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Abstract

The growing number of biomedical publica-
tions is a challenge for human researchers,
who invest considerable effort to search for
relevant documents and pinpointed answers.
Biomedical Question Answering can automat-
ically generate answers for a user’s topic or
question, significantly reducing the effort re-
quired to locate the most relevant information
in a large document corpus. Extractive sum-
marization techniques, which concatenate the
most relevant text units drawn from multiple
documents, perform well on automatic evalu-
ation metrics like ROUGE, but score poorly
on human readability, due to the presence of
redundant text and grammatical errors in the
answer. This work moves toward abstractive
summarization, which attempts to distill and
present the meaning of the original text in a
more coherent way. We incorporate a sen-
tence fusion approach, based on Integer Lin-
ear Programming, along with three novel ap-
proaches for sentence ordering, in an attempt
to improve the human readability of ideal an-
swers. Using an open framework for config-
uration space exploration (BOOM), we tested
over 2000 unique system configurations in or-
der to identify the best-performing combina-
tions for the sixth edition of Phase B of the
BioASQ challenge.

1 Introduction

Human researchers invest considerable effort
when searching very large text corpora for answers
to their questions. Existing search engines like
PubMed (Falagas et al., 2008) only partially ad-
dress this need, since they return relevant docu-
ments but do not provide a direct answer for the
user’s question. The process of filtering and com-
bine information from relevant documents to ob-
tain an ideal answer is still time consuming (Tsat-
saronis et al., 2015). Biomedical Question An-
swering (BQA) systems can automatically gen-
erate ideal answers for a user’s question, signif-
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icantly reducing the effort required to locate the
most relevant information in a large corpus.

Our goal is to build an effective BQA system to
generate coherent, query-oriented, non-redundant,
human-readable summaries for biomedical ques-
tions. Our approach is based on an extractive BQA
system (Chandu et al., 2017) which performed
well on automatic metrics (ROUGE) in the 5th
edition of the BioASQ challenge. However, ow-
ing to the extractive nature of this system, it suf-
fers from problems in human readability and co-
herence. In particular, extractive summaries which
concatenate the most relevant text units from mul-
tiple documents are often incoherent to the reader,
especially when the answer sentences jump back
and forth between topics. Although the existing
extractive approach explicitly attempts to reduce
redundancy at the sentence level (via SoftMMR),
stitching together existing sentences always ad-
mits the possibility of redundant text at the phrase
level. We improve upon the baseline extractive
system in 3 ways: (1) re-ordering the sentences
that are selected by the extractive algorithm; (2)
fusing words and sentences to form a more hu-
manireadable summary; and (3) using automatic
methods to explore a much larger space of system
configurations and hyperparameter values when
optimizing system performance. We hypothesize
that the first two techniques will improve the co-
herence and human readability, while the third
technique provides an efficient framework for tun-
ing these approaches in order to maximize auto-
matic evaluation (ROUGE) scores.

2 Overview of Baseline System
Architecture

In this section, we provide a brief layout of our
baseline system, which achieved the top ROUGE
scores in the final test batches of the fifth edition
of BioASQ Challenge (Chandu et al., 2017). This
system includes baseline modules for relevance
ranking, sentence selection, and sentence tiling.

The baseline relevance ranker performs the fol-
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lowing steps: 1) Expand concepts in the original
question using a metathesaurus, such as UMLS
(Bodenreider, 2004) or SNOMEDCT (Donnelly,
2006); and 2) calculate a relevance score (e.g.
Jaccard similarity) for each question/snippet pair
(to measure relevance) and each pair of gener-
ated snippets (to measure redundancy). The base-
line sentence selection model used the Maximal
Marginal Relevance (MMR) algorithm (Carbonell
and Goldstein, 1998), which iteratively selects an-
swer sentences according to their relevance to the
question and their similarity to sentences that have
already been selected, until a certain number of
sentences have been selected. The baseline sen-
tence tiling module simply concatenates selected
sentences up to a given limit on text length (200
words), with no attempt to module or improve the
coherence of the resulting summary.

The baseline system achieved high ROUGE
scores, but performed poorly on the human read-
ability evaluation in BioASQ 2017. In order to im-
prove human readability, we first developed sev-
eral post-processing modules, such as sentence re-
ordering and sentence fusion, which will be dis-
cussed in detail in following sections.

3 Sentence Ordering

3.1 Motivation
As discussed in Section 1, we tried to improve
upon the Soft MMR system (Chandu et al., 2017).
This pipeline assumes the relevance to be a proxy
for ordering the selected sentences to generate the
final summary. On the other hand, it does not take
into account the flow and transition of sentences
to build a coherent flow between these sentences.
Since the maximum length of the answer is 200
words (as imposed by the guidelines of the compe-
tition), this system optimizes on selecting the most
non-redundant query relevant sentences to maxi-
mize the ROUGE score. In this section, we focus
on different types of sentence ordering that lead to
more coherent answers.

3.2 Algorithms and Techniques
3.2.1 Similarity Ordering
The intuition behind the Similarity Ordering al-
gorithm is that sentences that have similar con-
tent should appear consecutively so that the gener-
ated answer is not jumping back and forth between
topics. Our implementation is based on work by
Zhang (2011), which discusses the use of similar-
ity metrics at two levels - first to cluster sentences,
and then to order them within a cluster - which
can lead to big improvements in coherency and
readability. We apply this approach to the BQA

domain, where we cluster our set of candidate an-
swers using k-means with k = 2. We then or-
der the sentences within each cluster, starting with
the candidate sentence nearest to the centroid of its
cluster and working outward. The intuition is that
the most central sentence will contain the largest
number of tokens shared by all the sentences in
the cluster, and is therefore likely to be the most
general or comprehensive sentence in the cluster.
This supports our goal of an ideal answer that be-
gins with a broad answer to the question, followed
by specifics and supporting evidence from the lit-
erature.

In Figure 1a we see that the order of the sen-
tences that appear in the final answer is completely
independent of their ordering in the original snip-
pets.

3.2.2 Majority Ordering
The Majority Ordering algorithm Barzilay and El-
hadad (2002) makes two main assumptions that
are quite reasonable: sentences coming from the
same parent document should be grouped to-
gether, and the most coherent ordering of a group
of sentences is how they were presented in their
parent document. Topically, it is logical that
sentences drawn from the same parent document
would be similar. Grammatically and syntacti-
cally, it is logical that the sentences may be struc-
tured in a way such that maintaining an invariant
ordering would augment human comprehension.

Specifically, the Majority Ordering algorithm
groups sentences by their parent document and
then orders the blocks by the ranking of the high-
est ranked sentence in a block. Figure 1 illustrates
the differences between Similarity Ordering, Ma-
jority Ordering, and Block Ordering. The color of
each sentence unit indicates the document it was
selected from, and the suffix indicates the rele-
vance score of that unit within the document.

3.2.3 Block Ordering
Intuitively, the Block Ordering algorithm is an
amalgamation of the Similarity Ordering and Ma-
jority Ordering algorithms. The Block Ordering
algorithm has two primary components. The first
component involves grouping the sentences into
blocks based on their parent document. This step
is shared between the Block Ordering algorithm
and the Majority Ordering algorithm. The second
step involves ordering the grouped blocks of text.

The algorithm for ordering the blocks of texts
combines document heuristics with our Similar-
ity Ordering algorithm. We first order the blocks
by their length (the number of sentences in teh
block). For blocks of equal length, we calculate
the similarity of each block with the last fixed sen-
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tence. Hence, given the last sentence of the pre-
ceding block, we select the next block first by
its length, and then by the similarity of the block
with the preceding sentence. If there is no single
longest block to begin the answer, then we select
the longest block that is most similar to the en-
tire answer. This algorithm is tuned for specific
goals with respect to human comprehension and
readability. Grouping the sentences into blocks
is done to maximize local coherence. The use of
block length as an ordering heuristic is done to or-
der topics by relevance. Finally, ordering blocks
of equal length by similarity to the preceding sen-
tence is done to maximize sentence continuity and
fluidity.

In Figure 1c the green block is ordered first be-
cause it is the longest. The blue block is ordered
second because it has the highest similarity score
with sentence 3.4. The yellow block is ordered
third because it has a higher similarity with sen-
tence 2.2, and the red block is thus last.

3.3 Quantitative Analysis
To evaluate our approaches, we performed a man-
ual analysis of 100 different answers, ordered by
each of our proposed ordering algorithms (see Ta-
ble 1). We rate each ordering as ‘reasonable’ or
‘unreasonable’. Note that this rating does not pass
judgment on the correctness of the answer, since
it is designed for a comparative analysis at the
module level (i.e. to compare ordering approaches
rather than content selection).

Algorithm Reasonable Unreasonable
Baseline 59 41
Similarity Ordering 55 45
Majority Ordering 71 29
Block Ordering 75 25

Table 1: Manual evaluation of sentence ordering

3.4 Qualitative Analysis
Because sentence ordering in the baseline system
is based solely on question-answer relevance, we
identified two major issues: global coherence and
local coherence.

The global coherence issue is generally a prob-
lem of layout and cohesiveness. An ideal answer
would begin with a broad answer to the ques-
tion and move into more specific details and any
available evidence to support the answer. Further,
an ideal answer should not be hopping back and
forth between topics and should stick to one be-
fore moving on to another. The baseline system
did a decent job of beginning with a broad answer
to the question because the input sequence is or-
dered by their relevance score. However after the

first sentence, answers tended towards redundant
information and divergent trains of thought.

The local coherence issue has more to do with
the semantics of the sentence and grammatical re-
strictions of the language. For instance, language
like ‘There was also’ should not appear as the first
sentence in an answer because this makes no sense
logically. Additionally certain words like ‘Fur-
thermore’ indicate that the content of the sentence
is highly dependent on the content of the preced-
ing sentence(s), and this dependency is frequently
broken by the baseline ordering approach.

3.4.1 Similarity Ordering
We found that the Similarity Ordering performed
poorly; only 55 of 100 answers were deemed ‘rea-
sonable’. We believe that this is due to the high de-
gree of similarity between the candidate sentences
in our domain. Because the candidate sentences
are so similar to each other, the results of cluster-
ing are highly variant and appeared to be almost
arbitrary at times. All the sentences contain sim-
ilar language and key phrases that makes it diffi-
cult to create meaningful sub-clusters. Addition-
ally, one of the biggest problems with our system
is due to the sentences that began with phrases like
‘However’ and ‘Furthermore’ that place strict re-
quirements on the content of the preceding sen-
tence. This was particularly problematic for the
Similarity Ordering algorithm which has no mech-
anism for making sure that such sentences are
placed logically with their dependent sentences.
The Similarity Ordering algorithm does perform
relatively well in creating logical groups of sen-
tences that cut down on how often an answer is
jumping from one topic to another. Additionally
these groups are ordered well, beginning with the
more general of the two and then finishing with
specifics and a presentation of the supporting data.
However, we note that the problems with local co-
herence greatly outweigh the strengths in global
coherence since a good answer can still be coher-
ent, even if the organization could be improved,
whereas if local coherence is poor, then the answer
becomes nonsensical.

3.4.2 Majority Ordering
The Majority Ordering algorithm proved to be a
successful method for ordering sentences, where
71 out of 100 answers were deemed ‘reasonable’.
The Majority Ordering displayed very strong lo-
cal coherence, which confirms the hypothesis that
sentences should likely be kept in their original or-
dering to maximize human readability and coher-
ence.

However, this algorithm faced issues with
global coherence. It produced answers that start
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     (a)                                                         (b)                                                         (c) 

Figure 1: (a) Similarity Ordering (b) Majority Ordering (c) Block Ordering

with a relevant topic more often than not; however,
after the initial block, it struggled to smoothly
transition from one block to the next. This is
consistent with expectations for the Majority Or-
dering algorithm. The block with highest rated
sentence is ordered first, which explains why the
first block is frequently the most topically rele-
vant. After the initial block placement, however,
the algorithm makes no explicit attempts to man-
age or smooth transitions between blocks. Com-
pared with the other two algorithms, this is where
the Majority Ordering algorithm displays its poor-
est performance. It performs strongly when order-
ing sentences within a block, enforcing local co-
herence so that sentences beginning with language
such as ‘Finally’, ‘Lastly’, ‘Therefore’, etc. fol-
lowed a related sentence that satisfied the sequen-
tial dependency.

3.4.3 Block Ordering
The Block Ordering algorithm produced the best
answers, with 75 out of 100 answers ranked as
‘reasonable’. This is consistent with our expecta-
tions, as the Block Ordering algorithm effectively
combines the strongest aspects of the Majority Or-
dering and Similarity Ordering algorithms. With
respect to local coherence, this algorithm displays
similar performance when compared to the Major-
ity Ordering algorithm, while displaying stronger
coherence between blocks (due to the use of a sim-
ilarity metric to order blocks). This algorithm also
displayed the strongest global coherence, which
is likely due to first grouping the sentences into
blocks and then ordering them.

This algorithm displayed one core weakness,
which is its inability to identify high-quality open-
ing sentences. This is due to the usage of block
length as a heuristic for topic relevance. While in
the majority of cases this heuristic proved to be
successful, accounting for these outliers may sig-
nificantly improve the performance of the Block
Ordering algorithm. We note that the Block order-
ing algorithm performed well in producing high-
quality, coherent answers; although the develop-

ment of coherence models and measures is not the
main focus of this paper, we can see that Block Or-
dering performs the best with respect to the simple
coherence evaluation we conducted.

4 Sentence Fusion

An observed weakness of the original system is
that the generated summaries often contain highly
repetitive information. While MMR is added in
the pipeline to deal with redundancy and maxi-
mize the diversity of covered information, extrac-
tive summarization still picks entire sentences that
may partially overlap with a previously selected
sentence. To tackle this problem, we introduce
sentence fusion as a way to identify common in-
formation among sentences and apply simple ab-
stractive techniques over the baseline extractive
summaries.

4.1 Methodology
Given a set of candidate sentences generated by
the pipeline for each summary, the sentence fusion
module operates in two steps: 1) the candidate set
is expanded to include fused sentences, and 2) sen-
tences are selected from the expanded set to pro-
duce a new summary.

4.1.1 Expansion of Candidate Set
To generate fused sentences, we begin by building
upon previous work on multiple-sentence com-
pression (Filippova, 2010), in which a directed
word graph is used to express sentence struc-
tures. The word graph is constructed by itera-
tively adding candidate sentences. All words in
the first sentence are added to the graph by cre-
ating a sequence of word nodes. A word in the
following sentence is then mapped onto an exist-
ing word node if and only if it is the same word,
with the same part of speech. Our assumption is
that a shared node in the word graph is likely to
refer to the same entity or event across sentences.

We then find a K-possible fused sentence by
searching for the K-shortest path within the word
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graph. Definition of the edge weights follows from
the original paper (Filippova, 2010):

w(eij) =

freq(i)+freq(j)∑
s∈S diff(s,i,j)−1

freq(i)× freq(j)

where diff(s, i, j) is the difference between the
offset positions of word i and j in sentence s. Intu-
itively, we want to promote a connection between
two word nodes with close distance, and between
nodes that have multiple paths between them. We
also prefer a compression path that goes through
the most frequent no-stop nodes to emphasize im-
portant words.

When applying the sentence fusion technique
to the BioASQ task, we first pre-process the can-
didate sentences to remove transition words like
‘Therefore’ and ‘Finally’. Such transition words
may be problematic because they are not neces-
sarily suitable for the new logical intent in fused
sentences, and may break the coherence of the fi-
nal answer. We also constrain fusion so that the
fused sentences are more readable. For instance,
we only allow fusing of pairs of sentences that
are of proper length, in order to avoid generating
overly complicated sentences. We also avoid fus-
ing sentences that are too similar or too dissimilar.
In the first case, information in the two sentences
is largely repetitive, so we simply discard the one
containing less information. In the latter case, fus-
ing two dissimilar sentences more likely confuses
the reader with too much information rather than
improving the sentence readability. Finally, we
add a filter to discard ill-formed sentences, accord-
ing to some hand-crafted heuristics.

4.1.2 Selecting Sentences from Candidate Set
The next step is to select sentences from the can-
didate set and produce a new summary. An Inte-
ger Linear Program (ILP) problem is formulated
as follows, according to (Gillick and Favre, 2009):

max
y,z

N∑
i=1

wizi, such that
M∑
j=1

Aijyj ≥ zi, Aijyj ≤ zi,

M∑
j=1

ljyj ≤ L, yj ∈ {0, 1}, zi ∈ {0, 1}

In the equation, zi is an indicator of whether
concept i is selected into the final summary, and
wi is the corresponding weight for the concept.
The goal is to maximize the coverage of impor-
tant concepts in a summary. During the actual ex-
periments, we assign diminishing weights so that
later occurrences of an existing concept are less
important. This forces the system to select a more

diverse set of concepts. We follow the convention
of using bigrams as a surrogate for concepts (Tay-
lor Berg-Kirkpatrick and Klein, 2011; Dan Gillick
and Hakkani-Tur, 2008), and bigram counts as ini-
tial weights. Variable Aij indicates whether con-
cept i appears in sentence j, and variable yj indi-
cates if a sentence j is selected or not.

4.2 Discussion

Table 2 shows the results of different configura-
tions of the ordering and fusion algorithms (Rows
1 - 4, Row 7, Row 9). Though the overall ROUGE
score drops slightly from 0.69 to 0.61 after sen-
tence fusion with the ILP-selection step, this is
still competitive with other systems (including the
baseline). The sentence re-ordering does not di-
rectly impact the ROUGE scores.

We manually examined the fused sentences for
50 questions. We found that our sentence fusion
technique is capable of breaking down long sen-
tences into independent pieces, and is therefore
able to disregard irrelevant information. For ex-
ample, given a summary containing the original
sentence:
‘Thus, miR-155 contributes to Th17 cell function by sup-
pressing the inhibitory effects of Jarid2. (2014) bring mi-
croRNAs and chromatin together by showing how activation-
induced miR-155 targets the chromatin protein Jarid2 to reg-
ulate proinflammatory cytokine production in T helper 17
cells.’
our fusion technique is able to extract important
information and formulate it into complete sen-
tences, producing a new summary containing the
following sentence:
‘Mir-155 targets the chromatin protein jarid2 to regulate
proinflammatory cytokine expression in th17 cells.’

The fusion module is also able to compress mul-
tiple sentences into one, with minor grammatical
errors. For example:
Sentence 1: ‘The RESID Database is a comprehensive col-
lection of annotations and structures for protein post-trans-
lational modifications including N-terminal, C-terminal and
peptide chain cross-link modifications[1].’

Sentence 2: ‘The RESID Database contains supplemen-
tal information on post-translational modifications for the
standardized annotations appearing in the PIR-International
Protein Sequence Database[2]’
our approach produces the fused sentence:
‘The RESID Database contains supplemental information on
post-translational modifications[1] is a comprehensive col-
lection of annotations and structures for protein post-trans-
lational modifications including N-terminal, C-terminal and
peptide chain cross-link modifications[2].’

However, the overall quality of fused sentences
is not stable. As shown in Figure 2, around 25%
of the selected sentences in final summaries are
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Method Rouge-2 Rouge-SU4 Avg Precision Avg Recall Avg F1 Avg Length
1 Baseline System 0.6948 0.6890 0.2297 0.8688 0.3207 173.31
2 MMR + Order 0.6291 0.6197 0.2758 0.8118 0.3633 140.39
3 MMR + Fusion 0.6183 0.6169 0.2783 0.8094 0.3687 139.24
4 MMR + Relevance + Order 0.6357 0.6256 0.2728 0.8124 0.3606 143.55
5 MMR + Relevance + Order + Post 0.6215 0.6126 0.2788 0.8111 0.3668 139.10
6 MMR + Relevance + Order + Fusion + LM 0.6114 0.6042 0.2775 0.8113 0.3682 141.21
7 MMR + Relevance + Order + Fusion 0.6213 0.6101 0.2686 0.8099 0.3579 143.94
8 MMR + Relevance + Order + Fusion + Post 0.6017 0.5932 0.2775 0.8091 0.3653 140.38
9 MMR + Fusion + Order 0.6223 0.6159 0.2840 0.8181 0.3745 138.79
10 MMR + Fusion + Relevance + Order 0.6257 0.6214 0.2825 0.8193 0.3730 139.73
11 MMR + Fusion + Relevance + Order + Post 0.6149 0.6096 0.2886 0.8126 0.3768 136.43
12 Fusion + MMR + Relevance + Order 0.6112 0.6103 0.2837 0.8211 0.3723 142.11
13 Fusion + MMR + Relevance + Order + Post 0.6048 0.6040 0.2898 0.8143 0.3789 137.78

Table 2: Performance of different module combinations on Test Batch 4, BioASQ 4th edition.

Figure 2: Quality of Fused Sentences

fused. Among the fused sentences, 47% improved
the overall readability by reducing redundancy and
repetition. 5% of the sentences have improved
readability with minor grammatical errors, such as
a missing subordinate conjunction or superfluous
discourse markers. 8% of the fused sentences did
have an appreciable effect on readability. How-
ever, a large number of fused sentences (around
26 %) were not coherent and degraded the quality
of the answer.

5 Further Improvements

In order to further improve the performance of our
system, we made a few modifications to each mod-
ule in the system, and improved the overall archi-
tecture of the module pipeline:
• Modification of System Architecture: We in-
tuited that the ILP process in the sentence fusion
model could not handle a very large number of
candidate inputs, producing a lot of (redundant,
similar) fused sentences. In order to resolve this
problem, we removed the ILP model from the sen-
tence fusion step, and moved the sentence fusion
step before the sentence selection module (Rows
12-13), so that the MMR algorithm in the sentence
selection module could take care of eliminating re-
dundant fused sentences.
• Modifications to Sentence Selection Module

and Relevance Ranker: For the sentence se-
lection module, we modified the original MMR
model. The original MMR model selected a fixed
number of sentences, which naturally introduced
repetition. In order to reduce repetition, we built a
so called ‘Early-Stop MMR’ which stops selecting
sentences when maximum overlap score grows
beyond a certain threshold and minimum rele-
vance score drops down below another threshold
(Rows 4-8).

For the relevance ranker, we explore an alterna-
tive similarity metric ((Row 6). The Query Like-
lihood Language Model (Schütze et al., 2008) is
widely used in information retrieval. We formu-
lated the relevance ranking procedure as an in-
formation retrieval problem and used a language
model, so that long sentences would get higher
penalty.
• Post-Processing: To further reduce repetition,
we add an additional filter before final concatena-
tion by iteratively adding the selected sentences to
the final output, and discarding a sentence if it is
too similar to the existing summary (Rows 8,11
and 13se).

6 Configuration Space Exploration

Configuration Space Exploration (CSE) is the
technique of trying different combinations of con-
figurations of all modules to find the best config-
uration (Yang et al., 2013; Yang, 2016). We used
the BOOM framework to explore and optimize the
space of hyperparameters and module configura-
tions. We explored 2,268 unique configurations of
three different hyperparameters: α, used for the
MMR module; k, used for the clustering-based
Ordering module; and a token limit, used in the
Tiling module. Figure 3 shows the pipeline struc-
ture we used.

• Alpha: This parameter of the MMR module

https://github.com/liboyue/BOOM


63

Question Which syndrome is associated with mutant DVL1?
Ideal Answer Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.

1 MMR + Relevance
+ Order + Fusion

We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. DVL1
frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow
syndrome. Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.

2 MMR + Relevance
+ Fusion + Order

Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. DVL1 frameshift
mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.
We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins.

3 Fusion + MMR +
Relevance + Or-
der + Post

DVL1 frameshift mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.
We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins.

Table 3: System performance comparing Fusion + Ordering and Ordering + Fusion

Figure 3: Structure of the CSE pipeline.

controls the trade-off between snippet similarity
to the question and snippet similarity to already
selected snippets. In our experiments alpha was
varied between 0 and 1 at intervals of .05. We
have found that the ideal value for alpha is 0.1.

• Number of Clusters: The k in the Ordering
module controls the number of clusters used to
order the snippets for the clustering-based Sen-
tence Ordering algorithms. A small k value
produces few, general clusters, while a large
k value produces many highly specific clusters
with the danger of creating clusters that are ac-
tually meaningless or having many clusters that
contain a single sentence. In our experiments, k
was tested at values from 2 to 10. Although the
effect on Rouge score was very small, we have
found that the ideal value for k is 3. A caveat
to this result is that we are measuring the effect
hyperparameter k has on the final Rouge scores
achieved by the system. Since the purpose of k
is to assist in sentence ordering, not precision or
recall, we would expect that adjusting k would
have a negligible impact on the Rouge score.
Further parameter tuning is needed in cases like
this where the primary effect of the parameter is
not easily captured by Rouge.

• Token Limit: The token limit is used by the
Tiling module to set a maximum number of al-
lowed tokens in the answer. If the cumulative

token count of the selected snippets exceeds the
token limit then sentences will be removed from
the end of the final answer until the token limit
is satisfied. In our experiments the token limit
was tested at values from 25 to 300 in incre-
ments of 25. We have found that the ideal value
for the token limit is 100.

The two distinct clusters found in the histogram
shown in Figure 4 are entirely explained by the
token limit. All scores less than 0.27 were ob-
tained by configurations where the token limit was
set to 25. The rest of the scores, all above 0.28
were obtained by configurations where the token
limit was greater than or equal to 50. In addi-
tion to the Rouge score penalty for extremely low
token limits, we observed a significant, though
much smaller, penalty for token limits of 150 and
greater.

7 Results

7.1 Analysis: Effects of Individual Modules
Table 2 shows the results of extensions to the base-
line system. Two systems are highlighted (Rows 5
and 10)), as they give the most balanced results
between the quality of retrieved information and
conciseness: one system performs sentence selec-
tion, then ranks sentences prior to ordering by rel-
evance, and applies the additional post-processing
step (Row 5); the other system performs sentence
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Figure 4: Distribution of Rouge scores across all
hyperparameter configurations.

selection, fusion, and then ranks sentences prior
to ordering without the post-processing step (Row
10).

Rows 5, 8, 11 and 13 show the effectiveness
of the additional post-processing step. Overall,
this procedure is able to reduce the answer length,
while preserving important information. We ob-
served that the post-processing step is less effec-
tive when fusion is performed after MMR. This
is because in these settings, there is an additional
sentence selection step in the fusion module us-
ing integer linear programming that forces the se-
lected sentences to be diverse. In all other set-
tings, including when fusion is performed prior
to MMR, we only have one sentence selection
step. Since MMR iteratively selects sentences ac-
cording to both similarity and relevance, the last
selected ones may be informative but repetitive.
Row 6 shows our experiments with language mod-
eling; the language model gives a higher penalty to
longer sentences, which produces shorter but less
informative results.

7.2 Analysis: Impact of System Architecture
Exploring the performance of systems using dif-
ferent architectures, we observed that systems
with fusion prior to ordering can generate more
logically coherent summaries. Table 3 shows an
example. All underlined sentences express the
same fact that DVL1 is the cause of Robinow syn-
drome. In Row 1, where fusion is performed af-
ter ordering, there is a sentence that serves like
an explanation between the underlined sentences,
which breaks the logical coherence. In Row 2
and Row 3 where ordering is performed after fu-
sion, the generated answers demonstrate better co-
herence: All underlined sentences are placed to-
gether, following by the explanation; The opening
sentences are also more concise and more directly
related to the question.

We also experimented with architectures where
the fusion module is run prior to MMR, and MMR

is used as the only sentence selection step. In these
systems, MMR receives many fused sentences that
overlap and complement each other at the same
time, because all similar sentences are fused prior
to sentence selection. As a result, such architec-
tures sometimes produce summaries that are more
repetitive compared to others.

8 Conclusion and Future Work

Though extractive summarization techniques can
be developed to maximize performance as mea-
sured by evaluation metrics like ROUGE, such
systems suffer from human readability issues as
mentioned above. In this paper we attempted
to combine extractive techniques with simple ab-
stractive extensions, by extracting the most rel-
evant non-redundant sentences, re-ordering and
fusing them to make the resulting text more
human-readable and coherent. Using an initial set
of 100 candidate answer sets, we experimented
with different ordering algorithms such as Simi-
larity, Majority and Block Ordering, and identified
that Block Ordering performs better the others in
terms of global and local coherence. We then in-
troduced an Integer Linear Programming based fu-
sion module that is capable of not only fusing re-
peated content, but also breaks down complicated
sentences into simpler sentences, thus improving
human readability. The improved baseline system
achieved a ROUGE-2 of 0.6257 and ROUGE-SU4
of 0.6214 on test batch 4 of BioASQ 4b. We ac-
knowledge that providing immediate human feed-
back during the BioASQ competition is manually
expensive, although this would greatly help in tun-
ing our systems. We were able to perform a man-
ual evaluation on a sub-sample of the data, in order
to introduce the use of human evaluation during
system development. We also incorporated an au-
tomatic evaluation framewook (BOOM) which al-
lowed us to test many different system configura-
tions and hyperparameter values during system de-
velopment. As BOOM is completely general and
can be applied to any pipeline of Python modules,
this adaptation was relatively straightforward, and
allowed us to automatically test more than 2,000
different system configurations.

In the future, we would like to explore pa-
rameter tuning for sentence ordering using hu-
man evaluation metrics. There are several addi-
tional refinements (abstractions) of the extracted
sentences which rely on simple post-processing or
text cleaning methods which could be performed
before sentences are passed to the fusion module.
Another interesting direction that we would ex-
plore is the possibility of automatically predicting
reasonable sentence orderings.
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