 300−dimensional vector. The
abundance of pictographs such as emojis on so-
cial communication platforms suggests that word-
only analyses are limited in their scope to cap-
ture the full scale of interactions between individ-
uals. Emojis’ biggest advantage is their univer-
sality: no information is lost due to faulty trans-
lations, mistyped characters or even slang words.
In fact, emojis were designed to be more concise
and expressive than words. They, however, have
been shown to suffer from varying interpretations
which depend of factors such as viewing the pic-
tograph on an iPhone or a Google Pixel (Miller
et al., 2016). This in turn implies that the subject
of conversation highly impacts the choice of me-
dia (text or emoji) picked by the user (Kelly and
Watts, 2015). Reducing a whole media such as
a public post or an advertisement image to a sin-
gle emoji would almost certainly mean loosing the
richness of information, which is why we suggest
to instead model visual media as a conditional dis-
tribution over emojis that users employ to score
the image.
Deep neural models have previously been used to
analyse pictographic data: (Cappallo et al., 2015)
used them to assign the most likely emoji to a pic-
ture, (Felbo et al., 2017) predicted the prevalent
emotion of a sentence and (Zhao and Zeng, 2017)
used recurrent neural networks (RNNs) to predict
the emoji which best describes a given sentence.
We build on top of this work to propose Emoji-
GAN − a model meant to generate realistic emo-
jis based on an image. Since we are interested in
modeling a distribution over image-emoji tuples,
it is reasonable to represent it using generative
adversarial networks. They have been shown to
successfully memorize distributions over both text
and images. For example, a GAN can be coupled
with RNNs in order to generate realistic images
based on an input sentence (Reed et al., 2016).
We train our algorithm on emoji-picture pairs ob-
tained from various advertisement posts on Insta-

gram. A practical application of our method is to
analyze the effects of product advertisement on In-
stagram users. Previous works attempted to pre-
dict the popularity of Instagram posts by using sur-
rogate signals such as number of likes or follow-
ers (Almgren et al., 2016; De et al., 2017). Others
used social media data in order to model the popu-
larity of fashion industry icons (Park et al., 2016).
A thorough inspection of clothing styles around
the world has also been conducted (Matzen et al.,
2017).

3 Proposed Approach

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) have recently gained huge
popularity as a blackbox unsupervised method of
learning some target distribution. Taking roots in
game theory, their training process is framed as a
two player zero-sum game where a generator net-
work G tries to fool a discriminator network D by
producing samples closely mimicking the distribu-
tion of interest. In this work, we use Wasserstein-
GAN (Arjovsky et al., 2017), a variant of the orig-
inal GAN which uses the Wasserstein metric in or-
der to avoid problems such as mode collapse. The
generator and the discriminator are gradually im-
proved through either alternating or simultaneous
gradient descent minimization of the loss function
defined as:

min
G

max
D

E
x∼fX(x)

[D(x)]+ E
x∼G(z)

[−D(x)]+p(λ),

(1)
where p(λ) = λ(||∇x̃D(x̃)|| − 1)2,
x̃ = εx + (1 − ε)G(Z), ε ∼ Uniform(0, 1),
and Z ∼ fZ(z). This gradient penalized loss
(Gulrajani et al., 2017) is now widely used to
enforce the Lipschitz continuity constraint. Note
that setting λ = 0 recovers the original WGAN
objective.

3.2 Choice of embedding

Multiple embeddings have been proposed to en-
code language entities such as words, ideograms,
sentences and even documents. A more recent
successor of word2vec, emoji2vec aims to en-
code groups of words represented by visual sym-
bols (ie ideograms or emojis). This representa-
tion is a fine-tuned version of word2vec which was
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trained on roughly 1,600 emojis to output a 300-
dimensional real-valued vector. We experimented
with both word2vec and emoji2vec by encoding
each emoji through a sum of the word2vec repre-
sentations of its textual description. We observed
that both word2vec and emoji2vec embeddings
yielded only a mild amount of similarity for most
emojis. Moreover, dealing with groups of words
requires to design a recurrent layer in the architec-
ture, which can be cumbersome and yield subopti-
mal results as opposed to restricting the generator
network to only Unicode characters. Bearing this
in mind, we decided to use the emoji2vec embed-
ding in all of our experiments.

3.3 Learning a skewed distribution

Just like in text analysis, some emojis (mostly
emotions such as love, laughter, sadness) occur
more frequently than domain-specific pictographs
(for example, country flags). The distribution over
emojis is hence highly skewed and multimodal.
Since such imbalance can lead to a considerable
reduction in variance, also known as mode col-
lapse, we propose to re-weight each backward
pass with coefficients obtained through either of
the following schemes:

• term frequency-inverse document frequency
(tf-idf ) weights, a classical approach used
in natural language processing (Salton and
Buckley, 1988);

• Exponentially-smoothed raw frequencies:

ws(e) =
exp−k×freq(e)

N∑
i=1

exp−k×freq(ei)
∀e, k ≥ 0 (2)

where k is a smoothing constant and
freq(e) = count(e)

N is the frequency of emoji
e and N is the total number of emojis.

3.3.1 Algorithm

Our method relies on the conditional version of
WGAN-GP which accepts fixed size (64×64×3)
RGB image tensors. Our approach is presented in
Algorithm. 1, shown below:

Algorithm 1 Conditional Wasserstein GAN
Input: Tuple of emojis and images (X,Y ), the
gradient penalty coefficient λ, the number of
critic iterations per generator iteration ncritic,
the batch size m, learning rate lr and weight
vector w.
Initialization: initialize generator parameters
θG0 , critic parameters θD0

for epoch = 1, ..., N do
for t = 1, ..., ncritic do
{Updating Discriminator}
for n = 1, ..., ndisc do

Sample {x}mi=1 ∼ X , {y}mi=1 ∼ Y ,
{z}mi=1 ∼ N (0, 1), {ε}mi=1 ∼ U [0, 1]
x̃i ← εxi + (1− εi)G(zi|yi)
L(i) ← D(G(zi|(yi)) − D(xi|yi) +
λ(|∇x̃iD(x̃i|yi)| − 1)2

θD ← Adam(∇θD
∑m

i=1wiL(i), lr)
end for
{Updating Generator}
for n = 1, ..., ngen do

sample a batch of {z(i)}mi=1 ∼ N(0, 1)
θG ← Adam(−∇θG

∑m
i=1wiL(i), lr )

end for
end for

end for

4 Experiments

4.1 Data collection
We used the (soon to be deprecated) Instagram
API to collect posts from top influencers within
the following categories: fashion, fitness, health
and weight loss; we believe that user data across
those domains share similar patterns. Here, in-
fluencers are defined as accounts with the highest
combined count of followers, posts and user re-
actions; 166 influencers were selected from var-
ious ranking lists put together by Forbes and
Iconosquare. The final dataset has 80,000 (image,
pictograph) tuples and covers a total of 753 dis-
tinct symbols.

4.2 Architecture
Inspired from (Reed et al., 2016), we performed
experiments using the following architecture: the
generator has 4 convolutional layers with kernels
of size 4 which output a 4× 4 feature matrix with
a fully connexted layer; the discriminator is iden-
tical to G but outputs a scalar softmax instead of a
300-dimensional vector. The structure of both D
and G is shown in Fig. 1.
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Figure 1: Illustration of how EmojiGAN learns a dis-
tribution. The generator learns the conditional distribu-
tion of emojis given a set of pictures while the discrim-
inator assigns a score to each generated emoji.

5 Results

A series of experiments were conducted on the
data collected from Instagram. The best architec-
ture was selected through cross-validation and hy-
perparameter grid search and has been previously
discussed. The training process used minibatch al-
ternating gradient descent with the popular Adam
optimizer (Kingma and Ba, 2014) with a learn-
ing rate lr = 0.0001 and β1 = 0.1, β2 = 0.9.
We trained both G and D until convergence af-
ter aproximatively 10 epochs. Empirically, we
saw that exponentially-smoothed raw frequencies
weights (2) performed better than tf-idf weights.

In order to assess how closely the generator net-
work approximates the true data distribution, we
first sampled 750 images and obtained their re-
spective emoji distribution by performing 50 for-
ward passes through G. The mode, that is the
most frequent observation in the sample, of the re-
sulting distribution is considered as the most rep-
resentative pictograph for the given image. We
used t-SNE on the image tensor in order to vi-
sualize both the image and the emoji spaces (see
Fig. 2). The purpose of the performed experiment
was to assert whether two entities close to each
other in the image space will also yield similar
emojis. The top right corner of both clouds ex-

Figure 2: Visualization of t-SNE reduced images and
their corresponding most frequent pictographs (emo-
jis). The most popular emoji for each picture was ob-
tained by sampling 50 observations from the generator
and taking the mode of the sample. Note that even this
technique has a stochastic outcome, meaning that if an
image has a rather flat distribution, its mode will not be
consistent across runs. The described behaviour can be
observed in the upper right area of both space represen-
tations.

poses a shortcoming of the algorithm: if the dis-
tribution is flat (i.e. is multimodal), even large
samples will yield different modes just by chance.
This phenomenon is clearly present throughout the
cloud of pictographs: four identical images yield
three distinct emojis. On the other hand, the two
remaining examples correctly capture the presence
of two people in a single photo (middle section), as
well expression of amazement (bottom section).
The performance of generative models is difficult
to assess numerically, especially when it comes
to emojis. Indeed, the Fréchet Inception Distance
(Heusel et al., 2017) is often used to score gen-
erated images but to the best of our knowledge,
no such measure exists for ideograms. As an al-
ternative way to assess the performance of our
method, we plotted the true and generated distri-
butions over 30 randomly chosen emojis for 1000
random images (see Fig. 3). While our algorithm
relied on raw (i.e. uncleaned and unprocessed)
data, we still observe a reasonable match between
both distributions.

Fig. 4 reports the fitted distribution of the top
10 most frequent observations for three randomly
sampled images. The top image represents a fash-
ion model in an outfit; our model correctly cap-
tures the concepts of woman, love, and overall
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Figure 3: True and fitted distributions over 30 ran-
domly sampled emojis for 500 randomly sampled im-
ages. Probabilities are normalized by the maximal ele-
ment of the set.

positive emotion in the image. However, Emo-
jiGAN can struggle with filtering out unrealistic
emojis (in this case, pineapple and pig nose) for
images with very few distinct ideograms. The
bottom subfigure outlines another very common
problem seen in GANs: mode collapse. While the
generated emoji fits in the context of the image,
the variance in this case is nearly zero and results
in G learning a Dirac distribution at the most fre-
quent observation.

The middle image also suffers from the above

Figure 4: Emojis sampled for some Instagram posts:
observe the mode collapse in the bottom subfigure as
opposed to more equally spread out distributions.

problems (the sunset pictograph dominates the
distribution). We note how algorithms based on
unfiltered data from social networks are prone to
ethical fallacies, as illustrated in the middle image.
This situation is reminiscent of the infamous Mi-
crosoft chatbot Tay which started to pick up racist
and sexist language after being trained on uncen-
sored tweets and had to be shut down (Neff and
Nagy, 2016). We ourselves experienced a simi-
lar behaviour when assessing the performance of
EmojiGAN. One plausible explanation of this phe-
nomenon would be that while derogatory com-
ments are quite rare, the introduction of exponen-
tial weight or similar scores in the hope of pre-
venting mode collapse to the most popular emoji
has the side effect of overfitting least frequent pic-
tographs.

6 Conclusion and Discussion

In this work, we proposed a new way of model-
ing social media posts through a generative adver-
sarial network over pictographs. EmojiGAN man-
aged to learn the emoji distribution for a set of
given images and generate realistic pictographic
representations from a picture. While the issue of
noisy predictions still remains, our approach can
be used as an alternative to classical image anno-
tation methods. Using a modified attention mech-
anism (Xu et al., 2015) would be a stepping stone
to correctly model the context-dependent connota-
tions (Jibril and Abdullah, 2013) of emojis. How-
ever, the biggest concern is of ethical nature: train-
ing any algorithm on raw data obtained from social
networks without filtering offensive and deroga-
tory ideas is itself a debate (Islam et al., 2016;
Davidson et al., 2017).

Future work on the topic should start with
a thorough analysis of algebraic properties of
emoji2vec similar to (Arora et al., 2016). For ex-
ample, new Unicode formats support emoji com-
position, which is reminiscent of traditional word
embeddings’ behaviour and could be explicitly in-
corporated into a learning algorithm. Finally, the
ethical concerns behind deep learning without lim-
its are not specific to our algorithm but rather a
community-wide discourse. It is thus important to
work together with AI safety research groups in
order to ensure that novel methods developed by
researchers learn our better side.
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