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1 Introduction

There is a long-standing interest in understanding
the internal behavior of neural networks (Touret-
zky and Pomerleau, 1989; Zhou et al., 2017;
Raghu et al., 2017; Alishahi et al., 2017). Deep
neural architectures for natural language process-
ing (NLP) are often accompanied by explanations
for their effectiveness, from general observations
(e.g. RNNs can represent unbounded dependen-
cies in a sequence) to specific arguments about
linguistic phenomena (early layers encode lexi-
cal information, deeper layers syntactic). The re-
cent ascendancy of DNNs is fueling efforts in the
NLP community to explore these claims (Belinkov
et al., 2017; Dalvi et al., 2017; Karpathy et al.,
2015; Kadar et al., 2016; Kohn, 2015; Qian et al.,
2016a). Previous work has tended to focus on
easily-accessible representations like word or sen-
tence embeddings (Kohn, 2015; Qian et al., 2016b;
Adi et al., 2016), with deeper structure requiring
more ad hoc methods to extract and examine (Be-
linkov and Glass, 2017; Poliak et al., 2018). In this
work, we introduce Vivisect, a toolkit that aims at
a general solution for broad and fine-grained mon-
itoring in the major DNN frameworks, with min-
imal change to research patterns. Vivisect is gen-
eral enough to serve as a less-polished version of
the widely-used TensorBoard tool, but has several
priorities that set it apart:

• Minimal invasiveness (e.g. no SummaryOps)

• Low resource use (only keep final metrics)

• Uniform support for major DNN frameworks

• Monitor performance on auxiliary tasks

The first three points are largely ergonomic,
though we hope that feature parity between the

major DNN research frameworks will yield an-
swers to previously-daunting questions, such as
why seemingly-identical implementations of a
deep architecture perform differently. The fourth
point is the most important: when made aware
of task labels from various linguistic modalities,
Vivisect will train lightweight linear classifiers and
clusterers using each of the model’s internal rep-
resentations as features. A lightweight web server
aggregates and plots these scores as a function of
other variables (e.g. training epoch) to give insight
into what linguistic information is captured by dif-
ferent parts of the model, and how they evolve over
time.

Vivisect has evolved out of a focus on neural
machine translation models, but is designed with
generalization as a fundamental principle. There-
fore, it includes mechanisms for deciding what
and when calculations are made, and on which
parts of a model. There are simple APIs for reg-
istering additional metrics and entire DNN frame-
works. Vivisect is provided as a code repository
and optional prebuilt Docker image.

2 Client usage

To use Vivisect with a PyTorch Module, Tensor-
flow Session, or MXNet Block, one can minimally
add three lines to existing code:

from vivisect import probe, flush
probe(model, vivisect host, vivisect port)
flush(vivisect host, vivisect port)

This will monitor all operations in the compu-
tation graph, using a Vivisect server at the given
host and port. This is accomplished by travers-
ing the computation graph, and at each operation,
overriding the forward method (similarly for op-
eration backward methods and parameter update
methods). probe accepts two optional arguments:
a callback which(model, operation) that deter-
mines whether to attach to each operation, and
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when(model, operation) that determines whether
the operation should be monitored at the current
state.

3 Server architecture

Vivisect has a client and server arrangement so
that the computational aspects of monitoring can
be off-loaded to other servers, and without writ-
ing data to disk. Figure 1 shows the data flow,
where all dashed edges are transmitting JSON ob-
jects with fields values and metadata.
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Figure 1: System diagram of Vivisect

(1) The client code, where the model is being
trained or applied, sends incremental data points
to the aggregator whenever a monitored parame-
ter, activation, or gradient is used. These typically
don’t represent a full input for computing a metric
(e.g. we want to monitor full epochs, but are get-
ting activations for each mini-batch). (2) The ag-
gregator keeps track of the metadata fields until it
satisfies some condition (e.g. the epoch metadata
field increases for the given model), constructs a
complete data point by combining the appropriate
arrays and metadata, and sends this to the evalu-
ator. (3) The evaluator uses each complete data
point to calculate arbitrary scalar-valued metrics,
which it ships (again, with appropriate metadata)
to the frontend. (4) The frontend is a simple web
server on top of a sqlite database, into which it in-
serts each metric value, along with corresponding
metadata like the model name and epoch. It uses
this database to dynamically serve visualizations
of the metrics along various axes, with the canon-
ical use-case of how different activations perform
as features for a classification task, as a function
of epoch.

4 Beyond intrinsic measurements

Tracking and visualizing intrinsic properties of a
model’s internal state is useful, but well-covered

by existing tools like Tensorboard and its variants.
Vivisect’s goal is to employ user-specified infor-
mation about the model’s input and output (in the
latter case, during training or dev/eval) to test in-
tuitions about how linguistic information is orga-
nized internally. The user can register such infor-
mation with the server:
from vivisect import register targets
register targets(vivisect host, vivisect port,

name=”Training classes”,
targets=y train,
model pattern=”Gluon MLP”)

In this case, y train are just the N -length se-
quence of classes that the model is being trained
to identify, but since it is now registered, when-
ever the evaluator sees a CDP of appropriate di-
mension from a matching model, it trains a linear
classifier and a k-means clustering using the CDP
and calculates macro f-score and mutual informa-
tion, respectively. These values are passed along
in the same fashion as the intrinsic metrics, pro-
ducing figures that compare how well the hidden
layers are encoding this information:

Figure 2: An example figure from the Vivisect frontend
showing mutual information between clustering based
on the given layer and reference labels

Figure 2 tells a simple story: for this small data
set, information about the class is already captured
on the surface in the shallow layers, and the model
learns to preserve it as training progresses.

5 Ongoing work

Our immediate goal prior to the workshop is to
employ Vivisect in training a large machine trans-
lation model with targets from several linguistic
modalities not explicit in the model, at a mini-
mum, part-of-speech and NER tagging at the word
level, and topic ID at the sentence level, and
present visualization and analysis.
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