
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), pages 114–118
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

114

Uni-DUE Student Team: Tackling fact checking through decomposable
attention neural network

Jan Kowollik
University of Duisburg-Essen

jan.kowollik@stud.uni-due.de

Ahmet Aker
University of Duisburg-Essen

a.aker@is.inf.uni-due.de

Abstract

In this paper we present our system for the
FEVER Challenge. The task of this challenge
is to verify claims by extracting information
from Wikipedia. Our system has two parts. In
the first part it performs a search for candidate
sentences by treating the claims as query. In
the second part it filters out noise from these
candidates and uses the remaining ones to de-
cide whether they support or refute or entail
not enough information to verify the claim.
We show that this system achieves a FEVER
score of 0.3927 on the FEVER shared task de-
velopment data set which is a 25.5% improve-
ment over the baseline score.

1 Introduction

In this paper we present our system for the FEVER
Challenge1. The FEVER Challenge is a shared
task on fact extraction and claim verification. Ini-
tially Thorne et al. (2018) created an annotated
corpus of 185, 445 claims and proposed a baseline
system to predict the correct labels as well as the
pieces of evidence for the claims.

Our system consist of two parts. In the first part
we retrieve sentences that are relevant to a claim.
The claim is used as query and is submitted to
Lucene search API. The sentences found are can-
didates for pieces of evidence for the claim. Next
in the second part we run a modified version of the
Decomposable Attention network (Parikh et al.,
2016) to predict the textual entailment between a
claim and the candidate sentences found through
searching but also between claim and all candi-
date sentences merged into one long text. This
step gives us entailment probabilities. We also use
a point system to filter out some noise (irrelevant
sentences). Based on the remaining candidates we
perform label prediction, i.e. whether the claim is

1http://fever.ai

supported, refuted or there is not enough evidence.
Our system achieves a FEVER score of 0.3927
on the FEVER shared task development data set
which is a 25.5% improvement over the baseline
score.

2 Data

The data consists of two parts: the FEVER data
set and the Wikipedia dump (Thorne et al., 2018).

The Wikipedia dump contains over five million
pages but for each page only the first section was
taken. The text on each page was split into sen-
tences and each sentence was assigned an index.
The page title is written using underscores be-
tween the individual words instead of spaces.

The FEVER data set contains the annotated
claims that should be correctly predicted by the
developed system. Each claim is annotated
with one of the three labels SUPPORTS (verifi-
ably true), REFUTES (verifiably false) and NOT
ENOUGH INFO (not verifiable). For claims with
the first two labels the pieces of evidence are pro-
vided as a combination of Wikipedia page title and
sentence index on that page.

The FEVER data set created by Thorne et al.
(2018) is split into a training set with 145, 449, a
development set with 19, 998 and a test set with
19, 998 annotated claims. The development and
test sets are balanced while the training set has
an approximately 16:6:7 split on the three labels.
Each data set and also the Wikipedia dump is
available at the FEVER web page2.

3 System

We decided to adopt the general two part structure
of the baseline for our system with a key differ-
ence. The first part takes the claim and finds can-
didate sentences that ideally have a high chance of

2http://fever.ai/data.html

http://fever.ai
http://fever.ai/data.html

115

being evidence for the claim. The second part de-
termines the label and selects evidence sentences.

The baseline system uses the sentences found
in the first part directly as evidence. In our system
we only find candidate sentences in the first part
and select the actual evidence sentences at the end
of the second part. This allows us to operate on
a larger number of sentences in the second part of
the system and achieve higher recall.

3.1 Finding Candidate Sentences
The main idea of the first part of our system is to
mimic human behavior when verifying a claim.
If we take a claim about a person as an exam-
ple, a human is likely to just take few keywords
such as the person’s name and use this to search
for the right Wikipedia page to find evidence. We
mimic this behavior by first extracting few key-
words from the claim and use them to find candi-
date sentences in the Wikipedia dump.

Extracting Keywords
We use Named Entity Recognition (NER), Con-
stituency Parsing and Dependency Parsing to ex-
tract keywords from each claim. For NER we
use the neural network model created by Peters
et al. (2018). We use all found named entities as
keywords. For the Constituency Parsing we use
the neural network model created by Stern et al.
(2017). We extract all NP tagged phrases from the
first two recursion layers as keywords because we
found that this finds mostly subjects and objects
of a sentence. These two neural networks both use
the AllenNLP library (Gardner et al., 2018). For
the dependency parsing we use the Standford De-
pendency Parser (Chen and Manning, 2014). We
extract all subject and object phrases as keywords.

The NE recognition is our main source for key-
words extraction while the other two systems pro-
vide additional keywords that either have not been
found by the NER or that are not named entities
in the first place. Example of the keywords being
extracted from claims shown in Table 2 are shown
in Table 1.

Indexing the Wikipedia Dump
After extracting the keywords we use the Lucene
search API3 to find candidate sentences for
each claim. Before searching with Lucene the
Wikipedia texts need to be indexed. We treat each
sentence as a separate document and index it. We

3https://lucene.apache.org/core/

exclude sentences that are empty and also those
that are longer than 2000 characters.

For each sentence we also add the Wikipedia
page title and make it searchable. For the title
we replace all underscores with spaces to improve
matching. In each sentence we replace the words
He, She, It and They with the Wikipedia page ti-
tle that the sentence was found in. When looking
at an entire Wikipedia page it is obvious who or
what these words refer to but when searching in-
dividual sentences we do not have the necessary
context available. We perform this replacement to
provide more context.

Searching for the Candidate Sentences
We use three types of queries to search for candi-
date sentences for a claim:

• Type 1: For each keyword we split the key-
word phrase into individual words and create
a query that searches within the Wikipedia
page titles requiring all the individual words
to be found.

• Type 2: We split all keywords into individ-
ual words and combine those into one query
searching within the Wikipedia page titles to
find sentences on those pages where as many
words as possible match the title of the page.

• Type 3: We combine all keywords as phrases
into one query searching within the sentences
to find those sentences where as many key-
words as possible match.

We limit the number of results to the two most
relevant sentences for the first query type and 20
sentences for the other two queries because the
first query type makes one query per keyword
while the other two only make one query per
claim. An example of the queries being generated
is given in Table 3. If the same sentence is found
twice we do not add it to the candidate list again.
For each of the candidate sentences we add the
Wikipedia page title at the beginning of the sen-
tence if it does not already contain it somewhere.

3.2 Making the Prediction
The second part of our system first processes the
candidate sentences in three independent steps that
can be run in parallel:

• We use a modified version of the Decompos-
able Attention neural network (Parikh et al.,

https://lucene.apache.org/core/

116

Named Entity Recognition Constituency Parser Dependency Parser
1 Northern Isles, Scotland The Northern Isles The Northern Isles
2 - Artificial intelligence, concern Artificial intelligence, concern
3 Walk of Life album, the highest grossing album -

Table 1: Generated keywords from the three systems (see Table 2 for claims). For the first claim the NE recognition
correctly finds the two named entities while the other two systems miss one entity and got an additional The into
the keyword. The second claim has no named entities and the other systems correctly find the relevant parts. In the
third example the named entity found by the NE recognition is disambiguated by the Constituency Parser.

Claim
1 The Northern Isles belong to Scotland.
2 Artificial intelligence raises concern.
3 Walk of Life (album) is the highest grossing album.

Table 2: Example claims used in tables 1/3.

2016) to predict the textual entailment be-
tween each candidate sentence and its corre-
sponding claim.

• We merge all candidate sentences of a claim
into one block of text and predict the textual
entailment between this block of text and the
claim.

• We assign points to each candidate sentence
based on POS-Tags.

Finally our system combines the results in order
to decide on the label and to predict the evidence
sentences for each claim.

Textual Entailment
We started with the Decomposable Attention net-
work (Parikh et al., 2016) that is also used in
the baseline except that we predict the textual en-
tailment for each pair of candidate sentence and
claim. We found that for long sentences the
network has high attention in different parts of
the sentence that semantically belong to different
statements. Using the idea that long sentences of-
ten contain multiple statements we made the fol-
lowing additions to the Decomposable Attention
network.

We include an additional 2-dimensional convo-
lution layer that operates on the attention matrix in
case of sufficiently large sentences. Based on our
testing we decided on a single convolution layer
with a kernel size of 12. The output of this con-
volution layer contains a different amount of ele-
ments depending on the size of the attention ma-
trix. This makes sense as longer sentences can
contain multiple statements. We use a CnnEn-

coder4 to change the different length output into
a same length output. This is necessary in order
to use the result of the convolution layer in a later
step of the network and can be seen as a selection
of the correct statement from the available data.
The output of the CnnEncoder is concatenated to
the input of the aggregate step of the network.
If either the claim or the candidate sentence are
shorter than 12 then we skip this additional step
and concatenate a zero vector instead.

When predicting the textual entailment we do
not reduce the probabilities to a final label imme-
diately but keep working with the probabilities in
the final prediction (see Section Final Prediction).

Merge Sentences
For each claim we merge all the candidate sen-
tences into one block of text similarly to the base-
line. We predict the textual entailment using our
modified decomposable attention network. We
found that the REFUTES label is predicted with
very high accuracy. However, this is not the case
for the other two labels. By including the results
of this step we can improve the predicted labels for
the REFUTES label as shown in Table 5. Compar-
ing that to the full result given in Table 4 we can
see that about 29.3% of correct REFUTES predic-
tions are due to this step.

Creating POS-Tags and Assigning Points
We use the Stanford POS-Tagger (Toutanova et al.,
2003) to create POS-Tags for all candidate sen-
tences and all claims. We found that the Stan-
ford POS-Tagger only uses a single CPU core on
our system so we wrote a script that splits the file
containing all claim or candidate sentences into
multiple files. Then the script calls multiple POS-
Tagger instances in parallel, one for each file. The
results are then merged back into a single file.

4https://allenai.github.io/
allennlp-docs/api/allennlp.modules.
seq2vec_encoders.html

https://allenai.github.io/allennlp-docs/api/allennlp.modules.seq2vec_encoders.html
https://allenai.github.io/allennlp-docs/api/allennlp.modules.seq2vec_encoders.html
https://allenai.github.io/allennlp-docs/api/allennlp.modules.seq2vec_encoders.html

117

Query type Query Occurrence Limit
Type 1 ”Artificial” ”intelligence” must occur 2
Type 1 ”concern” must occur 2
Type 2 ”Artificial” ”intelligence” ”concern” should occur 20
Type 3 ”Artificial intelligence” ”concern” should occur 20

Table 3: Generated queries for claim 2 (see Table 2). Claim 2 has two keywords where one contains two words.
For the Type 1 query we create two queries where one query contains two separate words. For the Type 2 query
we split all words and use them all in one query. For type 3 we omit the split and use entire keyword phrases as
query.

SUP REF NEI
SUP 3291 370 3005
REF 1000 3159 2507
NEI 1710 1142 3814

Table 4: Confusion matrix of the full system prediction.
Columns are predictions and rows the true labels.

SUP REF NEI
SUP -8 +52 -44
REF -2 +926 -924
NEI -4 +152 -148

Table 5: Confusion matrix change due to including the
merge feature. Columns are predictions and rows the
true labels.

Using the generated POS-Tags we assign scores
to the candidate sentences. First each candidate
sentence is assigned 5 different scores, one for
each of the following POS-Tag categories: verbs,
nouns, adjectives, adverbs and numbers. Each cat-
egory score starts at 3 and is decreased by 1 for
each word of the respective POS-Tag category that
is in the claim but not in the candidate sentence.
Duplicate words are considered only once. We do
not allow the category scores to go negative. At
the end the category scores are added together to
create the final score which can be a maximum of
15.

Final Prediction

We create a matrix from the per candidate sentence
textual entailment probabilities with the three la-
bels as columns and one row per candidate. We re-
duce all three probabilities of a candidate sentence
if it received 11 or less points. The number 11
is empirically determined using the development
set. As shown in Figure 1 we are able to filter
out most of the non-evidence sentences by look-
ing only at candidate sentences whose point score
is more than 11. Reducing the probabilities is done
by multiplying them with 0.3. This way they are
always reduced below the minimum highest prob-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
0%

10%

20%

30%

Evidence
Not Evidence

filter keep

Figure 1: Histogram of how many candidate sentences
(y-axis) received how many points (x-axis) for the de-
velopment set. 65.07% of non-evidence and 26.21% of
evidence sentences get filtered with the threshold be-
tween 11 and 12.

ability of non-filtered sentences (= 33.33...%).
Finally we predict the label and decide on

the evidence sentences. If the Merge Sentences
prediction predicted REFUTES then we use RE-
FUTES as final label. Otherwise we find the high-
est value in the matrix and select the column it ap-
pears in as final label. We sort the matrix based on
the column of the final label and select the top 5
candidate sentences as evidence.

3.3 Training

For training the modified Decomposable Attention
network we are using the SNLI data set and the
FEVER training set (Bowman et al., 2015; Thorne
et al., 2018). For claims labeled as NOT ENOUGH
INFO we first search for Wikipedia page titles that
contain a word from the claim and then randomly
choose one of the sentences on that page. If no
Wikipedia page is found this way we randomly
select one. We concatenate the generated train-
ing data with the SNLI data set to create the final
training data containing 849, 426 claims.

4 Results

Our system achieves a FEVER score of 0.3927 on
the shared task development set containing 19, 998

118

Label Recall Score
All 0.5132 0.3581 0.3927
Unmodified DA 0.5170 0.3880 0.3909
Without Points 0.4545 0.1169 0.3665
Without Merge 0.4747 0.3294 0.3815

Table 6: Contribution of each feature. Label refers to
the label accuracy, while Recall refers to the evidence
recall.

claims. This is a 25.5% improvement over the
baseline score of 0.3127 on the development set.
The confusion matrix for the predicted labels is
given in Table 4. It shows that the highest incor-
rect predictions are for the NOT ENOUGH INFO
label while the REFUTES label is predicted with
the least amount of errors.

For the test set our system generated 773, 862
pairs of candidate sentences and claim sentences.
Only for a single claim out of all 19, 998 claims no
candidate sentences were found.

For the development set the candidate sentences
found in the first part of our system include the ac-
tual evidence of 77.83% of the claims. In compar-
ison the baseline (Thorne et al., 2018) only finds
44.22% of the evidence. Our system finds 38.7
sentences per claim on average, while the baseline
is limited to 5 sentences per claim.

When looking at how much each feature im-
proves the final score in Table 6, we can see that
the point system using POS-Tags results in the
biggest improvement.

5 Conclusion

In this paper we have presented our system for the
FEVER Challenge. While keeping the two-part
structure of the baseline we replaced the first part
completely and heavily modified the second part
to achieve a 25.5% FEVER score improvement
over the baseline. In our immediate future work
we will investigate alternative ways of obtaining
higher recall in the first part but also improve the
textual entailment to further reduce noise.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
CoRR, abs/1508.05326.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing

(EMNLP), pages 740–750. Association for Compu-
tational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. ArXiv e-prints, 1802.05365.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A minimal span-based neural constituency parser.
CoRR, abs/1705.03919.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction and
verification. CoRR, abs/1803.05355.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics.

