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Abstract

Existing NLP models are mostly trained with data from well-resourced languages. Most minor-
ity languages face the challenge of lack of resources - data and technologies - for NLP research.
Building these resources from scratch for each minority language will be very expensive, time-
consuming and amount largely to unnecessarily re-inventing the wheel. In this paper, we applied
transfer learning techniques to create Igbo word embeddings from a variety of existing English
trained embeddings. Transfer learning methods were also used to build standard datasets for
Igbo word similarity and analogy tasks for intrinsic evaluation of embeddings. These projected
embeddings were also applied to the diacritic restoration task. Our results indicate that the pro-
jected models not only outperform the trained ones on the semantic based tasks of analogy,
word-similarity and odd-word identifying, but they also achieve enhanced performance on the
diacritic restoration with learned diacritic embeddings.

1 Background

Most NLP systems are modelled with English data. One major challenge to adapting these systems for
low resource languages is lack of good quality data. Such languages often rely on poor quality web-
crawled data. In our case the target language is Igbo, a language spoken by over 30 million indigenes
who live mainly in the south-eastern part of Nigeria but also in different parts of the world.

Inspite of the relatively large number of speakers, Igbo is critically low-resourced in terms of NLP
research (Onyenwe et al., 2018). Recent efforts to develop resources for Igbo include the design of
Igbo POS tagset (Onyenwe et al., 2014), and the tagset refinement (Onyenwe et al., 2015) as well as the
development of Igbo POS-tagger (Onyenwe, 2017). Works are also on-going with its automatic diacritic
restoration and lexical disambiguation (Ezeani et al., 2016) (Ezeani et al., 2017) and morphological
segmentation (Enemouh et al., 2017).

1.1 Embedding Models

Word embeddings are generic semantic representations from corpus. It enhances the concept of distri-
butional hypothesis (Harris, 1954) and count-based distributional vectors (Baroni and Lenci, 2010) and
provides an alternative to the one task, one model approach. Their application areas span most NLP
tasks and other fields such as biomedical, psychiatry, psychology, philology, cognitive science and social
science (Altszyler et al., 2016). There are many approaches to training embedding models, however
predictive (Mikolov et al., 2013a) and count-based (Pennington et al., 2014) models are very commonly
used.

Ideally, a model trained in one language should capture similar semantic distribution in other lan-
guages. Since the large amount of data required to train such a model are not often available for low
resource languages, transfer learning techniques could be used to project learned knowledge from one
language to another.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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1.2 Transfer and Cross-lingual Learning

Transfer learning generally refers to the transfer of knowledge acquired in one domain in solving a
problem in another domain. It is commonly applied when the target domain training data is limited
(Weiss et al., 2016). With transfer learning we could take advantage of a parallel data that exist across
languages in the form of word-aligned data, sentence-aligned data (e.g. Europarl corpus), document-
aligned data (e.g. Wikipedia), lexicon (bilingual or cross-lingual dictionary) or even zero-shot learning
with no parallel data.

In a survey of cross-lingual embedding models (Ruder, 2017), four different approaches were iden-
tified, monolingual mapping (Mikolov et al., 2013b; Faruqui and Dyer, 2014; Guo et al., 2015) which
trains embeddings on large monolingual corpora and then linearly maps a target language word to its
corresponding source language embedding vectors; pseudo-cross-lingual (Duong et al., 2016; Gouws
and Søgaard, 2015; Xiao and Guo, 2014) which trains embeddings with a pseudo-cross-lingual corpus
i.e mixing contexts from different languages; cross-lingual (Hermann and Blunsom, 2013; Hermann and
Blunsom, 2014; Kočiskỳ et al., 2014) trains embeddings on a parallel corpus constraining similar words
to be close to each other in a shared vector space; joint optimization (Klementiev et al., 2012; Luong et
al., 2015; Gouws et al., 2015) trains models on parallel or monolingual data but jointly optimise a com-
bination of monolingual and cross-lingual losses. In this paper, we will adopt the projection approach
described in (Guo et al., 2015).

2 Experimental Setup

Our experimental data consists of a collection of Igbo texts from the Igbo Bible and the translation of
the Universal Declaration of Human Rights, two short novels: an Igbo version of Eze Goes to School
and another Igbo novel Mmadu. Ka A Na Ari.a. The pipeline has three stages. It starts with building
the embedding models using training or projection methods (section 2.1). The next stage enhances the
diacritic words with the embeddings of the its co-aligned English words (section 3.4.2). Lastly, the
diacritic restoration is implemented as laid out in section 3.4.3.

In this experiment, we used only the Igbo-English parallel bible corpora, available from the Jehova
Witness website1, for the word alignment and projection of embedding models. The parallel data consist
of 32,416 aligned lines of text. Additional data from the novels (3179 lines) and official documents (90
lines) make up the rest of the 35,685 lines of text with token sizes of 962,747 (without punctuations)2

and vocabulary length 16,586 we used.
Although only 34% (328,591) of all tokens have diacritics, 54.8% (9,090) of vocabulary words are

diacritic marked. There are 795 ambiguous wordkeys. A wordkey is a word stripped of its diacritics if it
has any. Wordkeys could have multiple diacritic variants, one of which could be the same as the wordkey
itself. Over 97% of the ambiguous wordkeys have 2 or 3 variants.

2.1 Building Igbo Embedding Models

In this work, we used both trained and projected embeddings for our tasks. We built the igBible em-
bedding from the data using the Gensim word2vec Python libraries (Řehůřek and Sojka, 2010) with its
default parmeters. We also used the igWiki, a pre-trained Igbo model from fastText Wiki project (Bo-
janowski et al., 2016), but it was removed due to its unstable performance across tasks which we could
not resolve at the time of submission of this paper.

For the embedding transfer, we applied an alignment-based projection method (Guo et al., 2015). An
Igbo-English alignment dictionary AI|E uses a function f(wI

i ) that maps each Igbo word wI
i to all its

co-aligned English words wE
i,j and their counts ci,j as defined in Equation 1. |V I | is the vocabulary size

of Igbo and n is number of co-aligned English words.

1jw.org
2There will be 1,138,036 in total with punctuations, symbols and digits
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Model Igbo Vocabs Dimensions Eng Vocabs Train data
igBible 4968 300 – 902.5k
igEnBbl 4057 300 6.3k 881.8k
igGglNews 3046 300 3m 100bn
igWkNews 3460 300 1m 16bn
igWkSbwd 3460 300 1m 16bn
igWkCrl 3510 300 2m 600bn

Table 1: Igbo and English models: vocabulary, vector and training data sizes

AI|E = {< wI
i , f(wI

i ) >}; i = 1..|V I |
f(wI

i ) = {< wE
i,j , ci,j >}; j = 1..n

(1)

The projection is formalised as assigning the weighted average of the embeddings of the co-aligned
English words wE

i,j to the Igbo word embeddings vec(wI
i ) (Guo et al., 2015):

vec(wI
i )←

1

C

∑
wE

i,j ,ci,j∈f(wI
i )

vec(wE
i,j) · ci,j (2)

where C ←
∑

ci,j∈f(wI
i )

ci,j

Using this projection method, we built 5 additional embedding models for Igbo:

• igEnBbl from a model we trained on the English bible.

• igGNews from the pre-trained Google News3 word2vec model.

• igWkNews from fastText Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset.

• igWkSbwd from same as igWkNews but with subword information.

• igWkCrl from fastText Common Crawl dataset

Table 1 shows the vocabulary lengths (vocabs), and the dimensions (vectors) of each of the models
used in our experiments.

3 Model Evaluation

We evaluate the models on their performances on the following NLP tasks: odd-words, analogy and
word similarity and diacritic restoration. As there are no standard datasets for these tasks in Igbo, we had
auto-generate them from our data or transfer existing ones from English. Igbo native speakers were used
to refine and validate instances of the dataset or methods used.

3.1 The odd word
In this task, the model is used to identify the odd word from a list of words e.g. breakfast, cereal, dinner,
lunch→ “cereal”. We created four simple categories of words Igbo words (Table 2) that should naturally
be mutually exclusive. Test instances were built by randomly selecting and shuffling three words from
one category and one from another e.g. o. kpara, nna, o. garanya, nwanne→ o. garanya.

3.2 Analogy
This is based on the concept of analogy as defined by (Mikolov et al., 2013a) which tries to find y2 in
the relationship: x1 : y1 as x2 : y2 using vector arithmetic e.g king −man + woman ≈ queen. We
created pairs of opposites for some common noun and adjectives (Table 3) and randomly combined them
to build the analogy data e.g. di (husband) – nwoke (man) + nwaanyi.(woman) ≈ nwunye(wife) ?

3https://code.google.com/archive/p/word2vec/
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category Igbo words
nouns(family) e.g. father, mother ada, o. kpara, nna, nne, nwanna, nwanne, di, nwunye
adjectives e.g. tall, rich o. cha, o. garanya, ogbenye, ogologo, oji, o. jo. o. , okenye, o. ma
nouns(humans) e.g. man, woman nwaanyi., nwoke, nwata, nwataki.ri., agbo. gho. , okorobi.a
numbers e.g. one, seven otu, abu. o. , ato. , ano. , ise, isii, asaa, asato. , itoolu, iri

Table 2: Word categories for odd word dataset

category opposites
oppos-nouns nwoke:nwaanyi., di:nwunye, okorobi.a:agbo.gho. , nna:nne, o.kpara:ada
oppos-adjs agadi:nwata, o. cha:oji, ogologo:mkpu. mkpu. , o. garanya:ogbenye

Table 3: Word pair categories for analogy dataset

3.3 Word Similarity

We created Igbo word similarity dataset by transferring the standard wordsim353 dataset (Finkelstein et
al., 2001). Our approach used Google Translate to translate the individual word pairs in the combined
dataset and return their human similarity scores. We removed instances with words that could not be
translated (e.g. cell→cell & phone→ekwenti. ,7.81) and those with translations that yield compound
words (e.g. situation→o. no. du. & conclusion→nkwubi okwu,4.81)4.

3.4 Diacritic restoration

The absence of proper diacritics in Igbo words causes ambiguities and may affect MT systems (Ezeani
et al., 2016; Ezeani et al., 2017) (see Table 4). There are word-, grapheme-, and tag-based techniques
(Francom and Hulden, 2013) for this task involving a huge amount of annotated data (Yarowsky, 1994;
Yarowsky, 1999) which Igbo does not have. Techniques for low-resource languages (Mihalcea, 2002;
Wagacha et al., 2006; De Pauw et al., 2011) but were not applied to Igbo. So far, works on Igbo used
either too little data (Scannell, 2011), non-generic methods (Ezeani et al., 2016; Ezeani et al., 2017).

Table 4: Translation challenge for Google Translate (Ezeani et al., 2017)

3.4.1 Building the baseline n-grams

As our baseline, we used standard n-gram models with back-off and 10-fold cross validations. We
focused on restoring only the ambiguous sets with a fair distribution of variants. To achieve this, we set a
maximum threshold of 70% for any of the variants in a set i.e. if choosing the most common variant from
a set gets 70% accuracy on that set, it is disqualified, leaving us with 215 (27%) of all 795 ambiguous
wordkeys. Figure 2 shows that there is no significant improvement after the bigram model.

4An alternative considered is to combine the word e.g. nkwubi okwu → nkwubi-okwu and update the model with a projected
vector or a combination of the vectors of constituting words.
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Figure 1: Average accuracy scores for all n-gram models: Thresholds [0.5 .. 1.0]

3.4.2 Deriving diacritic embedding models
The word akwa without context could mean àkwá(egg), ákwà(cloth), ákwá(cry/wail),
àkwà(bed/bridge). The task is to ensure that the embedding for each of the variants of akwa ex-
ists in the model and is represented by the weighted combination of each of the most co-occurring
words, mcwv.

diacvec ←
1

|mcwv|
∑

w∈mcwv

vec(w) ∗ wc (3)

where wc is the ‘weight’ of w i.e. the count of w in mcwv.

3.4.3 Diacritic restoration process
The restoration process computes the cosine similarity of the variant and context vectors and chooses
the most similar candidate. For each wordkey, wk, candidate vectors, Dwk = {d1, ..., dn}, are extracted
from the embedding model on-the-fly. C is defined as the context words (i.e. all the words in the same
sentence) and vecC is the context vector of C (Equation (4)).

vecC ←
1

|C|
∑
w∈C

vecw (4)

diacbest ← argmax
di∈Dwk

sim(vecC, di) (5)

4 Results and Discussion

Our results on the odd-word, analogy and word-similarity tasks indicate that the projected embeddings
(Table 5, Figure 3) capture better general concepts and their relationships. This is not surprising as
the trained model, igBible, and the one from its parallel English data, igEnBbl are too little and cover
only religious data. Although igWkSbwd includes subword information which should be good for an
agglutinative language like Igbo, these subword patterns are different from the patterns in Igbo. Generally
the models from the news data, igGNews, igWkNews, did well on these tasks.

On the diacritic restoration task 6, the results compare the basic model (i.e. as trained or projected)
with the diac (i.e. with variant vectors enhanced with the embeddings of their most co-occuring words.
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Figure 2: N-Gram accuracy scores for Threshold=0.7 (215) ambiguous sets

These models with semantic information, generally out-performed the n-gram models that capture more
of syntactic details.

Also, compared to other projected models, IgBible and its parallel, IgEnBbl clearly did better on this
task possibly it was originally trained with the same dataset and language of the task and its vocabulary
directly aligns with that of IgEnBbl.

Clearly, the learned diacritic embeddings improved the performances of all the models which is ex-
pected as each variant is pulled to the center of its most co-occurring words.

Odd-word Similarity Analogy
Models Accuracy Correlation nouns adjectives
igBible 78.27 48.02 23.81 06.67
igGNews 84.24 60.00 64.29 56.67
igEnBbl 75.26 58.96 54.76 13.33
igWkSbwd 84.18 58.56 64.29 50.00
igWkCrl 80.72 62.07 78.57 21.37
igWkNews 81.51 59.69 80.95 50.00

Table 5: Trained and Project Embeddings on odd-word prediction

5 Conclusion and Future Research Direction

This work is part of the IgboNLP5 (Onyenwe et al., 2018) project which aims at build a framework that
can adapt, in an effective and efficient manner, existing NLP tools to support the development of NLP
resources for Igbo. In this paper, we showed that, projected embedding models can outperform the one
built with small language data on a variety of tasks. We also introduced a technique for learning diacritic
embeddings which could be applied to the diacritic restoration task. Our next focus is to refine our tech-
niques and datasets and train models with subword information as well as consider sense disambiguation
task.

5See igbonlp.org
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Figure 3: Worst-to-Best Word Similarity Correlation Performance

Baselines: n-gram models
Unigram Best N-gram
65.81% 66.02%

Embedding models
Accuracy Precision Recall F1

Basic Diac Basic Diac Basic Diac Basic Diac
igBible 69.28 82.26 61.37 77.96 61.90 82.28 57.19 76.16
igEnBbl 64.72 78.71 59.60 75.18 59.65 79.52 50.51 72.93
igGNews 57.57 74.14 32.20 72.50 49.00 74.56 19.06 62.47
igWkSbwd 62.10 73.83 13.82 73.81 47.64 74.03 10.65 66.62
igWkCrl 60.78 73.30 40.07 78.02 49.16 76.24 25.36 68.62
igWkNews 61.07 72.97 14.16 76.04 46.10 75.14 8.31 65.20

Table 6: Performances of Basic and Diacritic versions of the Trained and Projected embedding models
on diacritic restoration tasks
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