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Abstract

In this paper we describe our system designed
for the WASSA 2018 Implicit Emotion Shared
Task (IEST), which obtained 2nd place out
of 30 teams with a test macro F1 score of
0.710. The system is composed of a single
pre-trained ELMo layer for encoding words,
a Bidirectional Long-Short Memory Network
BiLSTM for enriching word representations
with context, a max-pooling operation for cre-
ating sentence representations from them, and
a Dense Layer for projecting the sentence
representations into label space. Our offi-
cial submission was obtained by ensembling 6
of these models initialized with different ran-
dom seeds. The code for replicating this pa-
per is available at https://github.com/
jabalazs/implicit_emotion.

1 Introduction

Although the definition of emotion is still debated
among the scientific community, the automatic
identification and understanding of human emo-
tions by machines has long been of interest in
computer science. It has usually been assumed
that emotions are triggered by the interpretation of
a stimulus event according to its meaning.

As language usually reflects the emotional state
of an individual, it is natural to study human emo-
tions by understanding how they are reflected in
text. We see that many words indeed have af-
fect as a core part of their meaning, for example,
dejected and wistful denote some amount of sad-
ness, and are thus associated with sadness. On the
other hand, some words are associated with af-
fect even though they do not denote affect. For
example, failure and death describe concepts that
are usually accompanied by sadness and thus they
denote some amount of sadness. In this context,
the task of automatically recognizing emotions
from text has recently attracted the attention of re-

searchers in Natural Language Processing. This
task is usually formalized as the classification of
words, phrases, or documents into predefined dis-
crete emotion categories or dimensions. Some ap-
proaches have aimed at also predicting the degree
to which an emotion is expressed in text (Moham-
mad and Bravo-Marquez, 2017).

In light of this, the WASSA 2018 Implicit Emo-
tion Shared Task (IEST) (Klinger et al., 2018)
was proposed to help find ways to automatically
learn the link between situations and the emotion
they trigger. The task consisted in predicting the
emotion of a word excluded from a tweet. Re-
moved words, or trigger-words, included the terms
“sad”, “happy”, “disgusted”, “surprised”, “angry”,
“afraid” and their synonyms, and the task was
to predict the emotion they conveyed, specifically
sadness, joy, disgust, surprise, anger and fear.

From a machine learning perspective, this prob-
lem can be seen as sentence classification, in
which the goal is to classify a sentence, or in par-
ticular a tweet, into one of several categories. In
the case of IEST, the problem is specially chal-
lenging since tweets contain informal language,
the heavy usage of emoji, hashtags and username
mentions.

In this paper we describe our system designed
for IEST, which obtained the second place out of
30 teams. Our system did not require manual fea-
ture engineering and only minimal use of exter-
nal data. Concretely, our approach is composed
of a single pre-trained ELMo layer for encoding
words (Peters et al., 2018), a Bidirectional Long-
Short Memory Network (BiLSTM) (Graves and
Schmidhuber, 2005; Graves et al., 2013), for en-
riching word representations with context, a max-
pooling operation for creating sentence represen-
tations from said word vectors, and finally a Dense
Layer for projecting the sentence representations
into label space. To the best of our knowledge,

https://github.com/jabalazs/implicit_emotion
https://github.com/jabalazs/implicit_emotion
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our system, which we plan to release, is the first to
utilize ELMo for emotion recognition.

2 Proposed Approach

2.1 Preprocessing

As our model is purely character-based, we per-
formed little data preprocessing. Table 1 shows
the special tokens found in the datasets, and how
we substituted them.

Original Replacement

[#TRIGGERWORD#] TRIGGERWORD
@USERNAME USERNAME
[NEWLINE] NEWLINE
http://url.removed URL

Table 1: Preprocessing substitutions.

Furthermore, we tokenized the text using a vari-
ation of the twokenize.py1 script, a Python
port of the original Twokenize.java (Gimpel
et al., 2011). Concretely, we created an emoji-
aware version of it by incorporating knowledge
from an emoji database,2 which we slightly mod-
ified for avoiding conflict with emoji sharing uni-
code codes with common glyphs used in Twitter,3

and for making it compatible with Python 3.

2.2 Architecture

Figure 1 summarizes our proposed architecture.
Our input is based on Embeddings from Language
Models (ELMo) by Peters et al. (2018). These
are character-based word representations allowing
the model to avoid the “unknown token” problem.
ELMo uses a set of convolutional neural networks
to extract features from character embeddings, and
builds word vectors from them. These are then
fed to a multi-layer Bidirectional Language Model
(BiLM) which returns context-sensitive vectors
for each input word.

We used a single-layer BiLSTM as context fine-
tuner (Graves and Schmidhuber, 2005; Graves
et al., 2013), on top of the ELMo embeddings, and
then aggregated the hidden states it returned by us-
ing max-pooling, which has been shown to per-
form well on sentence classification tasks (Con-
neau et al., 2017).
1
https://github.com/myleott/ark-twokenize-py

2
https://github.com/carpedm20/emoji/blob/e7bff32/emoji/
unicode_codes.py

3For example, the hashtag emoji is composed by the uni-
code code points U+23 U+FE0F U+20E3, which include
U+23, the same code point for the # glyph.

Finally, we used a single-layer fully-connected
network for projecting the pooled BiLSTM output
into a vector corresponding to the label logits for
each predicted class.

2.3 Implementation Details and
Hyperparameters

ELMo Layer: We used the official Al-
lenNLP implementation of the ELMo model4,
with the official weights pre-trained on the 1 Bil-
lion Word Language Model Benchmark, which
contains about 800M tokens of news crawl data
from WMT 2011 (Chelba et al., 2014).

Dimensionalities: By default the ELMo layer
outputs a 1024-dimensional vector, which we then
feed to a BiLSTM with output size 2048, resulting
in a 4096-dimensional vector when concatenating
forward and backward directions for each word of
the sequence5. After max-pooling the BiLSTM
output over the sequence dimension, we obtain a
single 4096-dimensional vector corresponding to
the tweet representation. This representation is fi-
nally fed to a single-layer fully-connected network
with input size 4096, 512 hidden units, output size
6, and a ReLU nonlinearity after the hidden layer.
The output of the dense layer is a 6-dimensional
logit vector for each input example.

Loss Function: As this corresponds to a mul-
ticlass classification problem (predicting a single
class for each example, with more than 2 classes
to choose from), we used the Cross-Entropy Loss
as implemented in PyTorch (Paszke et al., 2017).

Optimization: We optimized the model with
Adam (Kingma and Ba, 2014), using default hy-
perparameters (β1 = 0.9, β2 = 0.999, ε = 10−8),
following a slanted triangular learning rate sched-
ule (Howard and Ruder, 2018), also with default
hyperparameters (cut frac = 0.1, ratio = 32),
and a maximum learning rate ηmax = 0.001, over
T = 23, 970 iterations6.

Regularization: we used a dropout layer (Sri-
vastava et al., 2014), with probability of 0.5 af-
ter both the ELMo and the hidden fully-connected
layer, and another one with probability of 0.1 af-
4
https://allenai.github.io/allennlp-docs/api/allennlp.
modules.elmo.html

5A BiLSTM is composed of two separate LSTMs that read
the input in opposite directions and whose outputs are con-
catenated at the hidden dimension. This results in a vector
double the dimension of the input for each time step.

6This number is obtained by multiplying the number of
epochs (10), times the total number of batches, which for the
training dataset corresponds to 2396 batches of 64 elements,
and 1 batch of 39 elements, hence 2397× 10 = 23, 970.

https://github.com/myleott/ark-twokenize-py
https://github.com/carpedm20/emoji/blob/e7bff32/emoji/unicode_codes.py
https://github.com/carpedm20/emoji/blob/e7bff32/emoji/unicode_codes.py
https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html
https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html


52

BiLSTM

E
LM

o Layer

M
ax P

ooling

Context Layer
Sentence 
Encoder

Fully-C
onnected N

etw
ork

S
oftm

ax

Probabilities

Classifier

[#TRIGGERWORD#]

It’s

...

Word Encoder

Figure 1: Proposed architecture.

ter the max-pooling aggregation layer. We also
reshuffled the training examples between epochs,
resulting in a different batch for each iteration.

Model Selection: To choose the best hyperpa-
rameter configuration we measured the classifica-
tion accuracy on the validation (trial) set.

2.4 Ensembles
Once we found the best-performing configura-
tion we trained 10 models using different random
seeds, and tried averaging the output class prob-
abilities of all their possible

∑9
k=1

(
9
k

)
= 511

combinations. As Figure 2 shows, we empiri-
cally found that a specific combination of 6 mod-
els yielded the best results (70.52%), providing ev-
idence for the fact that using a number of indepen-
dent classifiers equal to the number of class labels
provides the best results when doing average en-
sembling (Bonab and Can, 2016).
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Figure 2: Effect of the number of ensembled mod-
els on validation performance.

3 Experiments and Analyses

We performed several experiments to gain insights
on how the proposed model’s performance inter-

acts with the shared task’s data. We performed an
ablation study to see how some of the main hy-
perparameters affect performance, and an analy-
sis of tweets containing hashtags and emoji to un-
derstand how these two types of tokens help the
model predict the trigger-word’s emotion. We also
observed the effects of varying the amount of data
used for training the model to evaluate whether it
would be worthwhile to gather more training data.

3.1 Ablation Study

We performed an ablation study on a single model
having obtained 69.23% accuracy on the valida-
tion set. Results are summarized in Table 2.

We can observe that the architectural choice
that had the greatest impact on our model was
the ELMo layer, providing a 3.71% boost in per-
formance as compared to using GloVe pre-trained
word embeddings.

We can further see that emoji also contributed
significantly to the model’s performance. In Sec-
tion 3.4 we give some pointers to understanding
why this is so.

Additionally, we tried using the concatenation
of the max-pooled, average-pooled and last hidden
states of the BiLSTM as the sentence represen-
tation, following Howard and Ruder (2018), but
found out that this impacted performance nega-
tively. We hypothesize this is due to tweets be-
ing too short for needing such a rich representa-
tion. Also, the size of the concatenated vector was
4096× 3 = 12, 288, which probably could not be
properly exploited by the 512-dimensional fully-
connected layer.

Using a greater BiLSTM hidden size did not
help the model, probably because of the reason
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Variation Accuracy (%) ∆%

Submitted 69.23 -

No emoji 68.36 - 0.87

No ELMo 65.52 - 3.71

Concat Pooling 68.47 - 0.76

LSTM hidden=4096 69.10 - 0.13
LSTM hidden=1024 68.93 - 0.30
LSTM hidden=512 68.43 - 0.80

POS emb dim=100 68.99 - 0.24
POS emb dim=75 68.61 - 0.62
POS emb dim=50 69.33 + 0.10
POS emb dim=25 69.21 - 0.02

SGD optim lr=1 64.33 - 4.90
SGD optim lr=0.1 66.11 - 3.12
SGD optim lr=0.01 60.72 - 8.51
SGD optim lr=0.001 30.49 - 38.74

Table 2: Ablation study results.
Accuracies were obtained from the validation dataset. Each
model was trained with the same random seed and hyperpa-
rameters, save for the one listed. “No emoji” is the same
model trained on the training dataset with no emoji, “No
ELMo” corresponds to having switched the ELMo word en-
coding layer with a simple pre-trained GloVe embedding
lookup table, and “Concat Pooling” obtained sentence repre-
sentations by using the pooling method described by Howard
and Ruder (2018). “LSTM hidden” corresponds to the hidden
dimension of the BiLSTM, “POS emb dim” to the dimen-
sion of the part-of-speech embeddings, and “SGD optim lr”
to the learning rate used while optimizing with the schedule
described by Conneau et al. (2017).

mentioned earlier; the fully-connected layer was
not big or deep enough to exploit the additional in-
formation. Similarly, using a smaller hidden size
neither helped.

We found that using 50-dimensional part-of-
speech embeddings slightly improved results,
which implies that better fine-tuning this hyperpa-
rameter, or using a better POS tagger could yield
an even better performance.

Regarding optimization strategies, we also tried
using SGD with different learning rates and a step-
wise learning rate schedule as described by Con-
neau et al. (2018), but we found that doing this did
not improve performance.

Finally, Figure 3 shows the effect of using dif-
ferent dropout probabilities. We can see that hav-
ing higher dropout after the word-representation
layer and the fully-connected network’s hidden
layer, while having a low dropout after the sen-
tence encoding layer yielded better results overall.

3.2 Error Analysis
Figure 4 shows the confusion matrix of a single
model evaluated on the test set, and Table 3 the
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Figure 3: Dropout Ablation.
Rows correspond to the dropout applied both after the ELMo
layer (word encoding layer) and after the fully-connected net-
work’s hidden layer, while columns correspond to the dropout
applied after the max-pooling operation (sentence encoding
layer.)

corresponding classification report. In general, we
confirm what Klinger et al. (2018) report: anger
was the most difficult class to predict, followed by
surprise, whereas joy, fear, and disgust
are the better performing ones.

To observe whether any particular pattern arose
from the sentence representations encoded by our
model, we projected them into 3d space through
Principal Component Analysis (PCA), and were
surprised to find that 2 clearly defined clus-
ters emerged (see Figure 6), one containing the
majority of datapoints, and another containing
joy tweets exclusively. Upon further explo-
ration we also found that the smaller cluster was
composed only by tweets containing the pattern
un TRIGGERWORD , and further, that all of
them were correctly classified.

It is also worth mentioning that there are
5827 tweets in the training set with this pat-
tern. Of these, 5822 (99.9%) correspond to
the label joy. We observe a similar trend on
the test set; 1115 of the 1116 tweets having
the un TRIGGERWORD pattern correspond to
joy tweets. We hypothesize this is the reason why
the model learned this pattern as a strong discrim-
inating feature.

Finally, the only tweet in the test set that con-
tained this pattern and did not belong to the joy
class, originally had unsurprised as its trigger-
word7, and unsurprisingly, was misclassified.

7We manually searched for the original tweet.
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Figure 4: Confusion Matrix (Test Set).

Precision Recall F1-score

anger 0.643 0.601 0.621
disgust 0.703 0.661 0.682
fear 0.742 0.721 0.732
joy 0.762 0.805 0.783
sad 0.685 0.661 0.673

surprise 0.627 0.705 0.663

Average 0.695 0.695 0.694

Table 3: Classification Report (Test Set).

3.3 Effect of the Amount of Training Data

As Figure 5 shows, increasing the amount of data
with which our model was trained consistently in-
creased validation accuracy and validation macro
F1 score. The trend suggests that the proposed
model is expressive enough to learn from more
data, and is not overfitting the training set.
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Figure 5: Effect of the amount of training data on
classification performance.

3.4 Effect of Emoji and Hashtags

Table 4 shows the overall effect of hashtags and
emoji on classification performance. Tweets con-

Present Not Present

Emoji 4805 (76.6%) 23952 (68.0%)
Hashtags 2122 (70.5%) 26635 (69.4%)

Table 4: Number of tweets on the test set with and
without emoji and hashtags. The number between
parentheses is the proportion of tweets classified
correctly.

taining emoji seem to be easier for the model to
classify than those without. Hashtags also have a
positive effect on classification performance, how-
ever it is less significant. This implies that emoji,
and hashtags in a smaller degree, provide tweets
with a context richer in sentiment information, al-
lowing the model to better guess the emotion of
the trigger-word.

Emoji alias N emoji no-emoji
∆%

# % # %

mask 163 154 94.48 134 82.21 - 12.27
two hearts 87 81 93.10 77 88.51 - 4.59
heart eyes 122 109 89.34 103 84.43 - 4.91
heart 267 237 88.76 235 88.01 - 0.75

rage 92 78 84.78 66 71.74 - 13.04
cry 116 97 83.62 83 71.55 - 12.07
sob 490 363 74.08 345 70.41 - 3.67
unamused 167 121 72.46 116 69.46 - 3.00

weary 204 140 68.63 139 68.14 - 0.49
joy 978 649 66.36 629 64.31 - 2.05
sweat smile 111 73 65.77 75 67.57 1.80
confused 77 46 59.74 48 62.34 2.60

Table 5: Fine grained performance on tweets con-
taining emoji, and the effect of removing them.
N is the total number of tweets containing the listed emoji,
# and % the number and percentage of correctly-classified
tweets respectively, and ∆% the variation of test accuracy
when removing the emoji from the tweets.

Table 5 shows the effect specific emoji have
on classification performance. It is clear some
emoji strongly contribute to improving prediction
quality. The most interesting ones are mask,
rage, and cry, which significantly increase ac-
curacy. Further, contrary to intuition, the sob
emoji contributes less than cry, despite represent-
ing a stronger emotion. This is probably due to
sob being used for depicting a wider spectrum of
emotions.

Finally, not all emoji are beneficial for this task.
When removing sweat smile and confused
accuracy increased, probably because they repre-
sent emotions other than the ones being predicted.
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4 Conclusions and Future Work

We described the model that got second place in
the WASSA 2018 Implicit Emotion Shared Task.
Despite its simplicity, and low amount of depen-
dencies on libraries and external features, it per-
formed almost as well as the system that obtained
the first place.

Our ablation study revealed that our hyperpa-
rameters were indeed quite well-tuned for the task,
which agrees with the good results obtained in the
official submission. However, the ablation study
also showed that increased performance can be ob-
tained by incorporating POS embeddings as addi-
tional inputs. Further experiments are required to
accurately measure the impact that this additional
input may have on the results. We also think the
performance can be boosted by making the archi-
tecture more complex, concretely, by using a BiL-
STM with multiple layers and skip connections in
a way akin to (Peters et al., 2018), or by making
the fully-connected network bigger and deeper.

We also showed that, what was probably an
annotation artifact, the un TRIGGERWORD
pattern, resulted in increased performance for
the joy label. This pattern was probably
originated by a heuristic naı̈vely replacing the
ocurrence of happy by the trigger-word indica-
tor. We think the dataset could be improved
by replacing the word unhappy, in the origi-
nal examples, by TRIGGERWORD instead of
un TRIGGERWORD , and labeling it as sad,
or angry, instead of joy.

Finally, our studies regarding the importance of
hashtags and emoji in the classification showed
that both of them seem to contribute significantly

to the performance, although in different mea-
sures.
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