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Preface

The sixth BioASQ workshop on biomedical semantic indexing and question answering took place in
Brussels, Belgium on November 1st, 2018 as part of the EMNLP 2018 conference and was hosted by
the SQUARE Brussels meeting centre. The workshop was supported by the BioASQ project1, which
organizes the corresponding annual challenge. The goals of the workshop were to present the results
of the sixth BioASQ challenge and further the interaction with the wider community of biomedical
semantic indexing and question answering. The presenters represented research teams from different
parts of the globe and with different viewpoints to the problem.This contributed to a very lively and
interesting discussion among the participants of the workshop.

Ten papers were presented during the workshop. All were selected by peer review for presentation. This
volume includes all ten papers. The first paper gives an overview of the challenge, including especially
the datasets that were used throughout the challenges and the overall results achieved by the participants.

The remaining nine papers are those presented at the workshop. The first of these papers presents an
analysis of the use of Semantic Role Labeling (SRL) tools in question-answering. The second paper
present a system which uses deep learning and reinforcement learning approaches for the generation
of ideal answers. Deep learning techniques for the document and snippet retrieval tasks is the object
of discourse of the third workshop paper. The fourth paper presents a system for document and
snippet retrieval, which makes use of semantic similarity patterns that are evaluated and measured
by a convolutional neural network architecture. The system presented in the fifth paper uses a novel
end-to-end model, which utilizes deep learning and attention mechanism to index MeSH terms to
biomedical text. In the sixth paper, the authors move toward abstractive summarization, which attempts
to distill and present the meaning of the original text in a more coherent way. They incorporate a
sentence fusion approach, based on Integer Linear Programming. A named-entity based method for
answering factoid and list questions, and an extractive summarization technique for building paragraphs
are presented in the seventh paper of the workshop. The eighth paper studies the influence of enriching
the training data by manually annotated variants of gold standard answers on the evaluation performance.
The last paper focuses on a system for ideal answer generation, using ontology-based retrieval and a
neural learning-to-rank approach, combined with extractive and abstractive summarization techniques.

We wish to thank all who participated to the success of this workshop, especially the authors, reviewers,
speakers and participants.

Ioannis A. Kakadiaris, George Paliouras and Anastasia Krithara
November 2018

1www.bioasq.org
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Abstract

This paper presents the results of the sixth edi-
tion of the BioASQ challenge. The BioASQ
challenge aims at the promotion of systems
and methodologies through the organization of
a challenge on two tasks: semantic indexing
and question answering. In total, 26 teams
with more than 90 systems participated in this
year’s challenge. As in previous years, the best
systems were able to outperform the strong
baselines. This suggests that state-of-the-art
systems are continuously improving, pushing
the frontier of research.

1 Introduction

The aim of this paper is twofold. First, we aim
to give an overview of the data issued during the
BioASQ challenge in 2018. In addition, we aim to
present the systems that participated in the chal-
lenge and evaluate their performance. To achieve
these goals, we begin by giving a brief overview of
the tasks, which took place from February to May
2018, and the challenge’s data. Thereafter, we pro-
vide an overview of the systems that participated
in the challenge. Detailed descriptions of some
of the systems are given in workshop proceedings.
The evaluation of the systems, which was carried
out using state-of-the-art measures or manual as-
sessment, is the last focal point of this paper, with
remarks regarding the results of each task. The
conclusions sum up this year’s challenge.

2 Overview of the Tasks

The challenge comprised two tasks: (1) a large-
scale semantic indexing task (Task 6a) and (2) a
question answering task (Task 6b).

2.1 Large-scale semantic indexing - 6a
In Task 6a the goal is to classify documents from
the PubMed digital library into concepts of the

MeSH hierarchy. Here, new PubMed articles that
are not yet annotated by MEDLINE indexers are
collected and used as test sets for the evaluation of
the participating systems. In contrast to previous
years, articles from all journals were included in
the test data sets of task 6a. As soon as the an-
notations are available from the MEDLINE index-
ers, the performance of each system is calculated
using standard flat information retrieval measures,
as well as, hierarchical ones. As in previous years,
an on-line and large-scale scenario was provided,
dividing the task into three independent batches of
5 weekly test sets each. Participants had 21 hours
to provide their answers for each test set. Table
1 shows the number of articles in each test set of
each batch of the challenge. 13,486,072 articles
with 12.69 labels per article, on average, were pro-
vided as training data to the participants.

2.2 Biomedical semantic QA - 6b

The goal of Task 6b was to provide a large-scale
question answering challenge where the systems
had to cope with all stages of a question answer-
ing task for four types of biomedical questions:
yes/no, factoid, list and summary questions (Ba-
likas et al., 2013). As in previous years, the task
comprised two phases: In phase A, BioASQ re-
leased 100 questions and participants were asked
to respond with relevant elements from specific
resources, including relevant MEDLINE articles,
relevant snippets extracted from the articles, rele-
vant concepts and relevant RDF triples. In phase
B, the released questions were enhanced with rel-
evant articles and snippets selected manually and
the participants had to respond with exact answers,
as well as with summaries in natural language
(dubbed ideal answers). The task was split into
five independent batches and the two phases for
each batch were run with a time gap of 24 hours.
In each phase, the participants received 100 ques-
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Batch Articles Annotated
Articles

Labels
per

Article

1

7,240 6,639 11.67
7,678 7,499 12.95
10,488 10,319 13.04
6,225 6,073 12.32
6,617 6,486 12.96

Total 38,248 37,016 12.65

2

6,239 6,118 12.51
7,152 6,803 12.75
7,113 6,575 12.75
5,833 5,412 13.00
7,379 6,606 12.65

Total 33,716 31,514 12.73

3

6,469 5,768 12.58
6,544 5,501 12.86
6,743 5,467 12.67
8,487 5,615 12.70
7,478 4,038 12.63

Total 35,721 26,389 12.69

Table 1: Statistics on test datasets for Task 6a.

tions and had 24 hours to submit their answers.
Table 2 presents the statistics of the training and
test data provided to the participants. The evalua-
tion included five test batches.

Batch Size Documents Snippets
Train 2,251 12.01 14.72
Test 1 100 4.06 6.02
Test 2 100 3.77 5.03
Test 3 100 3.97 4.80
Test 4 100 3.39 4.03
Test 5 100 3.94 5.07
Total 2,751 10.52 12.95

Table 2: Statistics on the training and test datasets of
Task 6b. All the numbers for the documents and snip-
pets refer to averages.

3 Overview of Participants

3.1 Task 6a
For this task, 11 teams participated and results
from 42 different systems were submitted. In the
following paragraphs we describe those systems
for which a description was available, stressing
their key characteristics. An overview of the sys-
tems and their approaches can be seen in Table 3.

The “SNOKE” system variants were developed

System Approach

AttentionMeSH
RNN, w2v, attention

scheme

AUTH
d2v, tf-idf, LLDA,
SVM, ensembles

DeepMesh d2v, tf-idf, MESHlabeler

Iria
bigrams, Luchene Index,

k-NN, ensembles,
UIMA ConceptMapper

SNOKE
search engine, UIMA

ConceptMapper

Table 3: Systems and approaches for Task 6a. Systems
for which no description was available at the time of
writing are omitted.

as an UIMA (Tanenblatt et al., 2010) text and
data mining workflow, combined with a hetero-
geneous database architecture, where different
search strategies were adopted to automatically se-
lect probable MeSH terms. More specifically, the
system is based on the ZB MED Knowledge Envi-
ronment (Müller et al., 2017), while also utilizing
the Snowball Stemmer (Agichtein and Gravano,
2000), to find matches between MeSH terms and
words in the title and abstract of each target docu-
ment.

The “AttentionMeSH” systems utilize deep
learning and attention mechanisms which enable
the models to associate textual evidence with an-
notations, thus providing interpretability at the
word level. Firstly, they use a bidirectional gated
recurrent unit to derive word representations with
contextual information (Cho et al., 2014), to repre-
sent each document. At the same time, all MeSH
terms are embedded using a technique that takes
into account co-occuring MeSH terms in textu-
ally similar articles and finally an attention ma-
trix (Mullenbach et al., 2018) is created based on
the MeSH and word representations, leading to
MeSH-specific article representations. This pro-
cedure allows the model to provide local interpre-
tations of the predicted MeSH terms in relation
to words of a specific article, raising the interest-
ing subject of how explanations of an automatic
MeSH indexer could further help human annota-
tors in this task.

Other participating systems, including the
“DeepMeSH” systems (Peng et al., 2016), the
systems of the “AUTH” team (Papagiannopoulou
et al., 2016) and the “Iria” systems (Ribadas-Pena
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et al., 2015) are based on the same techniques used
by theirs systems for the previous version of the
challenge which are summarized in Table 3 and
described in the corresponding challenge overview
(Nentidis et al., 2017). Similarly to the previous
year, two systems developed by the National Li-
brary of Medicine (NLM) to assist the indexers
in the annotation of MEDLINE articles, served
as baselines for the semantic indexing task of the
challenge. The Medical Text Indexer (MTI) (Mork
et al., 2014) with some enchantments introduced
in (Zavorin et al., 2016) and an extension of it, in-
corporating features of the winning system of the
first BioASQ challenge (Tsoumakas et al., 2013).

3.2 Task 6b

The question answering task was tackled by 50
different systems, developed by 15 teams. In the
first phase, which concerns the retrieval of infor-
mation required to answer a question, 9 teams
with 27 systems participated. In the second phase,
where teams are requested to submit exact and
ideal answers, 10 teams with 27 different systems
participated. Four of the teams participated in
both phases. An overview of the technologies em-
ployed by each team can be seen in Table 4.

The “AUEB” team that participated only in
Phase A, used novel extensions of deep learning
models for retrieving question-relevant documents
and snippets. Firstly, they pre-trained word em-
beddings (Mikolov et al., 2013) on a very large
collection of articles from MEDLINE/PubMed,
while also implementing some pre-processing
steps (stop-word removal, stemming (Krovetz,
1993), tokenization etc.). Then, for the document
retrieval task they focused on the PACRR model
of (Hui et al., 2017) and the DRMM model (Guo
et al., 2016), while for snippets retrieval they uti-
lized the ABCNN model (Yin et al., 2015). Along-
side the extensions made on these models, they
also deployed a clever post-processing scheme
for snippet retrieval, as well as a model for ini-
tial document-retrieval based on BM25 (Robert-
son and Jones, 1976) for efficiency purposes.

Another approach based on deep learning
methodologies for Phase A, focusing again on
document and snippet retrieval, was proposed by
the “MindLaB” team from the National University
of Colombia. While for the document retrieval
they use the BM25 model and ElasticSearch for
efficiency, they train a Convolutional Neural Net-

Systems Phase Approach

Olelo A, B
SRL toolkits (BioKIT,
BioSmile, PathLSTM)

AUTH A, B
MetaMap, LingPipe,

Lucene Index, Stanford
Parser

AUEB A
BM25, w2v , DL

(PACRR, DRMM,
ABCNN)

USTB A
Sequential Dependence

Models, Ensembles

MindLab A
ElasticSearch, BM25,
POS-Tags, w2v, DL

(CNN)

MQU B
DL (LSTM), w2v,
Regression models,

Reinforcement Learning

Oaqa B
Maximum Margin

Relevance, w2v, Block
Ordering, ILP

LabZhu B
PubTator, Standford
POS tool, ranking

UNCC B
Metamap, Lexical

Chaining

L2PS B
SQUAD, DRQA (RNN,

LSTM), GloVe

Table 4: Systems and approaches for Task 6b. Systems
for which no information was available at the time of
writing are omitted.

work (CNN) for snippet retrieval. As in the previ-
ous approach, they utilized a very large collection
of PubMed Articles to train the CNN with sim-
ilarity matrices of question-answer pairs. More
specifically, they deploy similar pre-processing
steps (tokenization, lowercasing, skip-gram em-
beddings (Moen and Ananiadou, 2013)) for the
question and the document texts, however they
also apply Part of Speech tagging to extract syn-
tactical information regarding the terms. Based on
the idea that not all terms are equally informative
(Dong et al., 2015), they deploy a salience weight-
ing scheme focusing on verbs, nouns and adjec-
tives. Another interesting extension is the way fi-
nal rankings of the snippets are generated based on
a pseudo-relevance-feedback re-ranking step (Rie-
zler et al., 2007).

In Phase B, the Macquarie University (“MQU”)
team focused on ideal answers and explored ideas
of reinforcement learning on deep learning mod-
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els. Extending their previous work (Molla, 2017),
they implemented different models under a regres-
sion setting for finding similar sentences to a ques-
tion, based on the corresponding word2vec em-
beddings of the question-sentence pairs. They
also experimented with different ways of utiliz-
ing these embeddings, notably using a bidirec-
tional Recurrent Neural Networks with LSTM
cells (Hochreiter and Schmidhuber, 1997) to equip
the model with knowledge regarding the sentence
position. Moreover, they also run interesting ex-
periments using reinforcement learning towards
the ROUGE score of the ideal answers, based on
their previous work (Mollá-Aliod, 2017), but the
results did not advocate for the use of such mod-
els.

The Carnegie Mellon University team
(“OAQA”), focused also on ideal answer
generation, building upon previous versions
of the “OAQA” system (Chandu et al., 2017).
They experimented with ways to improve the
generated answer by extracting the most relevant
non-redundant sentences from multiple docu-
ments and then re-ordering and fusing them to
make the resulting text more human-readable
and coherent. To this end, they tried different
ordering algorithms for sentences and also made
various improvements in different stages of
the candidate sentences expansion, fusion and
filtering procedure that was already used by their
model. Among the notable additions is the use of
an Integer Linear Program (ILP) module that is
capable of fusing repeated content and simplify-
ing complicated sentences, thus improving human
readability.

Another system deployed by the same team
focuses on answer generation using a knowl-
edge graph and a neural learning-to-rank ap-
proach, combined with different summarization
techniques. One of the novelties introduced is
the creation of an ontology-based retrieval module
for relevant snippets, through the relation extrac-
tion between biomedical entities found in the ab-
stracts’ texts (Abacha and Zweigenbaum, 2015).
Also, different learning-to-rank approaches were
explored (Qin et al., 2010; Cao et al., 2006, 2007)
alongside both extractive (Allahyari et al., 2017)
and abstractive (See et al., 2017) summarization
techniques for the ideal answers generation.

An interesting approach comes from the
“L2PS” team where they use an open-domain

model (Chen et al., 2017), pre-trained on the
SQUAD (Rajpurkar et al., 2016) dataset, and fine-
tuned to the biomedical domain. An interesting
difference with other deep learning approaches is
the fact that the GloVe embeddings (Pennington
et al., 2014) were the best amongst the ones tried.
Moreover, they raise interesting questions regard-
ing the effects of non-normalized answers (syn-
onyms, abbreviations, multi-word answers) in the
evaluation of different systems.

The “UNCC” team participated in Phase B, de-
ploying lexical chaining techniques (Reeve et al.,
2006) for sentence similarity and ranking to ex-
tract summaries from related snippets and effi-
ciently fuse them in an ideal answer. They take ad-
vantage of the MetaMap tool (Aronson and Lang,
2010) for biomedical entity recognition and they
also present a way to extend their methodology to
factoid/list question answering in Phase A as well.

“Olelo” is one of the approaches that tackles
both phases of the question answering task. More
specifically, in Phase A Semantic Role Label-
ing (SRL) approaches for QA systems were uti-
lized. These focus on the automatic extraction
of predicate-argument structures (PAS) from both
questions and document text, aimed at finding se-
mantically related PAS between associated pairs.
For Phase B, the system is built on top of the SAP
HANA database and uses various NLP compo-
nents, such as question processing, document and
passage retrieval, answer processing and multi-
document summarization based on previous ap-
proaches (Schulze et al., 2016) to develop a com-
prehensive system that retrieves relevant informa-
tion and provides both exact and ideal answers for
biomedical questions.

Other systems, including the “USTB” (Jin et al.,
2017) and the “LabZhu” (Peng et al., 2015) sys-
tems employed the same techniques used by their
systems for the previous version of the challenge,
as summarized in Table 4 and described in the pre-
vious challenge overview (Nentidis et al., 2017).
In this challenge too, the open source OAQA sys-
tem proposed by (Yang et al., 2016) served as
baseline for phase B. The system which achieved
among the highest performances in previous ver-
sions of the challenge remains a strong base-
line for the exact answer generation task. The
system is developed based on the UIMA frame-
work. ClearNLP is employed for question and
snippet parsing. MetaMap, TmTool (Wei et al.,

4



System Batch 1 Batch 2 Batch 3
MiF LCA-F MiF LCA-F MiF LCA-F

AttentionMeSH - - 12.75 13 10 12.875
AttentionMeSH2 - - 13.25 13.5 9.125 11.625
AttentionMeSH3 - - 11.875 12 8.625 10.625
AttentionMeSH4 - - 10.625 10.75 7.375 11.375
AttentionMeSH5 - - 9.875 11 7.25 11

DeepMeSH1 3.75 4.75 4 5 9.75 10.75
DeepMeSH2 1.875 1.875 2 2 7.25 7.5
DeepMeSH3 2.625 2.625 3 3 5.75 6
DeepMeSH4 1 1 1 1 7.25 7.75
Default MTI 4.875 3.75 5 3.75 10.5 5.25

iria-1 9.75 9.75 13 13 15.75 15.75
iria-2 - - - - 18.75 18.75

MeSHmallow-1 - - - - 24 24
MeSHmallow-2 - - - - 24 24
MeSHmallow-3 - - - - 24 24

MTI First Line Index 6 6 8.25 7.5 13.75 9.75
Semantic NoSQL KE 1 - - 16.25 16 - -
Semantic NoSQL KE 2 - - 15.75 17 - -
Semantic NoSQL KE 3 - - 19.5 20 - -
Semantic NoSQL KE 4 - - 17.5 18 - -
Semantic NoSQL KE 5 - - 18.5 19 - -
UMass Amherst T2T - - - - 19.25 19.25

xgx 8.5 8.5 5.75 6 5.25 4
xgx0 - - 8.5 7 3.25 2
xgx1 - - - - 4.5 2.375
xgx2 - - - - 3.5 3.875
xgx3 - - - - 4.75 4.25

Table 5: Average system ranks across the batches of the Task 6a. A hyphenation symbol (-) is used whenever the
system participated in fewer than 4 tests in the batch. Systems with fewer than 4 participations in all batches are
omitted.

2016), C-Value and LingPipe (Baldwin and Car-
penter, 2003) are used for concept identification
and UMLS Terminology Services (UTS) for con-
cept retrieval. The final steps include identification
of concept, document and snippet relevance, based
on classifier components and scoring, ranking and
reranking techniques.

4 Results

4.1 Task 6a
Each of the three batches of Task 6a were eval-
uated independently. The classification perfor-
mance of the systems were measured using flat
and hierarchical evaluation measures (Balikas
et al., 2013). The micro F-measure (MiF) and
the Lowest Common Ancestor F-measure (LCA-
F) were used to choose the winners for each batch
(Kosmopoulos et al., 2013).

According to (Demsar, 2006) the appropriate
way to compare multiple classification systems
over multiple datasets is based on their average
rank across all the datasets. On each dataset the
system with the best performance gets rank 1.0,
the second best rank 2.0 and so on. In case two

or more systems tie, they all receive the average
rank. Table 5 presents the average rank (according
to MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results
of each system in the batch according to the rules
of the challenge.

The results in Task 6a show that in all test
batches and for both flat and hierarchical mea-
sures, some systems outperform the strong base-
lines. The “DeepMeSH” systems achieve the best
performance in the first two batches, outperformed
only by “xgx” systems in the third batch. More
detailed results can be found in the online results
page1. Comparison of these results with corre-
sponding system results from previous years re-
veals the improvement of both the baseline and
the top performing systems through the years of
the competition as shown in Figure 1.
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Figure 1: The micro f-measure achieved by systems across different years of the BioASQ challenge. For each test
set the micro F-measure is presented for the best performing system (Top) and the MTI, as well as the average
micro f-measure of all the participating systems (Avg).

System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

aueb-nlp-5 0.2551 0.3412 0.2744 0.2314 0.0068
MindLab QA

Reloaded
0.1614 0.2657 0.1877 0.1344 0.0014

aueb-nlp-1 0.1384 0.2288 0.1563 0.1331 0.0046
aueb-nlp-3 0.1341 0.2263 0.1526 0.1294 0.0038
aueb-nlp-4 0.1325 0.2252 0.1519 0.1293 0.0038
aueb-nlp-2 0.1308 0.2204 0.1494 0.1262 0.0034

MindLab QA
System

0.1542 0.2754 0.1833 0.1156 0.0023

MindLab Red
Lions++

0.1406 0.2346 0.1636 0.1150 0.0013

MindLab QA
System ++

0.1325 0.2252 0.1559 0.1148 0.0001

testtext 0.1802 0.2331 0.1831 0.1124 0.0035

Table 6: Results for snippet retrieval in batch 3 of phase A of Task 6b. Only the top-10 systems are presented.

4.2 Task 6b

Phase A: For phase A and for each of the four
types of annotations: documents, concepts, snip-
pets and RDF triples, we rank the systems accord-
ing to the Mean Average Precision (MAP) mea-
sure. The final ranking for each batch is calculated
as the average of the individual rankings in the dif-
ferent categories. In Tables 6 and 7 some indica-
tive results from batch 3 are presented. Full results

1http://participants-area.bioasq.org/
results/6a/

are available in the online results page of Task 6b,
phase A2. These results are preliminary. The final
results for Task 6b, phase A will be available after
the manual assessment of the system responses.

Phase B: In phase B of Task 6b the systems
were asked to produce exact and ideal answers.
For ideal answers, the systems will eventually
be ranked according to manual evaluation by the
BioASQ experts (Balikas et al., 2013). Regarding

2http://participants-area.bioasq.org/
results/6b/phaseA/
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System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

ustb prir2 0.1660 0.5674 0.2186 0.1281 0.0113
ustb prir3 0.2007 0.5609 0.2496 0.1259 0.0106

testtext 0.2007 0.5609 0.2496 0.1254 0.0106
ustb prir4 0.1620 0.5601 0.2136 0.1253 0.0105
ustb prir1 0.1700 0.5559 0.2203 0.1217 0.0100
aueb-nlp-2 0.1877 0.5352 0.2345 0.1147 0.0108
aueb-nlp-4 0.1877 0.5399 0.2345 0.1137 0.0106
aueb-nlp-3 0.1877 0.5429 0.2350 0.1135 0.0109
aueb-nlp-1 0.1877 0.5399 0.2345 0.1122 0.0101
sdm/rerank 0.1810 0.5422 0.2301 0.1061 0.0087

Table 7: Results for document retrieval in batch 3 of phase A of Task 6b. Only the top-10 systems are presented.

System Yes/No Factoid List

Acc. F1
Str.
Acc.

Len.
Acc.

MRR Prec. Rec. F1

Oaqa-5b 0.6667 0.6592 0.0606 0.2121 0.1313 0.0867 0.2722 0.1299
fa2 0.6296 0.3864 0.2121 0.3030 0.2475 0.2511 0.3889 0.2955
fa4 0.6296 0.3864 0.2121 0.3030 0.2434 0.2800 0.3889 0.3131
fa1 0.6296 0.3864 0.2121 0.2727 0.2374 0.1600 0.4333 0.2290
fa3 0.6296 0.3864 0.2121 0.2727 0.2283 0.1800 0.4778 0.2564

Lab Zhu ,FDU 0.6296 0.3864 0.0909 0.1212 0.1061 0.1657 0.2833 0.1663
MQ-1 0.6296 0.3864 - - - - - -
MQ-2 0.6296 0.3864 - - - - - -
MQ-3 0.6296 0.3864 - - - - - -
MQ-4 0.6296 0.3864 - - - - - -
MQ-5 0.6296 0.3864 - - - - - -

fa5 0.6296 0.5559 0.2121 0.3030 0.2434 0.2800 0.3889 0.3131
Lab Zhu,FDU 0.6296 0.3864 0.2121 0.2424 0.2273 0.2944 0.3444 0.2934
LabZhu,FDU 0.6296 0.3864 0.2424 0.2424 0.2424 0.4130 0.3389 0.3312

BioASQ Baseline 0.4815 0.475 0.0606 0.1212 0.0859 0.1774 0.3944 0.2236

Table 8: Results for batch 4 for exact answers in phase B of Task 6b.

exact answers3, the systems were ranked accord-
ing to accuracy, F1 score on prediction of yes an-
swer, F1 on prediction of no and macro-averaged
F1 score for the yes/no questions, mean reciprocal
rank (MRR) for the factoids and mean F-measure
for the list questions. Table 8 shows the results for
exact answers for the fourth batch of Task 6b. The
symbol (-) is used when systems don’t provide ex-
act answers for a particular type of question. The
full results of phase B of Task 6b are available on-
line4. These results are preliminary. The final re-
sults for Task 6b, phase B will be available after

3For summary questions, no exact answers are required
4http://participants-area.bioasq.org/

results/6b/phaseB/

the manual assessment of the system responses.

The results presented in Table 8 show that eval-
uation of system performance in the yes/no ques-
tions using the macro averaged F1 measure this
year is useful to identify systems that achieve good
performance regardless of any dataset imbalance
in the yes-no classes. In batch 4 for example, two
systems outperformed the strong baseline based
on previous versions of the OAQA system, which
is not clear considering only the accuracy. Re-
garding factoid and list questions, the performance
achieved by the systems indicates that there is
even more room for improvement in these types
of question.
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5 Conclusions

In this paper, an overview of the sixth BioASQ
challenge is presented. The challenge consisted
of two tasks: semantic indexing and question
answering. Overall, as in previous years, the
best systems were able to outperform the strong
baselines provided by the organizers. This sug-
gests that advances over the state of the art were
achieved through the BioASQ challenge but also
that the benchmark in itself is challenging. More-
over, a clear shift towards the use of systems that
incorporate ideas based on deep learning mod-
els can be seen, with respect to previous years.
Novel ideas have been tested and state-of-the-art
deep learning methodologies have been adapted to
biomedical question answering with great results.
Consequently, we believe that the challenge is suc-
cessfully pushing the research frontier in biomed-
ical information systems. In future editions of the
challenge, we aim to provide even more bench-
mark data derived from a community-driven ac-
quisition process.
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Abstract

Question answering (QA) systems usually rely
on advanced natural language processing com-
ponents to precisely understand the questions
and extract the answers. Semantic role la-
beling (SRL) is known to boost performance
for QA, but its use for biomedical texts has
not yet been fully studied. We analyzed
the performance of three SRL tools (BioKIT,
BIOSMILE and PathLSTM) on 1776 ques-
tions from the BioASQ challenge. We com-
pared the systems regarding the coverage of
the questions and snippets, as well as based
on pre-defined criteria, such as easiness of in-
stallation, supported formats and usability. Fi-
nally, we integrated two of the tools in a sim-
ple QA system to further evaluate their perfor-
mance over the official BioASQ test sets.

1 Introduction

Question answering (QA) is one of the most
complex applications of natural language process-
ing (NLP). QA systems need to precisely under-
stand questions, in order to infer which informa-
tion is being requested, and usually include steps
such as question type and expected answer detec-
tion (Athenikos and Han, 2010; Neves and Leser,
2015). Likewise, the candidate documents or snip-
pets that potentially contain the answers also need
to be analyzed to extract the requested answer.
Therefore, such systems usually rely on various
NLP components, such as named-entity recogni-
tion, part-of-speech tagging and semantic parsing
(Athenikos and Han, 2010).

Semantic role labeling (SRL) is one of the most
popular tools to support QA systems (Shen and
Lapata, 2007). It consists of automatically identi-
fying predicates and their arguments, the so-called
predicate-argument structures (PAS). For instance,

∗ Current address: German Federal Institute for Risk
Assessment, Diedersdorfer Weg 1, Berlin 12277, Germany

for the question ”How many genes does the hu-
man hoxD cluster contain?”, BioKIT (Dahlmeier
and Ng, 2010), an SRL tool for biomedicine, cor-
rectly identified the following PAS: the predicate
contains and two arguments (Arg0 - the human
hoxD cluster and Arg1 - How many genes).

SRL is known for its potential to boost QA
performance when extracting PAS from both the
question and the text (e.g., snippets of sentences).
Ideally, the same (or semantically related) PAS
should be found in both of them in order to effec-
tively support QA applications (Shen and Lapata,
2007). Hence, a good coverage is an important re-
quirement for a tool to be suitable for QA. For our
given example question, one of the answer snip-
pets provided by the BioASQ challenge (Tsatsa-
ronis et al., 2015) was The human HOXD complex
contains nine genes HOXD1, HOXD3, HOXD4,
HOXD8, HOXD9, HOXD10, HOXD11, HOXD12
and HOXD13, which are clustered from [...]. The
following PAS was detected by BioKIT: the pred-
icate contains and the arguments Arg0 the human
HOXD complex and Arg1 nine genes. In this ex-
ample, there is a perfect match between the pred-
icates from the question and the snippet. Further,
the values for the argument Arg0 are similar and
could be considered as a match too. The answer
nine genes is indeed contained in Arg1, which also
matches the argument type of the question word of
the sentence. This example demonstrates how QA
systems can benefit from PASs that were automati-
cally detected by an SRL tool. However, language
is more complex than reflected in this example.
Thus, besides performing SRL, further challenges
arise to integrate SRL and gain significant advan-
tages in QA systems.

We are not aware of a comprehensive eval-
uation of available SRL tools on the BioASQ
dataset, which is the most comprehensive dataset
on biomedical QA (Tsatsaronis et al., 2015). We
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investigated three SRL tools, two of which were
specifically developed for the biomedical domain,
namely, BioKIT (Dahlmeier and Ng, 2010) and
BIOSMILE (Tsai et al., 2006), and one which is
based on deep learning, i.e., PathLSTM (Roth and
Lapata, 2016). The latter has neither been trained
nor tuned to biomedicine but has recently achieved
promising results on SRL. Our contribution in this
work is three-fold: (i) we provide a comprehen-
sive overview on SRL for biomedicine and QA;
(ii) we perform a comparison of selected tools re-
garding pre-defined criteria based on hands-on ex-
periments; and (iii) we evaluated the selected SRL
tools on the BioASQ datasets regarding their PAS
coverage and performance in a QA system.

In the next section we provide an overview on
previous work on SRL for biomedical QA, fol-
lowed by the methodology we defined for the se-
lection, comparison and evaluation of the SRL
tools. In section 4 we present our results and dis-
cussion, followed by the conclusions of this work.

2 Overview of SRL for biomedical
question answering

SRL has been well researched in recent decades
and various tools have been created in the mean-
time. In addition to the tools, researchers have pro-
posed standards for PAS annotations, such as the
PropBank annotation format with its correspond-
ing corpus (Kingsbury and Palmer, 2003). This
was the standard followed by most SRL tools,
as mentioned in (Palmer et al., 2010). How-
ever, they also presented two other popular for-
mats for the English language, with corresponding
corpora: FrameNet (Baker et al., 1998) and Verb-
Net (Kipper-Schuler, 2005).

Various features have been explored when
building SRL tools based on machine learning al-
gorithms. In 2004, Hacioglu et al. published an
SRL approach which was based on chunking (Ha-
cioglu et al., 2004). They trained a Support Vector
Machine (SVM) to perform a semantic chunk seg-
mentation step and role labeling. In their publi-
cation, they presented a complex set of features,
e.g., words and part-of-speech tags and named
entities, and their annotations followed the Prop-
Bank format. In the same year, Xue et Palmer
experimentally explored the influence of certain
newly proposed features on SRL results (Xue and
Palmer, 2004). They could achieve significant
improvements, especially by including syntactic

frame features.
First efforts on neural-based SRL came a couple

of years ago. In 2016, Roth et Lapata presented a
novel SRL model that improved results of previ-
ous state of the art SRL tools for the open domain
(Roth and Lapata, 2016). They utilized neural se-
quence modeling techniques and put special focus
on improving the detection of nominal predicates.
Their evaluation showed that the novel SRL model
reached F1-scores of 87.9% for in-domain data
and 76.1% for out-of-domain data, thus improv-
ing the state of the art in both categories. The pre-
sented SRL tool is called PathLSTM and is pub-
licly available with an up-to-date model.

Recently, Marcheggiani et al. published an-
other neural model for dependency-based SRL
(Marcheggiani et al., 2017). By applying a syntax-
agnostic model, they could almost keep with the
state of the art for in-domain data (F1: 87.6%) and
surpassed PathLSTM for out-of-domain data (F1:
77.3%). Still last year, Do et al. discussed the role
of implicit SRL and their approach to meet corre-
sponding challenges (Do et al., 2017). Traditional
SRL systems usually focused on explicit argument
labels while implicit SRL aims at also finding the
implicit ones. They used a recurrent neural se-
mantic frame model for learning probability dis-
tributions over semantic argument sequences and
could hereby improve the state of the art for de-
tecting implicit semantic role labels.

2.1 Semantic Role Labeling on Biomedical
Text Corpora

Since the last decade, numerous efforts have been
made to apply SRL techniques to the biomedical
domain. In 2004, Wattarujeekrit et al. published
PASBio (Wattarujeekrit et al., 2004), a PropBank
extension for the domain of molecular biology.
The PASBio corpus contained PASs for a limited
set of 30 predicate stems. The corpus was specif-
ically designed to support the extraction of events
in molecular biology.

A couple of years later, Chou et al. presented
BioProp (Chou et al., 2006), a corpus with PASs
for the biomedical domain. It is composed of
approximately 500 articles from the GENiA cor-
pus (Kim et al., 2003) which were annotated with
PASs. The resulting corpus was used to train the
biomedical SRL tool BIOSMILE. Initially, it sup-
ported finding PASs for the 30 predicates intro-
duced by BioProp. Later, the tool was extended
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and trained to support a total of 82 predicates,
which are listed on the tool’s website.1 For the
publication on the BIOSMILE tool (Tsai et al.,
2006), the authors compared the performance of
the latter to their initial SRL tool, which was only
trained on PropBank data from the newswire do-
main. Being tested on BioProp data, the initial
SRL tool could only reach an overall F1-score of
64.2% while BIOSMILE reached 87.1%.

Later on, in 2009, Barnickel et al. presented
their biomedical SRL system called SENNA
which was based on a neural network (Barnickel
et al., 2009). They managed to outperform tools
like BIOSMILE regarding processing time but
could only reach a comparably small F1-score of
54% in the biomedical domain. In the follow-
ing year, Dahlmeier et al. published an article
on domain adaptation for SRL in the biomedical
domain and introduced their respective SRL tool:
BioKIT (Dahlmeier and Ng, 2010). It was devel-
oped as an alternative to the lack of training data
in the biomedical domain and to the expensiveness
to create training datasets. The authors discuss
why, in their opinion, the BioProp corpus alone
was not sufficient to create a good SRL tool for
biomedicine. One of the reasons they mentioned
was that BioProp was limited to 30 predicates and
that many PASs were not covered in the corpus.
When training BioKIT, they relied on the 1,982
PASs from BioProp and another 90,000 PASs from
PropBank. They evaluated six supervised domain
adaptation algorithms and concluded that the In-
stPrune algorithm performed best and reached an
F1-score of 85.38%.

More recently, in 2015, Zhang et al. showed,
that clinical SRL can also significantly benefit
from integrating domain adaptation techniques
(Zhang et al., 2015). They relied on PropBank and
NomBank from the newswire domain and Bio-
Prop as their source domain datasets. For the tar-
get domain, they used a manually annotated clin-
ical corpus. They compared and evaluated three
state-of-the-art domain adaptation algorithms: in-
stance pruning, transfer self-training and feature
augmentation. Finally, in 2016, Zhang et al. pub-
lished another study where they investigated how
their domain adaptation techniques for the clinical
domain would apply on top of different syntactic
parsers and features (Zhang et al., 2016). The best

1http://bws.iis.sinica.edu.tw/BioC_
BIOSMILE/

F1-score they could reach on their clinical test data
was 71.41%.

2.2 Semantic Role Labeling for Question
Answering

In the past, different experiments and approaches
for integrating SRL to QA systems have been elab-
orated. Some of them were partially related to the
biomedical domain.

Shen et Lapata published an extensive study on
the contribution of SRL to open-domain factoid
QA (Shen and Lapata, 2007). Based on their ex-
periments, they proposed a combination of syn-
tactic and semantic annotations for the answer ex-
traction part of QA. In general, they showed that
QA can benefit from SRL but they also found
much potential for preferable improvements. They
pointed out that coverage is a key factor to achieve
benefits from SRL for QA.

For their EPoCare QA system, Nio et al. created
a role identification system for clinical QA using
the PICO format (Niu et al., 2003). This role iden-
tification system showed similarities to the SRL
task but was limited to a small set of task-specific
roles and heavily based on the PICO format. Also
in the biomedical domain, Shi et al. utilized SRL
for their biomedical QA system for summary type
questions (Shi et al., 2007). They basically used
semantic role labels to measure semantic confor-
mities in their sentence candidate ranking proce-
dure. Therefore, they analyzed to which extend
a sentence and the particular question contained
matching PASs.

The biomolecular QA system by Lin et al. uti-
lized BIOSMILE for detecting PAS both in the
questions and in answer candidate sentences (Lin
et al., 2008). The core of their QA system was
a ranking module. Their results indicated that
BIOSMILE in combination with named entity
recognition is well suited for improving biomolec-
ular QA systems. Nevertheless, biomolecular
QA is a rather restricted domain with regard
to biomedical QA. Finally, in the scope of the
BioASQ challenge, our team experimented with
the BioKIT tool for all four types of questions
(factoid, list, yes/no and summary) (Neves et al.,
2017). But the results we obtained with our sim-
ple approach were not very successful.
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Type No. questions No. snippets
factoid 485 5,145

list 406 5,155
summary 392 4,069

yes/no 493 5,724
Total 1,776 20,093

Table 1: Statistics of the BioASQ training dataset for
each question type.

3 Methods

In this section we describe the resources, tools and
methodology that we used to select and analyze
SRL tools for the biomedical QA.

3.1 BioASQ Dataset
We utilized the training dataset of 1,776 questions
made available for the BioASQ challenge in 2017
(Tsatsaronis et al., 2015).2 It combines test sets
from the first four challenges. This dataset con-
tains questions and the corresponding snippets of
text which include the answer to the questions.
The BioASQ dataset addresses four types of ques-
tions: factoid, list, summary and yes/no. Table 1
shows statistics on the number of questions and
snippets. We considered all four question types in
our analysis.

3.2 Criteria for the selection of SRL tools
Despite the many previous works on SRL for
biomedicine (cf. Section 2), few tools are avail-
able for immediate use. Driven by time con-
straints, we decided to include the only two
available SRL tools for biomedicine, i.e, BioKIT
(Dahlmeier and Ng, 2010) and BioSMILE (Tsai
et al., 2006), and one open domain SRL tool that
has recently obtained state-of-the.art results, i.e.,
PathLSTM (Roth and Lapata, 2016). Due to the
non-availability of an out-of-the-box working SRL
tool based on their model, we did not include the
tool developed by Marcheggiani et al. (Marcheg-
giani et al., 2017), even though it is freely avail-
able in GitHub. We give a short overview of the
selected tools regarding their technical aspects:

BioKIT. It is available for the Linux operating
systems and was mainly developed in Python and
C.3 BioKIT expects input as text files with line
breaks as separators and outputs the SRL results in
the CoNLL-09 format.4 It can be built and com-

2http://bioasq.org/
3http://nlp.comp.nus.edu.sg/software
4https://ufal.mff.cuni.cz/

conll2009-st/task-description.html

piled with Cmake if all required dependencies are
previously installed.

BIOSMILE. It is available as a Web service and
supports a REST API.5 Requests via the API need
to be in XML format and results are returned in
the same format. As far as we know, the source
code or binaries of BIOSMILE are not available.

PathLSTM. It is developed in Java, and the
sources as well as a Java package are available in
a GitHub repository.6 It can be built via Apache
Maven. Input and output formats are the standard
ones for CoNNL.

3.3 Methodology for evaluation

We installed each tool (or accessed it via web ser-
vice) and ran them on the questions and corre-
sponding snippets of the BioASQ training dataset.
The BIOSMILE API was rather slow and unstable,
therefore, we did not manage to annotate the ques-
tions and snippets of the 4th year of the BioASQ
challenge with BIOSMILE, which is part of the
training dataset. Hence, we were only able to eval-
uate 1,308 questions and the corresponding 16,791
snippets for BIOSMILE. However, this should not
significantly compromise the comparison between
the tools, given that the BioASQ dataset appears
to be very homogeneous.

We analyzed the tools with on three approaches:
(a) an assessment based on pre-defined criteria (cf.
Section 3.4); (b) an evaluation of the coverage by
counting the numbers of questions and snippets for
which PASs were found; and (c) performance of
the tools in a simple QA system (cf. Section 3.5).

3.4 Evaluation criteria

We also analyzed the tools regarding some se-
lected criteria:

Installation. It checks whether the tool could be
easily installed or whether it required advanced
skills for building, as well as whether we expe-
rienced any issues related to missing or outdated
dependencies. This is important for a smooth in-
tegration into a QA system, given that the lat-
ter should not suffer from a lack of portability or
maintainability after the integration.

5http://bws.iis.sinica.edu.tw/BioC_
BIOSMILE/

6https://github.com/microth/PathLSTM
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Support of standardized web API. It checks
whether the tool offers a Web service and whether
it could be accessed and used via API calls follow-
ing standards, e.g., REST. This is important if no
source or binaries are available to download. Ad-
ditionally, this functionality constitutes a straight-
forward and easy way of integration without the
use of own computational resources.

Input format. It specifies the supported stan-
dard input formats, e.g., XML, JSON or CoNLL.
Standardized input formats can facilitate the in-
tegration process independent from the system’s
platform.

Output format. Similar to standardized input
formats, it specifies the supported standard output
formats, e.g., XML, JSON or CoNLL.

Parsing effort. It is our subjective rating on how
easy it was to parse the content to and from the
supported input and output formats.

Handling of special characters. It specifies
whether the tool is able to handle special charac-
ters or if it runs into errors at presence of certain
characters in the input text.

Speed. It assesses the tool’s time performance
for annotating questions and answer snippets. This
should give an idea to which degree an integration
of the respective SRL tool could slow down the
whole QA system.

Robustness. It indicates how reliable the SRL
tool behaves with regard to stability and accessi-
bility. Issues with robustness might, for instance,
be caused by the input or the unresponsiveness of
a web service.

3.5 Integration of SRL tools into a QA
system

We also evaluated the SRL tools in the context of a
simple rule-based QA system. Our rules were de-
signed to make use of SRL wherever possible, but
we also included fall-back solutions for the case
that no PAS were found (baseline system). We
addressed three question types from the BioASQ
challenge, namely yes/no, factoid and list ques-
tions. The rules and parameters were inspired and
tuned by looking at the data from the first three
years of the BioASQ challenge. Therefore, the
evaluation of the SRL tools in our QA system was
carried out only on the BioASQ dataset from the
fourth year.

Table 2 gives an overview on different degrees
of PAS matching in the rules for each question
type. In general, the higher the level to which an
answer snippet matches to a question, the higher
is its relevance for the answer. More details on the
rules that we defined for each question type are
presented below.

Yes/No questions. In a first step, weights follow
the matching schema in Table 2. In a second step,
for each matching answer snippet with a relevance
weight, we determined whether the answer is yes
or no by analyzing the presence of negation terms
close to the predicate. If a predicate was directly
prefixed by the terms ”not” or ”doesn’t”, its vote
for the overall answer was no and received an ini-
tial weight boost of 1. If no negation terms were
found in the answer snippet, the answer for this
snippet was yes. Finally, the overall decision on
the answer was decided by calculating the balance
of the weighted yes and no votes. In case of no
matching at all, the default answer is yes (fall-back
solution).

Factoid questions. We focused on PASs whose
predicate was present in the question and one ar-
gument that matched a question word, such as
”which”,”where”, ”when”, ”who” or ”how”. We
followed the priority level from Table 2 by check-
ing the matching predicates, argument types and
contents. Candidate answers in the list were or-
dered according to the matching level. If there
were no matching predicates between the answer
snippets and the question, the list of answer candi-
dates remained empty (no fall-back solution).

List questions. For list questions, and similar
to factoid questions, we implemented a priority
queue to detect arguments that probably contain
the answer. The major difference between fac-
toid and list questions is that list questions do not
simply require a simple fact but an enumeration
of facts that are relevant for the answer. This is
taken into account by putting special attention on
the recognition of symbols or words that usually
indicate the presence of an enumeration inside the
answer snippets. Therefore, we split the text of the
arguments by commas and semicolons, as well as
by the symbol ’&’ or the token and. Finally, if no
predicate or PAS matches was found in any answer
snippet, the system searched for any enumerations
it could find (fall-back solution).
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Priority level by PAS matching degree Conditions per question type
yes/no factoid list

1 - no matching predicate
2 matching predicate
3 level 2 + matching argument type
4 level 3 + matching argument content

Boosting Factors at each level - Argument type match with question word
Presence of enumerators

Table 2: Overview on the PAS matching levels and corresponding weights for the various question types.

Criteria BioKIT BIOSMILE PathLSTM
Installation very hard - hard
Web API no yes no

Input format text XML text
Output format CoNLL XML CoNLL
Parsing effort high normal high
Spec. charact. bad good bad

Speed fast variable very fast
Robustness stable unstable stable

Table 3: Comparison of the three SRL tools regarding
the selected criteria.

.

4 Results and Discussion

In this section we provide an assessment of the
tools regarding the pre-defined criteria, the PAS
coverage and the QA integration. For all ap-
proaches, we provide a comprehensive discussion
based on our hands-on experiments with the tools.

4.1 Evaluation by criteria

We present an evaluation of the three selected SRL
tools on the previously defined criteria (cf Table 3)
and provide a detailed discussion on our impres-
sions for each tool.

BioKIT. It does not support a binary, executable
package nor a Web service and, therefore, it
needed to be built on the Linux operating system.
It was admittedly very hard to build and compile
BioKIT, given that it is mainly written in Python
and C but also depends on other packages and lan-
guages, such as Fortran. Many dependencies were
outdated or missing and had to be searched in the
Web. Therefore, simply following the installation
instructions was not sufficient as some of the de-
pendencies were themselves hard to build. Fur-
ther, parsing the CoNLL format was more chal-
lenging than parsing XML or JSON into an object-
oriented representation because the PASs had to be
extracted by dynamically matching row and col-
umn indexes of the presented predicates and ar-
guments. Additionally, BioKIT failed at handling
special characters which led to annoying runtime

errors. Usually, BioKIT’s preprocessing pipeline
was meant to eliminate problematic characters but
some symbols (e.g., “æ”, “ö” or “ȯ”) were not han-
dled by the system. As a result, BioKIT crashed
with an error after processing thousands of sen-
tences without returning any result when it ran into
a special character. We collected a set of almost
20 of such characters that we eliminated in an own
script-based preprocessing step. Depending on the
length of the question or snippet, the processing of
one question or snippet took at least 600 millisec-
onds or few seconds. This could be rated as a fast
performance, but only when labeling many ques-
tions at once. If BioKIT was just used to process a
single question, its runtime exceeded one minute,
given the necessary time to load models into mem-
ory. In spite of the problem with special charac-
ters, we found BioKIT to be reliable and stable.

BIOSMILE. It is not available to download in
any way (source code, binaries or executables).
Therefore, we accessed it via a Web service with
the REST API. The input and output were both
formatted as XML, which facilitated parsing with
standard XML parsing libraries. Further, we expe-
rienced no problems regarding special characters.
However, with regard to the processing speed, the
web service was rather unstable. In rare cases, it
was possible to annotate a sentence in about a sec-
ond but there were many problems regarding the
robustness of the service. Frequently, it was not
possible to send more than five requests in a row
without waiting several minutes in between, oth-
erwise the Web service became unresponsive for a
long time. At some point, the service became so
slow and had so many down times that we did not
manage to annotate the data of the 4th year of the
BioASQ challenge.

PathLSTM. Installing PathLSTM was not as
hard as BioKIT but there were still some time-
consuming issues. The tool can be build via
Maven but it was under development during the
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time that we were using it (as of June/2017). The
code actually contained missing or wrong Maven
dependencies and even a bug due to an outdated or
not committed class. Hence, the installation pro-
cess required certain research and code review to
find out that an earlier git commit was working
properly. Recently, the developers of PathLSTM
published a more stable package but we did not
check its feasibility yet. The input and output for-
mats also followed the CoNLL format and, hence,
were very similar to BioKIT. The CoNLL parser
for BioKIT could be reused with small adapta-
tions. PathLSTM had similar issues with spe-
cial characters and could therefore reuse the pre-
processing script that was created for BioKIT.
When annotating many questions or answer snip-
pets at once, PathLSTM could reach an annota-
tion rate as low as 300 milliseconds per sentence.
We considered it as being very fast, in compari-
son to the other tools. But if trying to annotate a
single sentence, PathLSTM had the same issue as
BioKIT and needed almost one and a half minute
to load the models into memory.

4.2 Evaluation by predicate-argument
structure coverage

This section compares the three SRL tools with
regard to the usefulness and completeness of the
detected PASs for the QA task. As pointed out
in (Shen and Lapata, 2007), the PAS coverage of
SRL systems is an important factor when trying
to successfully integrate SRL into QA. Therefore,
we compared the PAS coverage of each tool for
questions and answer snippets from the BioASQ
datasets. With special regard to the QA task,
we analyzed the PAS matching coverage between
questions and corresponding answer snippets. The
PAS matching coverage is defined as the percent-
age of questions for which a PAS match could be
found in any of the corresponding answer snippets.

PAS coverage for questions and answer snip-
pets. Table 4 gives an overview on the PAS cov-
erage reached by the respective tools for the vari-
ous types of questions and for all answer snippets
in general. Answer snippets are not presented by
question types because they do not differ by ques-
tion type. When comparing the coverage of dif-
ferent question types, the lowest coverage values
were reached for summary questions, while the
highest coverage values were reached for yes/no
questions. Only BIOSMILE performed better on

factoid and list questions than on yes/no questions.
This is probably due to predicate stems such as
do or have that are widely used in yes/no ques-
tions which not part of the predicates supported by
BIOSMILE. BIOSMILE obtained the lowest cov-
erage results of the three tools, especially when
looking at the answer snippets, which only 15.2%
of them had PAS annotations. For list questions,
BIOSMILE reached a coverage of 65.1%, which
was slightly higher than the coverage of BioKIT
in the same category (61.8%). The main reason
for the low coverage of BIOSMILE is most prob-
ably the limited set of 82 biomedical predicates.

BioKIT reached the maximum coverage for
yes/no questions (99.8%). This could be due to the
fact that do (727) and be (247) are the top predi-
cate stems detected in the questions. In compar-
ison to this, PathLSTM only labeled do 27 times
as a predicate and never labeled be. Additionally,
BioKIT also labeled auxiliary verbs as predicates,
which appear very often in yes/no questions, and
might explain its high coverage. Unfortunately,
auxiliary verbs like has or has been are not known
to have much semantic value. Hence, this high
coverage might not be seen as an advantage for
PathLSTM.

In general, PathLSTM obtained significantly
higher coverage values than the other tools. In
contrast to leaving out auxiliary verbs, the high
coverage of PathLSTM can be explained by de-
tecting about three times as many distinct predi-
cates as BioKIT. In general, reaching a higher cov-
erage might be good for QA, but by looking at
some of the annotations, we found that PathLSTM
labeled many nouns (as predicates) that did not
even had in a verb form and most likely did not
represent a predicate. For example, the most fre-
quent predicates found by PathLSTM were nouns
such as disease or syndrome, none of which are
regularly used as predicates.

PAS matching coverage between questions and
answer snippets We evaluated two levels of
PAS matching coverage between questions and
answer snippets. The first level, which is pre-
sented in Table 5, is the proportion of questions for
which any answer snippet contained a PAS with
the same predicate stem. The second level, which
is presented in Table 6, requires that both pred-
icate argument structures, from the question and
from the particular answer snippet, share a simi-
lar argument type besides the predicate stem. The
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Type questions answer snippets
BioKIT BIOSMILE* PathLSTM BioKIT BIOSMILE* PathLSTM

factoid 61.4 49.5 96.3

88.5 15.2 98.5list 61.8 65.1 96.1
summary 39.5 19.3 90.3

yes/no 99.8 42.7 96.1

Table 4: PAS coverage (in %) for the various types of questions and for answer snippets. * BIOSMILE was only
evaluated on data from the first three years of the BioASQ challenge.

Type BioKIT BIOSMILE* PathLSTM
factoid 28.9 2.1 68.7

list 33.7 2.1 82.5
summary 16.3 0.7 70.9

yes/no 38.9 4.0 79.3

Table 5: Coverage of the questions (in %) for which a
predicate match between the question and any of the
related answer snippets was found. * BIOSMILE was
only evaluated on data from the first three years of the
BioASQ challenge.

Type BioKIT BIOSMILE* PathLSTM
factoid 26.8 2.1 59.6

list 33.3 2.1 72.2
summary 13.8 0.7 60.5

yes/no 36.7 4.0 72.6

Table 6: Coverage of the questions (in %) for which a
PAS match between the question and any of the related
snippets was found. A PAS match was counted, if
the predicate stem and any of the related argument
types matched. * BIOSMILE was only evaluated on
data from the first three years of the BioASQ challenge.

argument type and the predicate stem have to be
related by the same predicate.

On both PAS matching levels, BIOSMILE
reached very poor results, between 2% and 4% of
PAS matching coverage. It appears that the same
questions of Table 5 found by BIOSMILE also ful-
fill the requirements of Table 6, which might in-
dicate that the found PAS matches are of a good
quality. Nevertheless, the coverage is so low that
BIOSMILE might only be considered in combi-
nation with other tools with a higher coverage in
order to be efficiently used for biomedical QA. It
would be pointless to exclusively rely on a tool
that can only contribute to answering up to 4% of
the questions.

In contrast, PathLSTM reached the highest PAS
matching coverage values on both levels. Ta-
ble 5 shows that PathLSTM obtained 82.5% PAS
matching coverage for list questions with match-
ing predicate stems. Further, Table 6 shows that

for 72.2% of the questions, a matching argument
type was present. On the one hand, the high cover-
age of PathLSTM might lead to a high recall when
implementing a QA system on top of the annota-
tions. On the other hand, our previous analysis of
PathLSTM’s predicates (cf. above) showed that
they might be of poor quality.

The PAS matching coverage for BioKIT were
not as high as the results reached by PathLSTM
but superior than those from BIOSMILE. BioKIT
leaves some space for improvement regarding cov-
erage by finding matches for about one third of
the factoid, list and yes/no questions and less than
one sixth for summary questions. It is striking that
the differences between the PAS matching cover-
age values of both levels are not very large (below
2.5%). In contrast to PathLSTM, this might be
an indicator that PAS matches found by BioKIT
are actually of a good quality and semantically
relevant, and not just simply include matching
terms that are not even real predicates and hence
have no related arguments. Finally, PathLSTM
reached PAS matching coverage values which are
in average more than twice as large as those from
BioKIT, but the quality and usefulness of the PAS
matches from PathLSTM are still dubious.

4.3 Evaluation on the rule-based QA system

We compared BioKIT and PathLSTM regard-
ing their performance on the fourth year of the
BioASQ challenge. This dataset is composed of
five batches of 100 questions and we provide de-
tailed results for each batch. The results were
obtained by uploading JSON result files to the
BioASQ Oracle evaluation system7. The BIOS-
MILE system was not further evaluated due to
(i) its low PAS matching coverage (cf. Table 5),
which were very unpromising, and (ii) the insta-
bility of the Web service, which did not allow us
to obtain results for this test set.

7http://participants-area.bioasq.org/
accounts/login/?next=/oracle/
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Batch BioKIT PathLSTM NOSRL
1 96.43
2 90.63
3 96.0
4 90.48
5 100.0

Average 94.71

Table 7: Evaluation of the accuracy (in %) for yes/no
questions on the 5 batches of the fourth BioASQ chal-
lenge.

Batch BioKIT PathLSTM
1 8.97 1.79
2 1.62 0
3 5.13 0
4 6.72 1.61
5 1.36 0.76

Average 4.76 0.83

Table 8: Evaluation of the mean reciprocal rank (in
%) for factoid questions on the 5 batches of the fourth
BioASQ challenge.

To measure the impact of the SRL components
added to the QA system, we included a baseline
QA solution (NOSRL) which did not rely on SRL
but simply only on the fall-back solutions (cf. Sec-
tion 3.5). As we could not propose appropriate
fall-back solutions for the factoid questions, we
evaluated the NOSRL baseline only for yes/no and
list questions.

Yes/no. Table 7 evaluates the accuracy of the
SRL-based QA and the NOSRL systems. The
latter simply answered yes to all questions. For
all 5 batches of the fourth year of the BioASQ
challenge, the SRL-based systems did not provide
any answers different than yes. Therefore, all sys-
tems achieved the same accuracy values. Obvi-
ously, our rules failed to match any of the valid no-
answers in the fourth year’s dataset. Subsequently,
we cannot provide insight with respect to the per-
formance of the SRL tools.

Factoid. Table 8 compares the performance on
factoid questions for the different SRL-based
QA systems by means of the mean reciprocal
rank measure (MRR). The results show that the
BioKIT-based QA system performed much better
than the PathLSTM-based version. For the second
and third batch, the PathLSTM-based system did
not find any correct answer.

List. Table 9 shows the mean average F-measure
results for the five batches. In general, BioKIT
performed better than the NOSRL system, while

Batch BioKIT PathLSTM NOSRL
1 15.48 8.33 14.9
2 13.75 16.88 13.79
3 14.03 11.18 14.03
4 28.31 22.27 20.81
5 21.23 13.91 19.19

Average 18.56 14.51 16.54

Table 9: Evaluation of the mean average F-measure
(in %) for list questions on the 5 batches of the fourth
BioASQ challenge.

the PathLSTM-based system performed worse
than the latter.

5 Conclusions and future work

Our experiments showed that BioKIT is the most
suitable SRL tool for biomedical QA, and in a
lesser degree, PathLSTM might also be consid-
ered. For both tools, different challenges might
arise for their integration. While BioKIT still has
a lack of coverage, PathLSTM probably detects
too many PAS candidates and therefore performed
poorly in our simple QA system. A first approach
to increase the precision for PathLSTM would in-
clude filtering out noun predicates which do not
have a verb stem. We would like to perform a
more comprehensive evaluation of the quality of
the PAS, given that we only carried out a small val-
idation of a few of them. Recently, a new SRL tool
(He et al., 2018) has been published and should
also be considered in future experiments.

While BioSMILE is readily available, its web
service is unstable and the coverage is extremely
low. BioKIT is hard to install, but provides a good
coverage of PAS which is suitable for the QA task.
We assume that PathLSTM is too generic, as it
is an open-domain SRL tool. It might therefore
have trouble to compete with specialized biomed-
ical SRL on data from the biomedical domain. Fi-
nally, even though the coverage from PathLSTM
is high, an analysis of some of its PAS shows that
many predicates have no semantic meaning and
many correspond to nouns which do not behave
as predicates in the corresponding sentences.
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Abstract
This paper describes Macquarie Univer-
sity’s contribution to the BioASQ Challenge
(BioASQ 6b, Phase B). We focused on the
extraction of the ideal answers, and the task
was approached as an instance of query-based
multi-document summarisation. In particu-
lar, this paper focuses on the experiments
related to the deep learning and reinforce-
ment learning approaches used in the submit-
ted runs. The best run used a deep learn-
ing model under a regression-based frame-
work. The deep learning architecture used fea-
tures derived from the output of LSTM chains
on word embeddings, plus features based on
similarity with the query, and sentence po-
sition. The reinforcement learning approach
was a proof-of-concept prototype that trained a
global policy using REINFORCE. The global
policy was implemented as a neural network
that used tf.idf features encoding the candi-
date sentence, question, and context.

1 Introduction

The BioASQ Challenge1 consists of various tasks
related to biomedical semantic indexing and ques-
tion answering (Tsatsaronis et al., 2015). Our par-
ticipation in BioASQ for 2018 focused on Task B
Phase B, where our system attempted to find the
ideal answer given a question and a collection
of relevant snippets of text. We approached this
task as an instance of query-based multi-document
summarisation, where the ideal answer is the sum-
mary to produce.

The BioASQ challenge focuses on a restricted
domain, namely biomedical literature. Neverthe-
less, the techniques developed for our system were
domain-agnostic and can be applied to any do-
main, provided that the domain has enough train-
ing data and a specialised corpus large enough to
train word embeddings.

1http://www.bioasq.org/

Summary Factoid Yesno List

n 6 2 2 3

Table 1: Value of n (the number of sentences returned
as the ideal answer) for each question type.

We were interested in exploring the use of deep
learning and reinforcement learning for this task.
Thus, Section 2 explains our experiments using
deep learning techniques. Section 3 details our ex-
periments using reinforcement learning. Section 4
specifies the settings used in the experiments. Sec-
tion 5 shows and discusses the results, and Sec-
tion 6 concludes the paper.

2 Deep Learning

The deep learning experiments followed the gen-
eral framework introduced by Mollá (2017a),
which can be summarised as a regression approach
that follows these three main steps:

1. Split the input text into candidate sentences.

2. Score each candidate sentence independently.

3. Return the n sentences that have the highest
score.

In all of the experiments reported in this pa-
per, the input text is the set of relevant snippets
that are associated with the question. These snip-
pets are pre-processed by splitting them into sen-
tences. The sentences are then scored using the
deep learning approaches described below. Then,
after all candidate sentences are scored, the top n
sentences are returned as the ideal answer. The
value of n is determined empirically and it de-
pends on the question type as shown in Table 1.
These are the same settings as in Mollá (2017a)’s
framework.
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The deep learning experiments predict the score
of an input sentence by applying supervised re-
gression techniques. Following Mollá (2017a)’s
framework, the training data was annotated with
the F1 ROUGE-SU4 score of each individual sen-
tence using the ideal answer as the target. Also
following Mollá (2017a)’s framework, the archi-
tecture of our system architecture was based on the
following main stages:

1. Obtain the word embedding of every word in
the input sentence and the question.

2. Given the word embeddings of the input sen-
tence and the question, obtain the sentence
and question embeddings.

3. Feed the sentence embeddings and the simi-
larity between the sentence and question em-
beddings to a fully connected layer and final
linear combination. In this stage, as an ex-
tension to Mollá (2017a)’s approach, we also
incorporated information about the sentence
position.

The word embeddings were obtained by pre-
training word2vec (Mikolov et al., 2013) on a col-
lection of PubMed documents made available by
the organisers of BioASQ. Given a sentence (or
question) i with ni words and vectors of word em-
beddingsm1 tomni , we ran experiments using the
following two alternative approaches to obtain the
sentence (or question) vector of embeddings si:

NNR Mean. Compute the mean of the word em-
beddings:

si =
1

ni

ni∑

j=1

mj

NNR LSTM. Feed the sequence of word embed-
dings to bidirectional Recurrent Neural Net-
works with LSTM cells. We used Tensor-
Flow’s LSTM implementation, which is re-
portedly based on Hochreiter et al. (1997)’s
seminal work. More explicitly, the embed-
ding si of sentence i is the concatenation of
the output of the last cell in the forward chain
(
−→
h ni) and the first cell in the backward chain

(
←−
h 1):

si =
[−→
h ni ;

←−
h 1

]

Cell at position t of the forward chain re-
ceives its input from the embedding of word

at position t and cell at position t− 1:

−→c t =
−→
f �−→c t+1 +

−→
i �−→z−→

h t = −→o � tanh(−→c t)−→
i = σ(

−→
W i ·mt +

−→
U i · −→h t+1 +

−→
b i)−→

f = σ(
−→
W f ·mt +

−→
U f · −→h t+1 +

−→
b f )

−→o = σ(
−→
W o ·mt +

−→
U o · −→h t+1 +

−→
b o)

−→z = tanh(
−→
W z ·mt +

−→
U z · −→h t+1 +

−→
b z)

where σ is the logistic sigmoid function, � is
the element-wise multiplication of two vec-
tors, and · is the dot product between a matrix
and a vector.

Cell at position t in the backward chain re-
ceives its input from mt and cell at position
t+ 1:

←−c t =
←−
f �←−c t+1 +

←−
i �←−z←−

h t = ←−o � tanh(←−c t)←−
i = σ(

←−
W i ·mt +

←−
U i · ←−h t+1 +

←−
b i)←−

f = σ(
←−
W f ·mt +

←−
U f · ←−h t+1 +

←−
b f )

←−o = σ(
←−
W o ·mt +

←−
U o · ←−h t+1 +

←−
b o)

←−z = tanh(
←−
W z ·mt +

←−
U z · ←−h t+1 +

←−
b z)

As is often done with bidirectional LSTM
chains, all weights of the parameter matri-
ces in the forward chain−→W,

−→
U ,
−→
b are shared

among all cells of the forward chain, and
all weights of the parameter matrices in the
backward chain←−W,

←−
U ,
←−
b are shared among

all cells of the backward chain. As in Mollá
(2017a)’s framework, there are separate sets
of parameter matrices for the sentence and for
the question.

Mollá (2017a) used all the sentences of the full
abstracts as the candidate input. Given that sub-
sequent experiments observed an improvement of
results by using the snippets only, our entries to
BioASQ 6b used the snippets only. Also, Mollá
(2017a) observed very competitive results of a
simple baseline that returned the first n sentences.
This suggests that sentence position is a useful
feature and we consequently incorporated the sen-
tence position as a feature in stage 3.

Given the sentence embedding si and question
embedding qi, each obtained either by the mean of
embeddings or by applying LSTM chains as de-
scribed above, and given the sentence position pi,
stage 3 is implemented as a simple neural network
with one hidden layer with a relu activation, fol-
lowed by a linear combination:
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Figure 1: Comparison of deep learning experiments
with several baselines. The error bars indicate the stan-
dard deviation of 10-fold cross-validation.

ri = max(0,Wr [si; qi � si; pi] + br)
scorei = Wscoreri + bscore

Following Mollá (2017a)’s framework, we used
the element-wise multiplication between qi and
si as a way to encode the similarity between the
question and the input sentence.

Figure 1 compares the results of the deep learn-
ing approaches against the following baselines:

Firstn. Return the first n sentences. As men-
tioned above, this baseline is often rather hard
to beat.

Random. Return n random sentences. This is the
lower bound of any extractive summarisation
system.

Cos LSA. Return the n sentences that have the
highest cosine similarity with the question.
The feature vectors for the computation of
the cosine similarity were obtained by com-
puting tf.idf , followed by a dimension re-
duction step that selected the top 200 com-
ponents after Latent Semantic Analysis.

Cos Embeddings. Return the n sentences that
have the highest cosine similarity with the
question. The cosine similarity was based
on the sum of the word embeddings (using
embeddings with 200 dimensions) in the sen-
tence/question.

SVR. Train a Support Vector Regression system
that uses as features a combination of tf.idf ,

Figure 2: Scatter-plot comparing the F1 ROUGE-SU4
score of two oracles using a random sample of 500
questions.

Figure 3: Violin plots of the F1 ROUGE-SU4 scores of
two oracles.

word embeddings and distance metrics as de-
scribed by Mollá (2017a), plus the position of
the snippet.

Figure 1 shows that the ”firstn” baseline is in-
deed hard to beat, and was matched only by the
deep learning frameworks. Of these, the system
using LSTM obtained the best results and was cho-
sen for submission to BioASQ.

3 Reinforcement Learning

While the results using deep learning are encour-
aging, the models are trained on individually an-
notated sentences, and a summary is obtained by
selecting the top k sentences. An upper bound of
the results obtained using such an approach would
be an oracle that selects the k sentences with high-
est individual ROUGE scores. Figures 2 and 3
show a comparison between the following two or-
acles:

Oracle 1. Return the k snippets with highest in-
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dividual ROUGE score. This is a reasonable
upper bound of supervised machine learning
approaches such as presented in Section 2.

Oracle 2. Return the combination of k snippets
with highest collective ROUGE score. In
particular, the oracle calculates the ROUGE
score of every combination of k snippets, and
selects the combination with highest ROUGE
score. This is an upper bound of any conceiv-
able extractive summarisation system that re-
turns k snippets.

Figure 2 shows the scatter-plot between ora-
cles 1 and 2. It shows that oracle 1 under-performs
oracle 2 in a number of questions. Figure 3 plots
the distributions of the ROUGE scores of each ora-
cle side by side, and it clearly shows that the mean
of the ROUGE scores of oracle 1 is lower than that
of oracle 2.

Reinforcement learning allows to train the sys-
tem on the ROUGE score of the final summary.
This is done by iteratively allowing the system to
extract a summary based on its current policy, and
then updating the policy based on the feedback
given by the ROUGE score of the extracted sum-
mary.

The reinforcement learning approach in our sys-
tem is based on Mollá (2017b)’s method. In par-
ticular, the reinforcement learning agent receives
as input a candidate sentence and additional con-
text information, and uses a global policy to de-
termine the best possible action (either to select
the sentence or not to select it). The global policy
is implemented as a neural network with a hidden
layer and is trained on a training partition of the
development data by applying a variant of REIN-
FORCE (Williams, 1992).

More specifically, the global policy learns a set
of parameters θ so that the policy predicts the
probability of not selecting the sentence (Pr(a =
0; θ)) by applying the following neural network:

Pr(a = 0; θ) = σ(Whh+ bh)
h = max(0,Wss+ bs)

where θ = [Wh;Ws; bh; bs] and the input h is the
concatenation of the following features:

1. tf.idf of candidate sentence i;

2. tf.idf of the entire input text to summarise;

3. tf.idf of the summary generated so far;

4. tf.idf of the candidate sentences that are yet
to be processed;

5. tf.idf of the question; and

6. Length (in number of sentences) of the sum-
mary generated so far.

The features chosen are such that the global
policy has information about the candidate sen-
tence (1), the entire list of candidate sentences
(2), the summary that has been generated so far
(3), the input sentences that are yet to be pro-
cessed (4), and the question (5). Experiments
by Mollá (2017b) show that this information suf-
fices to learn a global policy. In addition, we added
the length of the summary generated so far (6).
Our preliminary experiments showed that this ad-
ditional feature facilitated a faster learning of the
policy, and produced better results overall.

The specific algorithm that learns the global
policy is presented in Figure 1. The system

Data: train data

Result: θ
1 sample ∼ Uniform(train data);
2 s← env.reset(sample);
3 all gradients← ∅;
4 initialise(θ);
5 episode← 0;
6 while True do
7 ξ ∼ Bernoulli

(
Pr(a=0;θ)+p

1+2×p
)

;

8 y ← 1− ξ;
9 gradient←

∇(cross entropy(y,Pr(a=0;θ))
∇θ ;

10 all gradients.append(gradient);
11 s, r, done← env.step(ξ);
12 episode← episode+ 1;
13 if done then
14 θ ←

θ−α× r×mean(all gradients);
15 sample ∼ Uniform(train data);
16 s← env.reset(sample);
17 all gradients← ∅;
18 end
19 end

Algorithm 1: Training by Policy Gradient,
where θ = [Wh;Ws; bh; bs].

first chooses one question from the training data
(line 1). Then, after randomly initialising the pa-
rameters of the global policy (line 4), it iteratively
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Figure 4: Comparison between the Python and Perl im-
plementations of ROUGE for a random sample of 5000
snippets and their respective ideal answers. The Python
implementation uses ROUGE-L. The Perl implementa-
tion uses ROUGE-SU4.

samples an action from the current global policy
plus some perturbation p (line 7) and applies the
action (line 11). When all the candidate sentences
related to the question have been processed and ac-
tioned on (line 13), the resulting summary is eval-
uated and a reward r produced (done previously,
in line 11). Then, the policy parameters are up-
dated by multiplying the mean of all gradients ob-
tained at every step by the reward (line 14), and
a new question is selected from the training data
(line 15). Each iteration step is called an episode
(lines 5 and 12).

The perturbation p forces a wide exploration of
the action space during the first episodes and is
gradually reduced at every episode according to
this formula:

p = 0.2× 3000/(3000 + episode)

3.1 ROUGE Variants

The evaluation scripts of the BioASQ task used
the original Perl implementation of ROUGE-2
and ROUGE-SU4 (Lin, 2004). Our experiments
aimed to use ROUGE-SU4. Whereas the Perl im-
plementation of ROUGE was used for the deep
learning experiments described in section 2, as
an implementation decision we used Python’s
pyrouge library for the reinforcement learn-
ing experiments. Python’s pyrouge provides
ROUGE-1, ROUGE-2 and ROUGE-L, but not
ROUGE-SU4.

Figures 4 and 5 compare the ROUGE F1 scores
of the Python libraries against the ROUGE-SU4
F1 score of the Perl implementation. Figure 4

Figure 5: Comparison between the Python and Perl im-
plementations of ROUGE for a random sample of 5000
snippets and their respective ideal answers. The Python
implementation uses (ROUGE-2 + ROUGE-L) / 2. The
Perl implementation uses ROUGE-SU4.

Kernel C gamma

rbf 1.0 0.1

Table 2: Settings used in the SVR experiments.

uses the Python library for ROUGE-L, and Fig-
ure 5 uses the Python library for the mean be-
tween ROUGE-2 and ROUGE-L. We can observe
some noise in the correlation between the Perl
and Python implementations, but in general the
mean between ROUGE-2 and ROUGE-L was a
better approximation of the Perl implementation
of ROUGE-SU4.

In general, we observed lower results of the
Python versions of ROUGE-L and ROUGE-2
compared with the Perl versions. On the light of
this, we strongly advise always to specify the im-
plementation of ROUGE being used, since the re-
sults produced by different versions may not be
comparable.

4 Settings

The snippets were split into sentences using
NLTK’s sentence tokeniser.

The tf.idf information used for the baselines
was computed using NLTK’s TfidfVectorizer. As
in the system by Mollá (2017a), this vectoriser was
trained using a collection of text consisting of the
questions and the ideal answers.

The SVR experiments were implemented using
Python’s sklearn library and used word embed-
dings with 200 dimensions. The specific settings
of the SVR model are shown in Table 2.

The deep learning experiments were imple-
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System Batch Dropout Epochs

Mean 4096 0.4 5
LSTM 4096 0.8 10

Table 3: Settings used in the deep learning experi-
ments.

mented using TensorFlow’s libraries. The specific
details of the model are:

• Dimension of embeddings: 100

• Length of the LSTM chain: 300. Sentences
with more than 300 words were truncated.

• Dimension of
−→
h and

←−
h : 100

• Number of cells in the final hidden layer: 50

Table 3 shows the training settings used by the
deep learning architectures. These settings were
obtained empirically in a fine-tuning stage.

The reinforcement learning experiments were
implemented in TensorFlow. Due to hardware
constraints, the reinforcement learning approach
only processed the first 20 sentences. The specific
details of the architecture of the global policy are:

• Number of cells in the hidden layer: 200

The global policy was trained using a training
partition and evaluated on a separate partition. The
global policy parameters that generated the best
results in the evaluation partition were used for the
final runs to BioASQ.

5 Results

We submitted 5 runs for each batch as listed below.

MQ-1: Return the first n sentences. This is the
Firstn baseline described in Section 2.

MQ-2: Return the n sentences with highest co-
sine similarity with the question. This is the
Cos Embeddings baseline described in Sec-
tion 2.

MQ-3: Return the n sentences according to the
SVR baseline described in Section 2.

MQ-4: Score the sentences using the LSTM-
based deep learning approach as described in
Section 2.

MQ-5: Apply reinforcement learning as de-
scribed in Section 3, with the variations de-
scribed below.

Figure 6: Reinforcement Learning model trained for
batch 1. The reward (y axis) is ROUGE-L.

The policy trained for the reinforcement learn-
ing approach of run MQ-5 varied in several of the
batches. In particular, the first batch was trained
on ROUGE-L while batches 2 to 5 were trained on
(ROUGE-2 + ROUGE-L) / 2. Also, to test the im-
pact of different initialisation settings, we trained
the system twice and generated two separate mod-
els. Batch 2 used one model, whereas batches 3
to 5 used the other model.

Figures 6 and 7 show the evolution of the re-
sults of the policies during the training stage for
batches 1 and 2. We observe some differences
during training, but in general the best model on
the test set achieved a ROUGE score between 0.25
and 0.26.2 This is higher than the results reported
by Mollá (2017b), who reported a ROUGE score
of about 0.2. The likely cause of the improvement
in the results is the inclusion of the length of the
summary generated so far in the context available
by the policy.

Figure 8 shows the results of the submissions to
BioASQ. In general, the deep learning approach
(MQ-4) achieved the best results. While the
”first n” baseline (MQ-1) was fairly competitive
and outperformed some of the runs of other partic-
ipants to BioASQ, the baseline was not as strong
as reported by Mollá (2017a) on BioASQ5b.

We can also observe that the evaluation re-

2The training stage for batches 3 to 5 achieved a best re-
sult slightly over 0.26.
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Figure 7: Reinforcement Learning model trained for
batch 2. The reward (y axis) is (ROUGE-2+ROUGE-
L)/2.

Figure 8: ROUGE-SU4 results of the BioASQ runs.

sults of the submissions to BioASQ give higher
ROUGE scores than those obtained in our experi-
ments, both using the original Perl implementation
of ROUGE, and the Python version. In fact, all of
the runs except for MQ-5 reported better BioASQ
results than our experiments with the oracles. This
is worth investigating.

The runs using reinforcement learning (MQ-5)
gave worse results than the other runs. The cause
for this is also worth investigating, especially con-
sidering that, in our experiments, the results of the
reinforcement learning approach were very com-
petitive compared with the results of the other ap-
proaches.

6 Conclusions

In this paper we have described the deep learn-
ing and reinforcement learning approaches used
for the runs submitted to BioASQ 6b, phase B, for
the generation of ideal answers.

The deep learning approach used a supervised
regression set-up to score the individual candi-
date sentences. The training data was generated
by computing the ROUGE score of each individ-
ual candidate sentence, and the summary was ob-
tained by selecting the top-scoring sentences. The
results of the deep learning runs outperformed all
other runs.

The reinforcement learning approach trained a
global policy using as a reward the ROUGE score
of the summary generated by the policy. The re-
sults of our experiments were very competitive but
the submission results were lower than those of the
other runs.

Further work will focus on the refinement of
the reinforcement learning approach. In particular,
further work will include the addition of a baseline
in the training of the policy, as it has been shown
to reduce the variance and to speed up the train-
ing process. Also, the architecture of the neural
network implementation of the policy will be re-
vised and enhanced by incorporating a more so-
phisticated model.

Further work on the deep learning runs will fo-
cus on the incorporation of more complex models.
For example, preliminary experiments seem to in-
dicate that a classification-based approach could
outperform the current regression-based approach.
Also, it is expected that a sequence-labelling ap-
proach would produce better results since the can-
didate sentences would not be processed indepen-
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dently.
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Abstract

We present AUEB’s submissions to the
BioASQ 6 document and snippet retrieval
tasks (parts of Task 6b, Phase A). Our mod-
els use novel extensions to deep learning archi-
tectures that operate solely over the text of the
query and candidate document/snippets. Our
systems scored at the top or near the top for
all batches of the challenge, highlighting the
effectiveness of deep learning for these tasks.

1 Introduction

BioASQ (Tsatsaronis et al., 2015) is a biomedical
document classification, document retrieval, and
question answering competition, currently in its
sixth year.1 We provide an overview of AUEB’s
submissions to the document and snippet retrieval
tasks (parts of Task 6b, Phase A) of BioASQ 6.2

In these tasks, systems are provided with English
biomedical questions and are required to retrieve
relevant documents and document snippets from a
collection of MEDLINE/PubMed articles.3

We used deep learning models for both
document and snippet retrieval. For docu-
ment retrieval, we focus on extensions to the
Position-Aware Convolutional Recurrent Rele-
vance (PACRR) model of Hui et al. (2017) and,
mostly, the Deep Relevance Matching Model
(DRMM) of Guo et al. (2016), whereas for snip-
pet retrieval we based our work on the Basic Bi-
CNN (BCNN) model of Yin et al. (2016). Little
task-specific pre-processing is employed and the
models operate solely over the text of the query
and candidate document/snippets.

Overall, our systems scored at the top or near
the top for all batches of the challenge. In previous

1Consult http://bioasq.org/.
2For further information on the BioASQ 6 tasks, see

http://bioasq.org/participate/challenges.
3http://www.ncbi.nlm.nih.gov/pubmed/.

years of the BioASQ challenge, the top scoring
systems used primarily traditional IR techniques
(Jin et al., 2017). Thus, our work highlights that
end-to-end deep learning models are an effective
approach for retrieval in the biomedical domain.

2 Document Retrieval

For document retrieval, we investigate new deep
learning architectures focusing on term-based in-
teraction models, where query terms (q-terms for
brevity) are scored relative to a document’s terms
(d-terms) and their scores are aggregated to pro-
duce a relevance score for the document. All mod-
els use pre-trained embeddings for all q-terms and
d-terms. Details on data resources and data pre-
processing are given in Section 5.1.

2.1 PACRR-based Models

The first model we investigate is PACRR (Hui et al.,
2017). In this model, a query-document term sim-
ilarity matrix sim is first computed (Fig. 1, left).
Each cell (i, j) of sim contains the cosine simi-
larity between the embeddings of a q-term qi and
a d-term dj . To keep the dimensions lq × ld of
sim fixed across queries and documents of vary-
ing lengths, queries are padded to the maximum
number of q-terms lq, and only the first ld terms
per document are retained.4 Then, convolutions of
different kernel sizes n × n (n = 2, . . . , lg) are
applied to sim to capture n-gram query-document
similarities. For each size n × n, multiple ker-
nels (filters) are used. Max pooling is then applied
along the dimension of the filters (max value of all
filters of the same size), followed by k-max pool-
ing along the dimension of d-terms to capture the
strongest k signals between each q-term and all
the d-terms. The resulting matrices (one per kernel

4We use PACRR-firstk, which Hui et al. (2017) recommend
when documents fit in memory, as in our experiments.
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Figure 1: PACRR (Hui et al., 2017) and TERM-PACRR.
In PACRR, an MLP is applied to the concatenation of
the document-aware q-term encodings to produce the
relevance score. In TERM-PACRR, the MLP is applied
separately to each document-aware q-term encoding;
the resulting scores are combined by a linear layer.

size) are concatenated into a single matrix where
each row is a document-aware q-term encoding
(Fig. 1); the IDF of the q-term is also appended,
normalized by applying a softmax across the IDFs
of all the q-terms. Following Hui et al. (2018), we
concatenate the rows of the resulting matrix into a
single vector, which is passed to an MLP that pro-
duces a query-document relevance score.5

Instead of using an MLP to score the concate-
nation of all the (document-aware) q-term encod-
ings, a simple extension we found effective was to
use an MLP to independently score each q-term en-
coding (the same MLP for all q-terms, Fig. 1); the
resulting scores are aggregated via a linear layer.
This version, TERM-PACRR, performs better than
PACRR, using the same number of hidden layers
in the MLPs. Likely this is due to the fewer pa-
rameters of TERM-PACRR’s MLP, which is shared
across the q-term representations and operates on
shorter input vectors. Indeed, in our early ex-
periments TERM-PACRR was less prone to over-
fitting.6

2.2 DRMM-based Models

The second model we investigate is DRMM (Guo
et al., 2016) (Fig. 2). The original DRMM uses pre-
trained word embeddings for q-terms and d-terms,
and (bucketed) cosine similarity histograms (out-
puts of ⊗ nodes in Fig. 2). Each histogram cap-
tures the similarity of a q-term to all the d-terms
of a particular document. The histograms, which
in this model are the document-aware q-term en-
codings, are fed to an MLP (dense layers of Fig. 2)
that produces the (document-aware) score of each
q-term. Each q-term score is then weighted using

5Hui et al. (2017) used an additional LSTM, which was
later replaced by the final concatenation (Hui et al., 2018).

6In the related publication of McDonald et al. (2018)
TERM-PACRR is identical to the PACRR-DRMM model.

q1 q2 q3

Doc-Aware Query
Term Encodings

Document Terms

Dense Layers

Term Score Aggregation
Term Gating

Relevance Score

Doc-Query Interaction

d1 d2 … dm

Figure 2: Illustration of DRMM (Guo et al., 2016) for
three q-terms and m d-terms. The ⊗ nodes produce
(bucketed) cosine similarity histograms, each capturing
the similarity between a q-term and all the d-terms.

a gating mechanism (topmost box nodes in Fig. 2)
that examines properties of the q-term to assess its
importance for ranking (e.g., common words are
less important). The sum of the weighted q-term
scores is the relevance score of the document.

For gating (topmost box nodes of Fig. 2), Guo
et al. (2016) use a linear self-attention:

gi = softmax
(
wT
g φg(qi); q1, . . . , qn

)

φg(qi) is the embedding e(qi) of the i-th q-term, or
its IDF, idf(qi); wg is a weights vector. We found
that φg(qi) = [e(qi); idf(qi)], where ‘;’ is concate-
nation, was optimal for all DRMM-based models.

2.2.1 ABEL-DRMM
The original DRMM (Guo et al., 2016) has two
shortcomings. The first one is that it ignores
entirely the contexts where the terms occur, in
contrast to position-aware models such as PACRR

(Section 2.1) or those based on recurrent represen-
tations (Palangi et al., 2016). Secondly, the his-
togram representation for document-aware q-term
encodings is not differentiable, so it is not possi-
ble to train the network end-to-end, if one wished
to backpropagate all the way to word embeddings.

To address the first shortcoming, we add an en-
coder (Fig. 3) to produce the context-sensitive en-
coding of each q-term or d-term from the pre-
trained embeddings of the previous, current, and
next term in a particular query or document. A
single dense layer with residuals is used, in effect a
one-layer Temporal Convolutional Network (TCN)
(Bai et al., 2018) without pooling or dilation. The
number of convolutional filters equals the dimen-
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Figure 3: Producing context-sensitive term encodings.

sions of the pre-trained embedding, for residuals
to be summed without transformation.

Specifically, let e(ti) be the pre-trained embed-
ding for a q-term or d-term term ti. We compute
the context-sensitive encoding of ti as:

c(ti) = ϕ
(
Wc φc(ti) + bc

)
+ e(ti) (1)

Wc and bc are the weights matrix and bias vec-
tor of the dense layer, ϕ is the activation function,
φc(ti) = [e(ti−1); e(ti); e(ti+1)], ti−1, ti+1 are the
tokens surrounding ti in the query or document.
This is an orthogonal way to incorporate context
into the model relative to PACRR. PACRR creates
a query-document similarity matrix and computes
n-gram convolutions over the matrix. Here we in-
corporate context directly into the term encodings;
hence similarities in this space are already context-
sensitive. One way to view this difference is the
point at which context enters the model – directly
during term encoding (Fig. 3) or after term simi-
larity scores have been computed (PACRR, Fig. 1).

To make DRMM trainable end-to-end, we re-
place its histogram-based document-aware q-term
encodings (⊗ nodes of Fig. 2) by q-term encodings
that consider d-terms via an attention-mechanism.
Figure 4 shows the new sub-network that com-
putes the document-aware encoding of a q-term qi,
given a document d = 〈d1, . . . , dm〉 of m d-terms.
We first compute a dot-product attention score ai,j
for each dj relative to qi:

ai,j = softmax
(
c(qi)

T c(dj); d1, . . . , dm
)

(2)

where c(t) is the context-sensitive encoding of t
(Eq. 1). We then sum the context-sensitive encod-
ings of the d-terms, weighted by their attention
scores, to produce an attention-based representa-
tion dqi of document d from the viewpoint of qi:

dqi =
∑

j

ai,j c(dj) (3)

The Hadamard product (element-wise multiplica-
tion, �) between the document representation dqi
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Figure 4: ABEL-DRMM sub-net. From context-aware
q-term and d-term encodings (Fig. 3), it generates
fixed-dimension document-aware q-term encodings to
be used in DRMM (Fig. 2, replacing ⊗ nodes).

and the q-term encoding c(qi) is then computed
and used as the fixed-dimension document-aware
encoding φH(qi) of qi (Fig. 4):

φH(qi) = dqi � c(qi) (4)

The ⊗ nodes and lower parts of the DRMM net-
work of Fig. 2 are now replaced by (multiple
copies of) the sub-network of Fig. 4 (one copy
per q-term), with the � nodes replacing the ⊗
nodes. We call the resulting model Attention-
Based Element-wise DRMM (ABEL-DRMM).

Intuitively, if the document contains one or
more terms dj that are similar to qi, the attention
mechanism will have emphasized mostly those
terms and, hence, dqi will be similar to c(qi),
otherwise not. This similarity could have been
measured by the cosine similarity between dqi
and c(qi), but the cosine similarity assigns the
same weight to all the dimensions, i.e., to all the
element-wise products in φH(qi). By using the
Hadamard product, we pass on to the upper lay-
ers of DRMM (the dense layers of Fig. 2), which
score each q-term with respect to the document,
all the element-wise products of φH(qi), allowing
the upper layers to learn which element-wise prod-
ucts (or combinations of them) are important when
matching a q-term to the document.

2.2.2 ABEL-DRMM extensions
We experimented with two extensions to ABEL-
DRMM. The first is a density-based extension that
considers all the windows of lw consecutive tokens
of the document and computes the ABEL-DRMM

relevance score per window. The final relevance
score of a document is the sum of the original
ABEL-DRMM score computed over the entire doc-
ument plus the maximum ABEL-DRMM score over
all the document’s windows. The intuition is to re-
ward not only documents that match the query, but
also those that match it in a dense window.
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The second extension is to compute a confi-
dence score per document and only return docu-
ments with scores above a threshold. We apply a
softmax over the ABEL-DRMM scores of the top
td documents and return only documents from the
top td with normalized scores exceeding a thresh-
old tc. While this will always hurt metrics like
Mean Average Precision (MAP) when evaluating
document retrieval, it has the potential to improve
the precision of downstream components, in our
case snippet retrieval, which in fact we observe.

3 Snippet Retrieval

For the snippet retrieval task, we used the ‘ba-
sic CNN’ (BCNN) network of the broader ABCNN

model (Yin et al., 2016), which we combined with
a post-processing stage, as discussed below. The
input of snippet retrieval is an English question
and text snippets (e.g., sentences) from documents
that the document retrieval component returned as
relevant to the question. The goal is to rank the
snippets, so that snippets that human experts se-
lected as relevant to the question will be ranked
higher than others. In BioASQ, human experts
are instructed to select relevant snippets consist-
ing of one or more consecutive sentences.7 For
training purposes, we split the relevant documents
into sentences, and consider sentences that overlap
the gold snippets (the ones selected by the human
experts) as relevant snippets, and the remaining
ones as irrelevant. At inference time, documents
returned by the document retrieval model as rele-
vant are split into sentences, and these sentences
are ranked by the system. For details on sentence
splitting, tokenization, etc., see Section 5.1.

3.1 BCNN Model

BCNN receives as input two sequences of terms
(tokens), in our case a question (query) and a sen-
tence from a document. All terms are represented
by pre-trained embeddings (Section 5.1). Snippet
sequences were truncated (or zero padded) to be
of uniform length. A convolution layer with mul-
tiple filters, each of the same widthw, is applied to
each one of the two input sequences, followed by
a windowed-average pooling layer over the same
filter width to produce a feature map (per filter) of
the same dimensionality as the input to the con-

7This was not actually the case in BioASQ year 1. Hence,
some of our training data do not adhere to this rule.
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Figure 5: BCNN (Yin et al., 2016) scoring snippets rel-
ative to a query. The example illustrates a query of 5
terms, a snippet of 7 terms, and a single convolution
filter of width w = 3. Zero-padding shown as empty
boxes. In each convolution/pooling block, the convolu-
tion layer is followed by a windowed-average pooling
of the same width w to preserve the dimensionality of
the input to the block. Thus convolution/pooling blocks
can be repeated, making the model arbitrarily deep.

volution layer.8 Consequently, we can stack an
arbitrary number of convolution/pooling blocks in
order to extract increasingly abstract features.

An average pooling layer is then applied to the
entire output of the last convolution/pooling block
(Fig. 5) to obtain a feature vector of the query and
snippet, respectively. When multiple convolution
filters are used (Fig. 5 illustrates only one), we
obtain a different feature vector from each filter
(for the query and snippet, respectively), and the
feature vectors from the different filters are con-
catenated, again obtaining a single feature vector
for the query and snippet, respectively. Similar-
ity scores are then computed from the query and
snippet feature vectors, and these are fed into a
linear logistic regression layer. One critical im-
plementation detail from the original BCNN paper
is that when computing the query-snippet similar-
ity scores, average pooling is actually applied to
the output of each one of the convolution/pooling
blocks, i.e., we obtain a different query and snip-
pet feature vector from the output of each block.
Different similarity scores are computed based on
the query and snippet feature vectors obtained
from the output of each block, and all the simi-
larity scores are passed to the final layer. Thus the
number of inputs to the final layer is proportional
to the number of blocks.

8The same filters are applied to both queries and snippets.
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3.2 Post-processing

A technique that seems to improve our results in
snippet retrieval is to retain only the top Ks snip-
pets with the best BCNN scores for each query,
and then re-rank the Ks snippets by the relevance
scores of the documents they came from; if two
snippets came from the same document, they are
subsequently ranked by their BCNN score. This is
a proxy for more sophisticated models that would
jointly consider document and snippet retrieval.
This is important as the snippet retrieval model is
trained under the condition that it only sees rele-
vant documents. So accounting for the rank/score
of the document itself helps to correctly bias the
snippet model.

4 Overall System Architecture

Figure 6 outlines the general architecture that we
used to piece together the various components. It
consists of retrieving the top N documents per
query using BM25 (Robertson et al., 1995); re-
ranking the topN documents using one of the doc-
ument retrieval models (Section 2) and retaining
(up to) the top Kd documents; scoring all candi-
date snippets of the top Kd documents via a snip-
pet retrieval model (BCNN, Section 3.1) and retain-
ing (up to) the top Ks snippets; re-ranking the Ks

snippets by the relevance scores of the documents
they came from (Section 3.2).9

We set Kd = Ks = 10 as it was dictated by
the BioASQ challenge. We set N = 100 as we
found that with this value, BM25 returned the ma-
jority of the relevant documents from the train-
ing/development data sets. SettingN to larger val-
ues had no impact on the final results. The reason
for using a pre-retrieval model based on BM25 is
that the deep document retrieval models we use
here are computationally expensive. Thus, run-
ning them on every document in the index for ev-
ery query is prohibitive, whereas running them on
the top N = 100 documents from a pre-retrieval
system is easily achieved.

5 Experiments

All retrieval components (PACRR-, DRMM-,
BCNN-based) were augmented to combine the
scores of the corresponding deep model with a
number of traditional IR features, which is a com-
mon technique (Severyn and Moschitti, 2015). In

9The last step was used only in batches 3–5.

TERM-PACRR, the additional features are fed to
the linear layer that combines the q-term scores
(Fig. 1). In ABEL-DRMM, an additional linear
layer is used that concatenates the deep learning
document relevance score with the traditional IR

features. In BCNN, the additional features are in-
cluded in the final linear layer (Fig. 5). The addi-
tional features we used were the BM25 score of the
document (the document the snippet came from,
in snippet retrieval), word overlap (binary and IDF

weighted) between the query and the document
or snippet; bigram overlap between the query and
the document or snippet. The latter features were
taken from Mohan et al. (2017). The additional
features improved the performance of all models.

5.1 Data Resources and Pre-processing

The document collection consists of approx. 28M
‘articles’ (titles and abstracts only) from the
‘MEDLINE/PubMed Baseline 2018’ collection.10

We discarded the approx. 10M articles that con-
tained only titles, since very few of these were an-
notated as relevant. For the remaining 18M arti-
cles, a document was the concatenation of each
title and abstract. These documents were then in-
dexed using Galago, removing stop words and ap-
plying Krovetz’s stemmer (Krovetz, 1993).11 This
served as our pre-retrieval model.

Word embeddings were pre-trained by applying
word2vec (Mikolov et al., 2013) to the 28M ‘ar-
ticles’ of the MEDLINE/PubMed collection. IDF

values were computed over the 18M articles that
contained both titles and abstracts. We used the
GenSim implementation of word2vec (skip-gram
model), with negative sampling, window size set
to 5, default other hyper-parameter values, to pro-
duce word embeddings of 200 dimensions.12 The
word embeddings were not updated when training
the document relevance ranking models. For tok-
enization, we used the ‘bioclean’ tool provided by
BioASQ.13 In snippet retrieval, we used NLTK’s

10Available from https://www.nlm.nih.gov/
databases/download/pubmed_medline.html.

11We used Galago version 3.10. Consult http://www.
lemurproject.org/galago.php.

12Consult https://radimrehurek.com/gensim/
models/word2vec.html. We used Gensim v. 3.3.0.
The word embeddings and code of our experiments
are available at https://github.com/nlpaueb/
aueb-bioasq6.

13The tool accompanies an older set of embeddings pro-
vided by BioASQ. See http://participants-area.
bioasq.org/tools/BioASQword2vec/.
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Figure 6: Overall architecture of document and snippet retrieval systems.

English sentence splitter.14

To train and tune the models we used years 1–5
of the BioASQ data, using batch 5 of year 5 as de-
velopment for the final submitted models, specif-
ically when selecting optimal model epoch. We
report test results (F1, MAP, GMAP) on batches 1–
5 of year 6 from the official results table.15 De-
tails on the three evaluation metrics are provided
by Tsatsaronis et al. (2015). They are standard,
with the exception that MAP here always assumes
10 relevant documents/snippets, which is the max-
imum number of documents/snippets the partici-
pating systems were allowed to return per query.

5.2 Hyperparameters

All DRMM-based models were trained with Adam
(Kingma and Ba, 2014) with a learning rate of 0.01
and β1/β2 = 0.9/0.999. Batch sizes were set to
32. We used a hinge-loss with a margin of 1.0
over pairs of a single positive and a single nega-
tive document of the same query. All models used
a two-layer MLP to score q-terms (dense layers
of Fig. 2), with leaky-RELU activation functions
and 8 dimensions per hidden layer. For context-
sensitive term encodings (Fig. 3), a single layer
was used, again with leaky-RELU as activation.
For the density-based extension of ABEL-DRMM

(Section 2.2.2), lw = 20. For the confidence ex-
tension of ABEL-DRMM, td = 100, tc = 0.01.

TERM-PACRR was also trained with Adam, with
a learning rate of 0.001 and β1/β2 = 0.9/0.999
with batch size equal to 32. Following Hui et al.
(2018), we used binary log-loss over pairs of a sin-
gle positive and a single negative document of the

14We used NLTK v3.2.3. See https://www.nltk.
org/api/nltk.tokenize.html.

15Available at http://participants-area.
bioasq.org/results/6b/phaseA/. The names of
our systems have been modified for the blind review.

same query. Maximum query length lq was set to
30 and maximum document length ld was set to
300. Maximum kernel size (lg × lg) was set to
(3 × 3) with 16 filters per size. Row-wise k-max
pooling used k = 2. TERM-PACRR used a two-
layer MLP with RELU activations and hidden lay-
ers with 7 dimensions to independently score each
document-aware query-term encoding.

BCNN was trained using binary log-loss and
AdaGrad (Duchi et al., 2011), with a learning rate
of 0.08 and L2 regularization with λ = 0.0004.
We used 50 convolution kernels (filters) of width
w = 4 in each convolution layer, and two convo-
lution/pooling blocks. Finally, batch sizes were
set to 200. Snippets were truncated to 40 tokens.
Questions were never truncated.

5.3 Official Submissions
We submitted 5 different systems to the BioASQ
challenge, all of which consist of components de-
scribed above.

• AUEB-NLP-1: Combo of 10 runs of TERM-
PACRR for document retrieval (§2.1) followed
by BCNN for snippet retrieval (§3).

• AUEB-NLP-2: Combo of 10 runs of ABEL-
DRMM (§2.2) for document retrieval followed
by BCNN for snippet retrieval.

• AUEB-NLP-3: Combo of 10 runs of TERM-
PACRR and 10 runs of ABEL-DRMM followed
by BCNN for snippet retrieval.

• AUEB-NLP-4: ABEL-DRMM with density ex-
tension (§2.2.2) for document retrieval fol-
lowed by BCNN for snippet retrieval.

• AUEB-NLP-5: ABEL-DRMM with both den-
sity and confidence extensions (§2.2.2) for
document retrieval followed by BCNN for
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snippet retrieval. This system was submitted
for batches 2-5 only.

In combination (combo) systems, we obtained
10 versions of the corresponding model by retrain-
ing it 10 times with different random seeds, and we
then used a simple voting scheme. If a document
was ranked at position 1 by a model it got 10 votes,
position 2 was 9 votes, until position 10 where it
got 1 vote. Votes were then aggregated over all
models in the combination. While voting did not
improve upon the best single model, it made the
results more stable across different runs.

5.4 Results

Results are given in Table 1. There are a num-
ber of things to note. First, for document retrieval,
there is very little difference between our submit-
ted models. Both PACRR- and DRMM-based mod-
els perform well (usually at the top or near the
top) with less than 1 MAP point separating them.
These systems were all competitive and for 4 of
the 5 batches one was the top scoring system in the
competition. On average the experimental ABEL-
DRMM system (AUEB-NLP-4) scored best amongst
AUEB submissions and in aggregate over all sub-
missions, but by a small margin (0.1053 average
MAP versus 0.1016 for TERM-PACRR). The excep-
tion was the high precision system (AUEB-NLP-5)
which did worse in all metrics except F1, where it
was easily the best system for the 4 batches it par-
ticipated in. This is not particularly surprising, but
impacted snippet selection, as we will see.

For snippet selection, all systems did well
(AUEB-NLP-[1-4]) and it is hard to form a pat-
tern that a base document retrieval model’s results
are more conducive to snippet selection. The ex-
ception is the high-precision document retrieval
model of AUEB-NLP-5, which had by far the best
scores for AUEB submissions and the challenge
as a whole. The main reason for this is that the
snippet retrieval component was trained assuming
only relevant documents as input. Thus, if we fed
it all 10 documents, even when some were not
relevant, it could theoretically still rank a snippet
from an irrelevant document high since it is not
trained to combat this. By sending the snippet re-
trieval model only high precision document sets it
focused on finding good snippets at the expense of
potentially missing some relevant documents.

6 Related Work

Document ranking has been studied since the
dawn of IR; classic term-weighting schemes were
designed for this problem (Sparck Jones, 1972;
Robertson and Sparck Jones, 1976). With the
advent of statistical NLP and statistical IR, prob-
abilistic language and topic modeling were ex-
plored (Zhai and Lafferty, 2001; Wei and Croft,
2006), followed recently by deep learning IR

methods (Lu and Li, 2013; Hu et al., 2014; Palangi
et al., 2016; Guo et al., 2016; Hui et al., 2017).

Most document relevance ranking methods fall
within two categories: representation-based, e.g.,
Palangi et al. (2016), or interaction-based, e.g., Lu
and Li (2013). In the former, representations of the
query and document are generated independently.
Interaction between the two only happens at the fi-
nal stage, where a score is generated indicating rel-
evance. End-to-end learning and backpropagation
through the network tie the two representations to-
gether. In the interaction-based paradigm – which
is where the models studied here fall – explicit en-
codings between pairs of queries and documents
are induced. This allows direct modeling of exact-
or near-matching terms (e.g., synonyms), which is
crucial for relevance ranking. Indeed, Guo et al.
(2016) showed that the interaction-based DRMM

outperforms previous representation-based meth-
ods. On the other hand, interaction-based models
are less efficient, since one cannot index a doc-
ument representation independently of the query.
This is less important, though, when relevance
ranking methods rerank the top documents re-
turned by a conventional IR engine, which is the
scenario we consider here.

In terms of biomedical document and snippet
retrieval, several methods have been proposed for
BioASQ (Tsatsaronis et al., 2015), mostly based
on traditional IR and ML techniques. For example,
the system of Jin et al. (2017), which is the top
scoring one for previous incarnations of BioASQ
(UTSB team), uses an underlying graphical model
for scoring coupled with a number of traditional
IR techniques like pseudo-relevance feedback.

The most related work from the biomedical do-
main is that of Mohan et al. (2017), who use a
deep learning architecture for document ranking.
Like our systems they use interaction-based mod-
els to score and aggregate q-term matches relative
to a document, however using different document-
aware q-term representations – namely best match
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DOCUMENT RETRIEVAL
System F1 MAP GMAP

Batch 1
AUEB-NLP-1 0.2546 0.1246 0.0282
AUEB-NLP-2 0.2462 0.1229 0.0293
AUEB-NLP-3 0.2564 0.1271 0.0280
AUEB-NLP-4 0.2515 0.1255 0.0235
Top Competitor 0.2216 0.1058 0.0113

Batch 2
AUEB-NLP-1 0.2264 0.1096 0.0148
AUEB-NLP-2 0.2473 0.1207 0.0200
AUEB-NLP-3 0.2364 0.1178 0.0161
AUEB-NLP-4 0.2350 0.1182 0.0161
AUEB-NLP-5 0.3609 0.1014 0.0112
Top Competitor 0.2265 0.1201 0.0183

Batch 3
AUEB-NLP-1 0.2345 0.1122 0.0101
AUEB-NLP-2 0.2345 0.1147 0.0108
AUEB-NLP-3 0.2350 0.1135 0.0109
AUEB-NLP-4 0.2345 0.1137 0.0106
AUEB-NLP-5 0.4093 0.0973 0.0062
Top Competitor 0.2186 0.1281 0.0113

Batch 4
AUEB-NLP-1 0.2136 0.0971 0.0070
AUEB-NLP-2 0.2148 0.0996 0.0069
AUEB-NLP-3 0.2134 0.1000 0.0068
AUEB-NLP-4 0.2094 0.0995 0.0064
AUEB-NLP-5 0.3509 0.0875 0.0044
Top Competitor 0.2044 0.0967 0.0073

Batch 5
AUEB-NLP-1 0.1541 0.0646 0.0009
AUEB-NLP-2 0.1522 0.0678 0.0013
AUEB-NLP-3 0.1513 0.0663 0.0010
AUEB-NLP-4 0.1590 0.0695 0.0012
AUEB-NLP-5 0.1780 0.0594 0.0008
Top Competitor 0.1513 0.0680 0.0009

SNIPPET RETRIEVAL
System F1 MAP GMAP

Batch 1
AUEB-NLP-1 0.1296 0.0687 0.0029
AUEB-NLP-2 0.1347 0.0665 0.0026
AUEB-NLP-3 0.1329 0.0661 0.0028
AUEB-NLP-4 0.1297 0.0694 0.0024
Top Competitor 0.1028 0.0710 0.0002

Batch 2
AUEB-NLP-1 0.1329 0.0717 0.0034
AUEB-NLP-2 0.1434 0.0750 0.0044
AUEB-NLP-3 0.1355 0.0734 0.0033
AUEB-NLP-4 0.1397 0.0713 0.0037
AUEB-NLP-5 0.1939 0.1368 0.0045
Top Competitor 0.1416 0.0938 0.0011

Batch 3
AUEB-NLP-1 0.1563 0.1331 0.0046
AUEB-NLP-2 0.1494 0.1262 0.0034
AUEB-NLP-3 0.1526 0.1294 0.0038
AUEB-NLP-4 0.1519 0.1293 0.0038
AUEB-NLP-5 0.2744 0.2314 0.0068
Top Competitor 0.1877 0.1344 0.0014

Batch 4
AUEB-NLP-1 0.1211 0.0716 0.0009
AUEB-NLP-2 0.1307 0.0821 0.0011
AUEB-NLP-3 0.1251 0.0747 0.0009
AUEB-NLP-4 0.1180 0.0750 0.0009
AUEB-NLP-5 0.1940 0.1425 0.0017
Top Competitor 0.1306 0.0980 0.0006

Batch 5
AUEB-NLP-1 0.0768 0.0357 0.0003
AUEB-NLP-2 0.0728 0.0405 0.0004
AUEB-NLP-3 0.0747 0.0377 0.0004
AUEB-NLP-4 0.0790 0.0403 0.0004
AUEB-NLP-5 0.0778 0.0526 0.0003
Top Competitor 0.0542 0.0475 0.0001

Table 1: Performance on BioASQ Task 6b, Phase A (batches 1–5) for document and snippet retrieval (left and
right tables, respectively). Systems described in Section 5.3. The italicised system is the top scoring system from
AUEB’s entries and if also in bold, is the top from all official entries in that batch. Top is by MAP, the official
metric of BioASQ. Top Competitor is the top scoring entry – by MAP– that is not among AUEB’s submissions.

d-term distance scores. Also unlike our work, they
focus on user click data as a supervised signal,
and they use context-insensitive representations of
document-query term interactions.

There are several studies on deep learning sys-
tems for snippet selection which aim to improve
the classification and ranking of snippets extracted
from a document based on a specific query. Wang
and Nyberg (2015) use a stacked bidirectional
LSTM (BILSTM); their system gets as input a ques-
tion and a sentence, it concatenates them in a sin-
gle string and then forwards that string to the input
layer of the BILSTM. Rao et al. (2016) employ a
neural architecture to produce representations of
pairs of the form (question, sentence) and to learn
to rank pairs of the form (question, relevant sen-
tence) higher than pairs of the form (question, ir-
relevant sentence) using Noise-Contrastive Esti-
mation. Finally, Amiri et al. (2016) use autoen-

coders to learn to encode input texts and use the
resulting encodings to compute similarity between
text pairs. This is similar in nature to BCNN, the
main difference being the encoding mechanism.

7 Conclusions

We presented the models, experimental set-up,
and results of AUEB’s submissions to the docu-
ment and snippet retrieval tasks of the sixth year of
the BioASQ challenge. Our results show that deep
learning models are not only competitive in both
tasks, but in aggregate were the top scoring sys-
tems. This is in contrast to previous years where
traditional IR systems tended to dominate. In fu-
ture years, as deep ranking models improve and
training data sets get larger, we expect to see big-
ger gains from deep learning models.
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Abstract

Biomedical Question Answering is concerned
with the development of methods and systems
that automatically find answers to natural lan-
guage posed questions. In this work, we de-
scribe the system used in the BioASQ Chal-
lenge task 6b for document retrieval and snip-
pet retrieval (with particular emphasis in this
subtask). The proposed model makes use of
semantic similarity patterns that are evaluated
and measured by a convolutional neural net-
work architecture. Subsequently, the snip-
pet ranking performance is improved with a
pseudo-relevance feedback approach in a later
step. Based on the preliminary results, we
reached the second position in snippet retrieval
sub-task.

1 Introduction

The development of methods that contribute to by-
pass the manual checking of candidate documents,
is playing an important role in the closed do-
main information access and will be the next step
in information retrieval systems (Zadeh, 2006).
The number of published documents grows con-
tinuously and pertain to a large variety of topics.
More than 3000 articles are indexed every day
in biomedical journals (Tsatsaronis et al., 2012),
making it harder for patients and physicians to
access valuable information. The produced data
needs to be mined in order to have a positive im-
pact on public health, although it also represents a
challenge.

The Question Answering (QA) paradigm can
help to retrieve concise information in a natural
way, given the precise answer and the support-
ing passages for any information need. The re-
search in QA has been pulled by organizations and
challenges that encourage academic community to
develop new systems and methods to tackle this
complex task.

One of the most important challenges is
BioASQ, focused on indexing and question an-
swering tasks over biomedical articles (Tsatsaro-
nis et al., 2015).

In this work, we describe our first participation
in the sixth edition of the BioASQ challenge. We
participated in task B, which is composed of two
phases.

• Phase A: Given a question the system must
return relevant concepts (from designated ter-
minologies and ontologies), relevant docu-
ments (from PubMed articles baseline (pub)),
relevant snippets (extracted from articles),
and relevant RDF triples (from designated
ontologies) (Tsatsaronis et al., 2015).

• Phase B: Given a question and a set of rel-
evant articles and snippets. The system must
provide an exact answer (e.g., named entities)
and ideal answers (summaries) (Tsatsaronis
et al., 2015).

BioASQ challenge rules allow teams to partic-
ipate in any of the two phases, and also send re-
sults for any or all of the sub-tasks in the desired
phase. We chose Phase A for our first participa-
tion, and we submitted results for (1) document
retrieval and (2) snippet retrieval.

2 Methods

2.1 Model Architecture
The whole system is composed of two main mod-
ules as shown in Figure 1. A document retrieval
module searches the PubMed Baseline Reposi-
tory (MBR) (pub) for relevant articles, and a fine-
grained information retrieval model to identify
the 10 most relevant snippets. For document re-
trieval we used Elastic Search (ES) engine (Gorm-
ley and Tong, 2015) with BM25 as relevance rank-
ing function (Agichtein et al., 2006). To improve

40



the performance we added to the index the ti-
tle, abstract and concepts for all the documents.
When a search is performed, all fields are com-
pared against the search query.

Most related documents are analyzed in depth.
We split the documents into sentences and those
sentences feed the snippet retrieval stage. We pro-
cess the snippets with a Convolutional Neural Net-
work (CNN) to obtain a semantic similarity rele-
vance score.

Finally, the scored snippets are sorted in de-
scending order and the 10 with the highest scores
are selected. The documents are re-ranked based
on a standardized linear combination between
Elastic Search score and the average of their snip-
pets scores. The 10 most related documents and
snippets were submitted to BioASQ server.

Figure 1: BioASQ Model Diagram

A detailed description of the model will be pre-
sented in the following sections.

2.2 Document Retrieval
Question answering systems make use of docu-
ment retrieval methods to provide relevant doc-
uments that could contain the answer to a user’s
question.

The document retrieval system affects the ques-
tion answering method effectiveness: if a retrieval
system does not find relevant documents for a
question, the later stages will inevitably fail.

In the BioASQ challenge the document retrieval
system has to index approximately 27 millions
medical articles. This huge amount of data makes
it necessary to have a high-performance platform.
We used Elastic Search (ES), a standalone search
engine written in Java that stores the related data
in a sophisticated format optimized for language
based query searches (Gormley and Tong, 2015).
ES is also easily scalable and comes with a default
configuration that makes the whole learning pro-
cess easy.

Elastic Search uses by default BM25, which is
an improvement of TF-IDF ranking function that
takes into account the length of documents and
queries.

2.3 Snippet Retrieval

The main assumption of the snippet retrieval
model is that the question and the answer are se-
mantically related based on their terms. So the
question-answer inter-correlation is given by the
relationship between their component terms.

The proposed method has two stages. The first
one (training phase) has the objective to learn the
similarity patterns between question-answer pairs.
In the second stage (prediction and re-ordering)
the similarity model is used to obtain the first
ranking between question and answer pairs, then
a reordering is carried out using pseudo-relevance
feedback based on the terms from the most related
answer in the first ordering. The whole process is
depicted in Figure 2.

The training phase is carried out to obtain the
similarity model, then this model is used in the
testing phase to rank the question-answer pairs.
During training: (1) question-answer pairs (QA-
pairs) are pre-processed, (2) the similarity matrix
between QA-pairs terms is calculated, and (3) a
convolutional neural network model is trained to
predict the relevance of the answer to the question.
Once the model is built it can be used to predict the
rank of candidate answers. At testing time, for a
particular question, the model is applied to predict
the relevance score of the set of candidate answers,
(4) answers are ranked according to their scores,
(5) answers are re-ranked according to their sim-
ilarity with the highest ranked answer at step (4),
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producing a new ranking of the answers.

Figure 2: Two-Step Similarity Scoring Model Archi-
tecture

2.3.1 Step 1. Preprocess Data
Questions and candidate answers are processed
using: tokenization to delimit terms; lowercasing
to standardize the terms; POS-tagging, using the
NLTK POS-tagger (Bird, 2006), to extract syn-
tactical information that will be used in salience
weighting; and transforming terms to a word2vec
vector representation (Mikolov et al., 2013), to
make possible their semantic similarity compari-
son.

2.3.2 Step 2. Calculate Similarity Matrix
The similarity matrix M represents the semantic
relatedness of the i-th question term and the j-
th answer term according to a similarity measure.
Each element Mi,j of this matrix is a composition
of a similarity score and a salience score as de-
scribed by Eq. 1.

Mi,j = scos(qi, aj) ∗ sal(qi, aj) (1)

2.3.3 Similarity Score
The similarity score for question-answer pair
terms (qi, aj) is calculated using cosine similar-
ity between their word2vec vectors as indicated by
Eq. 2.

scos(qi, aj) = 0.5 +
qi · aj

2 ‖qi‖2 ‖aj‖2
(2)

In the case that there does not exist the
word2vec representation for one of the terms, their
similarity is measured based on their distance in
Wordnet. In particular, we use as similarity mea-
sure the edge distance between the first common
concept related with qi and aj (Wu and Palmer,
1994). If there is not a common concept between
the terms, then we calculate the Levenshtein dis-
tance between the words (Levenshtein, 1966), de-
fined as the number of operations (insertions and
eliminations of characters) needed to transform qi
to aj .

2.3.4 Salience Weighting
As not all terms are equally informative for mea-
suring text similarities (Liu et al., 2009; Dong
et al., 2015), we consider weighting the terms
from the question and the answer based on part
of speech functions: verbs, nouns, and adjectives
are considered to be the most relevant. We model
this information through a salience score.

The salience score is calculated as follows. If
both terms are relevant then their score is 1. If
only one of the terms is important then the score is
0.6, in the case none of them is relevant the score
is 0.3. The salience function is defined in the Eq.
3.

sal(qi, aj) =





1 if imp(qi) + imp(aj) = 2

0.6 if imp(qi) + imp(aj) = 1

0.3 if imp(qi) + imp(aj) = 0

(3)

Where imp(qi) and imp(aj) are the evaluation
of importance weighting function for every ques-
tion and answer term. The related function returns
1 if the term is a verb, noun or adjective, other-
wise, returns 0.

Finally, we sort the calculated matrix M leav-
ing the most related terms in the top left cell, and
if the number of rows or columns exceeds 40, the
remaining data is truncated. This step provides
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an invariable representation of the similarity pat-
terns that can be exploited by the convolutional
network.

2.3.5 Step 3. Convolutional Model
Convolutional neural networks (CNN) are a popu-
lar method for image analysis thanks to their abil-
ity to capture spatial invariant patterns. In the pro-
posed method, they play a similar role, but in-
stead of receiving an input image the CNN re-
ceives the similarity matrix M . The hypothesis
is that it will be able to identify term-similarity
patterns that help to determine the relevance of
a question-answer pair. Patterns identified by the
CNN are sub-sampled by a pooling layer. The out-
put of the pooling layer feeds a fully-connected
layer. Finally, the output of the model is generated
by a sigmoid unit. This output corresponds to a
score, simScore(q, a), that can be interpreted as a
degree of relatedness between the question q and
the answer a.

The architecture of the convolutional model is
depicted in Figure 3.

Figure 3: Convolutional Neural Network Model

2.3.6 Step 4 and 5. Two Ranking Stages
During the testing phase, a new query along with
candidate answers are presented to the method.
The candidate answers (a1, a2, ..., ak) are ranked
using the CNN model producing the first rank
of them. Based on the premise that the first
candidate answer, a∗, is expected to be highly
correlated with the question q, a second score,
simScore(a∗, ak), is calculated by comparing

each candidate answer with the highest ranked an-
swer. A new ranking is calculated by using a new
score corresponding to a linear combination of the
first and second score as is shown in Eq. 4.

finalScore(q, ak) =

(1− α) ∗ simScore(q, ak)+
α ∗ simScore(a∗, ak)

(4)

As we are introducing a weighting term α to
scale the second score, we calculated this term
based on the exploration carried out in a validation
partition, which gives 0.32 as the optimal value.

This strategy promotes candidate answers
which share similar terms with the highest ranked
answer. This is a strategy analogous to pseudo-
relevance feedback in information retrieval (Rie-
zler et al., 2007), where the original query is ex-
tended with terms from the highest ranked docu-
ments.

2.4 Experiments

We indexed the full data of 2017 PubMed baseline
in ElasticSearch engine (ES) version 6.2.2 with the
default configuration. The number of processed
files were 928 and the total number of medical
articles was 26,759,399. For each article, we ex-
tracted the title, MESH concepts and abstract to be
indexed. The indexing time was around 18 hours
in an Intel Xeon processor Intel(R) at 2.60GHz
with 82 GB RAM and GeForce GTX TITAN X.

The training was done with the question and an-
swer pairs from 2016, 2017 and 2018 BioASQ
Task B training data-set. The total number of
question-answer pairs used were 124,144. The ob-
tained data-set was very unbalanced, only 18% of
the total number of pairs are labeled as an answer.
To balance the data-set, the sample extraction in
training phase is done with the same number of
positives and negative samples, this strategy is also
applied in the validation phase.

The model training was done using RMSprop
optimization algorithm with 256 samples in mini-
batch and the defined loss function is binary cross
entropy. The number of maximum epochs was
set to 500. In each epoch, we evaluate MAP and
MRR, and after 20 epochs without any improve-
ment in MAP metric, we apply early stopping to
avoid over-fitting.
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2.4.1 Model parameters
The model hyper-parameters were tuned using
hyper-parameter exploration. The parameters cho-
sen are listed next.

• Convolution Parameters: The number of
convolutional filters used are 64, width 3 and
length 3, the stride used is 1 without padding.

• Convolution Activation Function: After a
convolutional layer, it is useful to apply a
nonlinear layer (Goodfellow et al., 2016).
We tested different activation functions and
RELU gave us the best performance.

• Pooling Layers: For the pooling layer, we
used max pooling.

• Dropout Layer: We add a dropout layer
as a regularization strategy (Srivastava et al.,
2014), setting the parameter in 10%.

Finally, the number of parameters to learn in
our model is not very high (3,198) compared with
other Convolution Neural approaches used in sim-
ilar tasks (Question Answering) which are in order
of millions and hundreds of thousands (Severyn
and Moschitti, 2015; He and Lin, 2016)

2.5 Model Tuning
In this section, we will describe the strategy to im-
prove the overall performance of our system. The
metrics were calculated over the training dataset
released by BioASQ for the 6th version.

• Mesh concept indexing: Document retrieval
is mainly based on Elastic Search key-
word matching evaluation with BM25 rank-
ing function. We used a cross-fields query ap-
proach which looks for each term in the title,
abstract and concepts indexed fields. Consid-
ering the retrieval of 10 most related docu-
ments, the performance using cross-fields ap-
proach were (Recall = 0.24, MAP = 0.19)
while not using this were (Recall=0.278,
MAP= 0.221).

• Word representation: The choice of a good
word representation is important to gener-
ate a semantically good model where rela-
tions between terms or sentences are more
easy to establish. We tested our system us-
ing different pre-trained word2vec models
and the best representation was the skip-gram

model provided by NLPLab, which is trained
on Wikipedia and PubMed abstracts (Moen
and Ananiadou, 2013). The MAP score in
the snippet retrieval sub-task improved from
0.126 to 0.142.

• Training dataset generation: The training cor-
pus was generated with questions and answer
passages extracted from 2016, 2017 and 2018
BioASQ training datasets. We tested differ-
ent rates of negative samples (passages in
related documents that does contain the an-
swer) in order to increase the negative sam-
ple coverage. This assumption is based on
the hypothesis that it is not easy to deter-
mine that a related snippet does not contain
the answer. With a higher negative sample
generation, these cases are more common,
and the method can learn a better discrimi-
nant function. The rate that experimentally
achieved the best results considers using 10
negative samples per 1 positive sample. The
MAP score in snippet retrieval sub-task, im-
proved using 6b training partition from 0.142
to 0.151.

• Document re-ranking: After obtaining the
similarity scores for snippets and the initial
Elastic Search BM25 score for documents,
the scores are combined as follows, eq. 5.

doc score(q, dk) =

(1− α) ∗ es score(q, dk)+
α ∗ avg(sim score(q, dock snippet j))

(5)

where, avg(sim score(q, dock snippet j))
is the averaged similarity score between snip-
pets of document k and the query q. The
calculated score is used to return the final
list of documents. The parameter for the lin-
ear combination α, is calculated in evaluation
step (α = 0.09). Experimental results show
that the contribution of Elastic Search score is
higher (0.91). The improvement in document
retrieval metrics was not significant but was
around a 0.1 point in MAP and RECALL.

3 Results and Discussion

In this section, we present the preliminary results
for the sixth version of BioASQ challenge in task
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B phase A. The first sub-task is to retrieve the most
related articles based on a question posed in nat-
ural language. The second one is to retrieve the
snippets that have more correlation with the ques-
tion in order to use them to compose an answer.
The answer composition is carried out in phase B,
which was not the scope of our participation.

3.1 Document Retrieval
The results shown in the Table 1 reveal, that
our ES document retrieval implementation did not
have a good performance, the recall obtained is
low in all the batches. In the first batch, we had
a technical issue that corrupted the results, it also
happened for snippet retrieval. The best result was
obtained in batch 3 (Recall = 0.49), the team leader
in this batch reached 0.56, an important difference.
As it was mentioned before, document retrieval is
very important for snippet retrieval, it is the first
information filter and it feeds the method to rank
their snippets. Despite the low recall in this step,
we will see in the next section that snippet retrieval
scores are very promising.

Batch
Document Retrieval

Mean precision Recall
F-Measure MAP

1 - -
- -

2 0.1150 0.4685
0.1621 0.0709

3 0.1320 0.4984
0.1782 0.0891

4 0.1240 0.4467
0.1717 0.0846

5 0.0890 0.2961
0.1260 0.0540

Table 1: Document retrieval results

3.2 Snippet Retrieval
In this stage, we analyzed in depth the returned
set of documents from the previous method, and
identify the text snippets that can answer the posed
question.

Based on the evidence shown in Table 2, the
snippet retrieval approach obtained a good perfor-
mance. We could have had a better performance in
snippet retrieval with a higher score in document
retrieval, but it was enough to reach the second po-
sition in all the batches except the first one (due to
the technical issue).

We can state that the proposed method exhibits
a very competitive performance compared with
other methods.

Batch
Snippet Retrieval

Mean precision Recall
F-Measure MAP

1 - -
- -

2 0.1111 0.2426
0.1416 0.0938

3 0.1614 0.2657
0.1877 0.1344

4 0.1043 0.2180
0.1306 0.0980

5 0.0404 0.1134
0.0542 0.0475

Table 2: Snippet retrieval results

4 Conclusion

This work presents our first participation in
BioASQ (task B phase A) document retrieval and
snippet retrieval tasks. Our system was based
on Elastic Search platform with the BM25 scor-
ing function for document retrieval. For snip-
pet retrieval, we presented a novel method based
on a convolutional neural network with a pseudo-
relevance-feedback re-ranking step.

The preliminary results are promising in snip-
pets retrieval sub-task, where the proposed method
reached the second position in all batches except
the first one. This result gain in importance based
on the fact that the chosen approach for document
retrieval sub-task did not give good results.

The future work will be focused on improv-
ing document retrieval sub-task to feed the snip-
pet retrieval method with a more complete (and
higher quality) list of candidate answers. We will
also work in a better question-answer pair repre-
sentation with the incorporation of structured data
sources for gain information.
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Abstract

There are millions of articles in PubMed
database. To facilitate information retrieval,
curators in the National Library of Medicine
(NLM) assign a set of Medical Subject Head-
ings (MeSH) to each article. MeSH is a
hierarchically-organized vocabulary, contain-
ing about 28K different concepts, covering
the fields from clinical medicine to informa-
tion sciences. Several automatic MeSH index-
ing models have been developed to improve
the time-consuming and financially expensive
manual annotation, including the NLM official
tool – Medical Text Indexer, and the winner
of BioASQ Task5a challenge – DeepMeSH.
However, these models are complex and not
interpretable. We propose a novel end-to-end
model, AttentionMeSH, which utilizes deep
learning and attention mechanism to index
MeSH terms to biomedical text. The attention
mechanism enables the model to associate tex-
tual evidence with annotations, thus providing
interpretability at the word level. The model
also uses a novel masking mechanism to en-
hance accuracy and speed. In the final week
of BioASQ Chanllenge Task6a, we ranked
2nd by average MiF using an on-construction
model. After the contest, we achieve close to
state-of-the-art MiF performance of ∼ 0.684
using our final model. Human evaluations
show AttentionMeSH also provides high level
of interpretability, retrieving about 90% of all
expert-labeled relevant words given an MeSH-
article pair at 20 output.

1 Introduction

MEDLINE is a database containing more than
24 million biomedical journal citations by 20181.

*These authors contribute equally to the paper.
†This work was done while the author was at CMU.

1https://www.nlm.nih.gov/pubs/
factsheets/medline.html

PubMed provides free access to MEDLINE for
worldwide researchers. To facilitate information
storage and retrieval, curators at the National Li-
brary of Medicine (NLM) assign a set of Med-
ical Subject Headings (MeSH) to each article.
MeSH2 is a hierarchically-organized terminology
developed by NLM for indexing and cataloging
biomedical texts like MEDLINE articles. MeSH
has about 28 thousand terms by 20183, covering
the fields from clinical medicine to information
sciences. Indexers examine the full article and
annotate it with MeSH terms according to rules
set by NLM4. Its estimated that indexing an ar-
ticle costs $9.4 on average (Mork et al., 2013),
and there are more than 813,500 citations added to
MEDLINE in 20175. Indexing all citations manu-
ally would cost several million dollars in one year.
Thus, several automatic annotation models have
been developed to improve the time-consuming
and financially expensive manual annotation. We
will discuss these models in section 2.1.

Automatical annotating PubMed abstracts with
MeSH terms is hard in several aspects: There
are 28 thousand possible classes and even more
of their combinations. The frequencies of dif-
ferent MeSH terms also vary a lot: The most
frequent MeSH term is ‘Humans’ and it is an-
notated to more than 8 million articles in the
MEDLINE database; while the 20,000th frequent
MeSH ‘Hypnosis, Anesthetic’ is indexed to only
about 200 articles (Peng et al., 2016). It causes se-
vere class imbalance problems. Above difficulties
are further complicated by the fact that indexers
at the NLM usually inspect the whole articles to

2https://www.nlm.nih.gov/mesh
3https://www.nlm.nih.gov/pubs/

factsheets/mesh.html
4https://www.nlm.nih.gov/bsd/indexing/

training/TIP_010.html
5https://www.nlm.nih.gov/bsd/bsd_key.

html
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do the annotation, but the challenge only provides
PubMed abstracts and titles, which might not be
enough to find all MeSH terms. We will discuss it
more detailedly in section 5.

Deep learning is a subtype of machine learning
that arranges the computational models in multiple
processing layers to learn the representations of
data with multiple levels of abstractions as well as
the mapping from these features to the output (Le-
Cun et al., 2015). Attention is a strategy for deep
learning models to learn both the mapping from
input to output and the relevance between input
parts and output parts (Bahdanau et al., 2014). The
learnt relevance helps improve the mapping per-
formance as well as provide interpretability. We
will discuss relevant works of deep learning in au-
tomatic annotations in section 2.2.

Here we propose a novel model, Attention-
MeSH, which utilizes deep learning and attention
mechanism to index MeSH terms to biomedical
texts and provides interpretation at the word level.
Each abstract, together with title and journal name,
is tokenized to words, then the model feeds word
vectors to a bidirectional gated recurrent unit (Bi-
GRU) to derive word representations with con-
textual information (Schuster and Paliwal, 1997;
Cho et al., 2014). We narrow down the MeSH
term vocabulary for each abstract using a mask-
ing mechanism. Then for each candidate MeSH
term, the model calculates the attention attribution
over words. Next, each MeSH term gets a spe-
cific document representations by MeSH-specific
attention-weighted sum of the word vectors. Fi-
nally, the model uses nonlinear layers to classify
each MeSH term using the learnt MeSH-specific
document representation.

We participated in BioASQ Challenge Task6A
while developing the model. We achieve
close to state-of-the-art performance with an on-
construction model in the final week of the contest
and with our final model after the contest. The
model also achieves high level of interpretability
evaluated by human experts.

The main contributions of this work are summa-
rized as follows:

1. To the best of our knowledge, Attention-
MeSH is the first end-to-end deep learning
model with soft-attention mechanism to in-
dex MeSH terms in such a large scale (mil-
lions of training data). With this relatively
simple model, we achieved close to state-

of-the-art performance without any sophisti-
cated feature engineering or preprocessing.

2. We develop a novel masking mechanism,
which is aimed to handle multi-class clas-
sification problems with a large number of
classes, like indexing MeSH. We also con-
duct extensive experiments on how the mask-
ing layer settings influence classification per-
formance.

3. We believe AttentionMeSH is the first MeSH
annotation model that is capable of providing
textual evidence and interpretations of its pre-
dictions. We argue that interpretability mat-
ters because humans are needed to complete
the annotation task.

2 Related Work

2.1 Automatic MeSH Indexing
NLM developed Medical Text Indexer (MTI), a
software for providing human indexers with au-
tomatic MeSH recommendations (Aronson et al.,
2004). MTI takes as input a title and correspond-
ing abstract to generate a set of recommended
MeSH terms. MTI has two steps: the first is to
generate MeSH candidates for recommendation,
and the second is to filter and rank the candi-
dates to give a final output. MTI uses MetaMap
and nearest neighbor methods. MetaMap is an-
other NLM-developed tool, which maps mentions
in biomedical texts to Unified Medical Language
System concepts (Aronson, 2001).

BioASQ is an European Union-funded project
that organizes tasks on biomedical semantic in-
dexing and question answering (Tsatsaronis et al.,
2015). In the task A of BioASQ, participants
are asked to annotate un-indexed PubMed arti-
cles with MeSH terms using their models, be-
fore they are annotated by the human indexers.
The manual annotations are taken as ground truth
to evaluate the participating models. DeepMeSH
(Peng et al., 2016) is the winner of the latest chal-
lenge, BioASQ task 5a, held in 2017. DeepMeSH
also uses a two-step strategy: the first step is to
generate MeSH candidates and predict the num-
ber of output MeSH terms, and the second step
is to rank the candidates and take the highest-
ranked predicted number of MeSH terms as out-
put. DeepMeSH uses Term Frequency Inverse
Document Frequency (TFIDF) and document to
vector (D2V) schemes to represent each abstract
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and generate MeSH candidates using binary clas-
sifiers and k-nearest neighbor (KNN) methods
over using these features. TFIDF is a traditional
weighted bag of word sparse representation of the
text and D2V learns a deep semantic representa-
tion of the text.

Because state-of-the-art models have less than
0.7 Micro-F, automatic MeSH indexing systems
can just serve to assist human indexers. Since hu-
man indexers usually add or delete MeSH terms
based on the recommendations, interpretability of
the automatic annotations is very important for
them. In this paper we adopt a local explanation
view of model interpretability (Lipton, 2016), and
argue that a good system, in addition to being ac-
curate, should also be able to tell which part of
the input supports the indexed MeSH term. This
would allow human indexers to be more effective
at annotating the article.

2.2 Deep Learning for Text Classification

Automatic indexing of MeSH terms to PubMed
articles is a multi-label text classification prob-
lem. FastText (Joulin et al., 2016) is a simple
and effective method for classifying texts based
on n-gram embeddings. (Kim, 2014) used Con-
volutional Neural Networks (CNNs) for sentence-
level classification tasks with state-of-the-art per-
formance on 4 out of 7 tasks they tried. Very deep
architectures such as that of (Conneau et al., 2017)
have also been proposed for text classification.
Motivated by these works we use an RNN-based
model for classifying each MeSH term as being a
positive label for a given article. We further use at-
tention mechanism to boost performance and pro-
vide word-level interpretability.

Recently, there has been work on automatic an-
notation of International Classification of Diseases
codes from clinical texts. (Shi et al., 2017) used
character-level and word-level Long Short-Term
Memory netowrks to get the document represen-
tations and (Mullenbach et al., 2018) used word-
level 1-D CNN to get the document representa-
tions. Both these works utilized a soft attention
strategy where each class gets a specific document
represetation by weighted sum of the attention
over words or phrases. Mullenbach et al. (2018)
also highlighted the need for interpretability when
annotating medical texts – in this work we apply
similar ideas to the domain of MeSH indexing.

3 Methods

The model architecture is visualized in Figure 1.
Starting from an input abstract, title and journal
name, words in the document are embedded and
fed to BiGRU to derive context-aware represen-
tations; KNN-derived articles from training cor-
pus are identified and frequent MeSH terms in
them are included as candidate annotations for the
document. MeSH terms are embedded, and only
those candidates are further considered in atten-
tion mechanism. We call it a masking mecha-
nism. We apply an attention mechanism to as-
sign attention weights to each word with respect
to each candidate MeSH term, which leads to a
MeSH-specific document representation. Finally,
we use MeSH-specific document representations
as input to perform classifications. For each candi-
date MeSH term of a document, the model outputs
a probability. Binary cross-entropy loss is used for
a gradient-based method to optimize the parame-
ters. At inference time, the sigmoid outputs are
converted to binary variables by thresholding.

3.1 Document Representation
For each article to be indexed, we first tokenize the
journal name, title and abstract to words. In order
to use the pre-trained word embeddings6 provided
by BioASQ organizer, we use the same tokenizer
as they did. The pre-trained word embeddings are
denoted as E ∈ R|V|×de1 , where |V| is the vocab-
ulary size and de1 is the embedding size.

We can represent each article by a sequence of
word embeddings corresponding to the tokenized
text. The word embeddings are initialized by the
BioASQ pre-trained word embeddings.

D =
[
w1 ... wL

]T ∈ RL×de1 ,

where L is the number of words in the journal
name, title and abstract, and wi is a vector for
word at position i.

For each document representation D, we feed
this sequence of word vectors to an BiGRU to de-
rive a context-aware sequence of word vectors:

D̃ = BiGRU (D) =
[
w̃1 ... w̃L

]T ∈ RL×2dh ,

where w̃i is the corresponding concatenated for-
ward and backward hidden states of each word,
and dh is the hidden size of BiGRU.

6http://participants-area.bioasq.org/
tools/BioASQword2vec/
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Figure 1: Model Architecture. BiGRU: Bi-directional recurrent gated unit. The example abstract is from (Karaa
and Goldstein, 2015).

3.2 MeSH Representation and Masking

We learn the MeSH embedding matrix H ∈
RN×de2 , where N is the number of all MeSH
terms (28,340), and de2 is the embedding size. For
each article, we consider only a subset of all 28k
MeSH terms for two reasons: 1. For each MeSH
term, there are far more negative samples than the
positive ones. We achieve down-sampling of the
negative samples by considering only a subset of
all MeSH terms as candidate for each article, so
that the classifier only concentrate on choosing a
most suitable MeSH among a set of plausible an-
notations; 2. It’s more time efficient than training
all the MeSH terms or training the MeSH classi-
fiers one by one. We call it a masking layer.

We use KNN strategy to choose a specific sub-
set of MeSH terms to train for each article:

Each abstract can be represented by IDF-
weighted sum of word vectors:

d =

∑n
i=1 IDF i ×wi∑n

i=1 IDF i
∈ Rde1,

where wi is the corresponding word vector, and
IDF i is the inverse document frequency of this
word.

We then calculate cosine similarity of represen-

tations between the abstracts:

Similarity(i, j) =
dT
i dj

||di|| × ||dj||
For each article, we find itsK nearest neighbors

based on cosine similarity. And then we count
the MeSH term frequency in these neighbors. The
most frequent M MeSH terms are trained for each
article. We denote the masked MeSH embedding
as H′,

H′ =
[
m1 m2 ... mM

]
∈ RM×de2 ,

where we make de2 = dh so that we could directly
get the dot product of each MeSH representation
and word vector.

3.3 Attention Mechanism
After getting the document representation and
masked MeSH representations, we calculate the
dot products between each context-aware word
vector and each MeSH embedding, which repre-
sents the similarity within each pair:

S = H′ D̃T =
[
D̃m1 ... D̃mM

]T
∈ RM×L,

We then uses SoftMax function to normalize over
the word axis to get attention weights attribution
for each MeSH term:

SoftMax (Sim)
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=
[
SoftMax(D̃m1) ... SoftMax(D̃mM)

]T

=
[
α1 ... αM

]T ∈ [0, 1]M×L,

where αj ∈ [0, 1]L is the attention weights over
words for MeSH term j, and

∑L
k=1 αjk = 1.

3.4 Classification
For each MeSH term, we can have a MeSH-
specific representation of document by sum of
word vectors weighted by attention weights:

Rj = αjD̃ ∈ R2dh ,

where Rj is MeSH term j specific document rep-
resentation. We apply a linear projection layer and
sigmoid activatin function to each MeSH term, fi-
nally getting the output probability:

ŷj = σ(RT
j m

′
j + bj) ∈ [0, 1],

where m′j and bj are learnable linear projection
parameters for MeSH term j. We model

P (MeSH j indexed | Journal, Title, Abstract) = ŷj .

3.5 Training
After get the conditioned probability we model,
we can calculate the binary cross-entropy loss for
each MeSH term:

Lj = −(yjlog(ŷj) + (1− yj)log(1− ŷj)),

where yj ∈ {0, 1} is the ground-truth label of
MeSH j. yj = 0 means MeSH j is not annotated
to the article by human indexers, while yj = 1
means MeSH j is annotated. We can get the total
loss by summing them up:

L =
1

M

M∑

j=1

Lj

The model is trained end-to-end from word and
MeSH embedding to the final projection layer by
a gradient-based optimization algorithm to mini-
mize L.

3.6 Inference
At inference time, we will predict the MeSH terms
whose predicted probability is larger than a tuned
threshold:

(predict MeSH j) = 1(ŷj > pj),

where pj is the tuned threshold for MeSH term j.
The thresholds are tuned to maximize MiF:

p1, ..., pN = argmax
p1,...,pN

MiF(Model, p1, ..., pN )

We tune p by the the micro-F optimization algo-
rithm described in (Pillai et al., 2013), which they
proved to be able to achieve the global maximum.

4 Experiments

4.1 Dataset
We use the dataset provided by BioASQ7, which
contains about 13.5 million manually annotated
PubMed articles. The dataset covers 28,340
MeSH terms in total, and each article is annotated
12.69 MeSH terms on average. We selected 3 mil-
lion articles from 2012 to 2017 for training.

The results reported in this paper are derived
from two test sets: BioASQ Test Sets: During the
challenge, BioASQ provides a test set of several
thousands articles each week. Ours: we use 100
thousand latest articles to test our model, and all
other results are calculated by this dataset. Since
our test set is very large, the results will be precise.

4.2 Configuration
The model is implemented using PyTorch (Paszke
et al., 2017). The parameter settings are shown
in Table 1. We use Adam optimizer and batch
size of 32. We train 2 epochs of each model on
the 3M article training set, and apply hyperbolic
learning rate decay and early stopping strategies
(Yao et al., 2007). The training takes 4 days on
2 GPUs (GeForce GTX TITAN X). Before tuning
the thresholds for all individual MeSH term, we
use a global threshold of 0.35 due to the highly
imbalanced dataset.

4.3 Evaluation Metric
The major metric for performance evaluation is
Micro-F, which is a harmonic mean of micro-
precision (MiP) and micro-recall (MiR) , and is
calculated as follows:

Micro-F =
2 ·MiP ·MiR
MiP + MiR

,

where

MiP =

∑Na
i=1

∑N
j=1 yij · ŷij∑Na

i=1

∑N
j=1 ŷij

7http://participants-area.bioasq.org/
general_information/Task6a/
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Parameter Value(s)

|V| 1.7M
de1 256
de2 512
dh 256
N 28,340
L ≤512 (truncated if longer)
Na BioASQ 5,833∼10,488
Na Ours 100,000
K 0.1k, 0.5k, 1k, 3M
M 128, 256, 512, 1,024
Learning Rate 0.002, 0.001, 0.0005
BiGRU Layer(s) 1, 2, 3, 4

Table 1: Parameter Values. For hyperparameters, we
highlight the optimal ones among all tried values.
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Figure 2: The micro-recall of MeSH terms versus dif-
ferent mask sizes for different numbers of neighbor ar-
ticles.

MiR =

∑Na
i=1

∑N
j=1 yij · ŷij∑Na

i=1

∑N
j=1 yij

In these equations, i is indexed for articles and j is
indexed for MeSH terms, so Na is the number of
articles in the test set, and N is the number of all
MeSH terms. yij and ŷij are both binary encoded
variables to denote whether MeSH term j is in ar-
ticle i in ground-truth and prediction, respectively.

4.4 Evaluation of Masking Layer
Selecting relevant MeSH terms from neighbor ar-
ticles can be regarded as a weak classifier itself,
and high-recall setting is favored in this step. We
measure the micro-recall for different masking
layer settings, and the results are shown in Fig-
ure 2. Basically, there are two hyperparameters for
it: the number of neighbor articlesK and the num-
ber of highest ranking MeSH terms selectedM . A
non-trivial baseline for K is 3M, i.e. the number
of all training articles. Under this circumstance,
the ranked MeSH list is determined by global fre-
quency, thus is non-specific to any article.

We choose the number of nearest articles K =

Mask Setting MiP MiR MiF

1,024 rd. 0.5891 0.0173 0.0337
1,024 freq. 0.6863 0.4257 0.5262

128 n.n. 0.6354 0.5880 0.6108
256 n.n. 0.6690 0.5975 0.6312
512 n.n. 0.6663 0.6116 0.6378
1,024 n.n. 0.6698 0.6262 0.6472

Table 2: Model Performance with Different Mask Set-
tings. n.n.: MeSH mask selected from nearest neighbor
articles (K = 1000); freq.: MeSH mask selected from
globally frequent MeSH terms; rd.: MeSH mask ran-
domly selected. All results are averaged over models
trained by 3 random seeds.

1000 for it gives the highest recalls with the in-
crease of mask size. In fact, micro-recall at M =
1024 and K = 1000 is about 0.97, which almost
guarantees that all true annotations are included as
candidate for a document. Before fine-tuning on
other hyperparameters and the thresholds of mak-
ing predictions, we first train the model with dif-
ferent M , and report the results in Table 2.

4.5 Evaluation of Performance
While we were developing the model, we partic-
ipated in the BioASQ Task6a challenge. During
the challenge, there is a test set available each
week. Each test set contains several thousands of
un-indexed PubMed citations. Each citation has
journal name, title, abstract information. Partici-
pants will run their models on the test set and up-
load their predictions of MeSH annotations within
a given time. The organizers will then evaluate ev-
ery participants’ predictions and make the results
available. The results of the whole Challenges are
showed in Figure 3. Furthermore, the results of the
last week of the Challenge are showed in Table 3.

Model Average MiF Maximum MiF

Access Inn MAIstro 0.2788 0.2788
MeSHmallow 0.3161 0.3161
UMass Amherst T2T 0.4988 0.4988
iria 0.4992 0.5161
MTI First Line Index 0.6332 0.6332
DeepMeSH 0.6451 0.6637
Default MTI 0.6474 0.6474
AttentionMeSH 0.6635 0.6635
xgx 0.6862 0.6880

Table 3: Model Performance of the Final BioASQ Test
Set. The models are ranked top-down from the lowest
average MiF to the highest one. Our on-construction
AttentionMeSH ranked second by average MiF.

It should be noted that the models we used in
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Figure 3: BioASQ Challenge Task6A results. BaWb:
Test week b of batch a. From B1W1 to B3W5,
we show the average MiF of different models: At-
tentionMeSH, DeepMeSH, XGX, and the best per-
formance of all other models. Results are retrieved
from http://participants-area.bioasq.
org/results/6a/ on June 10th, 2018. And NOW
shows the most up-to-date results from our test set.

BioASQ are not our final model. We include the
up-to-date results in ‘NOW’ in Figure 3 and report
the ablation test results in Table 4.

Model MiP MiR MiF

AttentionMeSH (AM) 0.6698 0.6262 0.6472

AM w/o BiGRU 0.6362 0.5848 0.6093
AM w/o learning w.e. 0.6657 0.6106 0.6369
AM w/o attention 0.6807 0.5519 0.6095

AM w/ t.t. 0.7048 0.6393 0.6704
AM w/ ensemble & t.t. 0.7172 0.6543 0.6844

Table 4: Model Performance with Ablations and Finer
Tuning. w/o: without; w/: with; t.t.: MeSH term
threshold tuning; w.e.: word embeddings. Ensembling
takes the average prediction of 8 models trained by dif-
ferent seeds. All results, except the ensemble one, are
averaged over models trained by 3 random seeds.

4.6 Evaluation of Interpretability

At inference time, attention matrix provides word-
level interpretation: For each MeSH prediction,
the model shows which words are given high at-
tention. It helps the indexers to evaluate and proof-
read the indexing results of our model. Figure 4
shows an example of attention for interpretation.

To qualitatively evaluate the interpretability of
different models, the best way would be to mea-
sure the time efficiency of manual indexing with
the assistance of different models. However, this
might require well-trained NLM indexers to eval-
uate. Instead, we asked two independent re-
searchers with Ph.D. degrees in related fields to

label relevant words for 100 MeSH-article pairs.
Their intersected labels are regarded as ground-
truth. We model the interpretability evaluation as
an information retrieval task, and evaluate each
method’s recall at different numbers of outputs in
Table 5. Since other models like DeepMeSH and
MTI don’t report how to interpret their model out-
puts, we use string-matching as a non-trivial base-
line.

Model R@5 R@10 R@20

String-Matching 0.3890 0.4180 0.4336

AM Embeddings 0.6180† 0.7486† 0.8088†

AM Whole Model 0.6929†‡ 0.8389†‡ 0.8993†‡

Table 5: Interpretability Evaluation. R@n: The aver-
age recall of ground-truth relevant words if the model
outputs n words. AM Whole Model: The whole model
of AttentionMeSH is used to get the attention matrix,
and n words with highest attention weights will be the
output; AM Embeddings: We only use the trained word
and MeSH embeddings of AttentionMeSH model, and
we output n words that have highest dot products with
each specific MeSH. String-Matching: A string match-
ing method that takes all words in the abstracts that are
same to any word in the MeSH name. †: Significant
differences with String-Matching; ‡: Significant differ-
ences with AM Embeddings. Significance is defined
by p < 0.05 in paired t tests.

5 Discussion

One intrinsic limitation of all present automatic
MeSH indexing models, including us, is that these
models just annotate MeSH terms from the ab-
stract, title, journal name etc, but they don’t look
into the article bodies. However, the human index-
ers in NLM do need to look into the bodies to an-
notate each article, and thus the textual evidence
for certain annotations is missed during training.
As such, all present models won’t have enough in-
formation to do the annotation, and certain per-
cent of false negatives is inevitable, and the per-
formance is upbounded by them. For example,
MeSH terms ‘Humans’, ‘Males’, ‘Females’ are
annotated to our demo article in Figure 4. How-
ever, the abstract doesn’t contain any relevant in-
formation. 35 articles in our 100 MeSH-article
pairs evaluated by experts don’t have any words
relevant to the MeSH term.

We noted that AttentionMeSH predicted many
MeSH terms to documents that were not annotated
by NLM indexers, which appears to be ”false pos-
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PLoS One
Association of SNP rs80659072 in the ZRS with polydactyly in Beijing You chickens

Abstract
The Beijing You chicken is a Chinese native breed with superior meat quality and a unique appearance. The G/T mutation of SNP rs80659072
in the Shh long-range regulator of GGA2 is highly associated with the polydactyly phenotype in some chicken breeds. In the present study, this
SNP was genotyped using the TaqMan detection method, and its association with the number of toes was analyzed in a flock of 158 birds of the
Beijing You population maintained at the Beijing Academy of Agriculture and Forestry Sciences. Furthermore, the skeletal structure of the
digits was dissected and assembled in 113 birds. The findings revealed that the toes of Beijing You chickens were rich and more complex than
expected. The plausible mutation rs80659072 in the zone of polarizing activity regulatory sequence (ZRS) in chickens was an essential but not
sufficient condition for polydactyly and polyphalangy in Beijing You chickens. Several individuals shared the T allele but showed normal four-
digit conformations. However, breeding trials demonstrated that the T allele could serve as a strong genetic marker for five-toe selection in
Beijing You chickens.

True Positive MeSH: Toes
• …with the number of toes was analyzed in a…
• …findings revealed that the toes of Beijing You chickens…
• …skeletal structure of the digits was dissected and assembled…

True Positive MeSH: Polymorphism, Single Nucleotide
• Association of SNP rs80659072 in the ZRS…
• …The G/T mutation of SNP rs80659072 in the Shh…
• …this SNP was genotyped using the TaqMan…

False Positive MeSH: China
• …ZRS with polydactyly in BeijingYou chickens…
• …BeijingYou chicken is a Chinese native breed with…

False Negative MeSH: Meat
• …native breed with superior meat quality and…
• …The Beijing You chicken is a Chinese native breed…
• …in Beijing You chickens

Figure 4: Attention Display. In a randomly-selected test article (Chu et al., 2017), we show the 3 words that are
given highest attention weights for 4 MeSH terms, including two true positive, one false positive and one false
negative predictions.

itives”. However, after manual inspection, we no-
ticed that many of our predictions are semantically
sensible. For example, both the articles in Figure 4
and Figure 5 discuss genotype-phenotype relation-
ship in Beijing You chickens. However, MeSH
term China is annotated to the article in Figure 5,
but not the one in Figure 4. We conjecture that this
may be due to inconsistency among indexers and
that automatic indexing may assign more semanti-
cally sensible annotations to enhance the coverage
of concepts in a document.

In consideration of the limitations and problems
mentioned above, some false positive and false
negative MeSH terms are unavoidable. We argue
that human experts’ performance on test dataset
based on the same input as given in BioASQ is
needed to provide better evaluation and compari-
son of performance of current methods.

Concerning how the explanations will help, we
just perform a preliminary study by human evalua-
tors, where we model the interpretability as an in-
formation retrieval (IR) task. However, the poten-
tial users don’t regard the annotation task as an IR
task. Thus, it would be more convincing to recruit
some indexers at NLM and conduct a user study,
measuring the annotation efficiency and accuracy
with and without the help of AttentionMeSH.

Animal Biotechnology
The effect of a mutation in the 3-UTR region of the 
HMGCR gene on cholesterol in Beijing-you chickens.

Abstract
The 3-hydroxyl-3-methylglutaryl Coenzyme A reductase
(HMGCR) gene was examined for polymorphisms in Beijing-
you chickens. A "T" base insert was detected at nucleotide 2749
of the 3-UTR region of the HMGCR gene and was used as the
basis for distinguishing a B allele, distinct from the A. Serum and
muscle contents of total cholesterol. LDL-cholesterol in serum
was significantly lower in AB birds and lowest in BB birds. Real-
time PCR showed that the same trends across genotypes occurred
in an abundance of HMGCR transcripts in liver, but there was no
difference in contents of HMGCR mRNA in breast or thigh
muscles. Hepatic expression and serum LDL-cholesterol were
meaningfully correlated (partial, with total serum cholesterol held
constant, r = 0.923). In muscle, similar genotypic differences
were found for the abundance of the LDL receptor (LDLR)
transcript. Cholesterol content in breast muscle related to LDLR
expression (partial correlation with serum LDL-cholesterol held
constant, r = 0.719); the equivalent partial correlation in thigh
muscle was not significant. The results indicated that the B allele
significantly reduces hepatic abundance of HMGCR transcripts,
probably accounting for genotypic differences in serum
cholesterol. In muscle, the cholesterol content appeared to reflect
differences in LDLR expression with apparent mechanistic
differences between breast and thigh.

Figure 5: A Contradictorily Indexed Article (Cui et al.,
2010). MeSH term China is annotated to this article,
while not to a similar one at Figure 4.
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6 Conclusions

We present AttentionMeSH, an automatic MeSH
indexer, which is simple and interpretable. It
also achieves comparable performance to the cur-
rent state-of-the-art. Since even the state-of-the-
art model has only about 0.69 by MiF metric,
manual annotations are still required. Thus, in-
terpretability of the models is vital. We evaluate
the interpretability of AttentionMeSH by retriev-
ing capability of experts-labeled relevant words.
Our model achieves high performance by this task.
To the best of our knowledge, AttentionMeSH is
the only interpretable model for indexing MeSH
which has close to state-of-the-art performance.
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Abstract

The growing number of biomedical publica-
tions is a challenge for human researchers,
who invest considerable effort to search for
relevant documents and pinpointed answers.
Biomedical Question Answering can automat-
ically generate answers for a user’s topic or
question, significantly reducing the effort re-
quired to locate the most relevant information
in a large document corpus. Extractive sum-
marization techniques, which concatenate the
most relevant text units drawn from multiple
documents, perform well on automatic evalu-
ation metrics like ROUGE, but score poorly
on human readability, due to the presence of
redundant text and grammatical errors in the
answer. This work moves toward abstractive
summarization, which attempts to distill and
present the meaning of the original text in a
more coherent way. We incorporate a sen-
tence fusion approach, based on Integer Lin-
ear Programming, along with three novel ap-
proaches for sentence ordering, in an attempt
to improve the human readability of ideal an-
swers. Using an open framework for config-
uration space exploration (BOOM), we tested
over 2000 unique system configurations in or-
der to identify the best-performing combina-
tions for the sixth edition of Phase B of the
BioASQ challenge.

1 Introduction

Human researchers invest considerable effort
when searching very large text corpora for answers
to their questions. Existing search engines like
PubMed (Falagas et al., 2008) only partially ad-
dress this need, since they return relevant docu-
ments but do not provide a direct answer for the
user’s question. The process of filtering and com-
bine information from relevant documents to ob-
tain an ideal answer is still time consuming (Tsat-
saronis et al., 2015). Biomedical Question An-
swering (BQA) systems can automatically gen-
erate ideal answers for a user’s question, signif-

∗denotes equal contribution

icantly reducing the effort required to locate the
most relevant information in a large corpus.

Our goal is to build an effective BQA system to
generate coherent, query-oriented, non-redundant,
human-readable summaries for biomedical ques-
tions. Our approach is based on an extractive BQA
system (Chandu et al., 2017) which performed
well on automatic metrics (ROUGE) in the 5th
edition of the BioASQ challenge. However, ow-
ing to the extractive nature of this system, it suf-
fers from problems in human readability and co-
herence. In particular, extractive summaries which
concatenate the most relevant text units from mul-
tiple documents are often incoherent to the reader,
especially when the answer sentences jump back
and forth between topics. Although the existing
extractive approach explicitly attempts to reduce
redundancy at the sentence level (via SoftMMR),
stitching together existing sentences always ad-
mits the possibility of redundant text at the phrase
level. We improve upon the baseline extractive
system in 3 ways: (1) re-ordering the sentences
that are selected by the extractive algorithm; (2)
fusing words and sentences to form a more hu-
manireadable summary; and (3) using automatic
methods to explore a much larger space of system
configurations and hyperparameter values when
optimizing system performance. We hypothesize
that the first two techniques will improve the co-
herence and human readability, while the third
technique provides an efficient framework for tun-
ing these approaches in order to maximize auto-
matic evaluation (ROUGE) scores.

2 Overview of Baseline System
Architecture

In this section, we provide a brief layout of our
baseline system, which achieved the top ROUGE
scores in the final test batches of the fifth edition
of BioASQ Challenge (Chandu et al., 2017). This
system includes baseline modules for relevance
ranking, sentence selection, and sentence tiling.

The baseline relevance ranker performs the fol-
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lowing steps: 1) Expand concepts in the original
question using a metathesaurus, such as UMLS
(Bodenreider, 2004) or SNOMEDCT (Donnelly,
2006); and 2) calculate a relevance score (e.g.
Jaccard similarity) for each question/snippet pair
(to measure relevance) and each pair of gener-
ated snippets (to measure redundancy). The base-
line sentence selection model used the Maximal
Marginal Relevance (MMR) algorithm (Carbonell
and Goldstein, 1998), which iteratively selects an-
swer sentences according to their relevance to the
question and their similarity to sentences that have
already been selected, until a certain number of
sentences have been selected. The baseline sen-
tence tiling module simply concatenates selected
sentences up to a given limit on text length (200
words), with no attempt to module or improve the
coherence of the resulting summary.

The baseline system achieved high ROUGE
scores, but performed poorly on the human read-
ability evaluation in BioASQ 2017. In order to im-
prove human readability, we first developed sev-
eral post-processing modules, such as sentence re-
ordering and sentence fusion, which will be dis-
cussed in detail in following sections.

3 Sentence Ordering

3.1 Motivation
As discussed in Section 1, we tried to improve
upon the Soft MMR system (Chandu et al., 2017).
This pipeline assumes the relevance to be a proxy
for ordering the selected sentences to generate the
final summary. On the other hand, it does not take
into account the flow and transition of sentences
to build a coherent flow between these sentences.
Since the maximum length of the answer is 200
words (as imposed by the guidelines of the compe-
tition), this system optimizes on selecting the most
non-redundant query relevant sentences to maxi-
mize the ROUGE score. In this section, we focus
on different types of sentence ordering that lead to
more coherent answers.

3.2 Algorithms and Techniques
3.2.1 Similarity Ordering
The intuition behind the Similarity Ordering al-
gorithm is that sentences that have similar con-
tent should appear consecutively so that the gener-
ated answer is not jumping back and forth between
topics. Our implementation is based on work by
Zhang (2011), which discusses the use of similar-
ity metrics at two levels - first to cluster sentences,
and then to order them within a cluster - which
can lead to big improvements in coherency and
readability. We apply this approach to the BQA

domain, where we cluster our set of candidate an-
swers using k-means with k = 2. We then or-
der the sentences within each cluster, starting with
the candidate sentence nearest to the centroid of its
cluster and working outward. The intuition is that
the most central sentence will contain the largest
number of tokens shared by all the sentences in
the cluster, and is therefore likely to be the most
general or comprehensive sentence in the cluster.
This supports our goal of an ideal answer that be-
gins with a broad answer to the question, followed
by specifics and supporting evidence from the lit-
erature.

In Figure 1a we see that the order of the sen-
tences that appear in the final answer is completely
independent of their ordering in the original snip-
pets.

3.2.2 Majority Ordering
The Majority Ordering algorithm Barzilay and El-
hadad (2002) makes two main assumptions that
are quite reasonable: sentences coming from the
same parent document should be grouped to-
gether, and the most coherent ordering of a group
of sentences is how they were presented in their
parent document. Topically, it is logical that
sentences drawn from the same parent document
would be similar. Grammatically and syntacti-
cally, it is logical that the sentences may be struc-
tured in a way such that maintaining an invariant
ordering would augment human comprehension.

Specifically, the Majority Ordering algorithm
groups sentences by their parent document and
then orders the blocks by the ranking of the high-
est ranked sentence in a block. Figure 1 illustrates
the differences between Similarity Ordering, Ma-
jority Ordering, and Block Ordering. The color of
each sentence unit indicates the document it was
selected from, and the suffix indicates the rele-
vance score of that unit within the document.

3.2.3 Block Ordering
Intuitively, the Block Ordering algorithm is an
amalgamation of the Similarity Ordering and Ma-
jority Ordering algorithms. The Block Ordering
algorithm has two primary components. The first
component involves grouping the sentences into
blocks based on their parent document. This step
is shared between the Block Ordering algorithm
and the Majority Ordering algorithm. The second
step involves ordering the grouped blocks of text.

The algorithm for ordering the blocks of texts
combines document heuristics with our Similar-
ity Ordering algorithm. We first order the blocks
by their length (the number of sentences in teh
block). For blocks of equal length, we calculate
the similarity of each block with the last fixed sen-
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tence. Hence, given the last sentence of the pre-
ceding block, we select the next block first by
its length, and then by the similarity of the block
with the preceding sentence. If there is no single
longest block to begin the answer, then we select
the longest block that is most similar to the en-
tire answer. This algorithm is tuned for specific
goals with respect to human comprehension and
readability. Grouping the sentences into blocks
is done to maximize local coherence. The use of
block length as an ordering heuristic is done to or-
der topics by relevance. Finally, ordering blocks
of equal length by similarity to the preceding sen-
tence is done to maximize sentence continuity and
fluidity.

In Figure 1c the green block is ordered first be-
cause it is the longest. The blue block is ordered
second because it has the highest similarity score
with sentence 3.4. The yellow block is ordered
third because it has a higher similarity with sen-
tence 2.2, and the red block is thus last.

3.3 Quantitative Analysis
To evaluate our approaches, we performed a man-
ual analysis of 100 different answers, ordered by
each of our proposed ordering algorithms (see Ta-
ble 1). We rate each ordering as ‘reasonable’ or
‘unreasonable’. Note that this rating does not pass
judgment on the correctness of the answer, since
it is designed for a comparative analysis at the
module level (i.e. to compare ordering approaches
rather than content selection).

Algorithm Reasonable Unreasonable
Baseline 59 41
Similarity Ordering 55 45
Majority Ordering 71 29
Block Ordering 75 25

Table 1: Manual evaluation of sentence ordering

3.4 Qualitative Analysis
Because sentence ordering in the baseline system
is based solely on question-answer relevance, we
identified two major issues: global coherence and
local coherence.

The global coherence issue is generally a prob-
lem of layout and cohesiveness. An ideal answer
would begin with a broad answer to the ques-
tion and move into more specific details and any
available evidence to support the answer. Further,
an ideal answer should not be hopping back and
forth between topics and should stick to one be-
fore moving on to another. The baseline system
did a decent job of beginning with a broad answer
to the question because the input sequence is or-
dered by their relevance score. However after the

first sentence, answers tended towards redundant
information and divergent trains of thought.

The local coherence issue has more to do with
the semantics of the sentence and grammatical re-
strictions of the language. For instance, language
like ‘There was also’ should not appear as the first
sentence in an answer because this makes no sense
logically. Additionally certain words like ‘Fur-
thermore’ indicate that the content of the sentence
is highly dependent on the content of the preced-
ing sentence(s), and this dependency is frequently
broken by the baseline ordering approach.

3.4.1 Similarity Ordering
We found that the Similarity Ordering performed
poorly; only 55 of 100 answers were deemed ‘rea-
sonable’. We believe that this is due to the high de-
gree of similarity between the candidate sentences
in our domain. Because the candidate sentences
are so similar to each other, the results of cluster-
ing are highly variant and appeared to be almost
arbitrary at times. All the sentences contain sim-
ilar language and key phrases that makes it diffi-
cult to create meaningful sub-clusters. Addition-
ally, one of the biggest problems with our system
is due to the sentences that began with phrases like
‘However’ and ‘Furthermore’ that place strict re-
quirements on the content of the preceding sen-
tence. This was particularly problematic for the
Similarity Ordering algorithm which has no mech-
anism for making sure that such sentences are
placed logically with their dependent sentences.
The Similarity Ordering algorithm does perform
relatively well in creating logical groups of sen-
tences that cut down on how often an answer is
jumping from one topic to another. Additionally
these groups are ordered well, beginning with the
more general of the two and then finishing with
specifics and a presentation of the supporting data.
However, we note that the problems with local co-
herence greatly outweigh the strengths in global
coherence since a good answer can still be coher-
ent, even if the organization could be improved,
whereas if local coherence is poor, then the answer
becomes nonsensical.

3.4.2 Majority Ordering
The Majority Ordering algorithm proved to be a
successful method for ordering sentences, where
71 out of 100 answers were deemed ‘reasonable’.
The Majority Ordering displayed very strong lo-
cal coherence, which confirms the hypothesis that
sentences should likely be kept in their original or-
dering to maximize human readability and coher-
ence.

However, this algorithm faced issues with
global coherence. It produced answers that start
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     (a)                                                         (b)                                                         (c) 

Figure 1: (a) Similarity Ordering (b) Majority Ordering (c) Block Ordering

with a relevant topic more often than not; however,
after the initial block, it struggled to smoothly
transition from one block to the next. This is
consistent with expectations for the Majority Or-
dering algorithm. The block with highest rated
sentence is ordered first, which explains why the
first block is frequently the most topically rele-
vant. After the initial block placement, however,
the algorithm makes no explicit attempts to man-
age or smooth transitions between blocks. Com-
pared with the other two algorithms, this is where
the Majority Ordering algorithm displays its poor-
est performance. It performs strongly when order-
ing sentences within a block, enforcing local co-
herence so that sentences beginning with language
such as ‘Finally’, ‘Lastly’, ‘Therefore’, etc. fol-
lowed a related sentence that satisfied the sequen-
tial dependency.

3.4.3 Block Ordering
The Block Ordering algorithm produced the best
answers, with 75 out of 100 answers ranked as
‘reasonable’. This is consistent with our expecta-
tions, as the Block Ordering algorithm effectively
combines the strongest aspects of the Majority Or-
dering and Similarity Ordering algorithms. With
respect to local coherence, this algorithm displays
similar performance when compared to the Major-
ity Ordering algorithm, while displaying stronger
coherence between blocks (due to the use of a sim-
ilarity metric to order blocks). This algorithm also
displayed the strongest global coherence, which
is likely due to first grouping the sentences into
blocks and then ordering them.

This algorithm displayed one core weakness,
which is its inability to identify high-quality open-
ing sentences. This is due to the usage of block
length as a heuristic for topic relevance. While in
the majority of cases this heuristic proved to be
successful, accounting for these outliers may sig-
nificantly improve the performance of the Block
Ordering algorithm. We note that the Block order-
ing algorithm performed well in producing high-
quality, coherent answers; although the develop-

ment of coherence models and measures is not the
main focus of this paper, we can see that Block Or-
dering performs the best with respect to the simple
coherence evaluation we conducted.

4 Sentence Fusion

An observed weakness of the original system is
that the generated summaries often contain highly
repetitive information. While MMR is added in
the pipeline to deal with redundancy and maxi-
mize the diversity of covered information, extrac-
tive summarization still picks entire sentences that
may partially overlap with a previously selected
sentence. To tackle this problem, we introduce
sentence fusion as a way to identify common in-
formation among sentences and apply simple ab-
stractive techniques over the baseline extractive
summaries.

4.1 Methodology
Given a set of candidate sentences generated by
the pipeline for each summary, the sentence fusion
module operates in two steps: 1) the candidate set
is expanded to include fused sentences, and 2) sen-
tences are selected from the expanded set to pro-
duce a new summary.

4.1.1 Expansion of Candidate Set
To generate fused sentences, we begin by building
upon previous work on multiple-sentence com-
pression (Filippova, 2010), in which a directed
word graph is used to express sentence struc-
tures. The word graph is constructed by itera-
tively adding candidate sentences. All words in
the first sentence are added to the graph by cre-
ating a sequence of word nodes. A word in the
following sentence is then mapped onto an exist-
ing word node if and only if it is the same word,
with the same part of speech. Our assumption is
that a shared node in the word graph is likely to
refer to the same entity or event across sentences.

We then find a K-possible fused sentence by
searching for the K-shortest path within the word
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graph. Definition of the edge weights follows from
the original paper (Filippova, 2010):

w(eij) =

freq(i)+freq(j)∑
s∈S diff(s,i,j)−1

freq(i) × freq(j)

where diff(s, i, j) is the difference between the
offset positions of word i and j in sentence s. Intu-
itively, we want to promote a connection between
two word nodes with close distance, and between
nodes that have multiple paths between them. We
also prefer a compression path that goes through
the most frequent no-stop nodes to emphasize im-
portant words.

When applying the sentence fusion technique
to the BioASQ task, we first pre-process the can-
didate sentences to remove transition words like
‘Therefore’ and ‘Finally’. Such transition words
may be problematic because they are not neces-
sarily suitable for the new logical intent in fused
sentences, and may break the coherence of the fi-
nal answer. We also constrain fusion so that the
fused sentences are more readable. For instance,
we only allow fusing of pairs of sentences that
are of proper length, in order to avoid generating
overly complicated sentences. We also avoid fus-
ing sentences that are too similar or too dissimilar.
In the first case, information in the two sentences
is largely repetitive, so we simply discard the one
containing less information. In the latter case, fus-
ing two dissimilar sentences more likely confuses
the reader with too much information rather than
improving the sentence readability. Finally, we
add a filter to discard ill-formed sentences, accord-
ing to some hand-crafted heuristics.

4.1.2 Selecting Sentences from Candidate Set
The next step is to select sentences from the can-
didate set and produce a new summary. An Inte-
ger Linear Program (ILP) problem is formulated
as follows, according to (Gillick and Favre, 2009):

max
y,z

N∑

i=1

wizi, such that
M∑

j=1

Aijyj ≥ zi, Aijyj ≤ zi,

M∑

j=1

ljyj ≤ L, yj ∈ {0, 1}, zi ∈ {0, 1}

In the equation, zi is an indicator of whether
concept i is selected into the final summary, and
wi is the corresponding weight for the concept.
The goal is to maximize the coverage of impor-
tant concepts in a summary. During the actual ex-
periments, we assign diminishing weights so that
later occurrences of an existing concept are less
important. This forces the system to select a more

diverse set of concepts. We follow the convention
of using bigrams as a surrogate for concepts (Tay-
lor Berg-Kirkpatrick and Klein, 2011; Dan Gillick
and Hakkani-Tur, 2008), and bigram counts as ini-
tial weights. Variable Aij indicates whether con-
cept i appears in sentence j, and variable yj indi-
cates if a sentence j is selected or not.

4.2 Discussion

Table 2 shows the results of different configura-
tions of the ordering and fusion algorithms (Rows
1 - 4, Row 7, Row 9). Though the overall ROUGE
score drops slightly from 0.69 to 0.61 after sen-
tence fusion with the ILP-selection step, this is
still competitive with other systems (including the
baseline). The sentence re-ordering does not di-
rectly impact the ROUGE scores.

We manually examined the fused sentences for
50 questions. We found that our sentence fusion
technique is capable of breaking down long sen-
tences into independent pieces, and is therefore
able to disregard irrelevant information. For ex-
ample, given a summary containing the original
sentence:
‘Thus, miR-155 contributes to Th17 cell function by sup-
pressing the inhibitory effects of Jarid2. (2014) bring mi-
croRNAs and chromatin together by showing how activation-
induced miR-155 targets the chromatin protein Jarid2 to reg-
ulate proinflammatory cytokine production in T helper 17
cells.’
our fusion technique is able to extract important
information and formulate it into complete sen-
tences, producing a new summary containing the
following sentence:
‘Mir-155 targets the chromatin protein jarid2 to regulate
proinflammatory cytokine expression in th17 cells.’

The fusion module is also able to compress mul-
tiple sentences into one, with minor grammatical
errors. For example:
Sentence 1: ‘The RESID Database is a comprehensive col-
lection of annotations and structures for protein post-trans-
lational modifications including N-terminal, C-terminal and
peptide chain cross-link modifications[1].’

Sentence 2: ‘The RESID Database contains supplemen-
tal information on post-translational modifications for the
standardized annotations appearing in the PIR-International
Protein Sequence Database[2]’
our approach produces the fused sentence:
‘The RESID Database contains supplemental information on
post-translational modifications[1] is a comprehensive col-
lection of annotations and structures for protein post-trans-
lational modifications including N-terminal, C-terminal and
peptide chain cross-link modifications[2].’

However, the overall quality of fused sentences
is not stable. As shown in Figure 2, around 25%
of the selected sentences in final summaries are
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Method Rouge-2 Rouge-SU4 Avg Precision Avg Recall Avg F1 Avg Length
1 Baseline System 0.6948 0.6890 0.2297 0.8688 0.3207 173.31
2 MMR + Order 0.6291 0.6197 0.2758 0.8118 0.3633 140.39
3 MMR + Fusion 0.6183 0.6169 0.2783 0.8094 0.3687 139.24
4 MMR + Relevance + Order 0.6357 0.6256 0.2728 0.8124 0.3606 143.55
5 MMR + Relevance + Order + Post 0.6215 0.6126 0.2788 0.8111 0.3668 139.10
6 MMR + Relevance + Order + Fusion + LM 0.6114 0.6042 0.2775 0.8113 0.3682 141.21
7 MMR + Relevance + Order + Fusion 0.6213 0.6101 0.2686 0.8099 0.3579 143.94
8 MMR + Relevance + Order + Fusion + Post 0.6017 0.5932 0.2775 0.8091 0.3653 140.38
9 MMR + Fusion + Order 0.6223 0.6159 0.2840 0.8181 0.3745 138.79
10 MMR + Fusion + Relevance + Order 0.6257 0.6214 0.2825 0.8193 0.3730 139.73
11 MMR + Fusion + Relevance + Order + Post 0.6149 0.6096 0.2886 0.8126 0.3768 136.43
12 Fusion + MMR + Relevance + Order 0.6112 0.6103 0.2837 0.8211 0.3723 142.11
13 Fusion + MMR + Relevance + Order + Post 0.6048 0.6040 0.2898 0.8143 0.3789 137.78

Table 2: Performance of different module combinations on Test Batch 4, BioASQ 4th edition.

Figure 2: Quality of Fused Sentences

fused. Among the fused sentences, 47% improved
the overall readability by reducing redundancy and
repetition. 5% of the sentences have improved
readability with minor grammatical errors, such as
a missing subordinate conjunction or superfluous
discourse markers. 8% of the fused sentences did
have an appreciable effect on readability. How-
ever, a large number of fused sentences (around
26 %) were not coherent and degraded the quality
of the answer.

5 Further Improvements

In order to further improve the performance of our
system, we made a few modifications to each mod-
ule in the system, and improved the overall archi-
tecture of the module pipeline:
• Modification of System Architecture: We in-
tuited that the ILP process in the sentence fusion
model could not handle a very large number of
candidate inputs, producing a lot of (redundant,
similar) fused sentences. In order to resolve this
problem, we removed the ILP model from the sen-
tence fusion step, and moved the sentence fusion
step before the sentence selection module (Rows
12-13), so that the MMR algorithm in the sentence
selection module could take care of eliminating re-
dundant fused sentences.
• Modifications to Sentence Selection Module

and Relevance Ranker: For the sentence se-
lection module, we modified the original MMR
model. The original MMR model selected a fixed
number of sentences, which naturally introduced
repetition. In order to reduce repetition, we built a
so called ‘Early-Stop MMR’ which stops selecting
sentences when maximum overlap score grows
beyond a certain threshold and minimum rele-
vance score drops down below another threshold
(Rows 4-8).

For the relevance ranker, we explore an alterna-
tive similarity metric ((Row 6). The Query Like-
lihood Language Model (Schütze et al., 2008) is
widely used in information retrieval. We formu-
lated the relevance ranking procedure as an in-
formation retrieval problem and used a language
model, so that long sentences would get higher
penalty.
• Post-Processing: To further reduce repetition,
we add an additional filter before final concatena-
tion by iteratively adding the selected sentences to
the final output, and discarding a sentence if it is
too similar to the existing summary (Rows 8,11
and 13se).

6 Configuration Space Exploration

Configuration Space Exploration (CSE) is the
technique of trying different combinations of con-
figurations of all modules to find the best config-
uration (Yang et al., 2013; Yang, 2016). We used
the BOOM framework to explore and optimize the
space of hyperparameters and module configura-
tions. We explored 2,268 unique configurations of
three different hyperparameters: α, used for the
MMR module; k, used for the clustering-based
Ordering module; and a token limit, used in the
Tiling module. Figure 3 shows the pipeline struc-
ture we used.

• Alpha: This parameter of the MMR module
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Question Which syndrome is associated with mutant DVL1?
Ideal Answer Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.

1 MMR + Relevance
+ Order + Fusion

We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. DVL1
frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow
syndrome. Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.

2 MMR + Relevance
+ Fusion + Order

Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. DVL1 frameshift
mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.
We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins.

3 Fusion + MMR +
Relevance + Or-
der + Post

DVL1 frameshift mutations in DVL1 cause an osteosclerotic form of Robinow syndrome.
We identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-
canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three
unrelated individuals. Argeted Sanger sequencing in additional subjects with DRS uncovered
DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins.

Table 3: System performance comparing Fusion + Ordering and Ordering + Fusion

Figure 3: Structure of the CSE pipeline.

controls the trade-off between snippet similarity
to the question and snippet similarity to already
selected snippets. In our experiments alpha was
varied between 0 and 1 at intervals of .05. We
have found that the ideal value for alpha is 0.1.

• Number of Clusters: The k in the Ordering
module controls the number of clusters used to
order the snippets for the clustering-based Sen-
tence Ordering algorithms. A small k value
produces few, general clusters, while a large
k value produces many highly specific clusters
with the danger of creating clusters that are ac-
tually meaningless or having many clusters that
contain a single sentence. In our experiments, k
was tested at values from 2 to 10. Although the
effect on Rouge score was very small, we have
found that the ideal value for k is 3. A caveat
to this result is that we are measuring the effect
hyperparameter k has on the final Rouge scores
achieved by the system. Since the purpose of k
is to assist in sentence ordering, not precision or
recall, we would expect that adjusting k would
have a negligible impact on the Rouge score.
Further parameter tuning is needed in cases like
this where the primary effect of the parameter is
not easily captured by Rouge.

• Token Limit: The token limit is used by the
Tiling module to set a maximum number of al-
lowed tokens in the answer. If the cumulative

token count of the selected snippets exceeds the
token limit then sentences will be removed from
the end of the final answer until the token limit
is satisfied. In our experiments the token limit
was tested at values from 25 to 300 in incre-
ments of 25. We have found that the ideal value
for the token limit is 100.

The two distinct clusters found in the histogram
shown in Figure 4 are entirely explained by the
token limit. All scores less than 0.27 were ob-
tained by configurations where the token limit was
set to 25. The rest of the scores, all above 0.28
were obtained by configurations where the token
limit was greater than or equal to 50. In addi-
tion to the Rouge score penalty for extremely low
token limits, we observed a significant, though
much smaller, penalty for token limits of 150 and
greater.

7 Results

7.1 Analysis: Effects of Individual Modules
Table 2 shows the results of extensions to the base-
line system. Two systems are highlighted (Rows 5
and 10)), as they give the most balanced results
between the quality of retrieved information and
conciseness: one system performs sentence selec-
tion, then ranks sentences prior to ordering by rel-
evance, and applies the additional post-processing
step (Row 5); the other system performs sentence
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Figure 4: Distribution of Rouge scores across all
hyperparameter configurations.

selection, fusion, and then ranks sentences prior
to ordering without the post-processing step (Row
10).

Rows 5, 8, 11 and 13 show the effectiveness
of the additional post-processing step. Overall,
this procedure is able to reduce the answer length,
while preserving important information. We ob-
served that the post-processing step is less effec-
tive when fusion is performed after MMR. This
is because in these settings, there is an additional
sentence selection step in the fusion module us-
ing integer linear programming that forces the se-
lected sentences to be diverse. In all other set-
tings, including when fusion is performed prior
to MMR, we only have one sentence selection
step. Since MMR iteratively selects sentences ac-
cording to both similarity and relevance, the last
selected ones may be informative but repetitive.
Row 6 shows our experiments with language mod-
eling; the language model gives a higher penalty to
longer sentences, which produces shorter but less
informative results.

7.2 Analysis: Impact of System Architecture
Exploring the performance of systems using dif-
ferent architectures, we observed that systems
with fusion prior to ordering can generate more
logically coherent summaries. Table 3 shows an
example. All underlined sentences express the
same fact that DVL1 is the cause of Robinow syn-
drome. In Row 1, where fusion is performed af-
ter ordering, there is a sentence that serves like
an explanation between the underlined sentences,
which breaks the logical coherence. In Row 2
and Row 3 where ordering is performed after fu-
sion, the generated answers demonstrate better co-
herence: All underlined sentences are placed to-
gether, following by the explanation; The opening
sentences are also more concise and more directly
related to the question.

We also experimented with architectures where
the fusion module is run prior to MMR, and MMR

is used as the only sentence selection step. In these
systems, MMR receives many fused sentences that
overlap and complement each other at the same
time, because all similar sentences are fused prior
to sentence selection. As a result, such architec-
tures sometimes produce summaries that are more
repetitive compared to others.

8 Conclusion and Future Work

Though extractive summarization techniques can
be developed to maximize performance as mea-
sured by evaluation metrics like ROUGE, such
systems suffer from human readability issues as
mentioned above. In this paper we attempted
to combine extractive techniques with simple ab-
stractive extensions, by extracting the most rel-
evant non-redundant sentences, re-ordering and
fusing them to make the resulting text more
human-readable and coherent. Using an initial set
of 100 candidate answer sets, we experimented
with different ordering algorithms such as Simi-
larity, Majority and Block Ordering, and identified
that Block Ordering performs better the others in
terms of global and local coherence. We then in-
troduced an Integer Linear Programming based fu-
sion module that is capable of not only fusing re-
peated content, but also breaks down complicated
sentences into simpler sentences, thus improving
human readability. The improved baseline system
achieved a ROUGE-2 of 0.6257 and ROUGE-SU4
of 0.6214 on test batch 4 of BioASQ 4b. We ac-
knowledge that providing immediate human feed-
back during the BioASQ competition is manually
expensive, although this would greatly help in tun-
ing our systems. We were able to perform a man-
ual evaluation on a sub-sample of the data, in order
to introduce the use of human evaluation during
system development. We also incorporated an au-
tomatic evaluation framewook (BOOM) which al-
lowed us to test many different system configura-
tions and hyperparameter values during system de-
velopment. As BOOM is completely general and
can be applied to any pipeline of Python modules,
this adaptation was relatively straightforward, and
allowed us to automatically test more than 2,000
different system configurations.

In the future, we would like to explore pa-
rameter tuning for sentence ordering using hu-
man evaluation metrics. There are several addi-
tional refinements (abstractions) of the extracted
sentences which rely on simple post-processing or
text cleaning methods which could be performed
before sentences are passed to the fusion module.
Another interesting direction that we would ex-
plore is the possibility of automatically predicting
reasonable sentence orderings.
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Abstract

In this paper, we detail our submission to
the BioASQ competition’s Biomedical Se-
mantic Question and Answering task. Our sys-
tem uses extractive summarization techniques
to generate answers and has scored highest
ROUGE-2 and Rogue-SU4 in all test batch
sets.

Our contributions are named-entity based
method for answering factoid and list ques-
tions, and an extractive summarization tech-
niques for building paragraph-sized sum-
maries, based on lexical chains. Our sys-
tem got highest ROUGE-2 and ROUGE-SU4
scores for ideal-type answers in all test batch
sets.

We also discuss the limitations of the de-
scribed system, such lack of the evaluation on
other criteria (e.g. manual). Also, for factoid-
and list -type question our system got low
accuracy (which suggests that our algorithm
needs to improve in the ranking of entities).

1 Introduction

Most of the recent question answering (QA) sys-
tems produce either factoid type answers (typ-
ically, a phrase or a short sentence) or a summary
(typically, returning a few sentences or passages
from the text). Creating a natural language an-
swer from relevant passages is still an open prob-
lem. Our paper presents is also about providing
factoid and summary answers in BioASQ.

BioASQ is a research competition which is
organized by tracks in the biomedical domain.
Namely, large-scale online biomedical semantic
indexing, biomedical semantic question answer-
ing, and information extraction from biomedical
literature.

The biomedical QA task is organized in two
phases. Phase A deals with retrieval of the relevant
document, snippets, concepts, and RDF triples,

and phase B deals with exact and ideal answer
generations. Exact answer generation is required
for factoid, list, and yes/no type question.
ideal answer is required for all the question. An
ideal answer is a paragraph-sized summary of
snippets.

BioASQ competition provides the train and test
dataset. The training dataset consists of questions,
golden standard documents, concepts, and ideal
answers. The test dataset is split between phase A
and phase B. The phase A dataset consists of the
questions, unique ids, question types. The phase B
dataset consists of the questions, golden standard
documents and snippets, unique ids, and question
types. Exact answers for factoid type ques-
tions are evaluated using strict accuracy, lenient
accuracy, and MRR (Mean Reciprocal Rank). An-
swers for the list type question are evaluated
based on precision, recall, and F-measure. ideal
answers are evaluated using automatic and man-
ual scores. Automatic evaluation scores consist of
ROUGE-2 and ROUGE-SU4 and manual evalua-
tion is done by measuring readability, repetition,
recall, and precision.

Summary of our results. In this paper, we
present our submission for BioASQ competi-
tion. We describe two methods, evaluated on two
BioASQ tasks: ideal answer and factoid
type questions. Both methods use conceptual rep-
resentations based on MetaMap and UMLS.

We compute answers by choosing sentences
with the concept chains that are similar to concepts
in the question. In factoid questions, addition-
ally, our method selects the entities with the high-
est idf scores.

The first method obtains the best rank for test
batch 2,3 and 5 of Phase B of Task 6B. The second
method was evaluated on previous year tests with
mediocre results.
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2 Related Work

Previous submissions to BioASQ show different
approaches by teams taken for answering ideal,
factoid, list and yes/no questions. OAQA
systems(Chandu et al., 2017) use extractive sum-
marization technique for answering ideal ques-
tions. They have used agglomerative clustering al-
gorithm for similar sentence selection and MMR
(Maximal Marginal Relevance) as a sentence sim-
ilarity measure. Olelo (Neves et al., 2017) pro-
poses a system for getting yes/no, factoid,
list and summary type question. For sum-
mary based questions, the system selects snip-
pets with greatest semantic similarity to question.
For factoid and list type questions, they se-
lect an answer, based on matching predicates, and
for yes/no question, they do sentiment analy-
sis. (Aliod, 2017) have submitted the system for
ideal answers only. They propose an extractive
summarization approach that does sentence seg-
mentation, ranks the sentences based using a scor-
ing function, and return the top n sentences as the
answer.

(Sarrouti and Alaoui, 2017) describes a sys-
tem which retrieves snippets from relevant doc-
uments, re-ranks using BM25 model and finally
concatenates top two snippets. For factoid and
list type, their system extracts biomedical enti-
ties from relevant snippets, ranks them based on
their frequency, and return top n. For yes/no
they use sentiment analysis.

(Wiese et al., 2017) proposes a deep learn-
ing based approach to answering the factoid
and list type question. The system is based
on FastQA (Weissenborn et al., 2017), which
is trained on SQUAD dataset and fine-tuned on
BioASQ dataset to select a substring in relevant
snippets as the final answer.

Other non-BioASQ systems that are capable of
question answering include IMB’s Watson (Fer-
rucci, 2012). The Watson system is an open
domain question answering system that won the
TV game-show Jeopardy! in 2011. The system
worked by pipelining different components like
question decomposition, hypothesis generation,
hypothesis and evidence scoring, and answer gen-
eration. A more recent approach using deep learn-
ing is dynamic memory networks(Kumar et al.,
2015). It uses the SQUAD dataset and simulates
episodic memory using recurrent neural networks;
it can also answer questions that require transi-

tive reasoning. The SQUAD dataset is a reading
comprehension dataset that requires the system to
find a segment of text as the answer for a given
question. Most of the systems based on SQUAD
dataset are factoid answering system, and do not
generate natural language answers.

Figure 1: Our summary type question pipeline. The
input is a list of snippets and the biomedical entity iden-
tification is done using MetaMap and UMLS.

Figure 2: factoid and list type question pipeline.
The input is a list of snippets and the biomedical entity
identification is done using MetaMap and UMLS. The
entities are scored using frequency, idf, and sentence
similarity score.

3 Our Question Answering Pipeline

3.1 Ideal Answer

For ideal question type, we use extractive sum-
marization to generate the answer. The word limit
of the ideal answer is 200 words. Our extrac-
tive summarization pipeline is inspired by lexical
chaining.
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3.1.1 Lexical Chaining
Lexical chaining is a technique for identifying se-
mantically related words that represent the con-
cept or the semantic meaning of a sentence. A lex-
ical chain does not describe the grammatical struc-
ture of a sentence. This technique has been used
for text summarization by ranking sentences with
similar ideas. Top sentences are then combined to
produce a final summary. They are also helpful in
word sense disambiguation (Okumura and Honda,
1994) by providing context to a term and cap-
turing concept represented by that term. (Xiong
et al., 2013) describes a lexical chain based ap-
proach for machine translation. Implementations
of the lexical chain approach vary based on their
applications. For example, (Reeve et al., 2006)
describes the use of lexical chains for biomedical
document summarization. Their technique uses a
chain of concepts found by mapping biomedical
terms to concepts using UMLS(Unified Medical
Language System). UMLS is a meta thesaurus for
biomedical terms. Once the concepts are found
the strongest chain is found by sorting the chains
based on a scoring function that takes into account
various factors like word frequency, distinct con-
cepts, word distance, and homogeneity. Finally,
top sentences are used to generate the final sum-
mary.

3.1.2 Our Approach
For ideal answers, we use extractive summa-
rization technique on relevant snippets. Our ex-
tractive summarization pipeline uses lexical chain-
ing for sentence similarity and ranking. We then
select the top N sentences such that the total num-
ber of words doesn’t exceed the 200-word limit,
and concatenate them to form the summary or
the final answer. In our algorithm, we first do
sentence segmentation on relevant snippets, and
pass each sentence through the MetaMap tool.
The MetaMap tool identifies all biomedical enti-
ties contained in the statement and returns the pre-
ferred name and semantic type for every biomedi-
cal entity.

For every sentence, we create a set C contain-
ing the semantic types of all biomedical terms in
the sentence. We also create a similar set S for
the question text. Next, we find the intersection
of set C of every sentence with the question set S
and assign a score as the number of intersecting
terms. We select the sentence with a maximum
score and add it to the summary list. We also aug-

ment the question set S by doing the union of set
C of the selected sentence with set S. We then
use the new set S to find intersection with set C
of remaining sentences. We repeat this procedure
until we reach 200-word limit. Finally, to generate
the summary, we concatenate the list of selected
sentences to create the final answer.

In terms of tools, we used Stanford CoreNLP
for snippet segmentation to get sentences. We use
custom code using the Java API to MetaMap to get
the concepts. MetaMap is also responsible for to-
kenizing, word sense disambiguation, connecting
to UMLS and getting all the required mappings.

3.2 factoid and list type answers

For factoid type questions we are required to
return a list of 5 entity names. The list type
questions need to return a list of at most 100 entity
names each of no more than 100 characters.

For answering the factoid type question, we
use a similar technique as the summary genera-
tion pipeline, with additional scoring factors, and
scoring at entity level, rather than sentence level.
For each sentence, we get a list of biomedical enti-
ties using MetaMap. We score each entity using a
scoring function that uses the entity frequency, the
idf weight (the inverse document frequency of that
entity), and the sentence similarity score found by
the intersection of semantic set C of that sentence
and question set S. Finally, we rank the list based
on the scores and select top 5 entities as the an-
swer for the factoid type question, and top 100
for the list type. We use the idf scores to elim-
inate common biomedical words or phrases. To
get the idf score we downloaded and indexed An-
nual Baseline Medline repository, PubMed, using
Lucene. We then use the Lucene indexes to get
the term frequency and document count to calcu-
late the idf score. For a multi-word entity, the idf
score is the maximum of the idf scores of the in-
dividual tokenized words. This way a biomedical
entity with even a single rare word will be ranked
higher.

4 Results

We submitted results of our system for Phase B
of task 6B. Phase B consisted of 5 test batches.
We submitted our results for test batches 2,3 and
5 for ideal answers. We also evaluated our sys-
tem on an older test batch sets using the BioASQ
oracle. ideal answers are manually assessed
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using readability, repetition, recall, and precision
and automatically by using ROUGE-2 and Rogue-
SU4 scores. At the time of submission we did not
have the manual scores; hence we only report the
automatic scores. Table 1 and 5 shows our results
on previous years dataset. As can be seen from
Table 2 our system gave highest ROUGE-2 and
ROUGE-SU4 scores among all systems on every
test batch set.

Test Batch ROUGE-2 ROUGE-SU4
Task 5B Batch 5 0.7188 0.7062
Task 5B Batch 4 0.7363 0.7258
Task 5B Batch 3 0.7802 0.7769
Task 5B Batch 2 0.6918 0.6903
Task 5B Batch 1 0.6716 0.6712
Task 4B Batch 5 0.7266 0.7250
Task 4B Batch 4 0.7196 0.7177
Task 4B Batch 3 0.6364 0.6527
Task 4B Batch 2 0.6777 0.6897
Task 4B Batch 1 0.6918 0.7024

Table 1: Results of ideal answers on task 4B and 5B
test batch sets using BioASQ oracle. The results are
arranged from most recent to least. The table shows
ROUGE-2 and ROUGE-SU4 scores.

For BioASQ task 6B, we submitted ideal an-
swers with summary created by selecting the only
top sentence and with 200 word limit. The sys-
tem that created the summary with 200 word limit
gave highest ROUGE-2 and ROUGE-SU4 scores
on every test batch set (2,3, and 5) that we submit-
ted. Table 2 details this results.

Test Batch Test
Batch

ROUGE-
2

ROUGE-
SU4

UNCC System 1 Task 6B
Batch 2

0.5833 0.6015

UNCC System 1 Task 6B
Batch 3

0.6184 0.6290

UNCC System 2 Task 6B
Batch 3

0.1973 0.1947

UNCC System 1 Task 6B
Batch 5

0.7250 0.7122

UNCC System 2 Task 6B
Batch 5

0.3846 0.3759

Table 2: Results of ideal answers on task 6B test
batch sets using BioASQ oracle. The table shows
ROUGE-2 and ROUGE-SU4 scores of UNCC System
1 and 2. UNCC System 1 submitted the summary cre-
ated with 200 word limit. UNCC System 2 submitted
summary created by selecting only top sentence.

For factoid and list type questions we did
not submit results for task 6B, and we only re-
port results from previous year’s test batch sets
using BioASQ oracle. Table 3 shows scores of

Test Batch Factoid
SAcc

Factoid
LAcc

Factoid
MRR

Task 5B Test
Batch 1

0.1200 0.1600 0.1333

Task 5B Test
Batch 2

0.0323 0.1290 0.0575

Task 5B Test
Batch 3

0.0385 0.0769 0.0462

Task 5B Test
Batch 4

0.0303 0.0909 0.0455

Task 5B Test
Batch 5

0.0571 0.1429 0.0786

Table 3: Result of factoid type question on task 5B
of BioASQ. The scores include the Lenient accuracy
LAcc, strict accuracy SAcc, and MRR(Mean Recipro-
cal Rank).

factoid type question and Table 4 shows scores
of list type questions.

Test Batch List
Mean
Preci-
sion

List Re-
call

List F-
measure

Task 5B Test
Batch 1

0.0241 0.3252 0.0441

Task 5B Test
Batch 2

0.0353 0.2700 0.0600

Task 5B Test
Batch 3

0.0195 0.3673 0.0367

Task 5B Test
Batch 4

0.0250 0.2051 0.0389

Task 5B Test
Batch 5

0.0391 0.2867 0.0630

Table 4: Result of list type question on task 5B of
BioASQ. The results are evaluated on Mean Precision,
Recall, and F-measure.

Test Batch ROUGE-2 ROUGE-SU4
Task 3B Batch 5 0.5651 0.5672
Task 3B Batch 4 0.5848 0.5950
Task 3B Batch 3 0.5994 0.6128
Task 3B Batch 2 0.5451 0.5674
Task 3B Batch 1 0.5240 0.5368
Task 2B Batch 5 0.3967 0.4180
Task 2B Batch 4 0.4201 0.4458
Task 2B Batch 3 0.4731 0.4754
Task 2B Batch 2 0.4075 0.4258
Task 2B Batch 1 0.5313 0.5326
Task 1B Batch 2 0.3319 0.3596
Task 1B Batch 1 0.3032 0.3276

Table 5: Results of ideal answers on task 3B, 2B and
1B test batch sets using BioASQ oracle. The results
are arranged from most recent to least. The table shows
ROUGE-2 and ROUGE-SU4 scores.

5 Discussion

In this section we discuss the limitations of our
work and address the reviewers comments not in-
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cluded in the revision of previous sections.
Our system was only evaluated by the ROUGE

scores. However, high ROUGE results do not
always imply good manual scores. In our ap-
proach we use the sentences of the passages with-
out any changes. Thus, as observed by one of
the reviewers, the manual score Repetition might
be high; neither it is clear what is the impact of
this approach on Readability. Furthermore, high
ROUGE scores could be a side effect of a situation
when the total number of words in all passages is
less than 200.

Our evaluation was only done on ROUGE, be-
cause while building the system we only had ac-
cess to old batch sets, and it was our first attempt
to participate in Phase B of this competition. This
said, our system tries to find the best candidate
answers, and then concatenates them. So, further
work needs to be done to convert the information
from candidate snippets to a natural language an-
swer that makes sense, and does not include any
irrelevant information. We hope to address in the
next year competition.

Regarding Repetition, our system first does sen-
tence segmentation to get a list of snippets. Some-
times the snippets are overlapping and can have
common sentences. Our system takes care of not
repeating these sentences. What the system lacks
is detecting sentences that are semantically simi-
lar and only consider one of them. Again – future
work.

Regarding Readability, our concatenation is
done such that each concatenated sentence is
separated by period, hence usually making a
coherent passage. Still the sentences might not
follow a particular flow, and this might affect the
readability score.

Another issue worth discussing is our approach
to scoring the candidate answers. First, while
scoring on the basis of term frequency is common,
we use it (like other systems do), but we combine
it with a summary pipeline score and the idf
score. Second, we would have gone for machine
learning techniques, but we felt we did not have
enough labeled data.

One can argue that MetaMap doesn’t always
capture the all biomedical entities. However, we
didn’t face this problem. Although expanding can-
didate answers to include noun phrases could pos-

sibly improve the recall in generating candidate
answers.

The OAQA system (Chandu et al., 2017) uses
extractive summarization techniques like our sys-
tem and the difference lies in sentence similar-
ity. Our extractive summarization algorithm also
shares similarity with Maximal Margin Relevance
(MMR) in that both get sentence relevance score
by comparing with question and other selected
sentences. Our extractive summarization tech-
nique gives us higher ROUGE score than OAQA.
Olelo system (Neves et al., 2017)and our system
have similar pipeline in generation of summary
and the only difference is in the way we do sen-
tence similarity.

For factoid and list type questions our
system does not perform well and the system can
be improved by introducing better ranking algo-
rithm, improved entity identification and filtering
(at this time we use idf score to find out very com-
mon entities), and better relevance score between
entity and the question.

6 Conclusion

In this paper, we showed our system’s extrac-
tive summarization technique using lexical chains,
or, more accurately, conceptual chains). We in-
troduced an extractive summarization techniques
for building paragraph-sized summaries. We have
seen that use of the set of semantic type has proved
very capable in ranking candidate answer sen-
tences. Our system got highest ROUGE-2 and
ROUGE-SU4 scores for ideal answers in all test
batch sets.

We also showed a method to answer factoid and
list type question. For these type of questions
our system got low accuracy, which suggests that
our algorithm needs to improve in ranking the en-
tities. We plan to address these and other issues in
future experiments.

Acknowledgment. We would like to thank the
referees for their comments and suggestions. All
the remaining faults are ours.
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Abstract

BIOASQ Task B Phase B challenge focuses on
extracting answers from snippets for a given
question. The dataset provided by the orga-
nizers contains answers, but not all their vari-
ants. Henceforth a manual annotation was per-
formed to extract all forms of correct answers.
This article shows the impact of using all oc-
currences of correct answers for training on the
evaluation scores which are improved signifi-
cantly.

1 Introduction

BIOASQ1 challenge is a large-scale biomedical
semantic indexing and question answering task
(Tsatsaronis et al., 2015) which has been success-
ful for 5 years. The challenge proposes several
tasks using Biomedical data. One of the tasks fo-
cuses on Biomedical question answering (Task B
Phase B - we further refer it as B) where the goal
is to extract answers for a given question from rel-
evant snippets.

Several teams have participated actively, and a
noticeable aspect is that the results of the task B
are much lower compared to open domain QA
evaluations, as in SQUAD2. Some reasons can be
the low dataset size and the format of the answers
provided by the organizers. Bioasq provides only
certain answer forms in the gold standard data and
not all the variants of the answers in the given snip-
pets.

In this paper, we study the influence of en-
riching the training data by manually annotated
variants of gold standard answers on the evalua-
tion performance. We show the impact of the en-
riched data by experimenting on 5B and 6B train-
ing datasets. Our method outperforms the best-

1http://bioasq.org/
2https://rajpurkar.github.io/SQuAD-explorer/

performing systems from Bioasq 5B by 7.3% on
strict accuracy and 18% on lenient accuracy.

2 Related Work

Several works in the past BIOASQ tasks have
used classical question answering pipeline archi-
tecture adapted to the biomedical domain. Some
use the domain-specific information from UMLS
tools such as Metamap (Schulze et al., 2016),
along with other NLP tools like Corenlp, LingPipe
(Yang et al., 2016). A typical question answering
pipeline consists of:

1. Question processing for question type detec-
tion and lexical answer type detection.

2. Document retrieval (Task B Phase A)

3. Answer extraction by answer re-ranking on
the candidate answers generated in the pre-
vious phases, done in a supervised learning
manner.

In the open domain, deep learning models are
extensively used in machine reading task. Datasets
such as MS Marco by (Nguyen et al., 2016),
SQUAD by (Rajpurkar et al., 2016) and Wikiread-
ing by (Hewlett et al., 2016) have made it eas-
ier for deep learning models to perform better on
machine reading task. One of the first attempts
to use deep learning algorithms for the Bioasq
task was reported in BIOASQ 5 by (Wiese et al.,
2017b) where the dataset was adapted to be used
as a machine reading dataset whose goal is to ex-
tract answers from snippets. The authors use a
model trained on open domain questions, and per-
form domain adaptation to biomedical domain us-
ing BIOASQ data. Their system got one of the
best results whose methods are reported in the sec-
tion 5.
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3 Evaluation and training data

Bioasq 6 is the sixth challenge and the evalua-
tion measures for Bioasq task B has always been
the same. Strict Accuracy, Lenient Accuracy and
Mean Reciprocal Rank (MRR) are the 3 evaluation
measures used. To compute the scores, the exact
match of strings between the predictions and the
gold standard answers is used to decide if a system
answer is correct. Strict accuracy is the rate of top
1 exact answers. Lenient accuracy is the rate of ex-
act answers in top 5 predictions. MRR is the mean
reciprocal rank computed on the top 5 system an-
swers. These measures have been the same since
the 1st challenge, although the first four challenges
had triples and concepts along with snippets in the
data. In the last two challenges, only relevant snip-
pets for questions are released.

Similar evaluations are performed in machine
reading tasks like in SQUAD where top 1 accu-
racy and F1 scores are computed by comparing
exact matching strings. One main assumption in
machine reading task is that the answer strings are
substrings of the snippets, which implies that an-
swers have to be extracted from the snippets.

In Bioasq, the answers are curated by human ex-
perts by analyzing the triples, concepts, and snip-
pets (or paragraphs). Thus, the Bioasq dataset and
evaluation measures are very similar to that of ma-
chine reading task, but the major difference apart
from the dataset size are the answers instances
provided as gold standard which does not contain
all the occurrences, abbreviations, different forms
of answers which are present in the snippets.

In (Wiese et al., 2017b), the authors transform
Bioasq Phase B as a machine reading task with
domain adaptation. Gold standard answer strings
and their offsets are automatically searched in the
snippets for exact match and treated as answers if
only they are found in the snippets, i.e., the answer
string must be a substring of the snippet. By doing
so the dataset size is reduced to 65% of Bioasq 5
train set which was suitable for adaptation. Other
35% of the questions did not have matching an-
swers in the snippets, because of different variants
of answers in the snippets, missing abbreviations,
or irrelevant snippets.

This snippet annotation method can result in:

• False positive: an answer mentioned in the
snippet which does not answer the question.

• False negative: a snippet answers the ques-
tion but does not have the exact string com-
pared to the gold standard string.

We found that in Bioasq 6B training dataset for
factoid questions, 205 out of 619 questions have
false negative answers (33% of the dataset) which
may result in some problems:

• Less data for learning;

• The model does not learn to extract all the
variants;

• Evaluation is done using such gold standard
data which will lower the results even though
the model is performing well.

Below are some examples for which the an-
swers returned from a reference system is correct
(when evaluated manually) but the automatic eval-
uation classifies it as incorrect.

Q: Which calcium channels does ethosuximide
target?
P: ..neuropathic pain is blocked by ethosuximide,
known to block T-type calcium channels,..

Prediction: T-type calcium
Gold standard: T-type calcium channels

Example 1: Missing keywords

Q: Which disease can be treated with Dela-
manid?
P: In conclusion, delamanid is a useful addition
to the treatment options currently available for
patients with MDR-TB.

Prediction: MDR-TB
Gold standard: tuberculosis

Example 2: Abbreviations

In example 1, because of a missing word ”chan-
nels”, the predicted answer is marked incorrect.
In example 2, MDR-TB stands for Multi-drug-
resistant tuberculosis, which is from a relevant
snippet but since the gold standard has only tuber-
culosis, it is marked incorrect. Contextually both
are valid answers.

To overcome this problem and enrich the an-
swer space correctly, we manually annotated
618 factoid question-answers pairs from training
dataset of 6B task, by annotating the substring
of the gold standard answers in the snippets, and
adding answers with abbreviations, multi-word
answers, synonyms, that are likely correct an-
swers. We explain this in detail in the following
section.
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Figure 1: Brat annotation tool

4 Annotations

This section presents the details of the annotations
performed manually on the BIOASQ 6B training
dataset and presents some statistics.

Our annotations include the following type of
answers:

• Exact Answer - Exact match with gold stan-
dard (GS) answers, which can also be anno-
tated automatically, and different variants of
the answers. For example, the annotation of
a single GS answer ”Transcription factor EB
(TFEB)” resulted in 3 annotations, ”Tran-
scription factor EB”, ”TFEB”, ”Transcrip-
tion factor EB (TFEB)”.

• Lenient Answer - a more general form or a
more specific form of an answer. An exam-
ple is ”Telomerase” for ”Human telomerase
reverse transcriptase”.

• Paragraph Answer - The answer matches
with gold standard but the snippet alone is not
relevant to the question.

We came across several kinds of snippets. A
supporting snippet, or answering snippet, is a snip-
pet that contains the answer and enough elements
for justifying it. It is a correct answer to the ques-
tion (snippet starting at line 5 in Figure 1 for ex-
ample). A snippet that contains the answer with-
out justification towards the question will not be
annotated with the answer as correct and is con-
sidered as a non-supporting snippet (snippet start-
ing at line 3 in Figure 1). A snippet that does not
contain the answer cannot be a supporting snippet,

henceforth it is an irrelevant snippet (snippet start-
ing at line 8 in Figure 1).

We use Brat3 annotation tool by (Stenetorp
et al., 2012) shown in Fig. 1 to perform the man-
ual annotations of the snippets with the answer to
the question. The annotations done include the an-
swer string along with their character offsets in
the snippet. Answers were annotated by 3 peo-
ple from computer science background and mul-
tiple discussions were held to discuss problematic
answers which involved looking upon the internet
for some medical term meanings.

Annotations were initially done on the Bioasq
5B training set and the additional questions from
5B test sets whose answers are present in the 6B
training set were annotated later on 6B data. So
the changes done (if any) on 6B training set for
previous year questions from 5B set are not con-
sidered.

The annotation files are freely available4 and
can be used by researchers who can get the Bioasq
dataset.

Some statistics of the dataset are listed in Ta-
ble 1 for the automatically annotated answers from
gold standard data and the fully annotated data
with manual annotations. The annotations are
done on 618 BIOASQ 6B training dataset ques-
tions. Out of 619 factoid questions, 1 question
does not have any snippets.

Only 426 questions contain answers from auto-
matic annotation.

”Answers” are the count of answers present in
the snippets. Avg score represents an average over
the total number of questions (i.e. 618). Since in

3http://brat.nlplab.org
4https://zenodo.org/record/1346193#.W3 WUZMzZQI
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Gold std. annotations Full annotations
Count Avg Total Avg Total
Answers 0.8 500 2.9 1814
Snippets 7.7 3286 8 4965
Questions - 426 - 618

Table 1: Annotation statistics

gold standard data, only 426 questions have gold
answers in snippets, it is normal for the average to
fall below 1. It is clear from the table that the full
annotated data contain at least 3 times (1814 an-
swers) more the number of candidate answers over
the provided gold standard ones (500 answers).

We found that some answers contained the
whole snippet as an answer and that 3503 snip-
pets are repeated in the 6B train set. After fil-
tering those repeated snippets we found 3286 dif-
ferent snippets containing exact matching answers
extracted automatically from gold standard data
and 4965 unique snippets manually annotated with
correct answers.

5 Experiments

The goal of our experiments is to study the impact
of the data augmentation on training and evaluat-
ing a system.

Henceforth, we follow the process of (Wiese
et al., 2017b) and use a machine reading model de-
veloped by (Chen et al., 2017) that is pre-trained
on SQUAD dataset (Rajpurkar et al., 2016) for
open domain questions and fine tuned to biomedi-
cal questions.

To study the impact on the training process and
the evaluations, we train the models using sep-
arately the automatically annotated data and the
fully manually annotated data. We also evaluate
them using both kinds of data separately.

5.1 QA system overview

We present here the adaptation of an existing
model named DRQA reader by (Chen et al., 2017)
to the biomedical domain as presented in (Kamath
et al., 2018).

DRQA reader has three components:

1. Input layer: where the input question words
and input passage words are encoded using a
pretrained word embedding space.

2. Neural layer: RNN or LSTM networks.

3. Output layer or decoding layer: where the

outputs are start and end tokens representing
a span of an extracted answer.

The reader model takes as input, the question sen-
tence and the answering snippet and predicts the
substring of the snippet that is the answer.

In the input layer, word embeddings are used to
encode the words of snippets and questions into
vectors, along with textual features such as Part
of Speech tags, Named-Entity tokens, Term fre-
quencies of the words in the snippet. The authors
use aligned question embeddings where an atten-
tion score captures the similarity between snip-
pet words and questions words. The neural layer,
where the core DNN model is defined, uses dif-
ferent NN architectures to capture semantic simi-
larities between the question/snippet pairs. It use
LSTMs to encode the snippets and an RNN to en-
code the questions. In the output layer, two inde-
pendent classifiers use a bilinear term to capture
the similarity between snippet words and question
words and compute the probabilities of each token
being start and end of the answer span. We take all
possible scores of start and end token predictions
and restrict the span between start and end tokens
to 15 tokens. We perform an outer product be-
tween these scores and consider top 5 spans using
an argmax value to get these final predictions.

Figure 2: Transfer learning from open domain to
biomedical domain

Domain adaptation (also referred to as fine tuning)
is performed on the BIOASQ dataset as shown
in Figure 2 where the model is pre-trained with
SQUAD dataset and fine-tuned with BIOASQ be-
fore predicting on test sets. Pre-training is train-
ing a model from scratch with randomly initial-
ized weights. Fine-tuning is training on a model
with previously trained weights rather than ran-
domly initialized ones. The advantage of pre-
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Train set 5B 6B
Finetune Gold Anno. Gold Anno.

Eval DeepQA Gold Anno. Gold Anno. Gold Anno. Gold Anno.
Strict - 0.2551 0.2962 0.1666 0.3333 0.2669 0.3090 0.2265 0.3948

Lenient - 0.4156 0.4444 0.2991 0.5843 0.4417 0.4724 0.3511 0.6197
MRR 0.2620 0.3138 0.3425 0.2148 0.4322 0.3334 0.3718 0.2728 0.4765

Table 2: K-fold evaluation on different train sets with Gold and Anno data. DeepQA scores are presented by
(Wiese et al., 2017a)

training with SQUAD dataset is that the DNN
model will learn and perform better while trained
on a larger training dataset. Since the target dataset
is in the biomedical domain, finetuning the previ-
ously learned model will have a positive impact on
the test set predictions, as shown in (Wiese et al.,
2017a).

Several embedding spaces were tested as input
vectors (Kamath et al., 2017) and the best per-
forming ones which were the Glove embeddings
trained on common crawl data with 840B tokens,
were chosen as input to the system. Unknown
words were initialized as zero vectors.

As BIOASQ questions have several answer-
ing snippets, we treat each question and a snip-
pet as a training sample which might often result
in repeated questions with different snippets, i.e.
for each training example, there is a question, a
unique snippet and the start and end token string
offsets of the answer in the snippet. Our model
predicts one scored answer per snippet, and the fi-
nal result is made of the ordered list of answers
for the same question. We consider only the top 5
answers.

5.2 Datasets

We perform fine-tuning on two datasets namely

• BIOASQ 5B training set, which contains the
4B training data + the answers of the 4B test
data - We term it as 5B.

• BIOASQ 6B training set, which contains the
5B training data + the answers of the 5B test
set - We term it as 6B.

We term the automatically annotated training data
as Gold, and manually annotated training data as
Anno.

The pre-trained model on open domain QA data
is fine-tuned on the above listed Bioasq datasets
separately. Evaluation is performed by K-fold

cross validation because of the small scale of the
data (Table 2), and on the official test sets of
Bioasq 5B (Table 3), which were separated from
the training data while fine-tuning.

The explanation of scores reported in table 2
and 3 along with the corresponding experiments
on the datasets listed above, is as follows. On
the data of Trainset mentioned in the first row, we
fine-tune it with Finetune data on the second row -
which is Gold or Anno. version of the answers.

The official evaluation measures5 using Gold or
Anno. version of the answers are highlighted in the
third row. The strict and lenient accuracies along
with the MRR are reported.

Gold version of 5B data contains 313 questions
and Gold version of 6B data contains 428 ques-
tions. We consider the remaining questions with
no matching answers as incorrectly answered,
hence evaluating over all the questions of the
datasets (5B - 486 questions, 6B - 618 questions).
Annotated 5B data contains 483 questions and 6B
data contains 618 questions.

Overall results of 5B test sets presented in Table
3 are evaluated on 150 questions from the test sets
of 5B challenge whose gold standard answers are
present in 6B challenge train set.

To compare our scores with the ones reported
in (Wiese et al., 2017a) and also since the size of
the dataset is small, we perform K-Fold (5) eval-
uations which are reported in Table 2. To com-
pare with previously reported official test scores
in Bioasq 5, we train on 5B training set and test on
5B test sets which are reported in Table 3.

6 Results

The results shown in table 2, 3 and 4 highlights
the improvements using manually annotated data
over the automatically annotated data on the QA
performance as well as the evaluations with Gold

5https://github.com/BioASQ/Evaluation-Measures
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Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017b) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Strict 0.3466 0.3533 0.3533 0.42 0.3133 0.4266

Lenient 0.5066 0.4533 0.54 0.64 0.5 0.6866
MRR - - 0.4256 0.5042 0.3884 0.5258

Table 3: Overall results calculated on official test sets from 5B task. Scores from (Wiese et al., 2017b) and Lab
Zhu, Fudan Univer are reported in Bioasq 5.

Train set 5B
Finetune Gold Anno.

Eval (Wiese et al., 2017b) Lab Zhu, Fudan Univer Gold Anno. Gold Anno.
Batch 1 0.5600 0.4200 0.4733 0.5733 0.4933 0.6066
Batch 2 0.4086 0.4839 0.4274 0.5510 0.3387 0.5215
Batch 3 0.4308 0.3846 0.4070 0.4198 0.3185 0.3955
Batch 4 0.3025 0.2601 0.3595 0.4474 0.4444 0.6196
Batch 5 0.3924 0.4524 0.4271 0.4771 0.3452 0.5023

Table 4: MRR results calculated batchwise on 5B official test sets.

and Anno. versions of answers.
In Table 2, training on Gold and evaluating on

Gold are the baseline scores. DeepQA MRR score
is the K-fold evaluation score of MRR reported on
5B train set by (Wiese et al., 2017a).

Comparing the DeepQA MRR score with
theGold and Anno. 5B versions, there is an im-
provement of at least 17% (Anno. training and
Anno. evaluation) to 8% (Gold training and Anno.
evaluation).

In terms of accuracy, training the model on
Anno. version and evaluating on Anno. version
of answers fetch best results by 3.68% and 8.58%
on Strict accuracy, 14% and 14.73% on Lenient
accuracy in 5B and 6B respectively.

Training on Anno. and evaluating on Gold has
low scores in almost all experiments because of
the model which learns on different forms of an-
swers, therefore predicts different forms of an-
swers which are not present in the Gold version.

In Table 3, because of a low number of ques-
tions in the official test sets ranging from 25 to
35 questions, the scores are computed over all 5B
batch test sets by using individual batch results for
the number of correct answers from official Bioasq
scores and calculating the score over a total num-
ber of questions in the 5 batches (5B test sets - 150
questions). The scores by (Wiese et al., 2017b)
and Lab Zhu, Fudan Univer are the best official
results in Bioasq 5. We calculated strict and le-

nient accuracy as mentioned above and our scores
are better than both best official results by 6.67%
for strict accuracy and 13.34% lenient accuracy on
Gold version training, 7.33% for strict accuracy
and 18% lenient accuracy on Anno. version train-
ing.

In Table 4, MRR scores are reported separately
for each batch. MRR scores in general have the
best scores compared to both (Wiese et al., 2017b)
and Lab Zhu, Fudan Univer by training on Anno.
and evaluating on Anno. versions.

7 Conclusion and Future Work

We present the importance of using all variants of
answers in the snippets for adapting the Bioasq
dataset to machine reading task format. We show
that the results can be much higher than the offi-
cially reported ones if all the variants of the an-
swers are annotated correctly in the training sets.
We perform manual annotations to show this im-
pact. Future work would focus on automatic de-
tection of these variants of answers in the snippets.
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Abstract

The ever-increasing magnitude of biomedi-
cal information sources makes it difficult and
time-consuming for a human researcher to
find the most relevant documents and pin-
pointed answers for a specific question or topic
when using only a traditional search engine.
Biomedical Question Answering systems au-
tomatically identify the most relevant docu-
ments and pinpointed answers, given an in-
formation need expressed as a natural lan-
guage question. Generating a non-redundant,
human-readable summary that satisfies the in-
formation need of a given biomedical question
is the focus of the Ideal Answer Generation
task, part of the BioASQ challenge. This pa-
per presents a system for ideal answer genera-
tion (using ontology-based retrieval and a neu-
ral learning-to-rank approach, combined with
extractive and abstractive summarization tech-
niques) which achieved the highest ROUGE
score of 0.659 on the BioASQ 5b batch 2 test.

1 Introduction

In this paper, we describe our attempts to ad-
dress the Ideal Answer Generation task of the
sixth edition of the BioASQ challenge,1 which is
a large-scale semantic indexing and question an-
swering challenge in the biomedical domain. In
particular, the sub-task of Phase B of this an-
nual challenge is to develop a system for query-
oriented summarization. Traditionally, there are
two classes of summarization techniques, each
having their own merits and pitfalls: (1) extrac-
tive and (2) abstractive. While extractive tech-
niques patch relevant sentences together enabling
them to generate grammatically robust summaries,
they flounder on maintaining coherence and read-
ability. On the contrary, abstractive techniques ex-
tract relevant information from the original text,

∗denotes equal contribution
1bioasq.org

which is then used to generate a novel natural lan-
guage summary. While abstractive techniques are
more succinct and coherent, automatic text gener-
ation is prone to grammatical error. This directly
implies that extractive summarization techniques
should perform well on automatic evaluation met-
rics (such as ROUGE), but do less well on human
evaluation measures which account for precision,
repetition and readability. We explore the hypoth-
esis that a combination of these techniques will
provide better overall performance on the ideal an-
swer task, when compared with either approach
used in isolation.

The dataset we use for development of the cur-
rent work is released as a part of the sixth edi-
tion of the annual BioASQ challenge (Tsatsaronis
et al., 2012). The main categories of answers in
this data include summary, factoid, list and yes/no.
There are a total of 2,251 questions, each of which
is accompanied by a list of relevant documents and
a list of relevant snippets extracted from each of
these documents. Our model is an extension to
the highest ROUGE scoring model in the final test
batch of the fifth edition of the BioASQ challenge
(Chandu et al., 2017), which is based on Maximal
Marginal Relevance (MMR) (Carbonell and Gold-
stein, 1998). In addition, we attempted abstractive
techniques that are scoped to improve the readabil-
ity and coherence aspect of the problem. We made
4 submissions to the challenge.

The paper is organized as follows: Section 2 de-
scribes our overall system architecture and the im-
plementation details. Experiments and results are
discussed in Section 3 followed by conclusion and
future work in 4.

2 System Architecture

The main components of the QA pipeline are out-
lined in Figure 1. As illustrated, the first step is
pre-processing of the question to enrich it with
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Figure 1: System Architecture

features derived from standard NLP techniques
such as Part of Speech (POS) tagging, Named
Entity Recognition (NER) and Medical Entity
Recognition (MER). Subsequently an ontology-
based retrieval system is used to retrieve relevant
snippets for the question. The retrieved snippets
are combined with the given BioASQ snippets for
the question, and passed to the ranking module.
The ranked snippets are then input to the sen-
tence selection module from the existing OAQA
pipeline (Chandu et al., 2017), which implements
the CoreMMR (Zechner, 2002) and SoftMMR al-
gorithms, which use similarity measures to select
the most relevant and least redundant snippets.
The selected sentences are then passed to the sum-
marization module, which produces the final sum-
mary. Each of these modules is discussed in detail
below.

2.1 Ontology-Based Information Retrieval

Although a large amount of biomedical text is
available in resources such as NLM (NIH, 2018),
it can be difficult to leverage in the absence of su-
pervised or automatic labeling (annotation) of the
unstructured text content. Our hypothesis is that
an Ontology-based retrieval module which utilizes
entity and relation extraction techniques to repre-
sent and compare the content of questions and can-
didate answers can improve the recall of answer-
bearing documents from unstructured sources.

Our goal is to develop a graphical model that
can represent the content of the question and each
candidate answer. The nodes in the graph repre-
sent medical entities and the edges between them
represent the relations between the entities. We
extract relations from the text and index them
into the graph based on previously-published work

(Abacha and Zweigenbaum, 2015). The base ar-
chitecture for the Ontology-based Retrieval mod-
ule is shown in Figure 2.

Figure 2: Graph Generation Pipeline

For every edge present in the graph, we store the
ID of the source abstract, along with the ordinal
index of the source sentence.

2.1.1 Relation Extraction
Relation Extraction (RE) is a technology used by
an ontology-based retrieval system to capture the
semantic relations which exist between the named
entities mentioned in the text; both the entities and
relations are considered instances of a given set of
ontological types. In practice, various NLP toolk-
its are available for related tasks, such as depen-
dency parsing, semantic role labeling, and subject-
verb-object relation extraction.

However, common NLP tools aren’t easily
leveraged on biomedical text, due to dramatic dif-
ferences in the structure and content of the sen-
tences. There exist tools for relation extraction
in sub-domains such as Bacteria (Duclos et al.,
2007) and disease-cause ontologies (Schriml et al.,
2011), but these methods heavily rely on the pres-
ence of specific words or features at the sentence
level, and cannot be easily scaled to general bio-
text. Most neural methods for training relation ex-
tractors require a large (O(106)) corpus of labelled
examples, which is not available for general bio-
text (Yih et al., 2015). In order to explore the use
of ontology-based retrieval, we developed a novel
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RE approach, which is described below. The base
architecture for the RE module is depicted in Fig-
ure 3.

The following 4 steps are employed for extract-
ing relations from a sentence:

1. Noun Phrase Chunking: The sentence is
parsed using the TreeTagger POS tagger (Schmid,
1995) to obtain all the Noun Chunks that form
the potential nodes of the graph. For our pur-
pose, the nodes of the graph are all Medical and
Named Entities. In order to perform this, the po-
tential nodes are passed through a Medical Entity
Recogniser (GRAM-CNN) (Zhu et al.) and the
Stanford NER (Manning et al., 2014) discarding
the chunks that are not recognized. For an exam-
ple, let us consider the following sentence: ‘Ge-
nomic microarrays have been used to assess DNA
replication timing in a variety of eukaryotic organ-
isms.’ which extract the following noun chunks:
‘Genomic Microarrays’, ‘DNA Replication Tim-
ing’ and ‘Eukaryotic Organisms’.
2. Relation Extraction: This step comprises of 2
sub parts.
(2a) RE using Predicate Argument Structures:
The Predicate Argument Structure (PAS) for the
sentence, obtained using the Enju parser (Miyao
et al., 2008), is further parsed in order to obtain
possible relations for the graph. Possible relations
are those that contain arguments related through a
verb or a preposition.
(2b) RE transformation through transitivity:
Transitivity is performed on relations obtained
from the Enju parser in order to ensure that the
arguments of the relations represent medical or
named entities in the graph. The potential nodes
are passed through the NER and MER. Nodes that
are not tagged or recognized by either undergo a
transitive transformation to give way to new re-
lations. For the example mentioned, the follow-
ing relations are formed post transitive formations:
‘Microarrays assess Timing’, ‘Timing in Organ-
isms’ and ‘Microarrays in Organisms.
3. Mapping to CUI: As the same medical en-
tity can be represented in many forms, we em-
ploy a mapping to the Concept Unique Identifier
(CUI) from the UMLS Metathesaurus (Bodenrei-
der, 2004) using the python wrapper for MetaMap
called pyMetamap (Aronson, 2001). For each of
the Noun Chunks present, the UMLS Metathe-
saurus is queried to check if a CUI is present. If
not, the individual CUIs are obtained for every
word forming the noun chunk and the following

rules are employed in order to form a hierarchical
node structure. For the Noun chunks obtained in
the example, CUIs are directly available for ‘DNA
Replication Timing’ and ‘Eukaryotic Organism’
and not for ‘Genomic Microarray’. To build the
tree structure for this node, the CUIs for ‘Microar-
ray’ and ‘Genomic’ are individually obtained and
since the latter is an adjective, the former becomes
the child of the latter. The final CUIs obtained and
the CUI node tree structure for ‘Genomic Microar-
rays’ are depicted in Table 4 and Figure 6 respec-
tively. For forming relations, the child nodes of all
trees are used for connecting edges.
4. Relation Formation: As the arguments in
the relations obtained through PAS are the base
noun forms that do not represent the whole Noun
Chunk, they are expanded to form the whole noun
chunk. For the example, the relations obtained
in 2b are expanded using the noun chunks to
form the final relations as follows: ‘Genomic Mi-
croarrays assess DNA Replication Timing’, ‘DNA
Replication Timing in Eukaryotic Organisms’ and
‘Genomic Microarrays in Eukaryotic Organisms’.
The entities in the relation are mapped to their
CUI based representation to form a complete re-
lation ready for insertion or retrieval from the
graph. The mapped relations for the exam-
ples look as follows: ‘C1709016, C0887950 as-
sess C1257780’, ‘C1257780 in C0684063’ and
‘C1709016, C0887950 in C0684063’. Here, the
root and children nodes are comma separated. The
final graph structure for the relations is depicted in
Figure 4.

Figure 4: Graph obtained by relation extraction.

In order to index the graph, the relation extrac-
tion process specified above is utilized. The edges
of the graph store additional information such as
the abstract ID and the sentence offset in the ab-
stract. In order to form a relation for a new query
to retrieve information from the graph, a back-off
mechanism is employed as follows.
1. Form relations using the process for indexing.
2. Query with all medical entities and obtain all
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Figure 3: Architecture of Relation Extraction Module

abstracts between pairs of them.
3. Query the medical entities with the verb forms
associated with them.
4. Query with just the medical entity and obtain
all abstracts related to each of the medical entities.

2.1.2 Graph Creation
Graph Framework: All PubMed abstracts are
tokenized and relations are extracted from them.
These are added as relations in the graph. We
create custom data structures for the Nodes and
Edges(Relations) in Neo4j (Webber, 2012). Every
relation has attributes which are comma separated
values of PubMed ID, location within the abstract.
This is stored in order to retrieve the exact sen-
tence that was used to create a particular relation.
We hypothesize that this can improve in getting
relevant snippets across the abstracts.
Phase I: Ontology Creation with UMLS Con-
cepts. Part of speech tagging is the most intuitive
way of approaching the problem of extracting the
relations from a given text. An initial strategy of
forming the Subject Verb Object (SVO) triplets
was formed based on a left-right parsing of the
text. For this purpose, an off-the-shelf POS tag-
ger (Schmid, 1994) was used. This is not an ef-
fective method to create a graph as it misses very
important clauses and fails to recognize the Noun
Chunks in sentences. In order to overcome the
limitations of this, we form a UMLS based map-
ping of the noun phrases to medical concept the-
saurus as in the UMLS Meta Thesaurus. Once the
CUI ids are mapped using metamap as in Section
2.1.1, these are prepared to be indexed into the
graph. These relations are added into the graph
by following standard database methods, i.e.,

• If the relation is already present in the graph,
then the relation attribute is appended with
the PubMed ID, and offset in the abstract.

• Every node in the relation is first queried
from the graph and then the relation is added
between the nodes retrieved. If no node is re-
trieved, then new nodes are created and the

relation is created.

Phase II: Adding transitivity to Relations. The
limitations of Phase I was that despite accurate re-
lations from the relation extractor, the mapping
in the graph for different clauses joined together
with different prepositions was not solved. We
solve it with the following method. First, a key
value pair is added as an attribute to the relation,
where every key is a preposition and the value is
the NodeID noun chunk that is associated with the
preposition. For example, in the sentence “Ge-
nomic microarrays have been used to assess DNA
replication timing in a variety of eukaryotic organ-
isms”, the clause “in a variety of eukaryotic organ-
isms” would be missed in the phase II of ontol-
ogy creation. But in Phase II, we convert such that
the verb “assess” has an attribute “{in, nodexyz}”
where nodexyz is the node pertaining to the CUI
of “eukaryotic organisms”.

2.2 Ranking

Information Retrieval is one of the essential com-
ponents of a Question Answering pipeline. It will
help provide relevant information to the pipeline
for more accurate answers. Ranking snippets
based on relevance to the question will improve
the answer selection process and in turn give more
relevant answers. Employing Learning to Rank
(LETOR)(Qin et al., 2010) methods to rank snip-
pets should help rank snippets according to the
questions.
The output of the Ontology based Information Re-
trieval is a set of relevant snippets. We combine
the given BioASQ snippets along with the Ontol-
ogy Retrieved snippets and rank them according
to relevance to the question. The ranking algo-
rithm finally gives a set of ranked snippets rele-
vant to the question. There is a possibility that the
Ontology based retrieved snippets may also have
irrelevant snippets. To prevent the error from fur-
ther propagating into the pipeline, we use a sim-
ple BM25(Robertson and Zaragoza, 2009) scoring
threshold between the snippets and the question.

82



We discard the snippets which have a BM25 score
lower than a certain threshold. LETOR is highly
feature driven which necessitates a good amount
of feature engineering. The explored features are
listed in the next section. In this paper, we have
explored 2 LETOR approaches: a) RankSVM and
b) A Listwise Neural Approach.

2.2.1 Feature Engineering
Multiple features have been explored as inputs
to the LETOR framework. The features can be
divided into 3 major categories i.e. 1) Statisti-
cal Features 2) Semantic Features and 3) Syn-
tactic Features. The statistical features included
length of snippets, BM25 score between query and
snippet, dot product of tf-idf between query and
snippet, cosine similarity over the TF-IDF vectors
(along with log space representation), number of
bi-grams in the intersection of query and snippets
and Jaccard similarity score. The semantic fea-
tures include averaged word2vec representations
across snippets. The syntactic features are number
of medical entities and bag of words representa-
tion of medical entities.

2.2.2 Quasi Ground Truth Creation
An initial challenge while formulating the LETOR
framework is the ground truth ranking of the snip-
pets as that was not provided in the BioASQ train-
ing data. The primary purpose of the LETOR
model was to rank more relevant snippets higher
up to obtain a higher ROUGE score. Taking this
into account, we decided to create the ground truth
as the BM25 scores between the snippet and the
ideal answer. The scores were calculated accord-
ing to the formula in 1. The snippets were ranked
according to the scores for each question.

(1)RelevanceScore

= scoreBM25(idealanswer, snippet)

2.2.3 RankSVM
RankSVM(Cao et al., 2006) is a pairwise LETOR
approach towards ranking of documents. Each
pair of snippets was taken for a question and was
labeled as -1 if the second snippet was ranked
higher and +1 if the second snippet was ranked
lower. In a pairwise approach there is an over-
head of maintaining the metadata as we need to
know which set of snippets are going into the
SVM as input for validation of the model. Con-
sider F (Q,S1) as a feature representation of the
question Q and snippet S1. Similarly, F (Q,S2)

is a feature representation of the question Q and
snippet S2. F (Q,S1) and F (Q,S2) are inputs to
the SVM and the SVM predicts a -1 or +1 accord-
ing to the relative ranking of S1 and S2.

2.2.4 Neural Ranking Approach
The second approach that we implemented was
a list-wise ranking approach inspired from List-
Net(Cao et al., 2007). Every data point is a fea-
ture representation between the question Q and
nth snippet Sn. The neural network is trained
against the BM25 scores between the snippet and
the ideal answer. The architecture of the network
is a 2 layer MLP with ReLU activations. The final
layer is a linear layer of size 1.
In an ideal scenario, where we would have had the
ground truth rankings of the snippets, it would be
intuitive to use a probabilistic loss. In our case, as
we are using proxy golden ranks with the BM25
score, it would be more intuitive for the model to
learn to estimate the scores instead of the relative
ranking of the snippets. Hence, we use a RMSE
loss as we want our model to estimate the BM25
scores. The RMSE loss is calculated per ques-
tion as we would want to learn the distribution
of snippets with respect to a single question and
not across the complete dataset. The final ranking
of the snippets are determined with respect to the
scores the model predicts.

2.3 Summarization

Summarization is the final stage in the question
answering pipeline. The ranked snippet sentences
feed into the summarization module which finally
outputs the ideal answers.
For the case of ideal answer generation, two types
of summarization techniques can be employed;
extractive and abstractive summarization. Extrac-
tive summarization works by selecting the most
relevant sentences in a document to generate the
summary (Allahyari et al., 2017). The summaries
generated using this technique generally obtain
high ROUGE scores (Lin, 2004) due to the high
n-gram overlap between the generated summary
and the ideal answer. Abstractive summarization
on the other hand works by generating the sum-
mary word by word as opposed to picking sen-
tences in the case of extractive summarization.
Recent advances in abstractive summarization us-
ing Pointer Generator Coverage (PGC) networks
(See et al., 2017) have shown that neural sequence
to sequence models can generate abstractive sum-
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maries which are readable and have high ROUGE
scores. Given that these networks can gener-
ate human readable summaries with high ROUGE
scores, we decided to use this model as the ideal
answer generation module in our question answer-
ing pipeline. We show that the neural sequence
model is able to generate ideal answers in the
biomedical domain. More concretely, we see that
a pretrained PGC model can be transferred to the
biomedical domain to generate ideal answers i.e.,
the model is able to handle new words (mainly
biomedical words) and not generate any unknown
tags (<UNK>) in the summaries which would
hinder the readability. We also show that fine tun-
ing the model on the BioASQ data generates better
answers in terms of the ROUGE scores.

3 Experiments and Results

This section describes the experiments conducted
to evaluate each of the components in the ques-
tion answering pipeline. All the experiments have
been conducted on batch 2 of the fifth edition of
BioASQ and evaluated using the official Oracle2

developed by the organizers of the task.

3.1 Ontology based Information Retrieval

Ontology based retrieval has been evaluated for
providing summary answers to queries with zero
snippets provided. For example, the snippets re-
trieved for the question, ’Does metformin interfere
thyroxine absorption?’ has a ROUGE of 0.2044
compared with the ideal answer provided for it.

3.2 Ranking

3.2.1 RankSVM Feature Analysis
Ablation studies were carried out with respect to
the features to determine which set of features give
us the best results.

It is seen that the statistical features contributed
the most to the model. Another interesting obser-
vation from the graph is that even though BM25
and log(BM25) were the top contributing features,
the log(BM25) has a higher weight. This is mainly
because the log scale is known to be more stable
and therefore will help the model learn better.

3.2.2 Neural Ranking Approach Analysis
The Neural approach was evaluated against the
RankSVM results. We also added the syntac-
tic features and did a comparison study on them.

2BioASQ Oracle

From Table 1 it is seen that adding the syntactic
features have contributed to an overall increase in
the ROUGE scores for both the models. Also, it is
noticed that the Neural model has performed bet-
ter than the RankSVM. This is mostly due to the
fact that the Neural approach is trying to estimate
the BM25 scores between the snippet and the ideal
answer rather than trying to mimic the quasi rank-
ing. From the discussion of the results above, we
can confirm the hypothesis that ranking snippets in
an order of relevance will help improve the quality
of answers generated by the pipeline.

3.3 Summarization

Ranked snippet sentences from the ranking
pipeline are fed into the summarization module.
The following experiments were carried out:

1. Using the PGC network pretrained on
CNN/Daily Mail to generate the ideal an-
swers

2. Fine tuning the pretrained PGC network on
BioASQ data

Table 1 gives the ROUGE scores obtained by
both the models on the BioASQ dataset. For the
model fine tuning, the pretrained model is fur-
ther trained on BioASQ 5b training data. We
see that the fine tuned model obtains much higher
ROUGE-2 and ROUGE-SU4 scores when com-
pared to the pretrained model. This shows that
the fine tuned model generates better answers than
the pretrained model in terms of ROUGE score.
On closely analyzing the answers generated by the
PGC models, we see that there are no <UNK>s
generated by both the pretrained and fine tuned
models. The model is also able to effectively copy
the unknown words from the biomedical source
text. A detailed error analysis for the answers gen-
erated by the model is discussed in the upcoming
subsection 3.3.1.

3.3.1 Error Analysis
This subsection discusses the analysis on the ideal
answers generated by both the pretrained model
and fine tuned model for different question types
in the BioASQ dataset (Table 2). All the readabil-
ity judgments made in this subsection are an in-
dicator of the subjective judgments made by the
authors of this paper:

1. Yes/No type:
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RankSVM LETOR Framework ROUGE-2 ROUGE-SU4
BM25, Cosine Similarity, TF-IDF dot product 0.6442 0.6453
BM25, Cosine Similarity, TF-IDF dot product, word2vec dot product 0.6439 0.6460
BM25, Cosine Similarity, TF-IDF dot product,
word2vec dot product, Snippet Length, log(sum(TF-IDF)) 0.6471 0.6481
Neural LETOR Framework
Neural Approach 0.6565 0.6552
Neural Approach + MER Bag-of-words 0.6590 0.6581
Abstractive Summarization
Pretrained PGC 0.29 0.3
Fine tuned PGC 0.4640 0.4659

Table 1: Results on 5b batch 2

Question Ideal Answer Pre-trained model answer Fine tuned model answer
Do pro-
ton pump
inhibitors
affect thy-
roxine
absorption?
(Yes-No
type)

Proton-pump inhibitors, antacids and a long
list of drugs may decrease thyroxine absorp-
tion. Patients with hypothyroidism and nor-
mal TSH values during LT4 replacement ther-
apy may need additional thyroid function test-
ing after treatment with PPIs and may need
adjustment of their LT4 dose.

Ppis and a long list of drugs may decrease thyroxine absorption
. Many commonly used drugs , such as bile acid sequestrants , fer-
rous , phosphate binders , raloxifene and proton-pump inhibitors ,
have also been shown to interfere with the absorption of levothy-
roxine . Patients with hypothyroidism and normal tsh values during
short-term treatment .

Antacids inhibitors , antacids and a long list of drugs may de-
crease thyroxine absorption . Many commonly used drugs , such
as bile acid sequestrants , ferrous sulphate , calcium carbonate ,
aluminium-containing antacids , phosphate binders , raloxifene and
proton-pump inhibitors , have also been shown to interfere with
the absorption of levothyroxine . Pantoprazole did not influence
endocrine function in healthy male volunteers during short-term
treatment .

What is the
ubiquitin
proteome?
(Factoid
Type)

The ubiquitin proteome is the entire set ubiq-
uitinated proteins and of their respective
ubiquitination sites.

Tandem repeated ubiquitin binding entities tubes under non-
denaturing conditions followed by mass spectrometry analysis to
study global ubiquitylation events that may lead to the identifica-
tion of potential drug targets . To study the ubiquitin proteome
we have established an immunoaffinity purification method for
the proteomic analysis of endogenously ubiquitinated protein com-
plexes .

Mass spectrometry now allows high throughput approaches for the
identification of the thousands of ubiquitinated proteins and of their
ubiquitination sites . We used tandem repeated ubiquitin binding
entities tubes under non-denaturing conditions followed by mass
spectrometry analysis to study global ubiquitylation events that
may lead to the identification of potential drug targets .

What mem-
ory problems
are reported
in the "Gulf
war syn-
drome"?
(List Type)

Loss of memory and dysmnesia are memory
problems reported in the Gulf war syndrome.
Patients suffering from this syndrome often
have other nonspecific symptoms such as fa-
tigue, skin rash, headache, muscle and joint
pain and sexual dysfunction.

The strongest associations were for mood swings or 20.9. The
symptoms include fincapacitating fatigue , musculoskeletel and
joint pains , headaches , muscle and joint pain . His history re-
vealed several front-line operations in 1990 and 1991 during the
gulf war .

The gulf war syndrome gws is the beginning of what was to be
identified as the gulf war syndrome . In early 1992 , u.s. troops
returning from the gulf war began reporting a variety of nonspecific
symptoms such as fatigue , skin rash , muscle and joint pain , and
loss of memory .

What is the
treatment
of acute
pericarditis?
(Summary
Type)

A multidisciplinary approach is frequently
necessary to treat acute pericarditis; the most
frequent treatments are: antiinflammatory
steroid and non-steroid drugs, antibiotic
therapy, pericardial drainage and, less fre-
quently ,intrapericardial irrigation of fibri-
nolytics; antituberculous chemotherapy in
presence of Tuberculous Agent

The incidence of purulent pericarditis has decreased since the an-
tibiotic era . it is typically an acute and potentially lethal disease
, necessitating rapid diagnosis and adequate therapy to improve
prognosis . standard treatment combines appropriate antibiotic
therapy with surgical drainage.

Purulent pericarditis has decreased considerably since the antibi-
otic era . It is typically an acute and potentially lethal disease
, necessitating rapid diagnosis and adequate therapy to improve
prognosis . Standard treatment combines appropriate antibiotic
therapy with surgical drainage .

What causes
erucism?
(Summary
Type)

Erucism is defined as urtication by Lepi-
doptera larvae. It is a skin reaction to en-
venomation from certain poisonous caterpil-
lar bristles. The hair on the dorsum of the last
instar larvae of the moth may cause urticarial
reactions (erucism) as well as eye problems
and temporary blindness.

Tropical insects carry infectious diseases , cutaneous injury can oc-
cur by other mechanisms . the hair on the dorsum of the moth may
cause urticarial reactions . erucism is defined as urtication by lep-
idoptera larvae . erucism is defined as urtication by lepidoptera
larvae .

Tropical insects carry infectious diseases , cutaneous injury can
occur by other mechanisms . The hair on the dorsum of the last
instar larvae of the moth may cause urticarial reactions . Urticating
is defined as urtication by lepidoptera larvae . erucism is defined
as urtication by lepidoptera larvae .

Table 2: Examples of error types observed in the qualitative analysis

Here, we see that the model generated an-
swers address the question and also gives out
extra facts not described in the ideal answer,
but pertaining to the question. We see that the
answer given by the fine tuned model seems
more complete than that of the pretrained
model as it mentions that antacids (which
contain PPI) decrease thyroxine absorption
and also that they interfere with a specific
type of thyroxine, namely levothyroxine.

2. Factoid type:

Here, the generated summaries miss the an-
swer as exact answer is not present even
in the snippets. Fine tuned model on the
other hand, generates an answer more read-
able than the pretrained model generated an-
swer.
For most of the other factoid questions, we

saw that the question was answered correctly,
but the answer describes the facts very dif-
ferently and also gives different extra facts
compared to the ideal answer. Another obser-
vation was that presence of several acronyms
and abbreviations reduced the ROUGE score.

3. List type: Here, we see that the answer gen-
erated by the fine tuned model is more read-
able as there is a seamless flow in the an-
swer where the answer starts off by explain-
ing what the Gulf War Syndrome is and later
goes on to list the problems reported in the
Gulf War Syndrome. We also notice that the
pretrained model misses the symptom ’loss
of memory’ mentioned in the ideal answer
which is however picked up by the fine tuned
model.

4. Summary type: Here, the generated an-
swers partially answer the question as both
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Test Batch System ROUGE 2 ROUGE SU4
Batch 1 RankSVM 0.6372 0.6456
Batch 3 Neural Ranking + Extractive Summarization 0.5743 0.5883
Batch 4 Neural Ranking + Abstractive Summarization 0.4183 0.4281
Batch 5 Relation extraction + Ontology + Neural Ranking + Abstractive Summarization 0.4573 0.4637

Table 3: BioASQ Results for Task 6B

of them mention the surgical drainage treat-
ment which is a super set of the pericardial
drainage treatment. Other treatment types are
however missed by both the models in their
answers. This is mainly due to the fact that
there is no direct mapping between the ideal
answer and the snippets.

5. Summary type: Another error which occa-
sionally surfaces is repetition. In the pre-
trained model answer, we see that the last
sentence is repeated. In the fine tuned model
however, there is no repetition with respect to
the entire sentence. Although, a majority of
the last sentence is repeated in the fine tuned
model answer, we see that the term ’urtica-
tion’ is defined in terms of its own verb form
and urtication is later used to define erucism.

Table 3 comprises our results over the test
batches of the sixth edition. We believe the model
gave the best ROUGE scores for test batch 3 as
we have seen from the previous section that the
neural model along with domain specific features
performed the best among all the models.

4 Conclusion and Future Work

This paper discusses our system for summary type
answer generation using a knowledge graph and a
neural learning to rank approach. The ranked snip-
pets are further used to generate the answers us-
ing extractive and abstractive summarization tech-
niques. We also show that we can transfer the
abstractive summarization knowledge from the
CNN/Daily-Mail summarization task to the task of
biomedical summarization.

From a brief manual inspection of the gener-
ated summaries and their relevant documents, we
believe that from an NLP standpoint the follow-
ing are some of the promising directions to ex-
plore. Anaphora resolution would help provide
better relations. We also plan to use the ontology
indexing and retrieval system for factoid and list
types of questions. Incorporating the question type
as contextual information while generating sum-
maries could lead to improving precision. Instead

of a dual step of transfer learning with training and
fine tuning on PGC network, the abstracts of the
PUBMED articles and the entire document could
potentially be leveraged to train the end to end net-
work.

As an extension, we intend to pursue the follow-
ing tasks for BioASQ:

• The current pipeline of the work includes the
MMR algorithm while selecting sentences.
Experimentation with other diversification al-
gorithms like xQuAD(Santos et al., 2010)
and PM-2(Dang and Croft, 2012) can be used
for sentence selection.

• Exploration of more language model based
features in the LETOR pipeline like Point-
wise Mutual Information.
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Supplementary Material

For the example provided in section 2.1.1, the
Predicate Argument Structure provided by Enju is
shown in Figure 5, which forms the following re-
lations: ‘Microarrays assess Timing’, ‘Assess in
variety’ and ‘variety of organisms’.

Table 4: CUI Mapping
Concept CUI

Microarray C1709016
Genomic C0887950

DNA Replication Timing C1257780
Eukaryotic Organism C0684063

Figure 6 shows the node structure that is built
from the CUIs for Genomic Microarray.

Figure 6: CUI node structure for Genomic Microarray

The efficacy of the Relation Extraction module
depends on the tools it utilizes. The Enju parser
trained using the GENIA corpus has an F-score of
90.15 on the same (Hara et al., 2010). GRAM-
CNN has an F1-score of 87.26% on the Biocre-
ative II dataset, 87.26% on the NCBI dataset and
72.57% on the JNLPBA dataset (Zhu et al.). In ad-
dition to the hierarchical node structure, these can
also lead to the existence of incorrect nodes and
edges in the ontology. Every node is associated
with all abstracts containing a mention of them.
This results in the possibility of the retrieval logic
returning all abstracts containing just a mention of
the medical/named entity present in a query, rather
than only the relevant abstracts for that particular
query. The Ranking module filters these abstracts
to obtain those most relevant to the query.

We also graphed out the top contributing fea-
tures for our RankSVM model. Figure 7 displays
the contribution of the top 6 features which were
used in the model. The factors by which the top
6 features contributed were then normalized and
plotted. The top contributing features are depicted
in Figure 7.

Figure 7: RankSVM Top Contributing Features
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Figure 5: Predicate Argument Structure
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